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Alternans and the onset of ventricular fibrillation
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Ventricular fibrillation~VF! remains a major cause of death in the industrialized world. Alternans~a period-
doubling bifurcation of cardiac electrical activity! have recently been causally linked to the progression from
ventricular tachycardia~VT! to VF, a more spatiotemporally disorganized electrical activity. In this paper, we
show how alternans and thus VT degenerate to chaos via multiple, specific dynamical routes, largely associated
with spatial components of VF dynamics, explaining failures of many recently proposed antiarrhythmic drugs.
Identification of dynamical mechanisms for the onset of VF should lead to the design of future experiments and
consequently to more effective antiarrhythmic drugs.

PACS number~s!: 87.19.Hh, 87.10.1e
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It is now widely believed that some forms of ventricul
tachycardia~VT! arise when a spiral wave of action pote
tials is generated and drives the ventricle at a rate m
faster than normal sinus rhythm, and that ventricular fib
lation ~VF!, a more spatially and temporally disorganiz
state, arises from subsequent breakdown of this spiral
multiple drifting and meandering spiral waves@1,2#. It was
recently found that instabilities in action potential durati
~APD, or simply a in equations! play a critical role in this
spiral breakup@3–6#. A heart cell stimulated at normal hea
rates has a relatively stable APD, but as the rate is increa
to significantly higher rates typical of VT, APD dynamic
first undergoes a period-doubling bifurcation to alternans
then a subsequent progression to chaos@7–12#. Because
APD alternans can arise from steep restitution curves~slope
.1! relating the diastolic interval~DI, or simply d! to the
next APD@Fig. 1~a!# at short cycle lengths@13,14#, the slope
of APD restitution curves plays a critical role in the onset
VF @14,15#.

APD dynamics had previously been interpreted ma
ematically in terms of bifurcations of one-dimensional ma
pings@Fig. 1~b!# @14#, with the cycle length~CL, or simplyc!
serving as control parameter since the system operates w
a1d5c. As shown in Fig. 2, many key dynamical featur
in the response of cardiac tissue to rapid pacing rates
captured in the resulting bifurcation diagram obtained fr
APD dynamics. However, an analysis of activation patte
in cardiac electrograms argued for the onset of cardiac ch
via the Ruelle-Takens-Newhouse route@1# associated with
several interacting nonlinear ‘‘oscillators’’@16#, rather than
the Feigenbaum route@17# associated with a single one
dimensional mapping. In particular, the observed transit
to chaos involved only one period-doubling~APD alternans!
and not the infinite Feigenbaum@17# cascade. Such incom
plete sequences have been observed in fluid dynamics@18#
and related simulations~cf., @19#!, and strongly suggest
breakdown of one-dimensional dynamics@19,20#.

A further analysis of assumptions leading to the appli
tion of APD restitution curves@13,14# suggests other pos
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sible routes to cardiac chaos. In this paper we shall dem
strate how spiral waves can progress to chaos via o
known routes@17–23#, in many cases involving the dynam
ics of VF as a spatially extended system. Thus multiple st
egies are necessary to prevent the onset of VF, explaining
failure of many proposed antiarrhythmic drugs which atta
specific channels@24–26# and thus specific aspects of ca
diac dynamics.

In addition, alternans in intracellular calcium transien
have been identified as a cause for APD alternans@27# and
linked to T-wave alternans@28# and variability in action po-
tential morphology@6,29,30#. T-wave alternans have als
been identified as a marker for increased risk of cardiac
rhythmia@31–33#. It is easy to see thatT-wave alternans, an
important risk factor, can readily arise from APD alterna
~cf., @6,30,34#! as a consequence of volume conduction~the
ECG is a weighted average of local electrical activity!.

Since APD dynamics will play a variety of roles, we fir
make explicit the key assumptions implicit in the descripti
of APD dynamics with one-dimensional mappings genera
by monophasic~monotone! restitution curves and the cycl
length~interval between stimuli! c serving as control param
eter @13,14#.

Assumption 1: No memory in APD dynamics. The action
potential duration~APD! depends to first order upon the pr
vious diastolic interval~DI!. Long DI’s are followed by long
APD’s and short DI’s are followed by short APD’s, due
part to incomplete recovery following short DI’s. Overa
the APD is a monotone, nondecreasing, concave down fu
tion of DI which approaches a finite limit for very large DI’s
The graph of this function is called the APD restitution cur
@Fig. 1~a!#.

Assumption 2: Monotone APD restitution. The APD res-
titution curve is monotone.

Assumption 3: No conduction block due to short CL. The
CL is sufficiently long that the restitution curve yields on
action potential per stimulus~that is, no conduction block!
and thus a transition function~one-dimensional mapping!
from one APD to the next@13,14#. In the case of steep~slope
4043 ©2000 The American Physical Society
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FIG. 1. ~a! Action potential duration~APD! restitution curve fitted to Beeler-Reuter kinetics, yielding the equationa52581125 exp
@20.068(d243.54)#2350 exp@20.028(d243.54)# @44#, a minimum diastolic interval~DI or supply d! of 43.54 ms and a correspondin
minimum APD of 33 ms.~b! The one-dimensional mapping~transition function! f c induced by this restitution curve atc5320 ms. ~c!
Graphical construction of the minimum cycle length~CL! required for APD dynamics to be given by a one-dimensional map~transition
function! f c with one action potential per stimulus~no conduction block!. ~d! The transition functionf CL and its twofold~solid sigmoidal
curve! and fourfold~dashed sigmoidal! iterates. All three curves cross the 45° line at an unstable equilibrium and the two sigmoidal c
also cross the 45° line at a stable period-2 orbit off CL . See text.
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.1 at the minimum DI!, monotonic, concave down restitu
tion curves, this criterion is easily understood geometrica
cf., @13,14#. Referring to Fig. 1~c!, which illustrates APD
dynamics at the minimum CL which generates on
dimensional dynamics with no conduction block, the mi
mal DI, denoteddmin , is followed by the minimum APD,
denotedamin . Let d0(5c2dmin) anda0 denote the next DI
and APD, respectively. In order for the next stimulus to ge
erate an action potential, we must havec2a0>dmin . There-
fore, for steep, monotone, concave down restitution curv
let d0 denote the DI where the APD restitution curve fir
,

-
-

-

s,

dips below the 45° line through the point (dmin ,amin). It is
easy to see that assumption 3 requires

c>dmin1a0

@Fig. 1~c!# and the required transition functionf c is given by
the composite mapping

an→c2an5dn→an11 .
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FIG. 2. ~a! APD dynamics as a function o
cycle length, generated by the APD restitutio
curve shown in Fig. 1~a!. The APD restitution
curve describes the dynamics of a single cell~a
‘‘zero-dimensional’’ strip of tissue!. ~b! APD dy-
namics as a function of cycle length, generat
by a three-variable model fitted to the Beele
Reuter kinetics used for Fig. 1~a! @43#, on a one-
dimensional strip of tissue. Deviations from th
dynamics of Fig. 1~a! at short CL’s are due to
electrotonic effects on the wave back occurrin
during fast pacing@30#. As the cycle length de-
creases there is a period doubling because of
slope.1 in the restitution@Fig. 1~a!#, then there
is a 2:1 block followed by another period dou
bling, chaos, higher-order blocks, etc.
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TABLE I. Transitions to cardiac chaos.

Assumption Typical violation Route to chaos Example

1. No memory. APD
depends to first order
upon the previous DI,
yielding one-dimensional
map, the APD restitution
curve.

Memory of CL or other
aspects of dynamics increases
underlying dimensionality.

High-dimension~temporal!
chaos.

Spiral breakup in ischemic tissue~where
restitution curve has slope,1! @33#.

2. Monotone restitution
curve. APD restitution
curve is monotone.

Nonmonotone~biphasic!
restitution curve.

Feigenbaum@17#. Nonmonotone APD restitution curve; see
Refs.@7–9#

3. No conduction block
due to short CL, that is,
c>dmin1a0.

CL too short@may be caused
by minimal DI (dmin) too
long#.

Intermittency@21,22#. Conduction block, cf.@14#; see also Fig. 4 of
this paper.

4. No spatial effects. No
spatial variability in
geometry or dynamics.

Spatial variability gives
several coupled modes, for
example, from CV restitution
or from multiple interacting
waves.

High-dimensional
spatiotemporal chaos, via
the Ruelle-Takens-
Newhouse route
~quasiperiodic! @16#, the
Lorenz route~aperiodic!
@23#, or other routes.

~a! Ruelle-Takens-Newhouse route involving
CL periodicity, APD alternans, and CV
restitution@1#. ~b! Interactions among multiple
waves as one wave induces dispersion in
activation histories~and thus dispersion in
DI’s! seen by a second wave; see Fig. 4.
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Assumption 3 admits the following interpretation: the a
erage slope of the restitution curve over the intervaldmin
<d<d0 of allowable DI’s is<1.

Assumption 4: No spatial effects. There is no spatial vari-
ability in geometry or dynamics.

Under our assumptions, the transition functionf c is
monotone and nonincreasing, yielding at most one equ
rium value aeq,c for a given CL. For monotone restitutio
curves shown in Fig. 1~a!, decreasing the cycle length wi
increase the magnitude of the slopef c(aeq,c), causing a
period-doubling bifurcation to alternans if this magnitude e
ceeds 1 withc.a01dmin ~assumption 3!. We shall also as-
sume that the twofold iterategc5 f c+ f c is generic, and thus
has only a single point of inflection. Since the slope ofgc at
successive crossings of the 45° line alternates between
ues,1 and values.1, the graph ofg can cross the 45° line
either once~at the equilibriumaeq,c which is then stable! or
three times~at an unstable equilibriumaeq,c and two other
fixed points!, but no more@Fig. 1~d!#. In addition, sincef c is
monotone, so isgc , and thus a simple inductive calculatio
shows that ifgc,x (gc.x) between fixed points, then an
iterate ofgc satisfies the same inequality. Thus higher it
ates ofg also have at most three fixed points and the bif
cation sequence does not go beyond alternans unless at
one of the above assumptions~or genericity! is violated.

The observed alternans in intracellular calcium transie
@27# can be seen explained to first order by a transition fu
tion for the intracellular calcium concentration, that is,
analogous one-dimensional maph for intracellular calcium
dynamics of the form

h:xi ,n→an→c2an5dn→xi ,n11 ,

wherexi ,n represents the concentration of intracellular c
cium at ‘‘time’’ n, and the first mappingxi ,n→an is a one-
-

-

al-

-
-
ast

ts
-

-

dimensional model of the role of intracellular calcium
determining APD. This mapping then defines a topologi
conjugacy from the one-dimensional dynamics of intrace
lar transients represented by the maph to the one-
dimensional dynamics of APD represented by the mapf,
above.

Alternans can progress to chaos by violation of any one
more of assumptions 1–4, as summarized in Table I. F
major routes to chaos can occur~cf., @21#!: the Feigenbaum
route @17#, the Ruelle-Takens-Newhouse route@16,18#, a
Lorenz-like transition@23#, and intermittency@19,21,22#.

Assumption 1 can fail in the presence of rapidly varyi
CL’s. In this case, APD restitution properties can depe
upon more than the previous DI@35,36#, increasing the di-
mensionality of APD dynamics beyond the one-dimensio
dynamics of transition function from one APD to the nex
Moreover, hysteresis or memory of this type can even ca
spiral wave breakdown without steep restitution curves@36#.

Failure of assumption 2 can lead to chaos via
Feigenbaum route, as seen in previous work@7–9#. See also
Table I.

Failure of assumption 3 can lead to chaos via interm
tency.~Note that there are many types of intermittency@19#.
In contrast to@22#, there may still be unstable equilibria afte
APD dynamics degenerates to chaos via intermittency.! As
the CL is decreased below the threshold of assumption
namelya01dmin , a stimulus can occur so early that no a
tion potential is generated, and the next action potentia
generated by the subsequent stimulus, after a total interva
2c. Depending upon the parameter values, the dynamics
jump between two different transition functions,

f c :an→c2an5dn→an11 ,

f 2c :an→2c2an5dn→an11



I
s

-
-
-

n

e
nt

le

ls
e
n
at

4046 PRE 62HAROLD M. HASTINGS et al.
FIG. 3. APD dynamics as a function of D
arising from periodic stimulation at various CL’
@Fig. 2~a!#, above and below the minimum CL~o
in equations! required for one-dimensional dy
namics~see assumption 3!. The dashed lines cor
respond to multiples of the basic CL. All itera
tions begin with an initial DI of 100 ms.~a! cycle
length c5313 ms, yielding alternation betwee
APD’s of 254 and 63 ms.~b! c5280 ms, yielding
conduction block~assumption 1 fails!. However,
this 2:1 conduction block is stable since the lin
d1a5c intersects the restitution curve at a poi
of slope,1. ~c! c5150 ms, yielding chaotic dy-
namics. At twice this CL, dynamics is unstab
~a!, and stimuli immediately following relatively
short APD’s can generate new action potentia
while those following longer APD’s cannot. Th
dynamics thus oscillates intermittently betwee
that associated with stimuli every 150 ms and th
associated with stimuli every 300 ms.~d! c
5145, yielding stable 3:1 conduction block~to
be published!.
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causing intermittency, or stabilize at a fixed point of the tra
sition function f 2c causing two to one conduction block
Note, however, that although decreasing CL in this case
steepen the slope off 2c at its equilibrium, this will cause
intermittency or further higher-order block, not an addition
period-doubling bifurcation from alternans~Figs. 2 and 3!.

In addition, note thata0 anddmin play similar roles in the
dynamics of APD. In particular, reducing excitability ma
both reducea0 and increasedmin ; see the graphs in Ref.@36#.
If the decrease ina0 is less than the increase indmin , this
may cause assumption 3 to be violated, causing chaos
intermittency as shown below.

Failure of assumption 4~no spatial effects upon dynam
ics! can lead to chaos via several routes. The Ruelle-Tak
Newhouse route to cardiac chaos has been extensively
plored @1#, via close analogies between the onset of card
chaos~in fibrillation! and the onset of chaos in fluid dynam
ics @18,19#. This scenario involves a nonlinear system co
sisting of three or more strongly coupled oscillators or mo
@16,18,23#. The dynamics of a meandering spiral wave
volves at least two such modes, namely those associated
the spiral wave period and the dynamics of meandering@42#.
APD alternans may provide a third such mode. The first t
modes are clearly coupled, and APD alternans is coup
with spiral wave dynamics by the effects of rapid paci
@7–14# and the dependence of APD restitution upon the
cent history of activations@35,36# in one direction and the
role of alternans in spiral wave breakup@5,6# in the other.
Note that alternans are also the initial instability in ma
examples in fluid dynamics@16,18#. Additional modes in the
case of cardiac chaos may also be provided by one of
following: ~i! interactions among ion channels, etc., caus
the map of the interval hypothesis to fail to a sufficiently lo
order; or~ii ! the effects of CV restitution or other spatial
distributed dynamics, also causing the map of the inter
hypothesis to fail to a sufficiently low order. CV restitutio
alone does not generate a period-doubling map of the in
val; instead APD restitution and CV restitution together ge
erate more complex spatiotemporal behavior~cf., @1,30,34#!.
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In addition to the above Ruelle-Takens-Newhouse ro
to chaos in fluid dynamics, there is the Lorenz route wh
arises in a truncated version of the Navier-Stokes equat
at sufficiently large coupling@23#. Both routes involve three
~or more! coupled modes and a sudden transition to cha
Although the Ruelle-Takens-Newhouse route involves te
porally periodic modes and the Lorenz route involves ap
odic Galerkin modes, chaos arises relatively suddenly in b
routes.

In principle, there may be more than one route to cha
~VF!, even at the same time, for example the Feigenba
route associated with nonmonotone restitution curves alo
side intermittency associated with short cycle lengths, or
termittency together with the Ruelle-Takens route associa
with dynamic spatial dispersion~Fig. 4! or more general spa
tiotemporal dynamics.

Experiments and major clinical trials of proposed anti
rhythmic drugs clearly argue for the existence of multip
routes for the onset of VF. For example, a previous tr
sought to determine the effect on mortality of suppress
ectopic events~potential generators of spiral waves and th
VT! with flecainide and encainide~sodium channel blockers!
@24#. This study found instead that these drugs increa
mortality. Although the flecainide and encainide did redu
ectopic events, those spiral waves which were generated
peared more likely to progress to VT via at least two mec
nisms. First, these drugs prolonged APD@37# and caused
torsade de pointes~associated with a single meandering s
ral wave@1#!, especially in the presence of other underlyi
abnormalities@37#. Prolonging APD can cause alternans
progress to chaos via intermittency~Table I, route 3! when
spiral waves take over as rapid pacemakers. In addition, v
ability in flecainide binding increased dispersion in condu
tion @38#, favoring low-excitability spiral breakdown~Table
I, route 1! and the Ruelle-Takens route to chaos~Table I,
route 4!.

In addition, a second drug, sotalol~a potassium channe
blocker or class III antiarrhythmic!, was also shown to in-
crease the likelihood of torsade de pointes, increasing m
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FIG. 4. Effects of spatial dispersion upon sp
ral wave dynamics in two dimensions using th
three-variable model cited in Fig. 2~b! ~see as-
sumption 4!. Contour plots show propagatio
when the left edge is stimulated periodically
constant CL. Spatial dispersion in DI is induce
by an initial stimulus at the bottom edge. Blac
corresponds to the rest state~285 mV! and light
gray to depolarized tissue~15 mV!. ~a!–~h! c
5150 ms. At this CL, there is a 2:1 conductio
block with APD oscillation@Fig. 2~b!#, however
the dynamics is sufficiently stable that wavebre
does not occur. Thus only one wave is propag
ing through the tissue at all times.~j!–~q! c
5130 ms. At this CL and at 2c5260 ms, the
APD restitution curve is steep enough to ampli
small differences in DI, resulting in conductio
blocks at portions of wavefronts. These condu
tion blocks generate multiple reentrant waves a
thus spatiotemporal chaos.
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tality in patients with old~.42 days! myocardial infarcts
~MI ! more than in other patients@25,26,39#. Since sotalol
increases both the APD and the refractory period@39#, alter-
nans can again progress to chaos via intermittency~Table I,
route 3!. Increased mortality in patients with old MI argue
for a concomitant role of spatial heterogeneity~perhaps fa-
voring generation of spiral waves! and also low-excitability
breakdown~Table I, route 1!, especially since another clas
III antiarrhythmic, amniodarone, which promotes significa
electrical homogeneity, appears to have little proarrhythm
effect @25#. These two trials confirm the role of multipl
mechanisms in the onset of cardiac chaos~VF!.

This existence of multiple routes to VF not only makes
difficult to diagnose its underlying dynamics, but also sho
that strategies aimed at preventing one route under w
alternans can progress to chaos may inadvertently prom
another route to chaos. For example, drugs designed to
intracellular dynamics and/or conduction between cells
blocking appropriate channels must not alter more glo
dynamics by increasing dispersion. Drugs aimed at flatten
os
t
ic

t
s
h
te
ter
y
l
g

APD restitution curves by reducing excitability must not i
creasedmin so much that conduction block may result. Th
paper further supports the importance of preventing altern
by flattening APD restitution curves in order as an effect
strategy for effectively forestalling spiral breakup@5,6,15#.
Recent experiments with the drugs verapamil@40# and brety-
lium @41# further confirmed the role of flattening restitutio
curves in preventing VF. In fact, flattening APD restitutio
curves together with reducing dispersion in cardiac cell
namics may be critical components in any effective co
bined strategy to prevent VF.
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