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The response of an excitable neuron to trains of electrical spikes is relevant to the understanding of the
neural code. In this paper, we study a neurobiologically motivated relaxation oscillator, with appropriately
identified fast and slow coordinates, that admits an explicit mathematical analysis. An application of geometric
singular perturbation theory shows the existence of an attracting invariant manifold, which is used to construct
the Fenichel normal form for the system. This facilitates the calculation of the response of the system to
pulsatile stimulation and allows the construction of a so-called extended isochronal map. The isochronal map
is shown to have a single discontinuity and be of a type that can admit three types of response: mode-locked,
quasiperiodic, and chaotic. The bifurcation structure of the system is seen to be extremely rich and supports
period-adding bifurcations separated by windows of both chaos and periodicity. A bifurcation analysis of the
isochronal map is presented in conjunction with a description of the various routes to chaos in this system.

PACS numbegps): 87.10+e, 05.45.Xt

[. INTRODUCTION of pulsatile stimulation, an alternating pattern of period and
chaotic response can be observed in a single excitable neuron
The formulation of analytically tractable models of syn- [5—9]. In fact, it is possible to observe a period-adding bifur-
aptically interacting neurons is of fundamental importance ircation interspersed with windows of chaos. Such behavior
the understanding of the behavior of biological neural syshas been reproduced, to some extent, with complex models
tems. Many biologically realistic models of the single neu-combining the Hodgkin-Huxley equations with calcium and
ron, such as the Hodgkin-Huxley model, are so complex thagalcium-dependent potassium componga-13. In a re-

they provide little intuitive insight into the dynamics they cent study of the periodically forced integrate-and-fire neu-

simulate, especially at the network level. Extracting the esfOn: N0 such response was fouridl]. The integrate-and-fire

sence of neuronal behavior has encouraged many to pursfi§uron focuses on the generation of action potentials or

studies of networks of simple interacting threshold elements]f'plkes aqd Ir_T|1(aI|<eshno ﬁtte_mp:] to mimic tr}elrr] e.le.Ct”g? wave
The simplest and most thoroughly understood is the binar¥0rms('j Itis ely t attt "'S 'Sbt € sccniutr)c% ot elr(ljna lity ,Ict)
Hopfield model[1]. At the network level this has proved eproguce experimentally observed behavior under repetitive
; o ) pulsatile stimulation. Motivated by this discrepancy, we turn
_extremely useful in prowdmg metaphorical models_o_f Iearn-to another less studied model of a single neuron related to the
ing an_d memory retrlevgl at the expense of r_namtammg Conbinary model originally introduced by Abboft5]. The bi-
tact with biological reality. Cells in the Hopfield model are .\, ‘model of Abbott belongs to the class of mathematical
described as either firing or not firing and do not have theyystems known as planar relaxation oscillators. One may re-
capability of describing variations in neuronal firing rates, gard it as either a caricature of the Hodgkin-Huxley system
and neither are delays arising from the synaptic transmissiogr a generalization of the integrate-and-fire model to incor-
process or the propagation of action potentials allowed forporate a state-dependent threshold and a representation of a
The consideration of neurons as threshold devices for genespike. In either case, we shall demonstrate that it is an ana-
ating trains of spikes that can induce realistic postsynaptidytically tractable single neuron model that can produce
potentials in other neurons has led to detailed studies gperiod-adding bifurcations with windows of both chaos and
integrate-and-fire neural networksee[2] for a recent re- periodicity that submits to an exhaustive analysis within the
view). In these models, the properties of dendrites, axondramework of dynamical systems theory. Previous studies of
and synapses are described with the use of an appropriatgheriodically driven relaxation oscillators have focused upon
defined, yet biologically realistic, delay kernel, and the timenumerical studies in the so-called oscillatory regime, where
of generation of a spike is considered to be all importantthe system supports a limit cycle in the absence of any ex-
These systems are having increasing success in modelinigrnal signal[16—18. Systems with limit cycles may be
aspects of biological neural systems ranging from the genquite naturally investigated at the network using such tech-
eration of locomotor patter8] to the understanding of ori- niques as averaging theory that allow one to use theories
entation tuning in the visual cortg}]. Undoubtedly, there developed for the study of coupled oscillatdsee, for ex-
will be some instances in which the use of an integrate-andample,[19]). One may also invoke the use of phase-response
fire or related model is inappropriate. One such instance hasurves and isochronal coordinates to study the behavior of
arisen recently that is related to the response of isolateduch systems to external forcifig0,21]. Interestingly, in the
single neurons to trains of repetitive pulsatile stimuli. It iscase of the oscillatory FitzHugh-Nagumo model, both
known from several studies that with variation in the periodperiod-adding bifurcations and irregular activity have been
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observed numericall{22], suggesting that mathematical culate estimates for the isochronal coordinates of the
studies of planar relaxation oscillators under pulsatile stimuMcKean model, which reduce to those of the binary model in
lation should be pursued. It is important to appreciate, howsome limit. With a mixture of numerics and analysis, the
ever, that many neurons function as excitable threshold elgesulting isochronal map is shown to support an extremely
ments. Typically they will only elicit a single spike of rich bifurcation structure. Our main observation is the exis-
electrical activity in response to a pulsatile stimuli of suffi- tence of period-adding bifurcations separated by windows of
cient magnitude. Studies of excitable systems under pulsatilgh@0s and periodicity. The properties of the isochronal map
stimulation are relatively few compared to their oscillatory respor)S|bIe for this plfurcatlon structure are identified. Fi-
counterparts. A recent paper on the bifurcation structure of 82y, in Sec. V we discuss the extension of the work pre-
periodically forced nerve pulse equation modeling cardiac€Nted in this paper to the important problem of synaptically
conduction redresses this balance somewBai. Impor- coupled neural systems.

tantly, it has been established that some of the techniques for

dealing with oscillatory systems may be taken over to the Il. THE MODEL

excitable regime. Notably, work by Rabinovit@t al. ex-
tends the concept of isochronal coordinates to excitable SY$A
tems with specific application to the forced Bonhoeffer—va
der Pol oscillator in its excited mod&4,25. This has been

The behavior of neural cells is often explored by examin-

g the response of their cell membrane potential to the in-
r‘jection of an external current. These responses are partially
) dependent upon membrane conductance properties and the
extended to the case of neura] systems by Ichieoss. [26] . re\PersaI potepntials of the ions involved inp gé)nerating the
and Yoshincet al. [27]. In the first case, t'he authors NUMETI" oactrical response. Mathematical models for such processes
cally study the response characteristics of the excitablg o ,ten given by combining current conservation with dif-
FitzHugh-Nagumo system. Bifurcations of the System argq qniia| equations for the cell conductances and membrane
explained in terms of a mathemaugal |dea||zat|pn, the. SO'potential. Perhaps the most famous model of nerve tissue is
caIIet;iZ quel, a piecewise differentiable relaxation oscilla- Hodgkin-Huxley systerf2g]. Although originally intro-

tor with a smgle sta'\ble'node. The vvprk of Yoshiewal. also duced to model the squid giant axon, recent work suggests
pursues an investigation of the FitzHugh-Nagumo systeMy o+ the FitzHugh-NaguméFHN) model actually provides a

but this time it discusses a mathematical idealization of th etter qualitative descriptiof80]. This may seem somewhat
expected isochronal map that includes the effects of a stab rprising since the FitzHugh-Nagumo model is often con-

- sidered as a two-dimensional caricature of the four-

plification if one works directly with a piecewise linear cari- this recent observation, one often prefers to study the FHN

cature of the FitzHugh-Nagumo system known as th&ygem for its comparative mathematical simplicity. The
McKean model[28]. Within the context of excitable nerve F}i/tzHugh—Nagumo s;/)stem is given by : implicity.

tissue, this particular caricature has exact solutions associ-
ated with traveling pulses. In the limit that the fast and slow ev="F(v)—W—wo+I, (1)
time scales of this system become effectively independent,
one recovers the binary model of Abbott. In this paper, we
consider the McKean model in the limit of weak dependence
between the two-time scales of the system and utilize SOM@heref(y)=Co (v —a)(1—v). The variablev corresponds
of the framework of the binary model in the construction of s membrane potential while is associated with the refrac-
isochronal coordinates under external pulsatile stimulationyory properties of a neuron. The paramet@rsy, €, Wy, v,
By analyzing the properties of this map, we establish theynd 4 may be considered as combinations of the membrane
conditions under which period-adding bifurcations and win-reyversal potentials and conductance properties whigeany
dows of chaos are to be found in the excitable McKeargyternally injected current. Foe<1, one may regard the
model under external periodic pulsatile stimulation. FHN system to be comprised of a fast variableand a slow

In more detail, the outline of the paper is as follows. In\ariapie,w. The fast variable has a cubic nullcling £0)
Sec. II, we discuss planar relaxation oscillators appropriatg g the slow one has a nullclinevE 0) that is monotoni-

for studying excitable nerve tissue and introduce they)y increasing. In this paper, we consider the piecewise
McKean model. The relationship to the binary model of Ab-|inear caricature of the FHN nonlinearity, namely

bott is explained and théstate-dependenthreshold for a

W=0—YyW—0g, (2

spike response is identified. We define the extended isochron v, v<al?

of an excitable system with a stable node in Sec. Ill. With

this definition we first show how to construct the isochronal flo)=yv—a al2<v<(lta)l2 ©)
map of the binary model under external pulsatile stimulation. 1-v, v>(1+a)l2.

The analysis of the resulting map predicts that the system

can mode-lock to an external periodic pulsatile signal andrhis choice is preferable for two reasofis:piecewise linear
undergo period-adding bifurcations but that it is unlikely to models often possess explicit solutions digthe essential
generate any chaotic orbits. In Sec. IV, we consider the lesteature of the cubic nonlinearity in the FHN system is its
restrictive case in which the fast and slow time scales of th&¢ N’ shape[15] and this is duplicated by the piecewise linear
McKean model are weakly dependent. Using geometric sinform with its negative resistance region. The above choice of
gular perturbation theory, we show the persistence of invarinonlinearity was first considered by McKef28] in the con-

ant manifolds from the binary model. This allows us to cal-text of traveling nerve impulses, where it proved possible to
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tory regime. Up to a trivial rescaling, Eq$5) and(7) define

the binary model originally introduced by Abbqtt5]. The
model is particularly appropriate for the modeling of oscilla-
tory, plateau, and rebound properties of real neurons and has
been useful in understanding models of networks of pulse-
coupled neural relaxation oscillators. Insight into the latter
system has come from both a mean-field analysis and a study
of a single binary neuron under periodic square-wave stimu-
lation. The response of the binary neuron model to repetitive
pulsatile stimulation has not previously been performed. In
the next section, we show how one may develop such an
analysis with the use of isochronal coordinates.

FIG. 1. The phase plane for the McKean model has a nulicline _

with an N shape(thick solid lineg corresponding ta)=0 and a lll. ISOCHRONAL COORDINATES  €=0

linear one associated witiv=0 (thick dashed lings The state- First let us focus on the binary model valid fer=0. In

dependent threshold function is the middle part of #he0  thjg case the system spends all of its time on the branches

nullcline described by the linear equatior v (w). In this figure S=0 and 1. Following the work of Rabinovitdi24,25 and

the stable excitable fixed point lies at the intersection of the WO ater work by Ichinoset al.[26] and Yoshincet al ['27] we

nuliclines on thes=0 branch. define an extended isochron as a set of states synchronously
. approaching an asymptotically stable fixed point. The iso-

calculate the speed and shape of traveling pulses exactly. TQ‘fgrponaI coc?rdinate;-/(pr) wit)r/1 an origin at p() w)=((1

system has nullclines defined bfv)=w+wy—I and w . : .

=(v—wvg)/y. The case when the fixed point is such that :al))iz'\\:vvf))'] _'St[f(olnflg)e /rze\(liv ;[O_> (bve* wf )]dlfferend@&/)ﬁ\évr)e

< al2 is said to define the excitable regime. It is convenient,[[(v w ) (0,W,)] den’otés the ti'me ta’ken to move from
to keep track of which branch of the nonlinear functi@his Lo 2,772

playing a role in the dynamics. To do this, it is natural to(vl'wl) 10 (v2,W,). Hence,
introduce the binary variable: T st=1

-T, s*=0, ©

+1, v>(1+a)2 T(W’S):[

S= (4)
0, v<al2. whereT is the time taken for the system to evolve frowto

w,. The time taken to evolve onto a branch is considered to

be essentially zero. We shall explore the consequences that a

nonzero evolution time has shortly. By integrating Eg),

we may write the isochronal coordinate in the form

If the time scale for the dynamics is fast compared to the
time scale for thew dynamics(i.e., in the limit ase—0),
thenv spends no appreciable time off of the nullclines for
v=0 and we may writef(v)=S—wv. Introducing S*(t)
=lims_o+S(t+ ), we may write the dynamics fdB(t) in 1
the form 7(w,S)=—1n

B

One of the useful properties of isochronal coordinates is that
where®(x)=1 if x=0 and is zero otherwise. To establish the following equality holds if there is no stimulation be-
the validity of Eq.(5), we refer to Fig. 1 and check th& tweent andt+A:
switches from 0 to 1 a& decreases through; and that this
is reversed aw increases througW,. The pointsw; andw, T(w(t+A4),S(t+A4))=r(w(t),S(t))+A. (1D
in Fig. 1 are easily calculated ds-wgy— «/2 and | —wg

—al2+1/2, respectively. On the branch&s=0 and 1, the We now consider a train of pulsatile stimulation at tinigs
evolution ofv may be expressed as ' such thab —v + k, whent=t,,. Assumingw; <w<w,, we

may write

W,—(S+A)/B

w—(S+A)/B (=1)> (19

ST =0[1—wy+(S—a)/2—w], (5)

v=S—w—wy+lI. (6) N
Sy =0+ ky—v(W)), (12
This allows us to rewrite the slow dynamics in the form
where S(t,) =S, and v (w) is defined by the conditiomw
W= —pw+A+S, (7 =0 andf(v)=v—a, which givesvy(w)=w+a+wy—I.
] ) Hence, using Eq(6) (under the assumption that just before
where g=1+y and A=l-wy—vo. The fixed point the stimuli the system lies on one of the brancBesD or 1),
(v*,w*) is given byw” = (v™* —vo)/y with Eq. (12) may be written in the form

1 +_ _
v*= g yWom 1 +X) =g, ®) % =0 G=hW.ka)) 13

whereh(w, «) is defined by
whereX= S if the fixed point lies on one of the two branches

S=0 or 1 (excitable regimgand X=« otherwise(oscilla- h(w,k)=2w+ a—k—2(A+vy). (14
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FIG. 2. The graph associated with the isochronal map for the FIG. 3. The period-adding bifurcation scenario for the isochro-

casee=0. Other parameters afle=vyo=wy=0, «=0.25, andy
=A=0.5.

For simplicity, we shall assume that the period of stimulation
is sufficiently large so as to allow the system to relax back to
the S=0 branch between stimuli. In this case, we have that

T(Wn+1-0):T(WnaSrT)+An1 (15)
where w,=w(t,,) and A,=t,,—t,. Now the isochronal
coordinate on th&s=0 branch is given by Eq10) with S
=0 so that on this brancW,, ;=W (7(w, 1,0)):

1
‘I’(T)=E[A+¢9XD(—BT)] (16)

with  ¢=pB[w,—A/B]. The isochronal coordinate
(Wnt1,S1, ;) just after the next stimulation may be calcu-

lated from Eq(10), and using Eqg.15) and(16) allows us to
write

The1= F(Ta T A kp), (17)
wherer,= 7(w,,S;) and
fl(rr)=1, k<kg(7)
Hm)= fR(T,K)s[—gm%' K> Kol 7)-
(18

The threshold condition in the isochron map is determined

by h(¥(7),x)=0 so that

Kko(7)=2W(7)+a—2(A+vy). (29

An example of the graph of the functidd8) is shown in
Fig. 2.

Period-adding bifurcations

From now on we examine the case thgi=A and «,
=k for all n. It is straightforward to show thdt' (7,x)<<0
for k> k(1) so that in the limit of a large number of itera-

tions bounded dynamics is confined to an invariant interval

S.=[o_,0r] with o =fg(7.+A,k) and og=f (7,
+A, k). The quantityr, is given by the solution ok.(7.)
=k. It is convenient to introduce a new coordinate
=g9(7r)=(7—o)/(ogr— o). The dynamics in this new vari-
able is given byx, . 1=h(x,) with

nal map as a function of the stimuli periakl Parameters aré
=vo=Wp=0, =0.25,y=0.5, and«=0.5.

X<6
X>0

B h (x)=gef eg™ 1 (x+A),

h(x)= hr(X)=gefreg H(x+A),

(20

for some parameted=g(7.) € (0,1). Note that the invariant
interval is nowX,=[hg(1),h (#)]=[0,1]. For realistic pa-
rameter values it is always possible to establish the following
properties: (i) h/(x)>0 and hi(x)<0 for all 6, (ii)
hr(8)<h,(0), (iii) h (x)>x for all x<@, and(iv) |h'(x)|
<1. It has been rigorously shown by LoFdii] that such
maps allow only perioch and periodn+ 1 orbits to coexist,
both of which are attracting. Moreover, éss increased, the
system bifurcates from a single perindrbit to the coexist-
ence of a perioch orbit with a periodn+ 1 orbit and then to
a single periodn+1 orbit. Period-adding bifurcations are
therefore expected as we vakyfor the isochronal mapl?)
and are indeed those observed in numerical simulatises
Fig. 3). We shall refer to periodic orbits of orderas being
1:n mode-locked since the response of the system repeats
aftern applications of th&periodig external stimulus. In the
limit of small ¢, and under periodic pulsatile stimulation, the
coexistence of periodic attractors has also been observed nu-
merically in systems of the type described by E(9.and
(2) when f(v) has the cubic shape of the Bonhoeffer—van
der Pol oscillatof18].

It is natural to define an excitation numbeffor the sys-
tem as

N

p(7o)= lim 1 21 S’ . (21)

N— o0

This gives a measure of the average firing rate of the model
neuron, an example of which is shown in Fig. 4. The char-

0.6
0.4

0.2 K

0

0 0.5 1 A 15 2
FIG. 4. Rotation numbep (independent ofry) for the bifurca-

tion diagram shown in Fig. 3.
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acteristics of the excitation numbers of the binary model re- ev+[ye—ft'(v)]Jo+[v—vyf(v)]+T=0, (23
veal a staircase structure with no chaotic response. In the

next section, we show that the possibility of an incompletewherel’ = ywy— yl —vq. Using the piecewise linear func-
devil's-staircase-like structure and the appearance of chaotiéon given by Eq.(3), we have that

orbits are associated with a nonzero valuedoCorrections . . )

to the instantaneous approximation of the binary model arefV * (ve+1)v+(1+y)v+I'=yS=0 regions 1 and 3,
calculated using geometric singular perturbation theory, (24)
which then allows the construction of an isochronal map 0+ (ye—1)i+(1—y)v+T+ya=0 regions 2,
along similar lines to those just presented. (25)

IV. ISOCHRONAL COORDINATES €#0 where for convenience we call region 1 the regime where
. . , v<al2, region 2 is wherew/2<v<(1+«)/2, and finally
We have seen in 'Fhe Pfeced'”g section th‘."‘t the M_cKea gion 3 is where > (1+ «)/2 (see Fig. 1 The structure of
model possesses a simplified structure on taking the singulgg o systems motivates an analysis of

limit e—0. The solution of this simplified systeiusually

referred to as amouter solution is often a valid asymptotic ev+(ye+A+(1+Ay)v+C=0, (26)
expansion of the full system upon takingto be a small

parameter. However, in some regions, such as near thehereA=*1 andC is some constant. Further simplification
nullclines of the fast variable, one would expect the appearis obtained by shiftingy such thatv—v+C/(1+Ay) so
ance of a boundary layer. One technique for matching sothat we may drop the last term in EQ6). The leading-order
calledinner solutions(valid in the neighborhood of a bound- outer equation for E¢(26) is then

ary layey with outer solutions is themethod of matched _

asymptoticsFor the extension of the binary model to non- Av+(1+Ay)v=0 (27)

gfnrgﬁ’r?quhvngﬂ,%ﬁgpoefcihbeo%Tgﬁ%ggi%df\goﬁe'ﬂ sz%nd the leading-order inner equation is found by introducing

the threshold) =v (w). In effect, for nonzera, one can no s=t/e:
longer separate the dynamics of the fast and slow variables in d2v do
all regions. This complicates the calculation of the times to ¥+A£=O. (28

evolve onto and off the branch&-=0 and 1, necessary for
the formulation of an isochronal map. The techniques o
matched asymptotics allow such calculations for snhell
Even though the McKean model is in fact exactly soluble,
one must be prepared to deal with approximate solutions of a X=e[Ab+(1+Ay)v], Y=eb+Av. (29)
set of transcendental equations for the evolution times with

this approach. For the purposes of this paper, it is more apaith this choice of dependent variableéjs a fast variable
propriate to use a complementary set of techniques deveknd Y is a slow variable. Note thak=0 gives the outer
oped using ideas from dynamical systems theory, known agquation whileY=0 gives the inner equation. From Eq.

the method ofgeometric singular perturbation thearfrhe  (29) we may writev ando in terms ofX and:
full theory is often referred to as Fenichel theory and a re-

tI'he structure of the inner and outer equations motivates the
following new variables:

view of those parts that we use in this section may be found 1 —-A

in the tutorial article by Hayest al.[32]. The theory is best v= ( B_az/ Xt eB—AZ)Y’ (30

applied when one can identifgyood fast and slow coordi-

nates in a dynamical system. This facilitates the derivation of —A B

the so-called Fenichel normal form for the vector fields near . :(—2>X+ —Z)Y, (31
e(eB—A%) eB—A

their center manifolds(outer solutiong which explicitly
contain the center dynamics and the exponential attractio

Ond B=1+Ay. Equation(26) may now be rewritten inX
(or repulsion in forward time toward the centéslow) mani- Y- =4 26 y

andY coordinates as

fOI(\j/i/hen e=0, the McKean model possesses an invariant A[e(B+1)—A?] 2B
manifold which may be written in the form=mg(w), with N - eB—AZ2 eB_AZ X
mo(W;0), v<al? {Y’}: e(B+Avy) eB(A—e€y) M
me(wW)=1{ ve(w), aR<v<(l+a)l2 (22 ~ eB-A? eB—AZ -
mg(w;1), v>(1+a)l2

_ wherer =d/ds. After expanding in powers o, it is appar-
and mo(w;S)=S—w—wo+I. Note that fore=0, the tWo  gnt that the above is in the form to which Fenichel theory
outer branches defined I3/=0 and 1 are attracting while the gppjies, j.e., we may write

inner branch defined by=uv.(w) is repelling. To establish

that these statements are also true for sailis convenient X'=FX,Y;e), (33
to first write the dynamics in terms of a second-order differ-

ential equation: Y' =€eG(X,Y;€), (34
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where
B+1
FX,Y;e)=| —A+ e+0(€?) X
B
+ —KZEZ‘FO(Ez) Y, (35
. [B B
G(X.Y;€)=| 12 +0(€) [X=| z+O() |Y. (36)

The e=0 case of Eq(32) possesses a normally hyperbolic
invariant manifoldMy={(X,Y)|F(X,Y;0)= —AX=0}. By
Fenichel’s persistence theorem there exists a funetigiy)
satisfyingm.(0)=0, whose grapH(X,Y)|X=m.Y)} is a
slow (centeiy manifold for the systeni32) that is tangent to
the Y axis at(0,0). It is guaranteed thatM . ={(X,Y):X
=m,Y)} is O(e) close toM,. Introducing the Fenichel
coordinateb=X—-m_.Y), the system(32) has the normal
form

eb=B_(b,Y)b, (37)

Y=G(b+m/Y),Y;€) (38)

with B.(b,Y)=—A+0O(e). SinceA= +1 describes dynam-
ics close to the branché&=0 and 1, we easily see that these
branches are attracting whild=—1 for the thresholdv

=v.(w) and it is repelling. The existence of a Fenichel nor-

mal form, in terms of the fast and slow variabl¥sand Y,
tells us that we may only consider the slow variables
fixed if [b(t)|>]e|. (In fact, for this system this statement
holds for|b(t)|>]e|? [32].) A simple underestimate for the
time taken to evolve onto the branch®s 0 and 1 can there-

fore be obtained by considering the Fenichel normal form

(37) with Y=0. For each of the dynamical systems in re-
gions 1, 2, and 3 we consider the case of sraalb that to a

first approximation the Fenichel coordinate can be taken as

b=v—m.(w) [with mg(w) given by Eq.(22)]. We then in-
tegrate Eq(37) with Y=w considered as fixed to obtain an

estimate for the duration of a given trajectory. To estimate

the time taken to evolve from an initial point with(0)> €

onto an attracting part of the invariant manifold, we calculate

the time of flight to within a distanc®(e) of the invariant
manifold as

(39

In deriving Eq.(39) we have assumed that the slow variable

w remains fixed forlb(t)|>e€. Obviously, a better estimate
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FIG. 5. The graph associated with the isochronal map for the
case where=0.2 andA=0.5.

while for regions formed from the union of region 2 and
region 1 or region 2 and region 3,

2a_vc(W)>

v—v(W) (4D

where we drop terms oD(elne€). In Eq. (41) one should
take S=1 if attraction is to the manifold close to tHf&=1
branch andS=0 for attraction to the manifold close to the
S=0 branch.

For small (but nonzerp ¢, the isochronal map obtained
from these estimates has the form of E47) with

Ke(T)
T—elnk, k< >
= kD2 KD
7—€ln A7) —x]' 5 k<Kq(7),
(42
(1 1- ¢,
A1 e P
[KC(T)_]-]Z 1+Kc(7')
—6|nm, KC(T)<K< 5
fR(TvK)=< 1 1_¢
S
B 11-¢e
1+ ke(7)
—eln(k—1), K>—2 ,
‘ (43

where we make use of the fact that on t8& 0 branchw
=W (7(w,0)), whereW takes the form

1

V(0=

[A+ ¢ exp—B7)] (44)

could be obtained by analyzing the full Fenichel normal formang ¢ _=4<$. Note that Eq(44) reduces to Eq(16) in the

for the system withb=0 on the setb=0, but this is not

limit e—0 as expected. As for the=0 case, there is only

necessary for our purposes. We are now in a position tene discontinuity in the isochronal map &t 7., wherer,
refine our construction of the isochronal coordinates by estisolvesk = k.(7.) andk.(7) is given by Eq.(19) after using

mating the time spent evolving onto the invariant manifoldEq. (44). An example of the graph of this new isochronal

that ise close to the branches=0 and 1. In regions 1 and 3,
we find

T=—€ln[v—myw,S)]+O(eln¢) (40)

map (with nonzeroe) is given in Fig. 5. The shape of this

map is remarkably similar to that of the isochronal map for
the Z model, itself shown to be in remarkably good agree-
ment with that obtained numerically from simulations of the
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FitzHugh-Nagumo model witk=0.2[26]. Using these ob- 1
servations as a guide, we would expect good correspondence
between the dynamics of the full McKean model and its 08 O
reduction to the isochronal map for similar choiceseoFor 0.6 — ]
the numerical examples presented in the next section, we ‘ _
make the choice=0.2 throughout. 0.4 <
Bifurcation structure 0.2 ;"# ’
For convenience we rewrite the dynamics in the form 0 :
The1=h(7,), where 0 1 A 2
h (X)=f (X+A,k), x<8@ FIG. 7. Rotation numbes for the bifurcation diagram shown in

h(x) (45 Fig. 6 (with 79=0.1).

hr(X)=fr(X+A,k), x>0
where the parametef is given by the solution ofx.(#  though their size may be small. The mechanisms for the
+A)= k. A numerical example of the bifurcation structures generation of chaotic orbits will be outlined below. Other
that one typically sees with variation in the stimuli peridéd differences between the isochronal map derived in Sec. llI
for fixed stimuli strengthx is given in Fig. 6. The phenom- and that derived using geometric singular perturbation theory
enon of period adding is preserved for nonzeralbeit with  include the fact that foe=0 the isochronal map has a finite
the introduction of some new bifurcation structures, namelyinvariant interval, while for nonzereit has a(semj-infinite
the appearance of windows in parameter space separatigvariant interval. Also, since the gradient of the left-hand
mode-locked orbits in which bifurcation structures notbranch of thee=0 isochronal map is unity, it cannot have
present in thee=0 case(binary mode) are found. However, any fixed points in the limitA—0, for which the attractor
for small e the bifurcation diagrams are essentially indistin- becomes a finite interval. Fer# 0, it is simple to show that
guishable. One also sees from the evaluation of the assodhe derivative of the left-hand branch of the isochronal map
ated excitation numbesee Fig. 7 an incompletgerturbed is less than unity and that it possesses a stable fixed point as
devil's-staircase-like structure, somewhat more complicatec — 0. A nonzeroe also leads to new bifurcation structures
than that of the binary model. To establish whether any ofncluding windowsof parameter space that separata and
the orbits are chaotic, we numerically evaluate the Liapunow:n+1 mode-locked solutions, observed with decreaging
exponent. The Liapunov exponextgives a measure of or- As well as supporting a form of period-doubling bifurcation,
bital stability and is defined as the isochronal map with nonzere also supports period-
adding and saddle-nodgangent bifurcations.

For small values ofA not too close to zergreferring to
Fig. 6), the period-adding scenario, observed in Fig. 3 for the
binary model, is preserved to some extent, but the bifurcation

In fact, the numerical evaluation of the Liapunov exponentSt'ucture is not so easily described. As an illustrative ex-
(shown in Fig. 8 and rotation numbefshown in Fig. 7 for ample, we first focus on the right-hand side of Fig. 6. In Fig.

the bifurcation data shown in Fig. 6 indicates the possibilitygj we show the bifurcations that occur between a 1:2 and a
of chaotic orbits, as well as showing regions in parametell-l mode-locked solution. The window of bifurcations that

space in which periodic or quasiperiodic motion occurs. ItS€Parates these mode-locked solutions is also seen to support
would appear that the absence of chaotic orbits in the binar§ Period-adding scenario, but for increasihgFor largeA,

model is an artifact of the singular limi¢=0. The binary € Sequence of bifurcations ends with the appearance of a
model is not sufficiently rich to exhibit chaotic behavior. For Stable fixed point via a saddle-node bifurcation. Interestingly,
arbitrarily small values of, however, there are chaotic win- the period-adding bifurcations appear to have some transition

dows in the bifurcation diagram of the isochronal map, a|_re_gime Which_is not_quite sharp. In fact_, these t_ransition re-
gimes have bifurcation structure all their own with both pe-

d7yig

dr,

1 N
A(7o)= lim NZ |

N— 0 n=1

. (46)

0 1 A 2
FIG. 6. The period-adding bifurcation scenario interspersed with 0 1 A 2
chaotic windows for the isochronal map with nonzeras a func-
tion of the stimuli periodA. Parameters aré=vy,=wy=0, «a FIG. 8. Liapunov exponerX for the bifurcation diagram shown

=0.25,k=0.5, ande=0.2. in Fig. 6.
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06 1
| 0
K
1t {
'D
1.7 18 A 19
FIG. 9. A blowup of the bifurcation diagram shown in Fig. 6
showing a saddle-node bifurcation at aroube 1.94.
0.2
0 A 2 -5

riod doubling and tangent bifurcations. An example of a
period-doubling cascade in one of these transition regions is £ 11, Numerical evaluation of the Liapunov expongrfor
shown in Fig. 10. Such cascades occur atehdof each of  he (A 4) parameter planéfor a 250x 250 grid with 7,=0.1, @
the larger mode-locked interva@hich occur with increas- —g 25 y=0.5,¢=0.2, andl =v=wy=0.

ing A). However, typically they themselves occupy a small
window in parameter space and are unlikely to be of physicaiV
significance in neurodynamical systems. In the right-han

part of the bifurcation diagrarn(Fig. 10, this cascade ends In the intermediate regime whefg[ (7*)|> 1, there may be

abruptly with the appearance of a period—3 orbit. This qu.a"'parameter regimes which support a so-called snap-back re-
::a;tl;/oencrll\(lacr)]t%etlhnatb?)t;?(\)”rzr tlﬁisstzzgzﬁdbﬁgrc:tigﬂeri]rg-blfurbe”er such that there exists at least one orbit starting from

. . . : . : the vicinity of the unstable fixed point, which is repelled far
creasingA), the invariant interval can become mcreasmglyaWay from the vicinity and then isnappecback to*. The
I:l,rge a_ng IS (ljnflmtehwher_hL(xm) :he,hwr:]er'e xmhsatlslﬁes existence of such a repeller is sufficient for chf®3]. Thus

L(Xm) =0 and ¢ is the point at which the isochronal map o4 qtic orbits may arise through at least two mechanisms,
has a discontinuity.

) . , - . namely period-doubling cascades and the appearance of
To establish that the bifurcation data in Fig. 6 are in SOM&nan_back repellers. Some of the properties ofviiredows
sense generic, we produce a numerical plot of the Liapunoy, v aiso be uncovered without too much further work. For
exponent in theA,«) plane in Fig. 11. To help organize the gy o hje the shallow gradient bf(7) for large r underlies
form of these numerical da.ta, we trace the locus of supergq narrownesén parameter spagef the observed period-
stable cycles ofrn.1=h(7,) in Fig. 12. Superstable cycles y4pjing cascades seen at the edge of a window that sepa-
of orderp are defined as thospe points in parameter space fqhieq mode-locked solutiorisee Fig. 10 As in numerical
which bothh’(7) =0 and7=h"(r) for some integep. Als0,  gjmyations of the Bonhoeffer—van der Pol oscillator, chaotic
in Fig. 13 we trace the locus of period dom;blmg and saddleparameter regions are found to decrease with decreasing
node bifurcation points for the mag,.;=h"(7,). A com- 18] Moreover, similar bifurcation structures to those ob-
parison of Fig. 11 with Figs. 12 and 13 shows that one caiereq in the isochronal map derived from the McKean
indeed organize much of the observed bifurcation structurg,,qe including the coexistence of periodic attractors
of the isochronal map with this elementary analy@spe-  period-adding bifurcations, period-doubling bifurcations, and
cially outside the windows separating mode-locked oJbits a5 are seen. The precise scaling laws for the size of the
The parameter regimes for nontrivial dynamical behavior canaotic windows are of mathematical interest, but perhaps
also be loosely identified by tracking the position of the fixedpqt 56 important for a discussion of the computational prop-
point. For example, in Fig. 6 the fixed point satisfies  gres of the McKean model and its usefulness in understand-
hg(7)=7* for largeA and is stable. Initially it is unstable, ing data from real experiments such as thosg9in It would

entually becoming stable for small enoughHowever, as
is decreased, the fixed point can fall upon the bramch

T +A
n ) 0.6
IN
1 0.5
0 04
-1 0.3
2 : 0.2
1.695 1.696 1.697 A 1698 0 0.5 1 A 15 2

FIG. 10. A blowup of the bifurcation diagram shown in Fig. 6 FIG. 12. Locus of superstable cycles of orddi)1 2 (1), 3(1ll),
showing a period-doubling bifurcation betweeh=1.695 and and 4(IV) in the (A,«x) plane corresponding to the parameters of
1.696. Fig. 11.
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0.6 of A. In fact, numerical simulations of the FitzHugh-Nagumo

K system exhibit precisely this interruption and show a transi-

05t tion to asuperpulsestructure, where pulses are found super-
posed on one anothg22]. However, for larger values af

04 | one would expect the period-adding bifurcation to be seen.
In experimental studies of cardiac tissue by Chialvo and Ja-

03 | liffe [34], the bifurcation scenario 1:%1:2—1:3—1:4 is

’ clearly seen, suggesting that period-adding bifurcations are a

02 feature of periodically stimulated excitable systems in gen-

0 0.5 1 A 15 9 eral, not just neural ones. Chialvo and Jaliffe also make the
observation that structures typically seen in periodically

FIG. 13. Locus of period-doublinsolid lineg and saddle-node forced oscillatory systems, such as hierarchies of periodic

(dashed lines bifurcations for the mapr,.,=h"(7,), wherep  solutions described by the Farey sequence, are possible in
=1,...,4. Theorder ofpin the figure is given in Roman numerals. excitable systems. Similar conclusions may be drawn from
Parameters are as for Fig. 11. our work by noting the devil’s-staircase-like structure of the

. . . _ . . excitation number, also commonly seen in periodically
seem that period-adding bifurcations interspersed with chagceq oscillatory systems.

otic activity are a feature of the McKean model, absent in the Importantly, the work presented applies to a generaliza-

binary m_odel €=0). This_ is consistent with experimental tion of the binary neuron model of AbbdiL5] that can be
observations of the behavior of real neurons and supports thgpicitly analyzed in the presence of pulsatile stimuli. Since
credibility of the McKean model as a useful caricature of any,q output of such a neuron model can be used to specify a
excitable neuron. train of pulsatile stimuli[say, in the form of a spike train
2,8(t—T"), where theT" are the times at which the iso-
V. DISCUSSION chronal coordinate passes through some reference value that
In this paper we have shown that the response of thé'ggalls a ]f'”n% event, Ise:jyzl\/(l)]kone mayb_easny formulate ¢
McKean model, of an excitable neuron, to pulsatile stimula-MOC€IS of puise-couple chean or binary neuron net
orks. Previous studies of coupled relaxation oscillators

tion can be interpreted in terms of an associated discontiny- .
ous one-dimensional map, which we have called the exnave focused upon coupling through fast threshold modula-

tended isochronal map. This map is derived using techniquetéOn [35,36 or variants thereo[37]. The extension of this .
from geometric singular perturbation theory and previousapp,roaCh to incorporate other caricatures of neural relaxation
definitions of isochronal coordinates for excitable systemsoscf'"ators’ which, for example, include the effect_s of_st_able
The parameter dependence of period adding, period doJQC' or do not relax back near to rest between stimuli, is of
bling, and saddle-node bifurcations can be used to organiz&wOurse an area that should be devgloped. Itis alsq likely 'Fhat
some of the rich structure observed in numerical experiment € e>l<)ten3|on -LO| the case of nomns;antaneomés |n|tera?jt|ot;1s
and to show that chaotic trajectories are suppressed in t ayh_ € possll §8u$lnghrecer:jt tefc niques ”eve op? d y
limit that the voltage variable of the McKean model is much ' ©5 inagaet al. [38] for the study of synaptically couple

faster than the recovery variable. For small intervals betweeF‘Odgkm'Huxr:ey eqhuatlons. A [lalrograr:n ofﬁ:/vork that m_clu?ljes_ h
the application of pulsatile stimulation, we would not expect'€atures such as these as well as the efiects associated wit

the dynamics of the isochronal map to approximate those gi*0nal. synaptic, and dendritic processing is a topic of cur-

the full McKean model. In this case, the system would not™eNt research.
have time to relax back to the state wik- 0, violating one

of the assumptions used in the reductitite other being that

we consider smalk). Hence, the period-adding bifurcation  S. C. would like to acknowledge support from the Nuf-
(seen with decreasinty) may be interrupted for small values field Foundation.
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