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Synchronization of laser oscillators, associative memory, and optical neurocomputing
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We investigate here possible neurocomputational features of networks of laser oscillators. Our approach is
similar to classical optical heurocomputing where artificial neurons are lasers and connection matrices are
holographic media. However, we consider oscillatory neurons communicating via phases rather than ampli-
tudes. Memorized patterns correspond to synchronized states where the neurons oscillate with equal frequen-
cies and with prescribed phase relations. The mechanism of recognition is related to phase locking.

PACS numbg(s): 87.18.Sn, 42.65:k, 05.45—a, 07.05--t

I. INTRODUCTION n
E/=(1+ia)NE+ioE+ X c;E;, 1)
A new computing paradigm, neurocomputing, is emerg- =1
ing from modeling artificial neural networks. A typical neu-
rocomputer is a network of simple analog units, artificial N/ =u[P—N;—(1+2N))|E|?], (2
neurons, that process information in parallel. Instead of per-
forming a general purpose computation via execution of avhere’=d/ds, s=tr, " is the time measured in units of the
program, the neurocomputer performs pattern recognitiophoton lifetimer,, u= 7,/ is the ratio of photon to carrier
and associative recall via self-organization of neuridrs time scales, wheres is the carrier lifetimeP is the pumping
Using optics instead of electronics provides some advanspoye thresholdy is the linewidth enhancement factos, is

tages for neurocomputing, mainly because optical signal§, malized optical frequency, arg; are complex connec-

:\:/Iac?stgc?pttirc]:r;uggureo?:%?npontjt]eerr ;":gmgétj;ggcag; ?'ZSt%St'O”'tion coefficients. Since the equations are invariant under the
» €.0.14— ; i ot
and references thergionsist of a lattice of neuronal ele- ];[)r:nzselilct)lonE,He E;, the parametew may be assumed to

ments interconnected via a holographic medium; see Fig. 1.~ . .

The neurons interact via light intensities. This corresponds to !t IS convenient to use polar coordinates
amplitude modulatiofAM ) encoding when each neuron is a
monochromatic laser. The phases do not play any role.

In this paper we explore the possibility that the laser os- ) .
cillators interact via phases, which corresponds to the phad@ rewrite the mode(1) and(2) in the form
modulation(PM) encoding. This approach is in the spirit of
FM interaction theory{6—10], which is motivated by the , r .
theoretical and experimental observations that cortical neu- pi=aN+w+ Zl Sij . Sin(ej+ i =~ @i, )
rons are sensitive to the fine temporal struct(thming or = '
phase of the incoming pulse train.

In the next section we consider a simple model that de- ,
scribes some aspects of behavior of a nl?atwork of identical ri :Niri+j21 Sijlj COS @+ iij — @i, 4)
coupled lasers. It can be treated as the reduction of Maxwell-
Bloch equations after adiabatic elimination of the polariza-
tion. In subsequent sections we simplify the model even fur-
ther to glimpse its neurocomputational features.

We stress that we study pattern recognition via phase
modulation in assimple modebf laser networks. Our study is
purely theoretical, and it might still be a long way before one
can demonstratexperimentallythat laser networks could Neuron
have such neurocomputational properties. Unit Array

Ei=rie and ¢;=s;€"i

n

n

N/ = u[P—N;—(1+2N))|r;|*]. (5

Il. THE MODEL

We assume that the dimensionless rate equations for the
complex electric fieldE; and the excess carrier numhbr of

theith laser are Holographic
Interconnection ’ In
5 put
Medium Pattern

*Present address: The Neurosciences Institute, 10640 John Jay
Hopkins Drive, San Diego, CA 92121. Email address: FIG. 1. Conceptual architecture of a typical optical neurocom-
Eugene.Izhikevich@nsi.edu; URL: http://math.la.asu.ecu/gene  puter.
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Udar ) =5 2, 2, s Colgy+ 4~ )
: is a potential functio6]. As a result, we know that the
vector of phase deviationg= (¢4, ...,d,) 1" always
— ] converges to an equilibrium on timetorusT". Therefore, the

041 vector of original phaseg = wt+ ¢ always converges to a
1 limit cycle attractor having frequenay and phase relations

: . . . ; defined by the vectog. There could be many such attractors
r ' ' ' corresponding to many memorized images, which are en-

P , . . , . , , . , _ coded into the connection matr@=(c;;). An example is
5t Re E(t) 1 given in Sec. IV.
1t A distinguishing feature of associative memory in natural
05} | | and artificial neural systems is that it persists even in the
OUVV——M | presence of relatively large distortions of the synaptic con-
0.5 ‘ ‘ nections. Thus, one can expect that neurocomputational be-
; 1 havior of the phase modéB) may be similar to that of Kura-
15

moto’s systeni(6) even when the;(t) converge to different

0 50 100 150 200 250 300 350 400 450 500 values, or do not converge at all. This expectation is sup-
! ported by numerous simulations, which show that attractors

of Eq. (3) lie in small neighborhoods of those of E®).

FIG. 2. Top: Phase portrait, fast and slow nuliclines, and a typi- . ) ;
cal trajectory of the relaxation system=Nr, N'= u[P—N— (1 When the linewidth enhancement factetis not zero, the

+2N)r2]. Bottom: Corresponding complex electric fieic=re'®. frequency of the oscillatory electric field depends on the ex-
cess carrier numbeX,; . This may change the synchroniza-

Much insight can be gained by considering the first equati0|"1ion properties of the phase mo_dé3) on _the t?m_e scale .
separately from the other two. When the lasers are uncor@rger than 14 unless the connection matrix satisfies certain
nected §;=0), the equations decouple, and one can study®"ditions, as we show in the next section.

the (r;,N;) dynamics. When the pumping is above the

threshold P>0), we have that IV. ILLUSTRATION
We next illustrate some neurocomputational properties of
(ri(1),Ni()—(\/P,0), the model(1) and (2).
see Flg 2, and the pha&e(t)%wtﬂ— (pio, Where@io is de- A. Hebbian learning rule

termined by the initial conditions. Suppose we are given a set mfcomplex vectors to be
When the lasers are connectes &0), they may exhibit memcE)rFi)zed 9 P

quite complicated dynamics, even when there are only two
of them; see, e.g[11-13. = (e85, el |g=1,

1. NEUROCOMPUTATIONAL PROPERTIES wherek=1, ... m; see Fig. 3. The argumetangle differ-
ence between ang* and g,-k denotes the desired phase dif-
ference between thi¢h andjth oscillators. For example, the
relation &= ¢ means that théth and thejth oscillators
should be in-phase¢(=¢;), and &'=—& means they
should be antiphasep(= ¢; + ). Notice that the problem of
, . mirror images does not exist in oscillatory neural networks,
¢ w+j§=:1 Sij Sin(e; + ij — i) ©®  ince bothe® and — £X result in the same phase relations. We
use the complex Hebbian learning rdies, 16|

First, we consider the modell) and (2) for a=0. If
all ri(t)—rg, then the phase mod€B) has Kuramoto’s
form [14]

n

whose neurocomputational properties are well knd@,8]: o m

It behaves like a Hopfield network whexy=s;; and ¢;; = - Kek

— ;i for all i andj. This is equivalent toetsr?e rejquireme:qt that i n k2 &g )
the matrix of connection€=(c;;) in Eq. (1) be self-adjoint.

Indeed, we can denotg = wt+ ¢; and verify that the phase which produces self-adjoint connection matrix. Here 0
deviations form the gradient system denotes the strength of connections between the lasers.
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network of semiconductor lasers with a nonzero linewidth enhance-
ment factor ¢=1). All other coefficients and parameters are as in

Fig. 3. Notice that successful recognition occurs on a short time
= — - scale. The phases eventually diverge from the memorized configu-
Recognition ration due to their sensitivity to the values lf; see Eq(3).

B

N

E = | - FIG. 4. lllustration of associative memory and recall by the
o i

|

-

Initialization

t

FIG. 3. lllustration of associative memory and recall by theimage&®, and the network converges to the appropriate limit
network of lasers. Shown is simulation of the mod&l and (2) cycle attractor. The lasers oscillate with equal frequencies
with parameterso=1, =0, P=0.1, andu=0.01. The intercon- and certain phase deviations corresponding to the memorized
nection coefficients are defined by the Hebbian r(ie with ¢ pattern. To see the phase relations between the lasers, we
=0.01. Initialization stagete[—300,0. Recognition staget subtracty, (t) from all ¢;(t),i=1, ... n, and plot the result-
€[0,300. ing vectors in Fig. 3.

In Fig. 4 we drop the assumptiom=0 and repeat the

If c;; were synaptic coefficients for a Hopfield-Grossberg-initialization and recognition procedures. The initial behavior
like neural network, then the network would have 2ttrac- s similar to that depicted in Fig. 3: They lock to the forcing
tors in some small neighborhoods #f and their mirror im-  signal representing the input pattern to be recognized, and
ages — £, provided thatm<n/8 and the vectors® are  then they quickly converge to an appropriate locking state
nearly orthogonal. Numerous simulations confirm similar estepresenting one of the memorized imagsse the phase

timates for oscillatory neural network&7]. pattern att=150). Here, however, the similarity may end.
The slowly evolving termsN; in Eq. (3) may pull the os-
B. Initialization and recognition cillator frequencies apart, and they eventually may unlock

; ) ] (see the phase patterntat 300). This phenomenon does not
In the standard Hopfield-Grossberg paradigm, the imag@ccyr when the memorized vectaf are pairwise orthogo-

to be recognized is the initial state of the network. In our

case it is the distribution of phases. It is easy to set initial
values in a computer simulation, but it might be quite diffi-
cult in real laser systems since one does not have direct ac
cess to the phase of a laser.

There are several possible mechanisms of setting the lase t=0 t=100 t=300 t=450 t=600
phases. For example, one can switch the lasers off, i.e., brini
them below threshold by changing the paraméen Eq.

(2), then inject a seed having appropriate phase, and thei,
switch the lasers on, i.e., bring them above the threshold &
Alternatively, one can entrain the network to a relatively ¢ =
strong external input having appropriate phase relation. Le
us elaborate. Suppose the vector to be recognizéfids™,

but the network phases initially have certain random values; of
see Fig. 3. We wish to entrain the network to the periodic
input associated witlg°, so that the phases converge to the

desired ValueOS: I[‘ Fig. 3 we force the network with the peri-apyork of lasers having nonzero linewidth enhancement factor and
odic signale”e"”", wheree is much larger than the strength othogonal memorized images. All coefficients and parameters are
of connectionse in Eq. (7). The lasers lock to the signal. s in Fig. 4 except that the vectafé corresponding to the memo-
After the initialization stage is completémet=0 in Fig. 3 rized patterns “0” and 2" are substituted by random vectors that
and the lasers have phase relations defined by the véttor are nearly orthogonal to the vector corresponding to the memorized
we remove the forcing signal and restore the connectiongattern “1.” Notice that successful recognition occurs on a long
between the lasers. Now the recognition starts from the inpuime scale.

P

Recognition
t 600

FIG. 5. lllustration of associative memory and recall by the
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nal. Indeed, these vectors become eigenvectors of the conguite complicated activity. An intermediate case has yet to
nection matrix defined by Eq7) with the eigenvalues.  be studied.

Simple calculations show that a&ll;(t)— — ¢ in this case. In (i) Noise Emission of photons is a stochastic process,
particular, they all have identical values. Hence, all oscilla-which is the major source of noise in laser oscillators. It can
tors have equal frequencies and stable locking is possible, awntribute to frequency instabilities and disrupt phase lock-

we illustrate in Fig. 5. ing during the initialization and recognition stages.
(iii) Scaling issuesOur analysis is applicable when the
V. DISCUSSION number of laser oscillators, is finite. It is not clear what

_ ) ) ) would happen whem— o,

The goal of this paper is to illustrate possible neurocom- (iv) Delayed interactionsWe have assumed that the size
putational properties of phase-sensitive devices such as lasgf the neurocomputer is small and comparable with the laser
networks described by the modé) and(2), not to provide  wavelength, so that we can neglect the interaction time de-
a detailed theory of their dynamics. We hope that this papefays[18]. Currently we investigate the effect of delays. For
will stimulate new research activity in the two fields of neu- this we use the Lang-Kobayashi mod&9], which is similar

ral networks and optical computing. to Eq. (1) and(2) except that the connections have the form
We now list some important issues that have yet to b, g (t— 7).

addressed. J' .
(i) Nonidentical lasersWe considered the simplest case ACKNOWLEDGMENT

of identical lasers. All of the results persist when the lasers

are nearly identical relative to the strength of connection This research was supported by the NSF grant “Canoni-

Eq. (7); see[6]. When heterogeneity is much larger than  cal Models for Mathematical Neuroscience,” No. DMS-
the lasers might not synchronize, and may possibly exhibi®805544.
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