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Synchronization of laser oscillators, associative memory, and optical neurocomputing
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~Received 31 January 2000; revised manuscript received 23 May 2000!

We investigate here possible neurocomputational features of networks of laser oscillators. Our approach is
similar to classical optical neurocomputing where artificial neurons are lasers and connection matrices are
holographic media. However, we consider oscillatory neurons communicating via phases rather than ampli-
tudes. Memorized patterns correspond to synchronized states where the neurons oscillate with equal frequen-
cies and with prescribed phase relations. The mechanism of recognition is related to phase locking.

PACS number~s!: 87.18.Sn, 42.65.2k, 05.45.2a, 07.05.2t
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I. INTRODUCTION

A new computing paradigm, neurocomputing, is eme
ing from modeling artificial neural networks. A typical neu
rocomputer is a network of simple analog units, artific
neurons, that process information in parallel. Instead of p
forming a general purpose computation via execution o
program, the neurocomputer performs pattern recogni
and associative recall via self-organization of neurons@1#.

Using optics instead of electronics provides some adv
tages for neurocomputing, mainly because optical sign
can go through each other without significant distortio
Most optical neurocomputer architectures~see, e.g.,@2–5#
and references therein! consist of a lattice of neuronal ele
ments interconnected via a holographic medium; see Fig
The neurons interact via light intensities. This correspond
amplitude modulation~AM ! encoding when each neuron is
monochromatic laser. The phases do not play any role.

In this paper we explore the possibility that the laser
cillators interact via phases, which corresponds to the ph
modulation~PM! encoding. This approach is in the spirit o
FM interaction theory@6–10#, which is motivated by the
theoretical and experimental observations that cortical n
rons are sensitive to the fine temporal structure~timing or
phase! of the incoming pulse train.

In the next section we consider a simple model that
scribes some aspects of behavior of a network of ident
coupled lasers. It can be treated as the reduction of Maxw
Bloch equations after adiabatic elimination of the polariz
tion. In subsequent sections we simplify the model even
ther to glimpse its neurocomputational features.

We stress that we study pattern recognition via ph
modulation in asimple modelof laser networks. Our study i
purely theoretical, and it might still be a long way before o
can demonstrateexperimentallythat laser networks could
have such neurocomputational properties.

II. THE MODEL

We assume that the dimensionless rate equations for
complex electric fieldEi and the excess carrier numberNi of
the i th laser are

*Present address: The Neurosciences Institute, 10640 John
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Ei85~11 ia!NiEi1 ivEi1(
j 51

n

ci j Ej , ~1!

Ni85m@P2Ni2~112Ni !uEi u2#, ~2!

where 85d/ds, s5ttp
21 is the time measured in units of th

photon lifetimetp , m5tp /ts is the ratio of photon to carrie
time scales, wherets is the carrier lifetime,P is the pumping
above threshold,a is the linewidth enhancement factor,v is
normalized optical frequency, andci j are complex connec
tion coefficients. Since the equations are invariant under
translationEi°eivtEi , the parameterv may be assumed to
be zero.

It is convenient to use polar coordinates

Ei5r ie
iw i and ci j 5si j e

ic i j

to rewrite the model~1! and ~2! in the form

w i85aNi1v1(
j 51

n

si j

r j

r i
sin~w j1c i j 2w i !, ~3!

r i85Nir i1(
j 51

n

si j r j cos~w j1c i j 2w i !, ~4!

Ni85m@P2Ni2~112Ni !ur i u2#. ~5!

Jay
: FIG. 1. Conceptual architecture of a typical optical neuroco
puter.
4010 ©2000 The American Physical Society
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Much insight can be gained by considering the first equa
separately from the other two. When the lasers are unc
nected (si j 50), the equations decouple, and one can st
the (r i ,Ni) dynamics. When the pumping is above t
threshold (P.0), we have that

„r i~ t !,Ni~ t !…→~AP,0!,

see Fig. 2, and the phasew i(t)→vt1w i
0 , wherew i

0 is de-
termined by the initial conditions.

When the lasers are connected (si j .0), they may exhibit
quite complicated dynamics, even when there are only
of them; see, e.g.,@11–13#.

III. NEUROCOMPUTATIONAL PROPERTIES

First, we consider the model~1! and ~2! for a50. If
all r i(t)→r 0, then the phase model~3! has Kuramoto’s
form @14#

w i85v1(
j 51

n

si j sin~w j1c i j 2w i ! ~6!

whose neurocomputational properties are well known@6,8#:
It behaves like a Hopfield network whensi j 5sji and c i j 5
2c j i for all i andj. This is equivalent to the requirement th
the matrix of connectionsC5(ci j ) in Eq. ~1! be self-adjoint.
Indeed, we can denotew i5vt1f i and verify that the phase
deviations form the gradient system

FIG. 2. Top: Phase portrait, fast and slow nullclines, and a ty
cal trajectory of the relaxation systemr 85Nr, N85m@P2N2(1
12N)r 2#. Bottom: Corresponding complex electric fieldE5reiw.
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where

U~f1 , . . . ,fn!52
1

2 (
i 51

n

(
j 51

n

si j cos~w j1c i j 2w i !

is a potential function@6#. As a result, we know that the
vector of phase deviationsf5(f1 , . . . ,fn)PTn always
converges to an equilibrium on then-torusTn. Therefore, the
vector of original phasesw5vt1f always converges to a
limit cycle attractor having frequencyv and phase relations
defined by the vectorf. There could be many such attracto
corresponding to many memorized images, which are
coded into the connection matrixC5(ci j ). An example is
given in Sec. IV.

A distinguishing feature of associative memory in natu
and artificial neural systems is that it persists even in
presence of relatively large distortions of the synaptic c
nections. Thus, one can expect that neurocomputational
havior of the phase model~3! may be similar to that of Kura-
moto’s system~6! even when ther i(t) converge to different
values, or do not converge at all. This expectation is s
ported by numerous simulations, which show that attract
of Eq. ~3! lie in small neighborhoods of those of Eq.~6!.

When the linewidth enhancement factora is not zero, the
frequency of the oscillatory electric field depends on the
cess carrier numberNi . This may change the synchroniza
tion properties of the phase model~3! on the time scale
larger than 1/m unless the connection matrix satisfies certa
conditions, as we show in the next section.

IV. ILLUSTRATION

We next illustrate some neurocomputational properties
the model~1! and ~2!.

A. Hebbian learning rule

Suppose we are given a set ofm complex vectors to be
memorized,

jk5~j1
k ,j2

k , . . . ,jn
k!PCn, uj i

ku51,

wherek51, . . . ,m; see Fig. 3. The argument~angle! differ-
ence between anyj i

k and j j
k denotes the desired phase d

ference between thei th and j th oscillators. For example, th
relation j i

k5j j
k means that thei th and the j th oscillators

should be in-phase (w i5w j ), and j i
k52j j

k means they
should be antiphase (w i5w j1p). Notice that the problem of
mirror images does not exist in oscillatory neural networ
since bothjk and2jk result in the same phase relations. W
use the complex Hebbian learning rule@15,16#

ci j 5
«

n (
k51

m

j i
kj̄ j

k , ~7!

which produces self-adjoint connection matrix. Here«.0
denotes the strength of connections between the lasers.

i-
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If ci j were synaptic coefficients for a Hopfield-Grossbe
like neural network, then the network would have 2m attrac-
tors in some small neighborhoods ofjk and their mirror im-
ages 2jk, provided thatm,n/8 and the vectorsjk are
nearly orthogonal. Numerous simulations confirm similar
timates for oscillatory neural networks@17#.

B. Initialization and recognition

In the standard Hopfield-Grossberg paradigm, the im
to be recognized is the initial state of the network. In o
case it is the distribution of phases. It is easy to set ini
values in a computer simulation, but it might be quite dif
cult in real laser systems since one does not have direc
cess to the phase of a laser.

There are several possible mechanisms of setting the
phases. For example, one can switch the lasers off, i.e., b
them below threshold by changing the parameterP in Eq.
~2!, then inject a seed having appropriate phase, and
switch the lasers on, i.e., bring them above the thresh
Alternatively, one can entrain the network to a relative
strong external input having appropriate phase relation.
us elaborate. Suppose the vector to be recognized isj0PCn,
but the network phases initially have certain random valu
see Fig. 3. We wish to entrain the network to the perio
input associated withj0, so that the phases converge to t
desired values. In Fig. 3 we force the network with the pe
odic signalej0eivt, wheree is much larger than the strengt
of connections« in Eq. ~7!. The lasers lock to the signa
After the initialization stage is complete~time t50 in Fig. 3!
and the lasers have phase relations defined by the vectoj0,
we remove the forcing signal and restore the connecti
between the lasers. Now the recognition starts from the in

FIG. 3. Illustration of associative memory and recall by t
network of lasers. Shown is simulation of the model~1! and ~2!
with parametersv51, a50, P50.1, andm50.01. The intercon-
nection coefficients are defined by the Hebbian rule~7! with «
50.01. Initialization stage:tP@2300,0#. Recognition stage:t
P@0,300#.
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imagej0, and the network converges to the appropriate lim
cycle attractor. The lasers oscillate with equal frequenc
and certain phase deviations corresponding to the memor
pattern. To see the phase relations between the lasers
subtractw1(t) from all w i(t),i 51, . . . ,n, and plot the result-
ing vectors in Fig. 3.

In Fig. 4 we drop the assumptiona50 and repeat the
initialization and recognition procedures. The initial behav
is similar to that depicted in Fig. 3: They lock to the forcin
signal representing the input pattern to be recognized,
then they quickly converge to an appropriate locking st
representing one of the memorized images~see the phase
pattern att5150). Here, however, the similarity may en
The slowly evolving termsaNi in Eq. ~3! may pull the os-
cillator frequencies apart, and they eventually may unlo
~see the phase pattern att5300). This phenomenon does n
occur when the memorized vectorsjk are pairwise orthogo-

FIG. 5. Illustration of associative memory and recall by t
network of lasers having nonzero linewidth enhancement factor
orthogonal memorized images. All coefficients and parameters
as in Fig. 4 except that the vectorsjk corresponding to the memo
rized patterns ‘‘0’’ and ‘‘2’’ are substituted by random vectors th
are nearly orthogonal to the vector corresponding to the memor
pattern ‘‘1.’’ Notice that successful recognition occurs on a lo
time scale.

FIG. 4. Illustration of associative memory and recall by t
network of semiconductor lasers with a nonzero linewidth enhan
ment factor (a51). All other coefficients and parameters are as
Fig. 3. Notice that successful recognition occurs on a short t
scale. The phases eventually diverge from the memorized con
ration due to their sensitivity to the values ofNi ; see Eq.~3!.
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nal. Indeed, these vectors become eigenvectors of the
nection matrix defined by Eq.~7! with the eigenvalue«.
Simple calculations show that allNi(t)→2« in this case. In
particular, they all have identical values. Hence, all osci
tors have equal frequencies and stable locking is possible
we illustrate in Fig. 5.

V. DISCUSSION

The goal of this paper is to illustrate possible neuroco
putational properties of phase-sensitive devices such as
networks described by the model~1! and ~2!, not to provide
a detailed theory of their dynamics. We hope that this pa
will stimulate new research activity in the two fields of ne
ral networks and optical computing.

We now list some important issues that have yet to
addressed.

~i! Nonidentical lasers. We considered the simplest ca
of identical lasers. All of the results persist when the las
are nearly identical relative to the strength of connection« in
Eq. ~7!; see@6#. When heterogeneity is much larger than«,
the lasers might not synchronize, and may possibly exh
rk
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quite complicated activity. An intermediate case has yet
be studied.

~ii ! Noise. Emission of photons is a stochastic proce
which is the major source of noise in laser oscillators. It c
contribute to frequency instabilities and disrupt phase lo
ing during the initialization and recognition stages.

~iii ! Scaling issues. Our analysis is applicable when th
number of laser oscillators,n, is finite. It is not clear what
would happen whenn→`.

~iv! Delayed interactions. We have assumed that the siz
of the neurocomputer is small and comparable with the la
wavelength, so that we can neglect the interaction time
lays @18#. Currently we investigate the effect of delays. F
this we use the Lang-Kobayashi model@19#, which is similar
to Eq. ~1! and~2! except that the connections have the fo
ci j Ej (t2t i j ).
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