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Effective interactions and volume energies in charged colloids:
Linear response theory
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Interparticle interactions in charge-stabilized colloidal suspensions, of arbitrary salt concentration, are de-
scribed at the level of effective interactions in an equivalent one-component system. Integrating out the degrees
of freedom of all microions from the partition function, and assuming a linear response to the macroion
charges, general expressions are obtained for both an effective electrostatic pair interaction and an associated
microion volume energy. For macroions with hard-sphere cores, the effective interaction is of the Derjaguin-
Landau-Verwey-Overbeek screened-Coulomb form, but with a modified screening constant that incorporates
excluded volume effects. The volume energy—a natural consequence of the one-component reduction—
contributes to the total free energy, and can significantly influence thermodynamic properties in the limit of
low-salt concentration. As illustrations, the osmotic pressure and bulk modulus are computed and compared
with recent experimental measurements for deionized suspensions. For macroions of sufficient charge and
concentration, it is shown that the counterions can act to soften or destabilize colloidal crystals.

PACS numbg(s): 82.70.Dd, 83.70.Hq, 05.20.Jj, 05.7&a

I. INTRODUCTION with varying salt concentration. Recently, interest in colloi-
dal interactions has intensified as a result of accumulating
More than a century ago, it was recognized that mosexperimental evidence for apparent long-range attractions
colloidal particles carry an electric chardé]. Colloidal  between macroiong’,8].
macroions—typically 1-1000 nm in diameter—may acquire A rigorous statistical mechanical treatment of the multi-
charges from surface dissociation of counterions, adsorptioocomponent mixture of macroions, counterions, salt ions, and
of salt ions from solution, or the creation of defects in crystalsolvent molecules is a daunting task. Interactions in such
lattices. Electrostatic repulsion between macroions suseomplex systems are therefore usually treated at the level of
pended in a molecular fluid is one of the two chief mecha-effectiveinteractions. Tracing out from the partition function
nisms by which colloidal suspensions may be stabilizedstatistical degrees of freedom associated with all but a single
against coagulation induced by attractive van der Waalsomponent, the mixture is formally mapped onto an equiva-
forces. lent one-component system of “pseudoparticles” governed
Charge-stabilized colloidal suspensions exist in a wideby an effective state-dependent interactioh Effective in-
variety of forms. Familiar examples include clay mineralsteractions in charge-stabilized colloids have been modeled
(relevant to mineralogy, agriculture, and the paper induyistry by a variety of techniques, including Poisson-Boltzmann cell
paints, inks, and solutions of charged micelles. Further exmodels[10—-12 density-functional theory13-1§, Monte
amples are synthetic latex or silica microsphdi@&s which  Carlo and molecular dynamics simulatiop$9—22, and
may self-assemble, if sufficiently monodisperse, into ordereghowerful ab initio methodg 13,23
crystals. Aside from providing valuable model systems for Here we adopt an alternative approach, recently proposed
fundamental studies of condensed matter, colloidal crystalby Silbert and co-workerg24,25, which exploits analogies
exhibit unique optical properties that have inspired a numbebetween charged colloids and metals. Performing a classical
of recent applications, e.g., nanosecond optical switf€Bgs trace over microion degrees of freedom, and treating the
chemical sensorfst], and photonic band gap materidf. electrostatic response of the microions to the macroions
Despite the considerable and growing technological im-within second-order perturbation theory, leads to an effective
portance of charged colloids, progress in predicting macropair interaction between pseudomacroions and an associated
scopic properties is limited by an incomplete understandingsolume energy. The volume energy, which contributes to the
of interparticle interactions. Most theoretical treatments oftotal free energy, must be included when calculating thermo-
electrostatic interactions are rooted in the landmark theory oflynamic properties of charged colloids modeled by an effec-
Derjaguin, Landau, Verwey, and Overbg@d_VO) [6]. The tive pair potential[14-17,24,2% Noting the correspon-
DLVO theory describes the bare Coulomb interactions bedences, microior— electron and macroion> metallic ion,
tween macroions as screened by the surrounding microiorthe response approach is the colloidal equivalent of the
(counterions and salt ionsThe resulting screened-Coulomb widely used pseudopotential theory of metd16—2§.
pair potential accounts—at least qualitatively—for a range of In previous work[30], the response approach was ex-
observed phenomena, including the dependence of coaguleended to finite-sized macroions in deionized suspensions.
tion rate on counterion valence and trends in phase stabilitf¥his paper generalizes the theory to the case of arbitrary salt
concentration, consistently taking into accouht the vol-
ume excluded to the microions by the macroion hard cores,
*Permanent address: Department of Physics, North Dakota Sta@nd (2) the response of both counterions and salt ions to the
University, Fargo, ND 58105. macroion charges. Section Il begins with a brief review of
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the response theory and then outlines our extensions of thehereK , is the microion kinetic energy,s(|r; — R;|) is the
theory. Section Il presents the main results—obtainechard-sphere interaction between a point microion and a mac-
within a linear response approximation—for an effective pairroion core, and , .. (r)=v__(r)=—v,_(r)=2z%e?/ er is the
potential acting between pseudomacroions and an associataticroion-microion Coulomb interaction. The last two terms
volume energy, both of which consistently incorporate ex-in Eq. (1) are the macroion-microion electrostatic interaction
cluded volume effects. The influence of the volume energyenergies, given by
on thermodynamic properties is illustrated by calculations of

the osmotic pressure and bulk modulus. Comparisons with

experimental data show that the counterions contribute a Hme=
substantial fraction of the osmotic pressure and can soften or

destabilize colloidal crystals. Finally, in Sec. IV we summa-
rize and conclude.

N

”MH

Nm
J_;vmi(lri—R,-l), (4)

i=1
where v, (r) denotes the macroion-microion electrostatic
pair interaction. For later reference, we note that @galso
may be expressed in the form
Il. THEORY
A. Model

ode Hoe= [ ar [ dRp- (D pm(Rpvm=RD,
Within the “primitive” model, the system comprises,,
charged hard-sphere macroions of diameteand charge

. . where
—Ze (e being the elementary changendN. point counte-
rions of chargeze suspended in an electrolyte solvent. Glo- N N
bal charge neutrality constrains macroion and counterion pt(r)zz S8(r—r,), pm(R)EE S(R-R)) (6)

Il
s

numbers according t&N,=zN,. Each macroion is as- i =1

sumed to carry a fixed charge, uniformly distributed over its o ) )

surface. The solvent hosk pairs of salt ions in a uniform are the microion and macroion density operators, whose Fou-
dielectric fluid characterized entirely by a dielectric constantier transforms are

e. For notational simplicity, we assume a symmetric 1:1 N Np,

electrolyte, consisting dilg point ions of chargee and Ng ~ o~ . - B .

of charge—ze (i.e., the same valence as counterjorihe pi(k)_izl explik-ri), Pm(")‘; exp(ik-Ry). (7)
microions thus numbeN, =N.+ Ny positive andN_ =N

negative, for a total oN,=N.+2Ng. The system occupies Althoughuv - (r) has a Coulomb form outside the macroion
a total volumeV at temperaturd, and a fixed salt concen- core radius, inside the core it has no unique definition. Thus,
tration maintained by an exchange of salt ions, through dollowing van Roij and Hansefil4], we are free to choose

semipermeable membrane, with a salt reservoir. vm-(r) to be a constant for<o/2, and take
Denoting macroion and microion coordinates{®}} and
{r}, respectively, the Hamiltonian of the system may be ex- FZ2z2¢€
pressed in the general form o r>ol2
HU{RL{rD =Hm+H,+ Hype + Hip &) om=(N=Y 5770 ®
ma, r<ol2,

The first two terms on the right side of Ed.) denote Hamil-
tonians for macroions and microions, respectively. Assumin
the only relevant interactions to be steric and electrostati
the bare macroion HamiltoniaH,, is given by

Yhere the parameter will be specified(Sec. Il © to ensure
%hat the microion densities vanish within the core.

1 Nm B. Reduction to an equivalent one-component system
Hn=Kmt 3 ”21 [ons(IRi=RiD +vmm [Ri=R; )], With the Hamiltonian specified, we now turn to a statis-
(i#1) tical mechanical description of the system, our ultimate goal

2) being the free energy. The canonical partition function is

K., being the kinetic energy of the macroions,s(|R,  9iven by
—Rj|) the hard-sphere pair interaction between macroion

cores, andv,(r)=2%e?/ er the bare Coulomb interaction

between a pair of macroions separated by center-to-cent
distancer > ¢. Similarly, the microion Hamiltonian takes the

form

Z=((exp(—H/kgT)) . 9

e angular brackets symbolizing classical traces over micro-
ion and macroion degrees of freedom. Following standard
treatments originating from the theory of simple metals
N, Np 1 N+ [27,28,31, we now reduce the two-component macroion-
H,= KM+E > ons(lri— R+ > v (Iri—r) microion mixture to an equivalent one-component system by
=1j=1 2 '(II;S performing a restricted trace over microion coordinates,
NN N keeping macroion coordinates fixed. Thus, without approxi-
I« 1 & mation, in this purely classical system,
+2 2 vednmrhiy 2 ve(n=rh. @
(i#]) Z=(exp(—Hex/KgT) ), (10)
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whereH=H+F, is the effective Hamiltonian of a one- as “external” potentials acting upon a microion plasma and
component system of pseudomacroions, and where then approximatd-,, by perturbation theory. Following the

second strategy, we wri{&1]
F.=— keT In{exd —(H,+Hp, + Hm,)/kBT]>M (11

1
may be physically interpreted as the free energy of a nonuni- F.=Fpt f AN((H e+ (Hm ), (15)
form gas of microions in the midst of macroions fixed at 0
positionsR;. Formally adding to and substracting frokh
the energyE, of a uniform background having a charge where
equal to that of the macroions, E@.1) may be recast in the

form Fo=—kgT In(exp(—H//kgT)), (16)

F.=—ksTIn{exgd —(H, +Hp . +H{ )/kgT]),,
(120 s the free energy of the reference microion plasma, occupy-
ing a volumeV’, in the presence of neutral hard-sphere mac-

whereH ,=H,+Ep andH/,. =Hp. —Ey/2. The advantage rojons. The integral ovek in Eq. (15) corresponds physi-
of this simple manipulation is thad, is the Hamiltonian of  cally to an adiabatic charging of the macroions from neutral
a classical, two-component plasma of microions, in a unito fully charged spheres. The ensemble averdgerepre-
form compensating background, in the presenceaitral  sents an average with respect to the distribution function of a
hard-sphere macroions. In order that the plasma be free @ystem whose macroions carry a chaxge
infinities associated with the |Ong-l’ange Coulomb interac- Further progress iS faci”tated by expressm;n+>)\ in
tion, the background must occupy the same volume as thrms of Fourier components of the macroion and microion

microions. The background is thus excluded—along with thejensities and of the macroion-microion interaction. From
microions—from the macroion cores. The microions andggs, (5)—(7), we have

background then jointly occupy &ee volume V'=V(1
— ), which is the total volume reduced by the volume frac-

tion of the macroion coresy=(7/6)(N,/V)a®. , _i N - ~
The background energy is given explicitly b§1] <Hmr>k_v, go Vm= (K){p=(K))rpm( —k)
E _1 ZJ d f dr’ 22e2 1 ~ ~ ~
p=5 (e =7 dr | A =] + MG (Kb (0o —K) 1= Evf2.
N _
S Olr(n+ n_)Zzée 17

= v e[r—R|

R Evidently (H/ . ), depends througtp. (k) upon the re-

== 5(Ns=N)(ny—n_)v,.(0), (13 sponse of the microions to the macroion charge density. Re-
garding the macroion charge as imposing an external poten-

where n. =N, /V'=n®/(1— ) are the effective mean tial on the microions, and assuming that the microion
densities of microions in the volume not occupied by thedensities respontinearly to this potential, the Fourier com-
macroion cores, and®=N. /V are thenominalmean den- POnents of the.m|cr0|on densities appearing in &) may
sities. For later reference, we also defing=n_ andn, P& €xpressed in the form
=n,—n_ as the effective densities of salt-ion pairs and

counterions, respectively. In E€L3), v, . (0), defined by (P (K =A x4 +K) = x5 (K)]oms (K)pm(k), k#0
(18)
- 0 _f g zzez_l_ 477°€? 14
vy(0)= v/ rel’ _kl—>n1) k2 ) (14 and

is the k—0 limit of the Fourier transform ob . ,(r). Al- - - -
though formally infinite £, will be seen below to be identi-  {(P-(K))\ =[x+ - (K) = x-~(K) Joms (K) pm(k),  k#0,
cally canceled by compensating infinitiesht), andH .. . (19

C. Linear response approximation where . - (k) are the linear response functions of the refer-

. . .. ence two-component microion plasma, and where we have
The theory presented thus far is exact, within the primi- P P

tive model. The challenge remains to calculate the microiof!Sed the symmetry relations. — (k) =x - (k) andv . (k)
free energy{Eq. (11)]. One proposed stratedy4] invokes = —vm-(K). Note that fork=0 there is no response, since
density-functional theory to approximakg, , regarded as a p+(0)=N. , as determined by the fixed numbers of micro-
functional of the microion densities, by performing a func-ions. Substituting Eq$18) and(19) into Eq.(17), and this in
tional Taylor-series expansion about a uniform microionturn into Eq.(15), and integrating ovex, the microion free
plasma. An alternative strategy?4,25, inspired by the energy is given to second order in the macroion-microion
pseudopotential theory of metals, is to formally reghirg. interaction by
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1
— D e (K—2x: (K +x_ (k)]

F,=Fp+
2V' k#0
X[aer(k)]ZFA’m(k);)m(_ k)+ Nm

N_) im0y (k)] = Ep,
k—0

X(n,— (20

where again we have used the relatign, (k) = — 0 n_ (K).

Correspondingly, the effective Hamiltonian takes the form

N
1 m
Het=Knt 5 2 vns(IRi—Rj])
ij=1
1#]

—E Ul K) [ pm(K) pm( —K) =Nyl +F

2V’
1 . A
tog 2 X(K[0m: (K pm(k)pm( —K)
+Nm<n+—n,>limo[8m+<k)]—Eb, (21)
where we have defined
X(K)=x4 4+ (K)=2x, (k) +x- (k). (22

Now rearranging terms, Eq21) may be restructured and

written in the formally simpler form

Nm
Her=Kn+ 5 2 vrs(IR—Rj])
ij=1
i#]

1 R R R
to ; Vet K) [ pm(K) pml —K) — N + Eg

1
=Kt 3 2 [onsl|R—Ri)+ven R~ R+ Eo,
;&

(23
where

Vet(1) =V mm(r) + Uing(r) (24

has the physical interpretation of aifectiveelectrostatic
pair potential between pseudomacroions, which is the sum of
the bare Coulomb potential, and amducedpotential whose

Fourier transform is

Ving(K) = X(K)[0ms (K) 2. (25)
The final term in Eq(23) is thevolume energy
Np .
Eo=Fp+ 7I|m Vind(r) +Np(ny—n_)
r—0
X lim 2Zv.nd(k)Jrvm(k) —Ep, (26
k—0
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which is a natural byproduct of the reduction to an equiva-
lent one-component system. Although it has no explicit de-
pendence on the macroion coordinatsse below, E, evi-
dently depends on the mean density of macroions, and
therefore can contribute significantly to the total free energy
of the system. In passing, we note that the above expressions
for the effective pair potential and the volume energy are
analogous to expressions appearing in the pseudopotential
theory of metalg27,28,31,32if one substitutes foF, and
x(K), respectively, the energy and linear response function
of the homogeneous electron gas the presence of a com-

pensating background and for v, (k) the electron-ion
pseudopotential.

Summarizing thus far, we have adopted the primitive
model of charged colloids, formally reduced the macroion-
microion mixture to an equivalent one-component system of
pseudomacroions, and applied a linear response approxima-
tion to the microion density, to obtain expressions for an
effective electrostatic pair interactidricgs. (24) and (25)]
and an associated volume enef@yg. (26)]. Practical calcu-
lations still require explicit specification @) the reference
plasma free energl,, (2) the plasma linear response func-
tions x.(k), and (3) the macroion-microion interaction

13m+(k). In the next section we consider each of these in
turn.

Ill. RESULTS AND DISCUSSION
A. Reference microion plasma

The free energy of the two-component reference plasma
may be expressed as

Fp:Fid+ Feonrt Fec™Ebp, (27)
whereF,4y andF,,, are the ideal-gas and correlation contri-
butions andr . is the energy associated with Coulomb pair
interactions between microions. It is important to emphasize
that by associating the hard-sphere part of the total
macroion-microion interaction with the microion Hamil-
tonian [Eq. (3)]—required, since response theory does not
apply to hard-sphere interactions—the reference microion
plasma is implicitly restricted to the free volume outside of
the macroion cores. As a consequence, the plasma is not
strictly uniform, since the boundary conditions, imposed by
the macroion surfaces, may induce nonuniformity. In gen-
eral, the ideal-gas free energy is given by

Fa= | arp @ inlp 0 a%)-1)

+fdrp<_°>(r)(|n[p(_°)(r)A3]—1), (28)

where B=1/kgT, A is the microion thermal de Broglie
wavelength, andp?(r) are the nonuniform densities of
positive and negative microions in an external field due to
the macroion coretbut not their electric fields

Now, for typical macroion charges and concentrations,
counterion concentrations are in tp (10~ % mol/l) range.
If the salt concentration also falls in this range, then microion
concentrations are low enough that the plasma is essentially
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uniform. In this caseF..=E,, and the last two terms in Eq. Substituting Egs(32), (34), and (35) into Eq. (31) yields
(27) cancel each other. Furthermore, a plasma of such lovy;;(k), from which we obtain
concentration is weakly coupled, with coupling parameter

I'=7%¢% ekgTa, <1, wherea,=(3/4mn,)*? is the micro- BN, Bn.
ion sphere radius and,=n,+n_ is the total microion X++(K) = x4 -(k)=~— == YL

; I ) 1-n,c(k) 1+ k“/k
number density(In sharp contrast, electron plasmas in met- " (36)

als are typically characterized hys1.) The correlation free
energy per microion then may be approximated by the Abe

. n_ psn_
expansior{33] (K= x__(k)= A —= . (37
Xo= (0= x--(K) 1-n,c(k) 1+ k2K
F 1
p = — 132+ 0(Ir3), (29 and
Ny V3
the leading term being the Debye-tkel approximation y(k)=— ’Bn’j = A, , (38)
[34]. Thus, at low salt concentrations, if nonuniformities and 1-n,c(k) 1+ k%/Kk?
correlations are ignorefd4,17,29, a reasonable approxima-
tion for the free energy of the microion plasma is where
BF =N, [In(n, A%~ 1]+N_[In(n_A%—1] P L R i 39
EkBT (1_77)€kBT !

=N,[In(n,A®)—1+x,Inx, +x_Inx_], (30)

andn{®=N,/V=n,(1-7) is the total nominal microion

number density. As will be seen below, the parameter

. ) plays the role of the Debye screening consténterse
B. Linear response functions screening lengthin the microion density profiles and in the

The linear response functiong; (k), i,j==* of the two-  €ffective pair interaction.
component reference plasma are simply proportional to the
corresponding partial structure facto&;(k): C. Microion density profiles

wherex. =N. /N, are the mean microion concentrations.

Xij (K=~ Bn,S;(K). (31) Spequmg the macroion-microion interaction amounts to
determining the value of parameterin Eq. (8) that ensures

Liquid state theory35] now relates the partial structure fac- vanishing microion densities inside the macroion cores. This

tors to Fourier transforms of the pair correlation functions,in turn requires a calculation of the real-space microion den-
sity profiles. The first step of this calculation is to Fourier

hij (k) via transform Eq(8), with the result
Sij(k):Xiéij+Xinn”ﬁij(k). (32) R é Sln(kO'/Z)
) } _ ) ) Ui+ (K)=7F [(l—a)COSka/Z)-i—a—
The pair correlation functions are in turn related to Fourier ek? kol2
transforms of the direct correlation functiorisj,(k), by the (40

Ornstein-ZernikgOZ) equation for mixtures, Now substituting Eqs(36), (37), and(40) into Egs.(18) and

(19) gives, for thek#+0 Fourier components of the microion

ﬁij(k)zéij(k)mﬂg xCiy(k)h;(k), i,j,/== (33  densities,

] ) A . Z K2 sin(ka/2)
which serves in fact to defing;j(k). For such weakly pi(k)ZiXi—( 5 2)[(1—a)cos(ko/2)+ak—/2
coupled plasmas as we encounter in charged colloids, the Z\k+k o
mean spherical approximatidiMSA) provides a reasonable Ny
closure for the OZ equation. This amounts to approximating % 2 explik-R), k#0, (41)
Cij(r) by its asymptotic (—c°) limit c;;(r)=— Bv;;(r) for j=1 )

all r, or, equivalently,
where the sum is over the positioR of the macroions.

477/5'Zi2jez Next inverse transforming Ed41), while respecting thé

Cij(k)==pujj(k)=——7"—, (34 0 limits, p.(0)=N. , we obtain
A~ A~ Nm
where z;,z;==*z. Since, in the MSA,c, ,(k)=c__(k) pocixtz p-(Ir—Rj)), Ir=R;[>0/2
=—c,_(k)=c(k), it follows directly from Eq.(33) that p.(r)= =1
+ - Nm
. . . &(k) x. 2 p<(Ir=Ry)), r=Ri|<0/2,
hy (k)=h__(k)=—-h, (K)=——=—. (39 =1

1-n,c(k) (42
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wherep,,=x_n,+x,n_ is the bulk density of positive or
negative microiongfar from any macroiop Note that in
general p,#ng, although p,—ng in the Ilimit x.
—1/2 (n./ng—0). In EqQ.(42), p~(r) andp_(r) are single-
macroion orbitals, given by

K2

p=(r)= (1—a)cosh ka/2)

Z4n
sinh( ka/2)
Kkol2

exp( — k)

, r>ol2 (43

+a

and

Z K2< 1 a 2 sinh(«r)
p<(r)—zﬂ — +(1’+F/2 EXF(_KO' )f,

r<ol2. (44)

Vanishing ofp_(r) for r<o/2 is evidently ensured by set-
ting
Kkol2

O Tt ol “9

Finally, substituting this choice forx back into Eq.(43)
specifies the > ¢/2 orbital as

Z k% exp(kol2) exp(— k)
zZ 47 1+«kol2 r '

p=(r)= r>o/2, (46)

which is automatically normalized to the correct number of

counterions per macroiorZ(z). The corresponding micro-
ion density profiles are the linear combinations

Z k2 exp(kal2) Im exp(— «|r—R;|)
p=(r)=petXs—

A. R. DENTON
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Expression(46) is seen to be of precisely the same form as
the Debye-Huakel expression for the density of electrolyte
ions around a macroiofil]. A significant distinction lies,
however, in the definition of the screening constasmt,
Whereas the Debye-lgkel x depends on theaominal bulk
density of electrolyte ions, ou [Eq. (39)] depends rather
on the effectivemean microion density, (in the volume
unoccupied by macroionsThe importance of redefining the
usual « in this way, particularly for concentrated suspen-
sions, was noted previously by Russel and co-workaés

D. Effective pair interaction and volume energy

We are now in a position to derive the main results of the
paper. Considering first the effective electrostatic pair inter-
action between pseudomacroions, we proceed by substituting
Eq. (45) into Eq. (40), obtaining, for the macroion-microion
interaction,

sin(ka/2)
—

cogko/2)+ k

(48)

Next substituting Eqs(38) and (48) into Eq. (25) yields the
induced potential

27Z%e? 2

. k)= 1 2[ k
Vind(K) =~ ek? \1+kol2] | K24 2
sin(k 1—cogk
X|1+cogko)+2« n( U)+K2 ko) .
k k2
(49)

z4m 1+kol2 & [I-R] _ _ _ _
Fourier transformation of Eq49) is a straightforward calcu-
Ir—Rj|>072. (470 lation, with the result
|

Z%e? [exp(kal2)\ 2 exp(— kr) Z%€?

— r>o
€ 1+ «kol2 r er’

Ving(l) = 722 1 2 , 1 - r< (50
"~ 2er \1+«kal2 ( +KU)Kr_§K Tl 7

Finally, substituting Eq.(50) into Eq. (24), we obtain an stant, ourdEq. (39)] being a factor (+ #) 2 larger than
explicit expression for the effective electrostatic pair potenthe usual DLVO« to account for exclusion of microions
tial: from the macroion cores.

Now the volume energy may be explicitly determined

Z%e? [ exp(kal2)\ % exp( — k) from Eq.(26). It follows immediately from Eq(50) that
veﬁ(r)= , r>o. (51)
1+ kol2 r
. . . . . . z2%e? K
This result is seen to be identical in form to the electrostatic imu(r)=— — ——o, (52)
part of the DLVO effective pair potentidb], which is usu- -0 e ltkol2

ally derived by linearizing the Poisson-Boltzmann equation.
The only distinction between our pair potential and the
DLVO potential lies in the definition of the screening con- from Eq. (49) that
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77%€%02 1+ kal6 +E,, whereF, is the free energy of the equivalent one-
1+ ro/2 component system of pseudomacroions interacting via the
effective pair potentiad o¢(r). Correspondingly, any thermo-
dynamic quantity derived from this free energy may be de-

. z\2.
limvi,g(k)= _(E> vy (0)+
k—0

AmZ%€? . . : - .
+ , (53) composed into effective macroion and microion contribu-
€K’ tions. SinceE, [Eq. (55)] depends on the mean macroion
density—both explicitly and implicitly throughc—it can
and from Eq.(48) that significantly influence thermodynamic properties of the sys-
2 tem, especially at low salt concentratigis-17,30Q.
|im;m+(k):_E;++(0)+wzze20 1+KU/6_ 4) As illustrations, we consider the osmotic pressure and
k—0 z 2¢  1+kol2 bulk modulus. A colloidal suspension in equilibrium,

o . _ ~ through a semipermeable membrane, with a reservoir of salt
Substituting Eqs(52)—(54) into Eq.(26), and using approxi-  solution exerts an osmotic pressufé=P—P,, defined as

mation (30), for the volume energy we obtain the difference between the pressure of the sysRrand that
222 of the reservoirP, . Treating the reservoir as an ideal gas of
BE,=N.In(n,A%)+N_In(n_A3%)—N,, B K N, sa[t ion pa.ir_s i_n a yolume/,, we have,BP,=2N,./Vr.
2¢ 1+kol2 Chemical equilibrium is characterized by the equality of the

1(N,—N_)2 chemical potentials of salt ion species exchanged between
— _(+—_’ (55  the system and the reservoir. The chemical potential of the
2 Ny+N- salt, defined as the change in free energy upon adding a salt

ion, includes a contribution arising from the effect of salt

neglecting irrelevant constants. Note that the infinities assOz,centration on the macroion-microion interactitrough
ciated with thek— 0 limits formally cancel one another, as

h he fi he riaht side of ; k). Thus, in general, the salt concentrations of the system
they must37]. The first term on the right side of E(RS) is 41 reservoir are nontrivially related. However, for systems

the ideal-gas plasma free energy, discussed in Sec. Il A. Thg ticiently dilute that the macroion contribution may be
second term, which accounts for the electrostatic energy qf,,qred—an assumption we make here—the condition for

interaction between the macroions and their screening cloud$,amical equilibrium may be approximated by equality of

of counterions, is equivalent to one half the interaction eny,q reservoir salt density, /V, , and theeffectivesalt den-
. . . r ro»
er_gly were all the counterions to be plr_;lced ata fadlal dlsta_nc ty of the systemn.=(Ng/V)/(1— 7). Note that the effec-
« "~ from the surfaces of their respective macroions. The f|na[ ve salt density exceeds the nominal salt denslty\V by
term corresponds to the~0 limit in Eq. (26). Our result for ..the ratio of the total volume to the free volume unoccupied

the volume energy is very similar tp that dgrived by van Roij by the macroion cores. The distinction here between nominal
and co-workerg14,15 from a density-functional expansion, ,nq reservoir salt densities is akin to that between nominal

differing only in_the manner i_n which exclusior_1 of micr_oions and reservoir polymer densities in colloid-polymer mixtures
from the macroion cores is incorporated. While Eg8f) in- 8]. The reservoir pressure is then given by
corporates excluded volume effects through a dependence E)ef '

the screening constafEq. (39)] on the effective microion BP,=2n;. (56)
density, van Roij and co-workers incorporate them through

an additional term in the volume energl¢q. (61) in Ref.  The total pressuréor equation of stajeof the systemP

[15]]. ) , , ... =P+ Py, comprises a macroion contributiéh, and a mi-
In closing this section, we remark on the range of validity .ion contributionPy= — (9E,/dV) . Combining Egs.
of the theory. First, although the linear response approxima; N Ns

tion presupposes a relatively weak microion response to thg’s) and(56), we obtain

macroions, and thus weak screening, the general form of the

screened-Coulomb pair potential in bulk suspensions is 3 3 s 1 Z (ko)®

broadly supported by Poisson-Boltzmann cell model calcula- pllo*=BPpo~+neo T 167 2 (1+ kol2)?’

tions[10], ab initio simulationg 13,23, and experimentf7].

Second, the excluded volume corrections incorporated intcf‘he same result is obtained for arbitrary Macroi i

the modified screening constartmay become significant o L Yy macroion concen
fjation in the limit of zero salt concentratiomd—0), in

even in the weak-screening regime for concentrated suspen- . B : .

sions of weakly charged macroions. Finally, although theWhICh caseP, =0. _The second and third terms in E&7)
theory neglectsin mean-field fashionfluctuations and cor- represent, respectively, the |_deal-g_as pressure of the counte-
relations in the microion densities, Monte Carlo simulations''9"S and a van der Waals-like adjustment that accounts for

and cell model calculatior{#4] for spherical macroions sug- the attraction between counterions and macroions. With in-

gest that such correlations contribute only marginally to thecreasing counterion d_en5|ty, these_ two terms compete with
total free energy. each other, the attractive term acting to reduce the total os-

motic pressure. For weak microion screeningo1),
where the electrostatic fields of the macroions are relatively
weak and the microion densities close to uniform, E5y)

Being independent of the macroion coordinates, the mishould reasonably approximate the osmotic pressure. In fact,
croion volume energ¥, appears simply as an additive term in the limit koc— 0, our result naturally tends to the correct
in the total Helmholtz free energy of the systef=F,  ideal-gas limit,BPy—n.. For stronger screening<¢g>1),

(57)

E. Osmotic pressure and bulk modulus
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macroion charg&* for fcc crystals of spherical macroiorigiam-
etero=654 nm suspended in a salt-free, aqueous solvent at room
temperature. Parameters are chosen for comparison witH 433f.
Solid curve: nearest-neighbor distareee 2.5 wm (macroion vol-
ume fraction »=0.0133); dashed curve:a=3.25 um (%
=0.00475). FoiZ*>7100 the counterion contribution is negative.
The arrow indicates the estimated macroion contribution to the bulk

FIG. 1. Osmotic pressurl vs macroion volume fractiony for
a fcc crystal of spherical macroior(siametero=102 nnm) sus-
pended in a salt-free, aqueous solvent at room temperaiye (
=0.714 nm. Symbols: experimental data of Reesal.[39]; solid
curve: prediction of linear response thedBg. (57)] with effective
macroion charge&* =700 and HNC virial pressure for macroions
(see texxt long-dashed curve: counterion contributibly; short- )
dashed curve: Poisson-Boltzmann cell model predicfib?,39. modulqs of the den_ser crystid3] (see the tejt The maximum
Over this range of volume fractions, the screening constant inScreening constant igo=1.9.

creases from zero too=4. crepancies at higher volume fractiong>0.07) might be

where the microion densities are more nonuniform, nonlineal .ttr'.ZUtfdt’ a;cr:east p'#;ually, to anl undefrlestlrphat@gfbly the
response effects may become significant. Iquia-state theory. The€y may aso refiect the noninear re-

The bulk modulugor inverse compressibilijy defined by sponse of th? counterions and associatgd effective many-
B=—V(Jll/dV)y_ . May be similarly expressed in the quy |nteraqtlons between psgudomacrplons. Future work
m's ) will address influences of effective triplet interactions on the
form B=Bp+B,, whereB, andB, are the macroion and ogmotic pressurg42]. It should be mentioned that the
microion contributions, respectively. From E&7), we im- pgisson-Boltzmann cell modél2,39 (upper curve in Fig.
mediately obtain 1) matches the experimental data well, especially at higher
7. However, while cell models, which consider the distribu-

3_ 3 neo® . 3 Z 1 (x0)*(1+«kal6) tion of microions within a Wigner-Seitz cell centered on a
BBo°= BB o°+ = — ) . L L
m 1-n 327 21-n (1+«kal2)® single macroion, are limited to periodic crystals, the more
(58) general one-component model applies to any thermodynamic
phase.

which again includes repulsive and attractive microion A more stringent test of the theory is presented by the
terms. In Egs(57) and (58), the macroion contributionB bulk modulus—the curvature, with respect to density, of the
and B,, are understood to be obtained from a the¢oy free energy density. In recent experiments, Weisal. [43]
simulation of a one-component system of particles interact-determined the bulk modulus of colloidal fcc crystals sus-
ing via the effective pair potentidEgs. (39) and (51)]. In  pended in a deionized, aqueous solvent at room temperature
practice, the macroion charge, notoriously difficult to extract(Ag=0.714 nm by measuring the long-wavelength limit of
from experiment, is usually replaced by an adjustable paranthe static structure factor. For two samples, distinguished by
eter, the effective or renormalized charge [10]. nearest-neighbor  distancesa=(3/4mn,)**=2.5 and
As a test of our results, we compare, in Fig. 1, the osmoti8.25 um, the measured bulk moduli were argued to be
pressure predicted from E(p7) with the recent experimen- lower than the predictions of DLVO theory, as estimated on
tal measurements of Rees al. [39] for a colloidal fcc crys-  the basis of an approximate elastic theory for the macroion
tal in a highly deionized r{sz=0) aqueous solvent at room contributionB,,,. For the denser crystal, the measured value
temperaturgBjerrum lengthg=Bz%e?/e=0.714 nm. As  wasB=0.016+0.005 Pa, less than a third of the estimated
an approximation for the macroion pressuRg,, we use DLVO value of B=0.052+0.005 Pa. This analysis ignores,
results of integral-equation calculations based on the viriahowever, the counterion contribution associated with the vol-
equation with a hypernetted chai{iiNC) closure for the ume energy. Figures 2 and 3 present predictions, computed
liguid-state pair distribution functiofi39,4Q. For the effec- from Eq.(58), for the counterion contributioB,. These re-
tive macroion charge, we take the vald&é= 700 estimated sults demonstrate that for sufficiently high effective macro-
by Reuset al. to best match their phase diagram to the simu-on charge and volume fraction the counterion contribution
lations of Robbinst al. [41]. may becomeegative It is essential to include this contribu-
The microion is seen to make the dominant contributiontion in the total bulk modulus before comparing the DLVO
to the total osmotic pressure, and to substantially improveheory with experiment. In Fig. 2, the crossover point at
the agreement between the one-component model and eX* =7100 may be compared with the effective chargés
periment, particularly at lower volume fractiong€0.07).  =6100 fora=2.5 um andZ* =5200 fora=3.25 um, es-
The last term in Eq(57) clearly is essential to reduce the timated by Weisst al. for isolated pairs of spheres in the
rapidly increasing counterion ideal-gas pressure. The disnfinite dilution limit. However, lacking reliable knowledge
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governs the dynamics of the macroions, is of precisely the
conventional DLVO form for finite-sized macroions, but in-
corporates excluded volume corrections through the depen-
dence of the screening constant on #féectivedensity of
microions in the free volume between macroion cores.

The total free energy of the system is the sum of the
volume energy and the free energy of the equivalent one-
component system of pseudomacroions. From the free en-
ergy, we have derived simple analytic expressions for the
osmotic pressure and bulk modulus. Comparison of theoret-
ical predictions with experimental data for deionized suspen-
sions of highly charged macroions shows that the microions
different effective macroion charges. Solid curzé:=6000; long- ~ can significantly contribute to the thermodynamic properties,
dashed curveZ* =7000: short-dashed curv&* =8000. For suffi-  Peyond their role in screening the bare Coulomb interaction
ciently highZ*, the counterion contribution may be negative over aP€tween macroions. In particular, the volume energy largely
significant range of volume fractions. The arrow indicates the estiaccounts for the observed magnitude of the osmotic pressure,
mated macroion contribution to the bulk modulus of the dense@nd qualitatively explains measurements of bulk modulus
crystal[43]. The maximum screening constant«is = 2.5. lower than predicted by the conventional one-component

DLVO theory. Several recent studies predicted similar influ-
of Z* in the crystal phase, here we forego a more quantitaences of volume energies on the phase behavior of charged
tive analysis. The qualitative message is nevertheless cleasolloids [14—-17,29.
at sufficient concentration, the counterions may adbteer The theory presented here can be straightforwardly gen-

the bulk modulus, softening or even destabilizifig(0) the  eralized to includeonlinearresponse of microiongt2], and
crystal. thereby used to assess the relative importance of effective

many-bodyinteractiongd13,23,43 and associated corrections
to the effective pair potential and the volume energy. Related
applications are to colloid-surface interactions and to inter-
In summary, by reducing a model colloidal suspension ofactions between colloids in the vicinity of a surface, which
charged hard-sphere macroions and point microions to aexperimenf7] and theory[18] suggest may become attrac-
equivalent one-component system, and approximating th#éve. Work along these lines is in progress.
microion response to the macroion charge using linear re-
sponse(second-order perturbatiptheory, we have derived
an effective electrostatic pair interactipq. (51)] and an
associated microion volume enerfigq. (55)]. The volume | am grateful to Anne M. Denton, Hartmut lae@n, Hart-
energy, which depends on the average macroion density, aoiut Graf, and Christos N. Likos for helpful discussions, and
counts for both the microion entropy and the macroion-to Luc Belloni for kindly supplying the HNC and PBC data
microion interaction energy. The effective interaction, whichused in Fig. 1.

0.5

B, (Pa)

0.0

0.03

FIG. 3. Counterion contribution to bulk moduli, vs macro-
ion volume fractiony for the same system as in Fig. 2, but for three
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