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Random population dispersal in a linear hostile environment
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We consider the Fisher equation and its generalization for an asocial population in a linear, hostile environ-
ment. The method of center manifold analysis is used to obtain the time-dependent solution of the former,
nonlinear equation. The correct critical habitat size is obtained; in addition, the result for the steady state
central density compares favorably with the exact result for relatively large populationsizés one half of
the carrying capacily For a model of asocial growth we obtain the expanded criteria for survival. This
includes the habitat size, the population size at which positive growth begins, and also the minimum initial
central density.

PACS numbd(s): 87.23.Cc, 02.30.Jr

I. INTRODUCTION solutions to the nonlinear Boltzmann equatiphl]. The
Fisher equation and its generalizations are specific examples
The Fisher equatiofil] describing gene flow in a linear of the general, one-dimensional single species reaction dif-
population and generalizations of this equation by Kol-fusion equation
mogorovet al.[2] and other$3] have been extensively stud-
ied and applied to a wide variety of problems in different ou 9 u
areas[4]. A primary focus of that work has been on the —=—D(u) —+F(u). (1)
existence and stability of traveling wave solutions in an un-
bounded, one-dimensional domdih-4]. This equation and
some generalizations of it have been used to study populddere u(x,t) =[n(x,t)/n.] is the ratio of species population
tion growth and dispersal, particularly to determine the mini-density to carrying capacity at poirtin O<x<L at timet,
mum habitat siz€critical size required for survival when D(u) is the diffusion coefficient, and the nonlinear function
the surroundings are hosti[&,6]. Only the steady state so- F(u) describes the population growth kinetics. When the
lutions are required to determine the critical size, and for thesurroundings are hostile, as considered here, the boundary
Fisher equation, an exact implicit solution in terms of elliptic conditions areu(0,t)=u(L,t)=0. As we mentioned earlier,
integrals, invertible to give an explicit solution in terms of a the primary focus of interest regarding Ed) has been on
Jacobian elliptic function, was found by Skelld]. The  the existence and stability of traveling wave solutions in an
description of the evolution to the steady state, and an estunbounded domaifil—3]. We are unaware of any exact so-
mate of the time required for an initial population distribu- |utions for a bounded domain that describe the evolution of
tion to reach this state, is a much more difficult problem. Forto a steady state.
the Fisher equation, approximate solutions baseddaihoc For the Fisher equatiofl] D(u)=D=const, F(u)
methods were found by Barakit] and Landha[8]. =au(1—u), Skellam[5] has found the exact steady state
The purpose of this paper is to present a systematigolution and the critical habitat size, but the solution involves
method for solving the time-dependent Fisher equation aslliptic integrals and is not particularly revealing. Approxi-
well as some of the generalizations of this equation of intermate solutions have been determined for the time-dependent
est. We consider the former equation as a benchmark exquation for the case where the initial valuewfs a pure
ample for the proposed method. This will serve the didactiasine function[7,8]. These solutions are based on #thoc
function of providing a self-consistent theoretical frameworkrepresentation of the spatial dependence as a linear function
that leads to a more rigorous and more generally applicablg7] or a pure sine functiofi8]. The method that we use will
treatment than the previowl hocstudies[7,8]. More im-  provide a framework for generalizing thesal hoc ap-
portantly, the satisfactory results obtained in this context moproaches and also for resolving the difficulty that occurs
tivate application of the method to more complicated situawhen they lead to solutions that exceed the carrying capac-
tions of interest. As a specific example, we consider a modety. The price we pay for this is that our solutions are only
for the random dispersal of an asocial populafi6h strictly useful wheru<1; however, we find that even when
the central density at steady state is as large as one half the
carrying capacity, our result is within 1% of the exact result
[5]. Furthermore like thead hoc solutions, our solution is
The approach we will take is based on the center manifolé&xpressed in terms of elementary functions, which permits a
theory[9,10] and the normal solution ansatz used to obtaingreater transparency relative to the dependence @i the
system parameters.
The normal solutions to the nonlinear Boltzmann equation
*Permanent address: CEAS, SUNY, Stony Brook, NY 11794[11] follow from the assumption that the distribution func-
Email address: harris@mech.eng.sunysb.edu tion f(x,v,t) describing the density of atonfsr structureless

II. METHOD OF SOLUTION
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molecule$ at positionx with velocity v at timet depends on 600 -
the time only through the velocity momentg$x,t), u(x,t),

P;(x.1); ie., 500 N

400 -
FOV, ) — F VNG U, 1), Py (X, 1)) ) % 9001
200 A
wheren, u, P;; are found by integrating, fv,fv,v;, respec- 100 1
tively, over the full velocity space, e.gy=/fdvfv. A
closely related contraction underlies the center manifold 0 ' : : ' ' '
theory[9,10] and its application to the solution of nonlinear 0 20 40 60 80 100 120

equations such as E¢l). Despite the fact that the principle

of superposition is not applicable to nonlinear equations, a FIG. 1. Central density; as a function of scaled timat for
special kind of solution having this form is sought usingL/L.=1.05[u;()=0.107] andL/L.=1.25[u;(»)=0.415. Two
spatial basis functions appropriate to the boundary condiinitial conditions are shown for each case.

tions. The special property of the solution that is assumed is

that the time dependence of all the coefficients beyond the d o 2
first is through their functional dependence on the first coef-  gg Un= (@n+2bpUs+--)[(a=D 7L uy

ficient. In the present context, we look for a solution to Eq.
(1) of the form — (8a/3m)ui+ higher order ternis

) =(a—n?m?D/L2)u,—[4al/nm(4—n?)]u?
u= E up(t)sin(nax/L), 3 X[1—(—=1)"]+higher order terms. (6)
n=1

Equating the coefficients af, uf on each side of Eq6),
whereu,— u,[u;(t)], n>1, reminiscent of Eq2). As is the ~ We then find

case with the solution to the Boltzmann equation, the initial a».=b,.=0 n=123-a.=0

conditions may be such that for early times the solution ob- 2 FanT o

tained is not accuratgnitial slip) [11]. The usefulness of this _ 2_ 2_ 2n /] 2

method requires that Iigrlho(un/ul)—>0, a condition that by =[8a/nm(n"=4)]{a+(n"~2)m"DILT],

we will show is satisfied by the solutions of EG). Since, as n=357.... (7)
noted above, we consider small the solution will be well

approximated outside the initial time layer by. In Sec. Ill, ~ Equation(7) verifies that (1,/u;)—0 asu;—0. Further-

we apply this method of solution to the Fisher equation andnore, we see that the, also decrease rapidly with increas-
give some quantitative results. ing n. Because of symmetry, we could have expected the

coefficients for evem to vanish; theu,, do not contribute to

the total popuIatiorP=f(1)dx u(x,t). This means that when
I1l. SOLUTION OF THE FISHER EQUATION . e . . . .
the initial condition is asymmetric, the solution obtained will

The u, can be found by substituting E@) into Eq. (1) only be good for times long enough so that the dependence
with  D(u)=D, F(u)=au(l—u), multiplying by on the initial condition is weak.
sin(hmx/L), and integrating ovex. Forn>1 we make use of Subject to the above restrictions on the initial conditions,
the assumed dependence of iheon time throughu; to  we then have
write

u=uy sin(mx/L)+ >, b,y qsin(2n+1)wx/L
n=1

= 4 (b 2bygt ) 4
at'n "y, grUr= @t 2oyt Uy, () +higher order terms (8
) where, from Eq(5)

where we have expandeg,=a,u;+b,ui+---. The equa-

tion for u; is u;=uy(0)(a—D7?/L?)[(a—Dm?/L?)
+ (8au(0)/37)(expa—D73/L?)t—1)] 1
d
aulz(a—D71'2/L2)u1—(8a/377)u% X expa—Dm?/L2)t. 9)

®) The value of the critical habitat sizé,.=m(D/a)? is
given exactly by the above result. HofL <1 and the small
values ofu(0) being considered here, the decay of the popu-

Denoting all the terms above not explicitly containing only lation is essentially exponential with a decay time af[1l

us, and similar terms of this form as “higher order,” the —(L/L.)?]. ForL/L.>1, we see in Fig. 1 that the time for

equation foru,, from Egs.(4) and(5), is an initial population to reach its steady state decreases as the

+0(UqUy,UgUs, ... UsUs, ... U3, ..).
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initial central density increases. Also, for fixed initial central This requires both
density, the time to reach the steady state decreases as the
habitat size increases. Like Landhal’s result for the central y* <0.66, L2>(16D72/3a)(1.28—2.77u* +1.28u*2).
density[8], our result foru, leads to a steady state value (12)
greater than 1 wheib/L.>1. However, the results found
here are not intended to be used for values of the habitat size hoth of these conditions are not met, thep—0 and the
or initial c_entral _density_s_o large that_ this can occur. Further‘population does not survive. If these conditions are met, the
more, by including additional terms in E(B), the values of  gyryjval of the population will depend on the initial condi-
these variables being considered can be extended. As an &n. Here we will assume that the population has grown by
ample, foru1=0.5 in the steady state, S_kellam’s exact resultsome unknown process until, at some threshold valutor
for Lo is 4.197[5], Landhal's approximate result i&;  the central density, the onset of asocial growth occurs, i.e.,
=4.031[8], and our result using Eq9) and the first two ,(0)=u,. In determining the steady state solution, we can-
nonvanishing terms in E@8) is L.=4.164. In comparing the not restrict our attentions solely to EL0) with the left side
last two results, we see that, as expected, the nonlinear diget to zero. It is not possible to determine on this basis alone,
persal equation will create new Fourier modes that are nois we could for the Fisher equation, which of the possible
included in thead hocsolution. _ solutions allowable by the above criteria set by Etp) is

In assessing how well the method of solution suggestegtimately realized. This can be most easily determined di-

here can be expected to work in a specific situation, thectly from the full equation, which we rewrite as
nature of the initial conditions is of particular concern. If the

latter are both symmetric and roughly sinusoidal, then we d

expect that for the interesting case where the habitat size is —uy=—kug(u;—ry)(u;—ry), (13
close to the critical size, the results obtained will provide a dt

good approximation for all times. The further the initial con-

ditions deviate from the above prescription, the less trustworwith k>0 and where the roots,>r,>0 follow directly
thy our results will be for early times. In any event, we from Eq. (10). If u,<r,, then @/dt)u;<0 initially, and
expect that for habitat sizes not too much greater than theemains negative so that decays to zero and the population
critical size, the steady state will be accurately describeddoes not survive. The roat, is the critical minimum initial
This motivates the consideration of more complicatedpopulation for survival. Whemn;<u,<r,, (d/dt)u;>0 ini-

growth scenarios. tially, and u; increases until it reaches the steady state
=r,. The last possibilityr,<u,, is less likely, but could
IV. MORE GENERAL DISPERSAL EQUATIONS: conceivably occur as the result of a sudden change altering
ASOCIAL POPULATIONS the pre-existing growth process, e.g., a changeover to food

) . ) sources requiring cooperative effort. In this casgwill de-
We restrict ourselves here to scenarios for which ). rease unil reaching steady state at

provides the generic template for the growth kinetics. We

note first that in the cagé], whenD is independent ofi and

F(u)=au(1—uN) that the critical length is given as before V. SUMMARY
and that in the steady statg(N)x<u;(N=1), but in the
more interesting casg3] whenD=Dgyu and F(u)=au(1
—u), the method used here fails as thgare of the same
order asu; .

The case of an asocial population has been previousl
considered by Bradford and Philjp], who considered gen-
eral stability criteria. These authors illustrated their formal
results for the. special case of a sawtooth grovvth. function|n the case of asocial growth considered here, (E@). gives
I—_iere we con_S|der a more.general and mathemat.|cally cory good estimate of the transient time to extinction or a finite
tinuous function that describes asocial growth. This requwe§teady statero 1 (D w2/ aL2) +u* ], that would be difficult

thzﬁ F(u) be nigatwe at ?}Oth _Sm?" and Ia_tr)glge valuesuof 4, jetermine from computer studies, as well as an estimate of
and positive in between. The simplest possible representatiqfye jnitial population density survival windows and critical
of this isF(u) = au(u* —u)(1—u), u*<1.

The emphasis here has been on illustrating the predictive
ability of the method of solution described in Sec. Il, particu-
larly with regard to the parametric dependence of the critical
factors that limit population growth. Despite a growing trend
Yoward the simulation of nonlinear behavior, analytical stud-
ies can still provide a complimentary window that reveals
behavior, often unexpected, as well as the underlying causes.

habitat size.
The equation fou,, found as before, is
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