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Nonlinear analysis of the shearing instability in granular gases
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It is known that a finite-size homogeneous granular fluid develops a hydrodynamiclike instability when
dissipation crosses a threshold value. This instability is analyzed in terms of modified hydrodynamic equations:
first, a source term is added to the energy equation which accounts for the energy dissipation at collisions and
the phenomenological Fourier law is generalized according to previous results. Second, a rescaled time for-
malism is introduced that maps the homogeneous cooling state into a nonequilibrium steady state. A nonlinear
stability analysis of the resulting equations is done which predicts the appearance of flow patterns. A stable
modulation of density and temperature is produced that does not lead to clustering. Also a global decrease of
the temperature is obtained, giving rise to a decrease of the collision frequency and dissipation rate. Good
agreement with molecular dynamics simulations of inelastic hard disks is found for low dissipation.

PACS numbdis): 45.70.Mg, 47.20.Ky

- INTROPUCTION vi=vi+ 31+ D[R (Y- Vi) IR, M
The understanding of the dynamics of granular fluids is
crucial for various industrial processes. This has led to many

investigations where theory, experiments, and simulations A _ - .
are used in order to construct a predictive thepty-8]. wheren is the unit vector pointing from the center of particle

There is hope that for moderate densities and slightly dissi-l towards the center of particle 2. It is convenient to define

pative grains, grain dynamics may be described on Iargthe dissipation coefficierg=(1—r)/2 which vanishes when

les b ing fluid hvdrodvnamics with sliaht modifi _%ollisions are elastic. In what follows units are chosen such
zgises y using fiuld hydrodynamics slig 0dlICa- 1hat the disk diametes and the particles masses are set to

one. To get the diameter or mass dependence of the derived

One way to guess which changes to make in standarfLqts a simple dimensional analysis should be used.
hydrodynamics is to use the tools developed by statistical The |HS model, like the elastic hard-sphere model, does

mechanics in order to derive hydrodynamic equations. Thigot have an intrinsic energy scale. This means that two sys-
is justified by the fact that a simple grain model, the inelasticems with the same initial configuration and with the particle
hard-sphere model, has been shown to reproduce most of the|ocities of one system being equal to those of the other
phenomena occurring in granular systems: in some sense,ri{ultiplied by one scaling factor will follow the same trajec-
has proven to contain the essential ingredients necessary fory but at different speeds. This lack of an intrinsic energy
predict the peculiar physics observigd-14]. scale also implies a simple temperature dependence for all
The scheme used in the study of nonequilibrium fluidshydrodynamic quantities that may be found by simple di-
can then be extended to granular fluids: “microscopic” mensional analysis.
simulations permit us to compute the equation of state and When a fluidized granular medium is allowed to evolve
values for transport coefficients which are then fed into thereely in a box with periodic boundary conditions, the energy
guessed macroscopic equations. Comparison between diredg¢creases continuously in time and the system remains ho-
nonequilibrium simulations of microscopic and macroscopicogeneous. This nonsteady state is called the homogeneous
models allows us then to test the validity of the proposedFooling stateHCS) and it is the reference state from which
macroscopic equations. This approach was used recently Wrtgrbatlo_r)s are studied: it is _analogous to the thermody-
two of us to investigate heat transpdheat being identified namic equilibrium state for elastic systefl®,16,17. In the
with the kinetic energy associated with the grains’ motion IHS model this state Is par:ucularly simple and the energy
and it has been shown that Fourier’'s law has to be generap_ecreases obeying the Haff's I4dg]
ized with a density gradient term appearing in the expression
for the heat flu{15]. E(t)= E(0) @)

Vy=Vo— 3(1+1)[N-(v,—vy)]n, )

In the inelastic hard-sphere modélHS), grains are (1+t/ty)?
spherical hard particles with only translational degrees of
freedom. The energy dissipation is included through a restitn order to avoid the cooling of the system, the simulations
tution coefficientr lower than one. As for hard spheres, the are made at constant energy: at every collision between the
collision is an instantaneous event and the grain velocitiegrains, the dissipated energy is redistributed by scaling all
after a collision are given by the velocities. This is equivalent to a time rescaling and can
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be treated as such in the equations for the continuous modehat there is an energy sink term and the heat flux has con-
Using appropriate hydrodynamic equations, this homogetributions from the density gradief22,24,16,1% The equa-
neous state is predicted to be unstable under certain condions read

tions of density, system size, and dissipativity
[9,10,19,16,20,21 Considering the dissipativity coefficient

g as a bifurcation parameter, while increasim@t constant

density and number of grains, the system first develops an

instability characterized by two counterflows, the shearing

instability, and then either a clustering regime in which the p
density becomes inhomogeneous or a vortex state where

many small vortices develop throughout the system.

For given values of total number of graifhsand number p
density p=N/V the shearing instability appears when the
dissipation coefficient is larger than a critical value. In theith the following constitutive equations
low density and large system limit, the critical value is given

dp
£ TV (pv)=0, (6)

ot

ov
—+(v~V)v>=—V~JP, 7

T
E+(V-V)T>=—V-J—P:Vv—w, ®

(in two dimensionsby [10] b s i dv;  v; (V)5 ) ©
— .. — _—t = -V ol
ij=P10ij— 7o ax; % i
= — 4) 32
A=y T
NP 3= —ko\TVT=o—Vp,
Note that in the thermodynamic limit the system is always 0= wop?T3?
=w, :

unstable for any finite dissipation.

In this paper we will study the shearing instability using a,,here 70, Koy o, and wy do not depend on density or
nonlinear hydrodynamic approach. We will focus on the final emperature but on the dissipation coefficignin particular,
structures that are created once the instability is develope(i)

il : ; i hat all o and uq vanish withg. It has been shown for different
In Sec. Il we will develop a formalism that allows us to treat 5. jjar models that at low dissipation these transport coef-
the HCS as a nonequilibrium steady state, and we wil

- ) ficients have small deviations from elastic fluids, and expan-
present a stability analysis around the steady state. Next, ifiyns around the elastic coefficients can be désee for
Sec. lll we will present the nonlinear analysis of the 'nSta'exampIe[zz 25).

bility, obtaining expressions for the hydrodynamic fields be- The total energy dissipation rate can be computed from
yond the instability. It will also be shown that the presencey,, hydrodynamic equations, obtaining
of the instability modifies the collision rate and energy dis-
sipation rate. Finally, in Sec. IV we compare the predictions dE d
of the continuous model with molecular dynamics simula- g _tJ (pT+pv?/2)dV (10
tions of inelastic hard disks. Conclusions are presented in
Sec. V.
In what follows we will treat the two-dimensional case, = —f wdV. (12)
but the extension to three dimensions is direct.

In the HCS, where density and temperature are homogeneous

Il. RESCALED TIME FORMALISM and there is no velocity field, the energy dissipation rate is
Consider a two-dimensional system composel gfains dE 23
interacting with the IHS model in a square box of sizéhat at- VeorsT (12)

has periodic boundary conditions in both directions. Units
are chosen such that Boltmann’s constant and the particle This continuous cooling down has the disadvantage that
masses are set to one. Granular temperature is defined anadmy perturbation analysis must be done with respect to this

gously to the kinetic definition for classical fluids nonsteady state. To overcome this difficulty we propose a
differential time rescalingls= ydt such that in this rescaled
1 time, energy is conserved. The transformation corresponds to
T= N 2 E(V‘ -v)2, (5)  acontinuous rescaling of all the particle velocities such that
I

the kinetic energy remains constant. This rescaling does not,

however, introduce new phenomena since as we have men-

wherev is the hydrodynamic velocity. tioned the IHS does not have an intrinsic time scale, and thus
The shearing instability has been predicted by linea@ time rescaling gives rise to the same phenomena viewed at

analysis of the hydrodynamic equations for the IHS. Also arflifferent speed.

analysis of the first stages of the nonlinear regime has been In order to keep the rescaled energy constant the appro-

done in Ref[23]. As we shall see, the relative simplicity of priate value ofy is given by

the model allows for a complete nonlinear analysis as well.

The hydrodynamic equations for the low-density IHS are _ [E(1) (13
similar to the usual hydrodynamic equations for fluids except Y E(0)
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The rescaled time hydrodynamic fields transform as For small values ofw, (proportional to the dissipation
<0, so that the perturbationsv, decay exponentiallythe

V=W, (14) casek=0 should not be taken into account since the center
o of mass velocity is strictly zejo But there exists a critical
T=»T (15 value of wq for which A\ vanishes, thus indicating the sta-
‘ o bility limit of the corresponding mode. The first modes to
Pij=»"1yj, (160 hecome unstable correspond|td=1 (i.e., k,=*1, k,=0
T~ andk,=0, k,==*1). The instability threshold fos is then
J=74, 17 given by
0=y, (18
where the tilde denotes the rescaled variable. ~ _8772770 26
Due to the nonconstant character of the time rescaling, @0~ p3L2 (26)
extra source terms appear in the hydrodynamic equations,
which can be simplified using the relation
1dy 1 B The stability for the other modes has been studied previously
5 ds =— f(o)f wdV. (190  [16]. In this last reference it was shown that for low dissipa-

tion, the first instability that arises is indeed the transverse
\Melocity instability.

The origin of the instability can be understood also in
terms of the real-time hydrodynamics. In fact, the relaxation
ap of the transverse hydrodynamic velocity is basically due to
£+V°(pv)=0, (200 the viscous diffusion, which depends on the system size,

whereas the cooling process is governed by local dissipative

collisions. There exists therefore a system length beyond
pv . Y .

wdV, which the dissipation of thermal energy is faster that the

2E(0) relaxation of the transverse hydrodynamic velocity. The lat-

ter will then increase, when observed on the scale of thermal

%Jr(v_ V)T) = V.J-P'Vv—w+ E’Z;)J' wdV. motion, thus producing the shearing pattern.

Suppressing the tildes everywhere, the equations no
read

p

N Vv|=-V.P
£+(V~ W|=—V.-P+

p

Note that the constitutive relatioit8) remain unchanged un-
der time rescaling.

In the rescaled time, the HCS reduces to a nonequilibrium In this section we propose to work out the explicit form of
steady state with a continuous energy supply that comperthe velocity field beyond the instability. The calculations are
sates the energy dissipation. As there is no energy scale, wedious and quite lengthy, so that here we only describe ex-
fix the reference temperature to be one, so 8@)=N.  plicitly the basic steps. We start by taking the Fourier trans-
The HCS is then characterized fy=p,, T=1v=0}. To  form of the full nonlinear hydrodynamic equations, obtaining
study the stability of this state, we first introduced the changea set of coupled nonlinear equations for the modes
of variables {6py,6Ty, é\/k”, vy}, whereé\/k‘| represents the longitudinal

component of the velocity field. Close to the instability(

[lI. NONLINEAR ANALYSIS OF THE INSTABILITY

= + 0 , 21 ~ - - .
pprrop @D ~wo, |k|=1), the modessv, exhibit a critical slowing
V=146V, (220  downsincel;~0, whereas the other hydrodynamic modes
decay exponentiallyRef.[16]). On this slow time scale, i.e.,
T=1+4T. (23)  s~O(r;Y), the “fast” modes{dpi; 6T dvi; OV k#1}

. . . . . can be considered as stationary, their time dependence aris-
Taking the(discrete Fourier transform of the linearized hy- ing mainly throughdv, . Setting the time derivatives of
1

drodynamic equations around HCS, it is easy to check tha ‘ q hem i fth
the transverse velocity perturbation decouples from the redf'€S€ fast modes to zero one can express them in terms of the
slow modesb\/lL. If now one inserts the so-obtained expres-

and satisfies the equation
sions into the evolution equation for the slow modes, one

aévkL gets a set of closed nonlinear equations Jb[l (adiabatic
pHT:}‘ké\"&’ (24 elimination[26,27]), usually referred to asormal formor
amplitude equationg27]. Note that such a calculation is
with only possible close to the instability threshold, where the
2,2 2 amplitude ofé\/lL approaches zero as— &;0. On the other
A= — 4k_77770+pr0, (ke ky}=0,+1,+2, . ... hand., in this limit the only Fourier ques that Wil! have large
L2 2 Y amplitudes are the transverse velocity modes with wave vec-

(25)  tor equal to=27/L (i.e.,|k|=1). There are four such modes
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A1, k=(1,0
KT A, k=(0,)
5, k=(0,—-1).
After some tedious algebra, one finds
dA; B
PHE:)\1A1_4W2L 200(C1lAq|>+ColAxl?) Ay,
(28)
dA, B
pHE:A1A2_47T2L 2n0(C1lAg|*+ColAlP)A,,
(29)
where
8(ko— -3
C,= (ko= #0) 7]0’ (30)
8(ko—mo) =270
2(ko— +
C,= (ko= o)+ 70 31)

_Z(ko_Mo)_ Mo

The amplitude equation®8) and (29) admit three different
stationary solutions,

(a) Al:01 A2:01 (32)
(b) [All=A, A=0, (33
A;=0, |Aj=A, (34)
A=A, =AA/ o 35
(©) |Aql=|Ay]= C,+C, (35
where we have set
Aoy M 36
T 2n 70C1’ (36
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The occurrence of either shearing states depends on the
initial state. In a statistical sense, they are equally probable.
For example, in the case that the system chooses the solution

{A;=A, A,=0}, the velocity field reads

v=2Acog2mx/L)y, (39
where)? represents the unit vector M direction. The tem-
perature and density perturbations are then given by

85T=—(A){1+4(1-C;)cog4mx/L)], (39)

Sp=pu(A)24(1—C,)cog4mx/L). (40)

The instability of the transverse velocity field thus gives rise
to modifications of the temperature and density fields. The
temperature decreases globally, since part of the energy is
taken by the convective motion. Moreover, because of the
viscous heating, the temperature profile exhibits a spatial
modulation, i.e., it is higher where the viscous heating is
higher. The density profile also shows a spatial modulation
that keeps the pressure homogenegasall that for a two-
dimensional low density gasfp~p,dT+ Sp, in system
units). This modulation of the density, which was first ob-
served by Goldhirsh and Zanelt] (Fig. 2 of their paperin
the study of the clustering instability, is stable and does not
lead to clustering.

Using the above expressions for the hydrodynamic fields,
the energy density profile reads

e=pu[1+A%cog4mx/L)]. (41)

Assuming the molecular chaos hypothesis, the mean col-

lision rate v and the dissipation rate can be computed as
well,

N A?

= Voo p? TdV=V0pH(1—7), (42
— 1 ,[ . 3A?

wZVJ wdV=wqpf 1—7 . (43

Note that the phases of the above stationary solutions are

arbitrary (recall thatA; andA_; are complex conjugate

These relations show that the global decrease of the tempera-

The trivial solution(a) corresponds to a motionless fluid, ture leads to _co'rres_ponding decreases of the collision fre-
whereas the solution®) are shearing states with the corre- quency and dissipation rate.

sponding fluxes oriented either in tlyeor x direction. The

It is important to note that the origin of the nonlinear

mixed modesolution (c) represents a vortex state with two coupling of slow modes lies in the viscous heating term and

counter-rotating vortices in the box.
Below the critical point §,<<0), the trivial solution(a) is

the state dependence of the transport coefficients, and not in
the usual convective derivativggv-V)v]. In fact, as we

the only stable one. As we cross the critical point this soluhave shown above, the shearing state produces a variation in
tion becomes unstable. A linear stability analysis of the Eqsthe density and temperature fields that modify locally the

(29) shows that the shearing states are stable provided

(37

value of the transport coefficients. This effect, which is neg-
ligible in classical fluids, can become very important in
granular fluids, mainly because of the lack of scale separa-

tion of the kinetic and hydrodynamic regimes. Contrary to

normal fluids, here, the convective energy is comparable to

while the mixed mode solution is unstable. Satisfying Eqg.the thermal energy. In fact, as will be shown in the MD

(37) depends on the values of the transport coefficients. Fogimulations, in a well developed shearing state up to half of
small dissipativity it is always fulfilled, provided the number the total kinetic energy corresponds to the convective mo-
density remains relatively low. In fact, a mixed mode statetion. The microscopic source of this phenomenon lies in the
has been observed recently in a highly dense sy§ié€h fact that only the relative energy is dissipated in binary col-
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[ L L B R R collision frequency and the temperature dissipation rate are
1.8x107%¢ - presented as a function of the dissipation coefficignAs
. expected, the shearing instability is associated with an abrupt
2 | decrease of these functions. It must be noted that the decreas-
1.6x10 ) o . .
ing of the collision frequency is more that 30%, which cor-
> ) responds to a global decrease of the temperature of more
1.4x107 7 than 50%. This means that when the shearing is fully devel-
. oped, about half the total kinetic energy is taken by the mac-
125102 _ roscopic motion. This phenomenon is typical of granular me-
T T T T dia and has no counterpart in classical fluids.
YL e To measure the critical poird, we fit the collision fre-
1.0x10~° — quency according to the following piecewise function:
6| | _ =
7.5x10 -l 8, 9=0o , (a4
38 i ] aptai(q—do)+axq—do)°, 9>dg
5.0x10° - =
- . obtaining
2510° =
K . go=0.0686, (45
0,98~ [ U [ U N
00 002 004 006 008 010 012 a,=0.0178, (46)
q
_ _ a;=—0.167, 47
FIG. 1. Mean collision frequency and dissipation rate as a
function of the dissipativityq obtained in molecular dynamics a,=1.03. (48)
simulations withN=10 000 particles and densify=0.005. The
lines are drawn for easier reading of the graphs. Similarly, the dissipation rate is fitted according to
lisions, i.e., the center-of-mass energy is conserved. In other — [bea, 9=qq 49
WOfd'S, the thermal energy is d|SS|pated but the cgn\_/ect!ve @ bod+b1(q—Go)g+ba(a—q0)29,  G>0o (49)
one is conserved. This asymmetry in the energy dissipation
mechanism is at the very origin of the shearing instability.  ysjng q,=0.0686, one finds
IV. MOLECULAR DYNAMICS SIMULATIONS bo=0.000 166, (50
For the molecular dynamic simulations we have consid- b;=-0.004 66 (51
ered a system made &f=10000 hard disks with a global
number densitypy=0.005. Inelastic collision rules are b,=0.0546. (52)

adopted, with a dissipativity varying frog=0.0 to 0.12.

The boundary conditions are periodic in all directions. A To compare these results with our theoretical predictions

spatially homogeneous initial condition is adopted, with ve-we need the explicit form of the transport coefficients, up to

locities sorted from an equilibriunfzero mean velocity critical dissipativity. Unfortunately, there are no known ex-

Maxwellian distribution. We note that the density is low pressions for them in the case the two-dimensi¢adl IHS

enough so that the system remains within the low-densitynodel in the low-density regime. However, as the critical

regime. dissipativity is small we can use the the quasielastic approxi-
The simulations have been performed in the rescaledhation for the transport coefficientthat is, taking the first

time. Computationally, this is achieved by doing a normalnontrivial order inq) [29,22

IHS simulation(event driven molecular dynami¢28]), but

at each collision the value of the kinetic energy is updated wo=4\/Eq, (53)
according to the energy dissipated. The instantaneous value

of y is computed from the kinetic energy, allowing us to 1

evaluate all the rescaled quantities. Note thatstiene can No=—"7—=, (54)
be integrated in the simulation becausés a piecewise con- 2\/;

stant function, thus allowing us to make periodic measure-

ments in the system. Finally, to avoid roundoff errors, a real k0=2/\/;, (55
velocity rescaling is performed whenever the kinetic energy

decreases by a given amoutypically 10 7 of the initial uo=0, (56)
value.

In each simulation, the collision frequency and temperawhere it has been used explicitly that units are chosen such
ture dissipation rate are computed with respect tosttime,  that the particles masses and the disk diametare set to
after the system has reached a stationary regime. In Fig. 1 thane.
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Replacing the above approximations for the transport co- 00005 , T - T - T - T
efficients in Eq.(26) and in Egs.(25), (30), and (36), the -
critical dissipativity and the amplitude of the shearing state  0.0004
are given by
0.0003
~ T (57
4= pZL?’ a 0.0002
~ 30 0.0001
A=pul \/ 5994 (58 I ]
o y
B /30 59 (59 L 1
29 g s 00T 0015~ 002 0025
q
For the presented simulation, the predicted critical dissi-
pativity is FIG. 2. Amplitude of thek,=2#/L cosine component of the
~ density field as a function of the dissipativity The dots are the
g=0.0628, (60) results of molecular dynamics simulations, the dashed line is the

. . . full nonlinear theory prediction, and the solid line is the nonlinear
which shows a discrepancy of 8% with the observed valuetheory prediction where the critical point is taken from the fit. The
This difference is consistent with the adopted approximasimulations were done in a channel with=10 000 particles and

tions. density p,; = 0.005.
The predicted values foa,, a;, by, b; [cf. Egs.(42),
(43), (57), and(59)] are a;=—0.562, (67)
a,=0.0177, (61) a,=8.93, (69)
a;=—0.146, (62 bo=0.000 175, (69)
by,=0.000177, (63 b;=-0.0179, (70
b,=—0.004 38, (64 b,=1.06, (7D

which are also consistent with the adopted approximations.while the predicted ones are

Since the system is periodic, the developed convective -
pattern can diffuse in the direction perpendicular to the flow q=0.0157, (72)
(the phases of the complex amplitudgsare arbitrary due to

. . . . =0.0177, 73
Galilean invariance As a result, the average hydrodynamic 2o 73
fields remain vanishingly small, mainly because of “destruc- a;=—0.583, (74)
tive” interference. To overcome this difficulty we have per-
formed another series of simulations, keeping periodic by=0.000177, (79
boundary conditions in the vertical direction, while introduc-

y by=—0.0175. (76)

ing a pair of stress-free and perfectly insulating parallel walls
in the horizontal direction(in a collision with a wall the . .
tangential velocity is conserved whereas the normal one is Equations(38), (40), and(41) onceL is replaced by &,

) : . Indicate that the perturbation of the transverse momentum
inverted. As a consequence, the total vertical momentum is

. ; . o density (= pVv) has a wave vector equal tg=#/L, while
conserved, which will be simply set to zero initially. the dgnqsit)e ?amd energy density ﬂavetqwaz/Te vecthys

The nonlinear analysis for this case is similar to the peri-_2 /L. In the simulations we computed the amplitudes of
odic one, except that here the direction of the flow patterrl_he;g Fburier modes using the micrgsco ic definitl?ons for the
remains always parallel to the walls. Furthermore, the un- " 9 copic d

particle, momentum, and energy densities. Figures 2—4 show

stable wave vector is now= /L, because of the fixed the predicted and computed Fourier modes amplitudes. The
boundary conditions. As a result all the previous predictions b P P :

remain valid. excent that evervwheemust be replaced b predictions are in good agreement with the simulations in the
oL ' P yw P y neighborhood of the critical point, showing that not only the

. average quantities like the collision frequency are well pre-
We have used the very same number of particles and den- a .

. : ) . . : dicted, but also the whole hydrodynamic picture is correct.

sity for this series of simulations, but, of course, the different
boundary conditions produce a new critical dissipativity.
Performing the same analysis as before, the measured critical V. CONCLUSIONS

point and fit parameters turn out to be Taking advantage of the lack of energy scale in the IHS

0o="0.0163, (65 ~ model, a rescaled time formalism was introduced that allows
us to study the homogeneous cooling state as a nonequilib-
a,=0.0178, (66) rium steady state. Using a hydrodynamic description for
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0.003 —— T 0.008 —
0.0025
0.006
0.002
0.0015 0.004
o -~y
0.001
0.002
0.0005
04 o
—0.0005 ) | ' | L | ' | . L | 1 1 1 | L 1 L
000> 0.005 0.01 0015 0.02 0.025 0 0.005 0.01 0015 0.02 0.025
q q

FIG. 3. Amplitude of thek,=2#/L cosine component of the FIG. 4. Amplitude of thek,=/L cosine component of the
energy density field as a function of the dissipativityGraph sym- ~ momentum density field as a function of the dissipativityGraph
bols and simulation parameters are explained in Fig. 2. symbols and simulation parameters are explained in Fig. 2.

] ] ) ) ) pativity coefficient, predictions based on the nonlinear hy-
granular media written with a rescaled time variable, thegyodgynamic equations are in excellent agreement with

shearing instability has been studied in the nonlinear regimgnglecular dynamics simulations. Both the value of the criti-
It has been shown that the shearing state is the stable solutiQ gjssipativity and the behavior after the instability has
and its amplitude has been computed. The appearance of tagyeloped are well predicted. This is a remarkable result
velocity field produces that part of the kinetic energy goesyhich shows again how robust the hydrodynamic fluid equa-
from the kinetic to the hydrodynamic scale. In usual fluidstjons are when they are tested at time and length scales

this redistribution of the energy is negligible, but in granularynere their validity could be questioned.
fluids it can represent an important fraction of the total en-

ergy. This phenomenon is a manifestation of a global prop-
erty of granular fluids: there is not in general a clear separa-
tion between the kinetic and the hydrodynamic regimes. This This work is supported by a European Commission DG
could lead us to put into question the validity of a hydrody-12 Grant No. PSS*1045 and by a grant from FNRS Belgium.
namic description. Nevertheless, at small values of the dissione of us(R.S) acknowledges the grant from MIDEPLAN.
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