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Magnetoviscosity and relaxation in ferrofluids
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The increase in viscosity of a ferrofluid due to an applied magnetic field is discussed on the basis of a
phenomenological relaxation equation for the magnetization. The relaxation equation was derived earlier from
irreversible thermodynamics, and differs from that postulated by Shliomis. The two relaxation equations lead
to a different dependence of viscosity on magnetic field, unless the relaxation rates are related in a specific
field-dependent way. Both planar Couette flow and Poiseuille pipe flow in parallel and perpendicular magnetic
field are discussed. The entropy production for these situations is calculated and related to the
magnetoviscosity.

PACS numbe(s): 47.65+a, 83.80.Gv, 83.50.Pk, 76.90d

[. INTRODUCTION periment and computer simulation. Both the dependence of
magnetoviscosity on magnetic field and the relaxation of
The flow of a ferrofluid can be manipulated by applicationmagnetization after the field is turned off are of interest.
of a magnetic field. A locally nonuniform field leads to a Theoretical analysis of dense ferrofluids in the framework of
force density acting on the fluid. Besides the usual viscositynonequilibrium statistical mechanics is difficult, but in prin-
two dissipative processes govern the dynamics, namely, r¢:iple can be based on the generalized Smoluchowski equa-
tational friction of ferromagnetic particles against the sus-ion for Brownian motion(6].
pending fluid, and magnetic relaxatiph,2]. For sufficiently
large particles magnetic relaxation is due to orientational Il. RELAXATION EQUATIONS
Brownian motion of the permanent magnetic dipoles. For a o S
dilute ferrofluid in weak magnetic field this leads to a simple  We study steady state flow situations of a ferrofiuid dis-
relation between the two transport coefficients. For dens@laced slightly from thermal equilibrium due to an imposed
ferrofluids the transport coefficients are modified by hydro-Shear flow. In thermal equilibrium the fluid is at rest every-
dynamic, magnetic, and other interactions between particledvhere. The local magnetizatiodl¢{(r) and the local mag-
and are not easily calculated. For such systems one is forcdtgtic fieldHe((r) are then related by the equilibrium equa-

to take a more phenomenological point of view. tion of state, which we write in the form
Recently we have studied the irreversible thermodynam-
ics of ferrofluids on the basis of hydrodynamics and the full Meg=HeA(Heg), (2.9

set of Maxwell equationg3]. The analysis led to an expres-

sion for the entropy production and phenomenological relaxwhereA(H) is a known function of magnetic field. For nu-

ation equations for internal rotation and magnetization. Thenerical purposes we shall use the expression

relaxation equation for magnetization is closely related, but

not identical to the equation postulated earlier by Shliomis Mg (3xoH

[4]. In the following we explore the consequences for the A(H) = W'—( M )

dependence of viscosity on magnetic field, and compare °

them vyith the predictions made on the basis of Shliomis);ih the Langevin functiori(&)=cothé—& % The satura-

relaxation equatiofi2,4,5. .. tion magnetizatiorM ¢ and the initial susceptibility, enter
We consider both planar Couette flow and Poiseuille pipeg,g parameters. For a dilute ferroflull.=nx and o

flow in parallel and perpendipulgr magnetic fields. For Cou-_ nu?(3kgT), wheren is the number denssity of Brownian

ette flow the magnetoviscosity is calculated from the mag'particles,,u is the size of the magnetic moment of a particle,

netic stress tenso_r. For Pqiseuille flow it foII.ows from the andT is the temperature. We shall also use E2j1) in the
flow pattern for given applied pressure gradient. We shon verted form

that in both cases the magnetoviscosity can be calculate

alternatively from the entropy production. _

The magnetoviscosity shows a dependence on magnetic Heqg=MeC(Meg)- 23
field which agrees with that calculated from Shliomis’ relax- | ilibri L h o il tend
ation equation only if the ratio of relaxation rates for the two h & nonequilibrium situation the magnetization will ten
equations depends on magnetic field in specific fashion, dd® relax to the equm_brlgm valug corresponding to the local
termined by the equilibrium equation of state. We comparev""Iue qf the ma_gnetlc field. Shliom[g] has postulated the
predictions following from the assumption that the two ratesrelaxatlon equation
do not depend on magnetic field. dM

The analysis suggests that relaxation of magnetization in a e @XM =— yy(M—Mq(H)), (2.4

ferrofluid should be analyzed critically on the basis of ex- dt

(2.2
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whered/dt= g/ dt+v-V is the substantial derivative for flow
velocity v, and @ is the mean rate of rotation of the sus-
pended particles. Furthermaké,(H) =HAy(H) depends on
the local value of the magnetic field according to E21)
with the Langevin expression E.2) for a dilute ferrofluid.
Martsenyuk, Raikher, and Shliom{§] have justified Eq.

(2.4) for a dilute suspension on the basis of Brownian motion

theory. The relaxation ratey, is composed of both Brown-
ian relaxation and N relaxation[7]. For sufficiently large

Brownian particles Nel relaxation may be neglected. An
approximate calculatiofi7] for a dilute ferrofluid on the ba-
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M
@(M)=¢0+f M’'C(M")dM’ (2.1)
0
we have the thermodynamic force
H=-H(M)=— [M H—e(M)], (2.12

which suggests thayy, does not depend strongly dvi and
H
The mean rotation rate in Egs.(2.4) and(2.8) satisfies

sis of Brownian motion theory shows that the rate coefficienthe relaxation equatiofi, 2]

yum depends on the field, and increases in proportiod for
large field.

We have shown3] that irreversible thermodynamics in
combination with Maxwell’s equations leads to the relax-
ation equation

dM
TS —wXM+MV.-v=1y,(B-B/(M)), (2.5
whereB is the magnetic induction given by
B=H+47M (2.6)
in Gaussian units, and the fieRj(M) is

with H;(M)=MC(M) expressed in terms of the local mag-
netization by Eq(2.3). The third term on the left of Eq2.5)
accounts for compressibility of the ferrofluid, usually a quite
small effect. Subtracting Eq$2.6) and (2.7) we can write
Eqg. (2.5 in the alternative form

dM

Gr~ @XM+MY V=g (H=H (M),

(2.9

Shliomis’ relaxation equation, E¢R.4), is linear inM and is
intended to hold for small deviations from local equilibrium.
Let M,(H)=HA(H) be the magnetization corresponding to
local equilibrium in the fieldH. To first order in the devia-
tion m;=M —M, we have

1My 2
M C’'(M))+0O(my).
(2.9

H—H;(M)=—-mC(M |)_

Thus Egs.(2.4) and (2.8) agree for small deviations from
equilibrium, apart from the compressibility term and the
more general equation of state in E®.8), provided the
relaxation ratesy,, and y,, are related by

ym=YuC(M)), (2.10

and provided the deviatiom, is perpendicular to the dire
tion of the local fieldH.

The relaxation equation E¢R.8) also describes relaxation
of large deviations from equilibrium. For simplicity we shall
assumeyy to be a scalar. According to irreversible thermo-
dynamics it is a positive function dfl andH. Microscopic

C_

dw

pl g =24(VXV—20) + MXH, (2.13

wherel is the moment of inertia per unit mass afiés the
vortex viscosity. Typically the relaxation time/{ is quite
short, and the rate of change may be neglected. In this ap-
proximation of fast rotational relaxation the mean rate of
rotation is expressed in terms of the local fluid vortic{ly
=1Vxv by

w= Q+§MXH (2.14
Substituting in Eq(2.8) we obtain
M 1
a7t —+ V- (VWM)—QXM=vyy(H-H))— — g” X(MXH).
(2.15

We recall that the fieldH(r,t) must be calculated self-
consistently from the magnetization everywhere in space via
Maxwell’'s equations of magnetostatics.

We have shown in Ref3] that for a ferrofluid of shear
viscosity » and bulk viscosity/, at constant temperatuie
the local rate of entropy production is given by

2 2
To= 772 (?avﬁ+o"ﬁva—§V-V5aB +£,(V-v)?
ap
+4¢(w—Q)°+ yy(H—H))2 (2.16

It will be of interest to calculate the entropy production for
typical flow situations.
Ill. FORCE DENSITY AND STRESS
The fluid equation of motion is postulated as

dv

rm (3.9

:V' O'hyd+ Fm,

where oy, is the hydrodynamic stress tensor dfg is the
magnetic force density. The hydrodynamic stress tensor is
given by

- pﬁaﬂ—’_ 77[5’aU3+ (?ﬁva_ %(V : V) 5&,8]
+L,(V-V)Supt {eap,(VXV-2w),,

Ohyda ™
(3.2

aBy

theory is required for a more precise determination of the

transport coefficient. With free energy density

wherep is the pressure. The magnetic force density is
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Frm=(VB)-M. (3.3 and calculate to first order in the small quantitlesh, m,
andv. The entropy production of Eq2.16) is calculated to
From Maxwell’'s equations of magnetostatics second order. In all situations considered the relaxation equa-
tion Eq.(2.15 becomes to first order
V.-B=0, VXH=0, (3.9
. _ MeqlVqu ’
one derives OQXMeg=—wH h—mC(Meq)—h~M—C (Meg)
eq
Fn=V-on (3.5 1
. . + —[MX (MXHg) + M X (MggXh)].
with the magnetic stress tensor 45[ eqX (MXHeg) eqX (Mg )]
o,=-—BH+ ——M~B)1. (3.9 ) ,
4w 8 It turns out that in all casels- Mq,=0, so that the term with

C’ (Mg vanishes.
With these definitions we adhere closely to the derivation (Meg

including the full set of Maxwell equations of Rd8].

We note that the equatioi X H=0 can be used to re- IV. PLANAR COUETTE FLOW

write the force density as We consider a ferrofluid between two parallel plateg at
, ) ==L in the presence of a uniform applied fiddg. In equi-
Fn=Fnt+27VM~. (3.7 Jibrium the fluid is at rest and uniformly magnetized with

equilibrium magnetizationM¢,. The fluid is sheared by

with the Kelvin force density moving the plates with opposite velocity in tixedirection.

FL=M-(VH). (3.9 'Fl)'lr;?eféow velocityv satisfies stick boundary conditions at the
This can be written as We shall consider two flow situations in which the mag-
netic field and magnetization are uniform. The shear flow is

Fr.=V-or, (3.9 v=(Uz/L,0,0), whereU is the velocity of the upper plate.

Hence Q=g with Q=U/2L. The xz component of the

with the modified magnetic stress tensor change in the total stress tensor is
, 1 1, s s dvy du, 1
o-m:E BH+ Fop H<1. (3.10 2l Ohyat onlx=17 57 T ax + a8 8(BH,). (4.1

The equation of motion Eq3.1) can be written withF,,  We can omit the terms(B,H,) because of the magnetic
instead ofF,, provided the term 2M? in Eq. (3.7) is ab-  boundary conditions at the plates and the uniformity of the
sorbed in the pressug This is the form used by Shliomis fields. Explicitly to first order

[1] and Rosensweif2]. The equation of state for the pres-

sure is not relevant in the flow situations considered below. S oygt Onlx= 20 7+ 3 (MH e~ MBegy). (4.2
Using Eq.(3.5 we can rewrite the fluid equation of mo- ) .
tion Eq. (3.1) in the form The change of viscosity is therefore
dv _ mxHeqz_ szeqx
p 5=V (Ot o). (310 A= “-3

This shows that the acceleration of a fluid element is due tg CONSider first the simplest situation, where the applied
the sum of hydrodynamic and magnetic stress. field By is in the x direction. ThenHeq =By, sinceH,
In the approximation of fast rotational relaxation the an-= Bo outside the plates. The equilibrium magnetization is in
tisymmetric part of the total stress tensor vanishes, as fol€ X direction with Meq,=BoA(Bg), and Beqx=Bo(1
lows from Egs.(2.14), (3.2), and (3.6). Hence in this ap- +41A(Bg)). In the imposed shear flow one finds from the

proximation the equation of motion simplifies to boundary conditions az=L that the uniform perturbed
fieldsb andh satisfyb,=0 andh,=h,=0. From Eq.(3.14
dv s s one findsm,=m,=0 and
470 Mg,
m,= — (4.9

Only the symmetric part of the total stress tensor is relevant
for the translational motion of the fluid. For certain flow
situations the contribution from the magnetic stress tensofhe change of viscosity is therefore
can be interpreted as resulting from an additional viscosity.

Below we consider several steady state flow situations Ap=¢ Ph 4.5
with small deviations from thermal equilibrium. We write kKl '

Beq 4l yy+ M(Zaq.

B=Beqtb, H=Hcth, M=Mgt+m, (3.13  with the dimensionless ratio
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Pu=MZ{(4L). (4.6)
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Consider first the situation with applied magnetic field
parallel to the tube of radiuR. We choose the axis along

Next we consider the situation where the applied field isthe axis of the tube. In equilibrium the magnetic fietd,

perpendicular to the direction. ThenH g, =B, and By,

=Hg, and the magnetizatioll .;= M€, are uniform. We

=By, so that the equilibrium magnetization is directed inassume that an applied pressure gradient causes a flow pat-

the yz plane with component#l ¢, ,
found from the coupled equations

Meq,, Which must be

MquZM' (4.7)

Hence one calculate¢q,=M¢q,C(M¢g) and the angled
defined by

Heq=Hed COsOe,+sinbe,]. 4.9

tern which in cylindrical coordinates(¢,z) takes the form

v(r)=f(p)e;, p(r)=—kz (5.1

with the property f(R)=0. The magnetic inductiorB
=Bye, remains uniform, but the magnetic field and the
magnetizationM acquire radial components. Using the
boundary condition orB, at p=R we conclude thah,
=—4mm, for all p. From Egs.(3.14) and(5.1) we find

In the imposed shear flow one finds from the boundary con-

ditions atz=L that the uniform perturbed fields and h
satisfyb,=0 andh,=h,=0. From Eq.(3.14 one findsm,

Q ar (5.2
m,=Q— .
p ”dp
with coefficient
2 P
H:_§ _H (5.3
Beq 1+ Py

=m,=0 and . . ; ;
The symmetric part of the first order magnetic stress tensor is

420 Mggsing @9 1
my= . .
) 4§')’HC(Meq)+MecHeq oﬁlzg[hBeq"" Bech]v (5.4
The change of viscosity is therefore . .
sinceb=0 andm- B,=0. Thez component of the stationary
Py equation of motion
An=l1p sir? 0 (4.10
H 7V+V- o5, —Vp=0 (5.5
with coefficient Py given by Eq.(4.6). If the rate yy is
related to the coefficienyy by Eg.(2.10, and the equation can now be expressed as
of state Eq(2.2) is used, then the expressions E@s5) and 1 d2f 1 df
(4.10 reduce to those derived by Shlionj#]. Our deriva- 7+ EQBeq) [F-i- ~ i =k. (5.9
p° pdp

tion is somewhat more general, and it is evident that demag-

netization effects are properly accounted for. Hence we deduce that(p) has the Poiseuille forni(p)

=A(p?—R?) with prefactorA=k/(n+A,) correspond-
ing to the viscosity changa 7= 3Q,Bg,. From Eq.(5.3)

The dependence of viscosity of a ferrofluid on magnetic
field was first investigated by McTagui8] by use of a cap-
illarimeter. In the absence of the magnetic field the viscosity
follows from the Poiseuille flow pattern for given pressure
gradient. The dependence on magnetic field, found b in EQ.(4.5. _ o _
McTague, has been explained by use of the expressions for Next we consider applied magnetic fieg=Boe, in the
planar Coulette floW2] [4]. For magnetic field parallel to the X direction. The equilibrium magnetic field.qand the mag-
tube the change of viscosity was calculated from @g5).  netizationMq are then also in the dl_rectlon. If a pressure
For magnetic field perpendicular to the tube it was calculate@radient is imposed we again obtain a flow pattern of the
from Eq. (4.10 with angular averagésir? )=3. We show  form Eq.(5.D). In this case the magnetic field=Bog, re-
below that the same expressions can be derived from a conf?@ins unchanged, but the magnetic induction and the mag-
plete discussion of the actual flow situation in cylindrical Netization acquire axial componerits and m,, related by
geometry. b,=4mm,. From Egs.(3.14 and(5.1) we find

In the absence of a pressure gradient the flow velocity
vanishes and the magnetic field and magnetization are uni-
form. We calculate the flow velocity and the perturbed mag-
netization to first order in the applied pressure gradient. It o
turns out that for magnetic field both parallel and perpenWith coefficient
dicular to the tube the flow pattern retains the Poiseuille
form. The viscosity follows from the proportionality to the
pressure gradient.

V. POISEUILLE FLOW

An={¢ (5.7

_H
1+Py’

df

m,=Q, coswﬁ (5.8

2 Py
Qu=f_ 17¥p,
eq H

(5.9
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The symmetric part of the first order magnetic stress tensor i&ith A 7, given by Eq.(5.7). Comparing this with the local
L entropy production for the Poiseuille flow without magnetic
(rﬁf%[bHqur Hedl. (5.10 C;eslgozir:; sees thak , can be identified with the additional
For the Poiseuille flow with applied field perpendicular to
since b-Bgq=0 andb-Mg=0. The functionf(p) in Eq. the tube the torqué/xXH is to first orderm,Heg,. The
(5.1) has again the Poiseuille forf{p)=A(p?>—R?) with differenceH —H, is to first order—mHq/Beq With m in the
prefactor A=%k/(n+A7,). The z component of the sta- axial direction. For the local additional entropy production
tionary equation of motion Ed5.5) yields one finds

1 Py df
= TAo=2 cog (—

2
An, (6.4

which agrees with Eq(4.10) if there the factor sifig is re- ~ With A, given by Eq«(5.10. Integrating over the azimuthal
placed by its angular averade This shows that the method direction one sees that», can be identified with the addi-
used earlief2,4], based on such a replacement, yielded thelional viscosity.
correct result.

VII. FRICTION AND RELAXATION

V1. ENTROPY PRODUCTION In the expression Eq2.16 for the entropy production

It is of interest to calculate the entropy production for rotational friction and magnetic relaxation appear as inde-
each of the flow situations considered above. The calculatioRéndent dissipative processes, each characterized by its own
shows that the viscosity increade; due to the presence of transport coefficient. For a dilute ferrofluid in which &le
the applied magnetic field can be found alternatively fromrélaxation can be neglected and for vanishing magnetic field
the additional entropy production. For each of the four situ-the two transport processes are intimately related. Then the
ations the dimensionless parame®gy, defined in Eq(4.6), relaxation is due to orientational Brownian motion of indi-
is just the ratio of the last two terms in E¢R.16). Thus vidual particles in zero field, and the relaxation rate is given
defining o as the entropy production due to rotational fric- PY ym=2Dr With rotational diffusion coefficienfr given
tion, ando, as the entropy production due to magnetic re-by the Einstein relatio z=kgT/fz. For particles of radius

laxation, we have athe rqtational friction coef_fici_ent ifRz 8w pas. In a dilute
ferrofluid the vortex viscosity i€=znfr, so that the prod-
OR uct of transport coefficients is simplfyy =3nkgT.
a =Py. (6.1 In dense ferrofluids the transport coefficietitand y,, or

vy should be regarded as independent quantities. For a fer-

Consider first the planar Couette flow with applied mag-rofluid disturbed slightly from equilibrium the value of the

netic field parallel to the plates. In this situation the torquefransport coefficients in the equ_ilib_rium situation_ is relevant.
M X H is to first orderm,B,g, . The differenceH —H, is to Due to the effect of the magnetic field on the microstructure

first order the coefficients will depend on the fieldsq. The micro-

scopic calculation of the transport coefficients is difficult,
H—H~h—-mC(M), (6.2) since it involves the many-body hydrodynamic interaction,

the anisotropic magnetic interaction, and the anisotropic mi-

sincem-M=0. As shown in Sec. IV both andm are in ~ crostructure of the suspension. _

the z direction and h,=—4mm,, so that H—H,~ We have argued that the relation E8.10 provides the

—MBgy/ M. The additional entropy productiak is given corresp_ondence between Shliomis’ relaxation e_quation Eq.

by the sum of the last two terms in E(R.16. Using the (2.4), with M, replaced byM,(H), and our relaxation equa-

expression Eq(4.4) for m, one findsTAo=40%A7,, with  tion (2.8). Since for the calculation of viscosity the transport

A7, given by Eq.(4.5). coefficients are needed only in equilibrium we put
For the planar Couette flow with applied field perpendicu- B _
lar to the plates the torqubl X H is to first orderm,H, Ym(Heg = YH(Heg) C(Me) = yr(Heg/A(Heg) . (7.2)

[ —sinfe,+cosde,]|. The differenceH —H, to first order is
again given by Eq(6.2), but nowh=0 andm is in the x
direction. Using the expression EG.9 for m, one finds
TAo=40%A7, with Ay, given by Eq.(4.10.

For the Poiseuille flow with applied field in the direction P=McHeq/(4Lyn)- (7.2)
of flow the torqueH —H, is to first order—m,B.g,. The
differenceH —H is to first order—mBgy/M¢qwith minthe  With the relation Eq(7.1) our expressions for the magneto-
radial direction. For the local additional entropy productionyiscosity are therefore identical to those of Shliof ex-
one finds cept that we allow a more general equation of state and field-
dependent transport coefficients.

We have remarked following Eq2.12 that the form of
our relaxation equation suggests that the coefficigntioes

Shliomis’ expression$4] for the magnetoviscositAz in
planar Couette flow take the same form as Eds5 and
(4.10, except that the coefficiemRy, is replaced by

df\2
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FIG. 1. Plot of magnetoviscosity 7, /A 7., in parallel field as a
function of £=3y,H/M; as calculated from Shliomis’ relaxation
equation Eq(2.4) (dashed curve witlA ,,=¢), and as calculated
from our relaxation equation E¢2.8) [solid curve with Az,
=An,e(e)] for parameter values quoted in Sec. VII.

FIG. 2. Plot of magnetizatioM (t) (in G) after a magnetic field
of 10 kG is suddenly turned off, as a function of reduced time
= yut, as calculated from Shliomis’ relaxation equation E2}4)
(dashed curve and as calculated from our relaxation equation Eg.
(2.8 (solid curve for parameter values quoted in Sec. VII.
not depend strongly on the field. For large field the ratio

A(Hoq =M eq/Heg behaves ash(Hog~Mq/Heg. If vy is tively, also becomes manifest if we consider relaxation from

. an equilibrium state after an applied field is switched off. We
taken to be a constant, then according to &q1) the rate  qnsiger a spherical sample of radi@sn vacuum, magne-

coefficient yy (Heg must behave agy(Hed~viHed/Ms  tized up tot=0 by an applied fieldHy=Hoe,. At time t
for large flel_d. This agrees with the b(_ahawor foun.d by Mart-— g the applied field is suddenly switched off. By spherical
senyuk, Raikher, and Shliom[3] for dilute ferrofluids. symmetry the magnetization remains uniform across the
Therefore it is of interest to consider the dependence o8ample, but its amplitude diminishes. The fluid remains at
magnetic field of the viscosity under the assumption that theest, so that the vorticitf2 vanishes, and the magnetization
transport coefficientg and y,, do not depend on the field. In M is always parallel to the magnetic fietl Hence from Eq.
the analysis of experimental d4ta,5] it has been assumed (2.14 the mean particle rotatiow vanishes, and Eq$2.4)
that the coefficientg andy,, do not depend on the field and and(2.8) simplify accordingly.
can be varied independently. Shliomis’ relaxation equation In Fig. 2 we plot the decay of magnetization according to
leads to the expression Eqg. (2.4 with constanty,, and according to Eq.2.8) with
5 constanty, for the equation of state Eq2.2), the same
Ao MgéL(€) ~ 3xoH parameter values as before, and for an initial applied field
7]HS_§12XO§')’M+M§§L(§) Ct M Ho=10kG. Note that both decays are nonexponential. For
long times both decays become exponential with the same
if the equation of state Eq2.2) is adopted. If the relation rate (1+4mxo/3)ym - The plots show a distinct difference in
6ym=M2/xo is used, then this reduces to the expressiorrelaxation behavior. One can define a mean relaxation time
derived originally by Shliomig§4]. Our relaxation equation 7y from the integral of the reduced magnetization
leads to M (t)/M(0) over time. By numerical integration one finds
for relaxation according to Eq(2.4) the value yymu
=0.709, whereay), 7y =0.545 according to Eq2.8). Both
m values are to be cor_npared Wi_th 3K3mxo)=0.705. The
difference in relaxation behavior suggests that the chosen
if the same equation of state is used. In EFs3 and (7.4  geometry may be suitable for a study of nonlinear magnetic
the coefficientsy, and y, will be regarded as constants. relaxation in experiment or computer simulation.
The two expressions agree for sméllindependent of the
value of {, providedyy, and y, are related byyy= ymxo-

(7.3

MZL2(§)

Ane=¢ (7.4

VIIl. DISCUSSION

The second expression tends to

2
s

A77HF(°°):§W

(7.9

We have studied the dynamics of ferrofluids using two
different equations for the relaxation of magnetization. The
first equation was postulated many years ago by Shliomis
[4], and has been used extensively in the literafdre2].

The equation was justified for dilute ferrofluids on the basis
for largeé. In Fig. 1 we plotA 55/ andA 7 /Ane(*) as  of Brownian motion theory7]. Recently we derived an al-
functions of ¢ for Mg=20G, xo=0.1, {=0.001 P, andyy, ternative relaxation equation on the basis of irreversible ther-
=10° Hz, assumingyy= ywXo- The curves nearly coincide, modynamics in combination with the full set of Maxwell
but note thatA 7,e(%)/{=0.909 for this choice of param- equationg3]. In the preceding we discussed the dependence
eters. This suggests that the dependence of viscosity on magf magnetoviscosity on magnetic field for typical flow situ-
netic field can yield information on the relaxation behavior. ations on the basis of the two relaxation equations. It turns

The difference between the two relaxation equations uneut that the two equations lead to identical results for the
der the assumption of constap; and constant,;, respec- magnetoviscosity, provided the relaxation rates are re-
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lated in a particular fashion, determined by the equilibrium Finally we note that the theory developed above can be
equation of state. transposed to electrostatics by a replacement of the induction

It is plausible that the relaxation rate in the equation de-B, magnetic fieldH, and magnetizatiotM, by the corre-
rived from irreversible thermodynamics depends onlysponding electric displacemet electric fieldE, and polar-
weakly on the field. We have contrasted the implications forization P. Shliomis’ relaxation equation was postulated inde-
magnetoviscosity of the assumption of constant rate in botlpendently in electrostatics by Hubbard and Onsd§érin
relaxation equations. The two equations lead to a differenthe weak field limit and in the approximation of fast rota-
field dependence of the magnetoviscosity. This may be ofional relaxation. The relaxation equation was extended be-
relevance for the interpretation of experiments. yond the latter approximation by Hubbard and Kay/skd].

The analysis suggests that the nature of magnetic relaxFhese authors also postulated a corresponding expression for
ation in ferrofluids should be carefully studied. Data on mag-the entropy production. The relation to the theory of mag-
netoviscosity should be analyzed in combination with thenetic ferrofluids was discussed by Hubbard and Sfileld.
equilibrium equation of state. Also it would be useful to Our derivation from irreversible thermodynami¢8] in-
study directly the time dependence of nonlinear relaxation otludes electrostatics and leads to a relaxation equation analo-
magnetization after the applied magnetic field is suddenlgous to Eq.(2.8). The analysis developed above for ferrof-

turned off. luids applies equally to electrostatics.
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