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Theoretical continuous equation derived from the microscopic dynamics for growing interfaces
in quenched media

L. A. Braunstein® R. C. Buceta, and C. D. Archubi
Departamento de Bica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350,
7600 Mar del Plata, Argentina

G. Costanza
Departamento de Bica, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
(Received 27 July 1999; revised manuscript received 31 May)2000

We present an analytical continuous equation for the Tang and Leschhorn [fRbglel Rev. A45, R8309
(1992] derived from their microscopic rules using a regularization procedure. As well in this approach, the
nonlinear term ¥ h)? arises naturally from the microscopic dynamics even if the continuous equation is not the
Kardar-Parisi-Zhang equatigPhys. Rev. Lett56, 889 (1986 | with quenched nois€QKPZ). Our equation is
similar to a QKPZ equation but with multiplicative quenched and thermal noise. The numerical integration of
our equation reproduces all the scaling exponents of the directed percolation depinning model.

PACS numbgs): 68.35.Fx, 47.55.Mh

The investigation of rough surfaces and interfaces has atained scaling exponents with those of the corresponding
tracted much attention for decades due to its importance igontinuous equation. In this context, attempts are being made
many fields, such as the motion of liquids in porous mediafo classify quenched disorder models in terms of universality
growth of bacterial colonies, crystal growth, etc. When aclasses based on an equation of motion such as
fluid wets a porous medium, a nonequilibrium self-affine ah(x,t) N
rough interface is generated. The interface has been charac- ————~= F+pV?h+=(Vh)2+&(x,h)+ 7(x,t), (1)
terized through scaling of the interfacial widtv=([h; t 2

—(h;)]?)*? with time t and lateral size.. The result is the where F is the driving force responsible for the advance of
determination of two exponen{8 and « called dynamical the interface,&(x,h) is the quenched disorder or pinning
and roughness exponents, respectively. The interfacial widtforces, andy(x,t) is the thermal noise. The noises are white.
w~L? for t>t* andw~t”# for t<t*, wheret* =L*# isthe =~ Equation (1) is Kardar-Parisi-Zhang equatiofi2] with
crossover time between these two regimes. Much effort haguenched noise(QKPZ2). When A—0, the quenched
been done to understand the leading mechanisms of theg&lwards-Wilkinson equatiof8] is recovered. In absence of
processes and to try to explain how the dynamics affects thguenched noise, their thermal versions are recovered, named
scaling exponentfl]. The formation of interfaces is deter- TKPZ and TEW equations, respectively. Much effort has
minated by several factors, it is very difficult to discriminate been made in order to classify discrete models and experi-
theoretically all of them. The knowledge of the dynamicalments in universality classes depending on the value of the
nonlinearities, the disorder of the media, and the theoreticatoefficient\ associated with the nonlinearity of the QKPZ.
model representing experimental results are difficult to overNumerical[4,5] and analytica[6] studies indicatex is rel-
come due the complex nature of the growth. The disordeevant at the depinning transition for discrete models in an-
affects the motion of the interface and leads to its roughnesssotropic media. These results only show that the nonlinear
Two main kinds of disorder have been proposed: the “anterm exists but they do not confirm that these models are
nealed” noise that depends only on time and therepresented by the QKPZ. However, the exponents obtained
“gquenched” disorder due to the inhomogeneity of the mediaby numerical simulation of Eq(1), without thermal noise
where the moving phase is propagating. The discrete modefg], agree very well with those of the model in anisotropic
provided a useful approach to obtain the exponents that amedia.
lows its classification in universality classes. By extensively A powerful method of establishing the correspondence
studying these models, one can obtain the scaling behaviotgtween a continuous growth equation and a discrete model
and the corresponding universality classes and then associaéeto derive the continuous equation from a given discrete
the continuous stochastic equations with the given discretmodel analytically. Among them, a systematic method pro-
growth models. posed by Vvedensket al. [8], where the continuous equa-
The most used method of establishing the correspondenains can be constructed directly from the growth rules of the
between a continuous growth equation and a discrete modeliscrete model based on the master-equation description, has
is to numerically simulate the model and compare the obbeen applied to the derivation of growth equations for some
discrete model§8—11] with thermal noise. This method has
proved to be useful to derive continuous equations from the
*Temporary address: Center for Polymer Studies, Dept. of Physmaster equations with the advantage that the sources of the
ics, Boston University, 590 Commonwealth Ave., Boston, MA terms of the Langevin equation can be identified and the
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is easier to achieve the same results using a microscopidotice that in the notation df8] the transition rate from a
equation based on rules for the evolution of the height. Theonfiguraton H to another H' is W(H,H’)
derivation of continuous equations from discrete models is=(1/7)38(hy ,hy+a)GIT; . 8(h ,h;). So the first mo-

an interesting subject that has not been addressed in the cafent is (15) =y (h,—h)W(H,H")=(a/7)G. As a conse-
text of growth in the presence of quenched media. quence of the fact that subsequent configurations differ only

The aim of this work is to obtain the continuous equationin the height at one site all the moments are diagonal and
from the microscopic dynamics of a variant of the directedproportional to the first momet.0].

percolation depinningDPD) model[12,13 in order to es- For this mode[ 15,16,

tablish if it is related in some way to the QKPZ equation.

The main goal of our paper is to have obtained analytically  G;(h;_1,h;,hj; 1) =W 1+ W,_;+F;(|h| +DW;, (4

the differential equation that describes the dynamics of the

Tang and and Leschhorn modéP]. To our knowledge this where|h;|=[h;/a] denotes the integer part bf in units of

is the first time that a Langevin equation has been obtaine@. This definition is unnecessaryadfis taken as one, as in the

from the microscopic dynamics in quenched media. discrete model. We shall show below that in the continuous
As we shall show below, the dynamics of the height islimit, it is necessary for an analytic extension of the activity

strongly affected by amultiplicative quenched noisaVe  function. In Eq.(4),

chose this model because it presents the principal features of L i - 1

some experiments like the imbibition of a viscous fluid ina ~ Wiz1=2 [1=O(H.) +O(H;")] O(H; "~ 2),

porous media driven by capillary forc€$3,14. In the TL (5

model, the interface growth takes place in a square lattice of

edgeL with cells of sizea that represents the mean size of a W=1-0(U;-2),

pore. Consider each cellis assigned a random pinning force < )

g(r) uniformly distributed in the interval0,1]. For a given ~Where Hy=(hs—h;)/a and U;=(1/a)[hj—min(hi, 1,h_1)].

applied pressur@>0, we can divide the cells into two Notice that all the heights are in units afin order to keep

groups, those witly(r)<p (free or active cells and those the arguments of the step function without units. . ;

with g(r)>p (blocked or inactive cel)s Denoting byq the ~ [15] the & Kronecker function has been taken as

density of inactive cells on the lattice, we haye 1—p for

0<p<1 andgq=0 for p=1. In this model the critical pres- o%,y)=0(x-y)+O(y—x)—1. ©®

sure isp.,=0.461. Periodic boundary conditions are used.

We consider the evolution of the height of thth site in this

model. Let us denote bly;(t) the height of tha-th generic

Using the fact that mingy)=3{(x+y)—(x—y)[O(x—y)—O(y
—xX)]} and with a more compact notation

site at timet. The set{h;,i=1,... N}, whereN=L/a, de- ZlH 4R L aRit? HI*h_@(Hi~L

fines the interface between wet and dry cells. Given a site, Ui=2{HitHio PHIZ [O(HIZD) — O (HL D1 R
chosen betweel, say the sitg, the height in the site is

increased bya with probability (i) 1 if j=i£1 andh;.; The representation of the step function can be expanded

=hi+2a and hj<hi.,, (i) 1/2 if j=ix1l andhi.1=h; 250 (x)==}_,c,x" providing thatx is smooth. Our focus is
+2a and hj=h;.,, (i) 1 if j=i and hj<min(h_1,hi.1)  on properties of the surface on large length scales, so we kept
+2a and Fi(hj+a)=1. Otherwise no growth happens. the expansion of the step function to first order in his argu-
Fi(hi+a)=0(p—gi(hi+a)) is called the activity function ment. The next step is to regularize the height defining an
[15] and ©(x) is the unit step function defined &(x)=1  interpolating function. This is done by expanding the height
for x=0 and equals to O otherwisg, is the microscopic hi.,=h(x;+x,) aroundx;=ia. Retaining only the leading

driving force- andg;(h;+a) is the quenched noise just terms in the expansion, the adimensional difference of
above the interface distributed in the interyal1]. Notice  heights is

that the activity functionF is the competition between the

driving force and the quenched noise,Fs@ also a “noise.” HITL=(—m)ahl, +2(12—m?)a2h], a+0(a?), (8)
Provided that the system size is large and that the intrinsic ' '

fluctuations are not too largé], the evolution equation for wheredkh=gih/gx.

the height in a site, in a short lapser, is Notice that in any discrete model there is in principle an
infinite number of nonlinearities, but at long wavelengths the

dh; a higher-order derivatives can be neglected using scaling argu-

ot ?Gi+ i ) ments, since one expects affine interfaces over a long range

of scales, and then one is usually concerned with the form of

wherer is the mean lapse between successive election of arfj€ relevant terms. _ ,

site andG; [15] contains the microscopic growing rules for _ Replacing Eq(8) in Egs.(5) and(7), using the expansion
the evolution of the height at this site due to that a piie of the step function and_ retaining the leading terms to order
chosen at time. Here, is a Gaussian “thermal” noise with ©(&), EQ. (2) can be written as

zero mean and covariance
ah(x;,t)

a2 ot
<77i(t)771(t,)>=?Gi5ij5(t_t,)- ©)

= 2 [W(x;+a)+W(x;—a)

+W(xi) F(xi,[h(x)|[+ D]+ 7(x;,t), (9
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(b) =1.28.
1
10" | always exists a typical size of the inhomogeneities in the
“!: disordered media that plays the role of the lattice constant
The final step is a coarse-grained spatial average of the
10° | , variables in order to obtain smooth continuous functions at a
‘o macroscopic level. In this way we obtain the stochastic con-
° tinuous equation for this model,
107" . - oh o
10° 101 102 103 —r =P+ v(F)azh+ N (F) () 2+ n(x,t), (13
t
FIG. 1. Log-log plot of the square roughnes? vs time forc ~ Where
=1.3. In(a) p=0.1, for this value ofC the critical pressure ip,
=0.1. The circles show the results obtained from the numerical ~ ~ ~_4a
integration of Eq.(13). The dashed line is used as a guide and as p(F)=[(co—2¢y)(1-F)+F] T (14
exponent 8=1.34. In(b) p=0.3, the dashed line has slopg 2
=1.34 and the solid line has slop@g=0.66. The numerical inte- a2
gration has been done with=1024 and over 30 independent V(T:):Cl[% (1+'|5)+4(co—2c1)]—, (15)
samples. T
with ~ ) ~. a
)\(F)=4cl(1—F);. (16)
W(x+a)+W(x—a)=(co—2¢,) +4c7 (d4h)?
+acy[L+4(co—2cy)] aih, andF=F(x,h) as was defined in Eq12). Notice thatu(F)

is now the effective competition between the driving force
(10 and the quenched noise. The coefficientsy, and\ take
_ 5 51 ) different values at each point of the interface.
W(x)=1—(Co—2¢y)—4ci (dxh)"+3zac, okh. (11 Equation(13) shows that the nonlinearityrises naturally
as a consequence of the microscopic model. Our result is in
agreement with those of Re et al. [5] who obtained nu-
)?herically a parabolic shape of the local velocity as a function
of the gradient for the DPD model near above the criticality
for different reduced forcesp{p.—1). In order to interpret
B sh the expressions ok, v,\ it is necessary to introduce a con-
FIxi ,h(x)1=F(x;,[hi))+ —[F(x;,|hi| +1) = F(x;,|hi)] tinuous representation of ti@ function. The best choice is
a the shifted hyperbolic tangentl0], defined as®(x)={1
+0(5h?), (12)  TtaniC(x+b)]}/2, whereb is the shift andC is a parameter
that allows us to recover th® in the limit C—~. We
with 0<éh=<a that measures the departure of the heightchooseb=1/2. The reason for our choice is that it allows us

from the low pore. Theff is a smooth function taking con- to define thes function as Eq(6). The coefficients fulfl
tinuous values in the interv&D,1]. With this definition we c
1+tan!‘(5

Notice that the argument d¥=0O[p—g(x;,|h(x;)|+1)] is
not smooth, so its expansion is meaningless. In order to e
tend the definition of the activity functioR to the continu-
ous, we construct an interpolation function

ensure that the characteristic size of the correlation between

pores is of the order of the pore size. In real materials there ©=3

C C
and Ci=7 cosh‘z( 5) . (17
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When the conditiong17) are satisfied, the coefficient is 10°
always positive. The coefficient is greater or equal to zero
independently of the representation of the step function. In

the limit p—0, the TKPZ equation is recovered takig
=0. Far above the criticalityg— 1), the interface moves
without stopping(the effective force is positive and the non- b 10"
linear term becomes negligibleso the dynamics is close to ;
the one described by the TEW equation as we see from Eq.

(13) taking F=1. However, the fact that TEW and TKPZ
limits are recovered is a specific characteristic of this particu-
lar model.

In all cases studied so faisee for examplg10]), the
continuous equations are restricted to some values. dh
our case, for the numerical integration, we choose the value P~F,
of C taking into account that in the continuous model, near

the criticality, whereF must be close to zergmotice that in
the discrete model, as we approach to the critical vdtuis,  _

mostly zero because the interface gets pinned by long chains

of inactive siteg15,16), it is necessary thak mostly be- How could our results be used in order to explain the role
comes negative in order to brake the advance of the intefplayed by the disordered media in the experiments? In the
face. Itis precisely this restriction f& that gives a physical experiments the advancement of the interface is determinated
meaning to our continuous equation. In Figs. 1 we show they the coupled effect of the random distribution of the cap-
temporal scaling behavior of the roughnessbtained from jllary sizes, the surface tension, and the local properties of
the numerical integration of Eq13). At the criticality, @  the flow, so it is not surprising that all these effects give rise
slope 3=0.67+0.05 was obtained. Above the threshold weto a multiplicative noise in any evolution equation that in-
recover a crossover between the expongnt0.67-0.05 tends to represent an experimental growth with disordered
and theB,,= 1/3 as was obtained by Leschhdifi by means media.

of the numerical integration of the QKPZ equation and by Summarizing, we derive the continuous equation from the
his automaton version. In Fig. 2 we show the scaling behavmicroscopic one for the TL model. Our equation allows us to
ior of the correlation function C,(r,t)=([h;4,(t)  explain that the lateral growth contribution is mainly respon-
—hi(t) 132 The exponent obtained was=0.641+0.07 in  sible for the roughness near the criticality. In our work, the
agreement with the DPD models. Figure 3 shows a log-loghonlinear term arises naturally as a consequence of the mi-
plot of the global interface velocity as a function ofp croscopic dynamics. The numerical integration of our equa-
—pc. A velocity exponentd=0.642 close to the DPD one tion reproduces very accurately all the scaling exponents of
was obtained. The numerical integration was made in shothe DPD model. These results show that E) describes
lattices using a discretized version of the continuous equathe TL model with the advantage that it has been analytically
tion (13). The results in large systems and the details of theleduced from the microscopic rules. Despite that the behav-
integration will be published elsewhere. Notice that even ifior of our equation is equivalent to the behavior of the QKPZ
the exponents from our equation are very similar than thene, it is formally different. To our knowledge, this is the
one obtained from the QKPZ one, our equation is very dif-first time that an analytical continuous equation derived from
ferent. The main difference is that the coefficients of thea microscopic model does not match the phenomenological
nonlinear and the Laplacian terms in our equation areequation that was hoped to describe the model. Finally, we
strongly affected by the local characteristic of the substrahope that this framework can be used in other growing mod-
tum. els with quenched noise.
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FIG. 3. Log-log plot of global interface velocity as a function
of p—p, for p.=0.11 andC=1.3. The slope of the line i®
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