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In an earlier work we provided the first evidence that the collapse, or coil-globule transition of an isolated
polymer in solution can be seen in a four-dimensional model. Here we investigate, via Monte Carlo simula-
tions, the canonical lattice model of polymer collapse, namely, interacting self-avoiding walks, to show that it
not only has a distinct collapse transition at finite temperature but that for any finite polymer length this
collapse has many characteristics of a rounded first-order phase transition. However, we also show that there
exists a “# point” where the polymer behaves in a simple Gaussian mafwigch is a critical statg to which
these finite-size transition temperatures approach as the polymer length is increased. The resolution of these
seemingly incompatible conclusions involves the argument that the first-order-like rounded transition is scaled
away in the thermodynamic limit to leave a mean-field second-order transition. Essentially this happens
because the finite-sizhift of the transition is asymptotically much larger than thidth of the pseudotransi-
tion and the latent heat decays to zéatgebraically with polymer length. This scenario can be inferred from
the application of the theory of Lifshitz, Grosberg, and Khokhibased upon the framework of Lifshjtio
four dimensions: the conclusions of which were written down some time ago by Khokhlov. In fact it is
precisely above the upper critical dimension, which is 3 for this problem, that the theory of Lifshitz may be
quantitatively applicable to polymer collapse.

PACS numbds): 61.20.Ja, 61.4%e, 64.60.Kw, 05.70.Fh

[. INTRODUCTION be in one of three states depending on the strength of the
intermonomer interactions that are mediated by the solvent
The collapse or coil-globule transition of an isolated poly-molecules and can be controlled via the temperaiurét
mer in solution has been studied by a variety of differenthigh temperatures, and in so-called “good solvents,” a poly-

theoretical approaches over the past 50 years ranging frofj€r chain is expected to be in a swollen phesseollen coi)

phenomenological arguments, field theoretic renOrm_relatlve to a reference Gaussian state so that the average size

alization-group approaches, continuum path integrals, anﬁ: the polymer scales with chain length algebraically faster

h vsis of di latti | licati 4 an it would if it were behaving as a random walk. At low
the analysis of discrete lattice walks]. Application and o mneratures or in poor solvents the polymer is expected to

testing of these theories has mainly been confined t0 thge in a collapsed globular form with a macroscopic density
“physical” dimensions of two and three. However, the inside the polymer. This implies an average size that scales
phase transition of polymer collapse has been long believeslower than a random walk. Between these two states there is
to have an upper critical dimension of thred,€£3) and so  expected to be a second-order phase transigbarp in the

the differences between the predictions of many of the theoinfinite chain length limit.

ries in that dimension lie in subtle logarithmic factors that The standard description of the collapse transition is a
are difficult to ascertain numericalf2]. In two dimensions ~ trictitical point related to the n—0 limit of the

the field theoretio(excluding conformal field theorigsand ~ (¢°)"=(¢%)” O(n) field theory[6—8]. One might then ex-
continuum models have not given exact answers and cannBECt that above the upper critical dimensiah, £ 3) some

be compared to the conjecturkg] and numerically resolved ype of self-consistent mean-field theory based upon a suit-
. . . ; able tricritical Landau-Ginzberg Hamiltonid8] would give

[4] values of universal quantities. Until recenfly] four di- 5 ¢, description of the transition, and hence conclude that in

mensions has largely been ignored but here we argue that ngjj gimensionsd>3 there is a collapse transition from a

only may four-dimensional studies be important to delineateyyyollen state to the globular state with classical tricritical
which theoretical descriptions are valid, but that the collapsgehavior. There have been various other mean-field type ap-
transition in four dimensions has some intriguing features oproaches to this problem though their conclusions in three
general interest in the field of phase transition and criticadimensions are simildi6,10] to each other.
phenomena in statistical mechanics. The application of the mean-field theory of a tricritical
An isolated polymer in solution is usually considered topoint to polymer collapse predicts that at the transition point
the polymer behaves as a random walk=(1/2), and this
point has been known as thepoint (the 6 point was origi-
*Present address: Institut rfirheoretische Physik, Technische nally defined as the point where the second virial coefficient
Universita Clausthal, Clausthal-Zellerfeld, Germany. Email ad- of a dilute solution of polymers is zero, though it is expected
dress: thomas.prellberg@tu-clausthal.de that these definitions are equivalenThermodynamically,
"Email address: aleks@unimelb.edu.au one expects a weak transition with a jump in the specific heat
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a=0 (note that the thermodynamic polymer exponenis  [17,18,4,19. In Ref.[5] we indeed found a set of Boltzmann
related to the shift exponent=2— « in tricritical theory = weights where the model appears to have the Gaussian char-
[9], itself not to be confused with the polymer theory finite- acteristics of & point. The two drawbacks of this approach
size scaling shift exponentFor finite polymer lengthN  are, first, that the simulations cannot effectively be extended
there is no sharp transition for an isolated polymgnless away from the special temperature and, second, that the ca-
one examines a macroscopic number of such polyn@rd nonical lattice model of polymer collapse is rather self-
so this mean-field transition is rounded. In three dimensiongvoiding walks(SAW) interacting via nearest-neighbor site
the application of various self-consistent mean-field-like ap{monomey attraction. This canonical model is known as in-
proaches leads to the prediction that the second-order trangeracting self-avoiding walks, hence ISAW. A new algo-
tion is rounded and shifted on the same scal®of’? that rithm, known as pruned-enriched Rosenbluth method
is, the crossover exponedtis 1/2, though strictly the power (PERM), for the Monte Carlo simulation of ISAWamong
laws involved are modified via renormalization-group argu-other thing$ has been recently developed by Grassberger
ments[11,17 by confluent logarithms(In particular note and collaborators[20—-22. This is essentially a kinetic
that it is predicted that in three dimensions the specific heagrowth strategy that adds clever enhancements to simulta-
should be divergent logarithmicallyln four and higher di- neously allow a wide range of temperatures to be accessed
mensions no confluent logarithms should be present and or@&nd for the attrition of samples through trapping to be less-
may expect pure mean-field behavior with a crossover expoened(see Sec. IV for a fuller descriptionin this paper we
nent of 1/2 (@, is the relevant tricritical exponent hefg]). have simulated ISAW on the four-dimensional hyper-cubic
On the other hand, Dom[13] suggested some time ago lattice using thePERM algorithm over a wide range of tem-
that polymer collapse may be a first-order transition in thregperatures.
dimensions and the analysis by de Genf@sof the three- The reason for choosing tirERM algorithm for this par-
dimensional case of a suitably extend@dory type self- ticular simulation was the claim th&erm was particularly
consistent mean-field approach predicted in some paramet@fell suited for the simulation of a collapse transition in poly-
regions a first-order transition: this was superseded by higers[20—22. Moreover, while the basic algorithmic idea of
renormalization-group approack6,14]. In contrast some PERMwas quite straightforward, there seemed to be quite a
time ago there was the conjecture that the collapse transitioftexibility in the choice of the actual implementation. Due to
disappears altogether above three dimensions, at least at fiie authors’ previous experience with kinetic growth type
nite temperatur¢l5]. For d>3, Sokal[16] has also pointed ~algorithms[4,19,5, PERM was therefore a natural choice
out that the field theoretic/Edwards model approaches havever other established algorithms, such as Markov Chain
difficulties: in fact, if one analyzes the Edwards model oneMonte Carlo method$23,24, which may perform equally
finds the crossover exponent is given #y-2—d/2, which ~ well. Moreover, this paper presents the first implementation
for d=4 gives¢=0! In passing we note here that the sameOf PERM independent of Grassberger and collaborators.
analysis predicts the shift of th# point, defined say via the Now, to begin, our results suggest that there is indeed a
universal ratio of the radius of gyration to the end-to-endcollapse transition in four dimensions at a finite temperature.
distance equalling its Gaussian value, should scale adowever, the character of that transition is particularly in-
N~(92=1) which has(polyme shift exponent 1 in dimen- triguing! We find a distinct double peak distribution for the
siond=4. This difference between the shift and the crossdnternal energy far below a point that we clearly identify as a
over exponent implies that strict crossover scaling has brocandidated point. This double peak distribution becomes
ken down. Of course, the theoretical fact that the swolledmore pronounced as the chain length is increased. This
phase should also be Gaussian dor4 does raise the sus- Would seem to suggest a first-order transition. If this was the
picion that the analysis of the Edwards model for polymercase there would be a delta function peak forming in the
collapse may be subtle far>3. specific heat but we find that while a peak is indeed forming
As a first attempt to explore the issues raised above, wi seems not to be growing linearly with the size of the poly-
recently [5] considered the problem of interacting self- mer. More importantly, the location of a distinétpoint is
avoiding trails on the four-dimensional hyper-cubic lattice iIncompatible with a first-order transition if there is only one
with a special set of Boltzmann weights as generated by &ollapse! However there is a theoretical framewonhose
kinetic growth algorithm. Interacting self-avoiding trails are conclusions are suitably extended hetbat is consistent
a candidate lattice model for polymer collapse. They are dewith the evidence we present. This framework was explained
fined to be lattice paths such that each bond of the latticé & paper by Khokhlof25] who applied the mean-field
may either be unoccupied or occupied by a single bond ofPproach of Lifshitz, Grosberg, and KhokhlolLGK)
the path, though sites can be multiply occupied. Attractivd10,26,27 to arbitrary dimension$.The LGK theory is
interactions are associated with those multiply visited site®ased on a phenomenological free energy in which the com-
so that the strength of this interaction drives a collapse. Thietition between a bulk free energy of a dense globule and its
paper had several virtues. First, since trails are allowed t§urface tension drive the transition. Until recentB8] the
intersect, but still possess excluded volume, we were able to
grow configurations without the normal attrition that appears
in growing self-avoiding walks through the “trapping” of  lye warn the reader that the abstréand parts of the conclu-
the growth in dense sections of the polymer. Second, iRiong of the papef25] may be misleading as it reads that “fdr
lower dimensions it had been seen that whenever a kinetie 3 the coil-globule transition is of first-order.” Moreover the ap-
growth algorithm was unhindered by trapping it mapped preyplication of this mean-field theory td<3 is inappropriate and its
cisely onto the collapse transition point of the modelconclusions have now been superseded.
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consequences of this surface free energy were largely igllowed pathd), of lengthN is given generically by
nored in the polymer literature. Its effect on the scaling form

of the finite-size partition function was argued and confirmed 2 Q)™

[28,29,2,30. We shall refer to the LGK theory as applied to eely

dimensions four and above as KLG to distinguish it from the (Qn(w)= . (2.3
original three-dimensional work of Lifshitz, Grosberg, and E @M@

Khokhlov [26,27]. ety

Hence the major conclusions of our paper are that the
finite-size character of the coil-globule transition in four di- We define a normalized finite-size internal energy per step
mensions is first-order despite the thermodynamic limit beby
ing probably adequately described by mean-field tricritical
behavior. The only alternative conclusion from our data is Up(w)= @ (2.4
that the transition is truly first order and our finding ofa N’
state is fortuitous. The whole theory of crossover scaling for . - . .
this transition needs to be reworked. This curious state ofNd @ normalized finite-size specific heat per step by
affairs where a second-order transition looks distinctly first (m2)—(m)?
order may be of interest in other physical situations where Cn(w)= —————.
mean-field theory is used to describe thermodynamics.

The _Iayout of the paper is as follows. In_the next SectlonThese guantities are related in the usual way to the reduced
we define the model we consider and review the generall

. o Yree energy vid)y=dky/dlogw andCy=dUy/dlog w.
expected behavior of the quantities we have calculated in The thermodynamic limit in this problem is given by the

four dimensions. Then in Sec. Il we explain the results Oflimit N—so s0 that the thermodvnamic free ener or ste
KLG theory as applied to four dimensions. In Sec. IV we ¢ () is given by y gy p P

explain our Monte Carlo approackerMm, and finally in Sec.

N (2.9

V we carefully describe the numerical results of our simula- — Bf (@)= k(@)= liM ky(w). (2.6)
tions and how well they conform to the theory of KLG. N
This quantity determines the partition function asymptotics,
IIl. THE ISAW MODEL AND A REVIEW i.e., Zy(w) grows to leading order exponentially agw)™
OF BASIC SCALING RESULTS with (o) = ga(0)

The interacting self-avoiding walk model is the canonical N our simulations we calculated two measures of the
lattice model of the coil-globule transition and has been longPolymer's average size. First, specifying a walk by the se-
studied in two and three dimensions. Here we shall considefueénce of position vectons,ry, ... ry the average mean-
the four-dimensional hyper-cubic latti¢eoordination num-  Square end-to-end distance is
ber §. The monomers are imagined to be sitting on the sites (R2n=((FN—T0) - (FN—T0)) 2.7
of the lattice and a self-avoiding path of such sites form the e/N N TOTAUINT RO :
polymer. The self-avoidance means that no two monomers,
can sit at the same site of the lattice.

The partition function of the self-interacting self-avoiding RéN(w)Em@N. (2.9
walk model(ISAW) is given by

e shall use the symbcRéN to be equivalent to

The mean-square distance of a monomer from the endpoint
ro is given by
Zy(w)= 2 o™, (2.9
eelly s 1
<Rm>N_ N+ 1

N

> ((ri—rg)-(ri—rg)). 2.9

=0

where the sum is over the set of all self-avoiding walks

of length N steps N+1 monomers with one end at some Again we define
fixed origin andm(¢) is the number of nonconsecutive
nearest-neighbor monomers for a given walkThe Boltz- Ron(@)=(Ra)y. (2.10
mann weightw=e?¢ is associated with a nearest-neighbor ) _
contact of energy- e so thatw>1.0 for attractive interac- W€ also define the ratio
tions. We define a reduced finite-size free energy per step

Rz
“n(w) as Bu(w)= 2, (213
Re,N
1
kn(w)= N logZy(w). (2.2 which should have a universal limit in each critical phase of
the model.

Now let usassumefor a moment that there is a single

The usual free energy is related to this byBFy collapse transition at some value @fand let us explore the

=N«y(w). (four-dimensional behavior we might expect from the
The average of any quantitp over the ensemble set of above-defined quantities in each of the phases. As discussed
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above, the basic physics of the coil-globutmllapse tran-  sition for an isolated polymefunless one examines a mac-
sition can be understood by the consideration of the averag®escopic number of such polymegrsAround the collapse
size of the polymeRy, eitherR, y or Ry, , as a function of  temperature inthree dimensions the finite-size corrections
lengthN in each of the phases, so let us consider this firstare expected to take on a crossover scaling fi8hso that
Generally one always expects that

RZ~a’NR((T—T,)N?) (2.19
Ri~a(w)N?’ as N—w (2.12 _ _ o o
with ¢=1/2 but this form implies that the transition is
for any fixed temperature. In four dimensions at infinite tem-rounded and shifted on theamescale of N~ ¢ and so its
peraturew=1, it has been predictg®1] that applicability to four dimensions needs careful thought.
RR~a"N[log(N)]"* (2.13 lIl. THE THEORY OF KHOKHLOV, LIFSHITZ, AND
GROSBERG (KLG)

If there does exist a collapse transition then one would ex-

pect that this scaling extendwith a constanta™ that de- We now review the results of Khokhld25] paying spe-
pends on temperaturelown to the transition point. In the cial attention to the predicted behavior of the quantities we
collapsed phase the polymer is expected to assume a denlsave calculated. The theory originally proposed by Lifshitz
configuration on average and hence the globular value of thtor the general mean-field description of the globular state,

radius-of-gyration exponent ig,= 1/d=1/4[6] with extended by Lifshitz, Grosberg, and Khokhlov to fully de-
scribe the transition, and finally applied to four dimensions
Ri~a (w)NY2 (2.149 by Khokhlov [25], is based on several phenomenological

mean-field assumptions. First, there exists a state where the
Finally at some finite transition temperature £.0,<* a  excluded volume property of long chain molecules is exactly
Gaussian scaling of the radius of gyration should occur, thagancelled by the attractive interactions between parts of the
1S polymer as mediated by the solvent. This is thstate. Sec-
) ond, when the attraction becomes even stronger, there even-
Ry~a'N, (2.19 tuates a globular state where the polymer behaves as a liquid
drop. The results of the theory are based on a phenomeno-
logical free energy of that globular state relative to the free
energy of the pure Gaussian state of thgoint atT,. Hence
the condition applied to find the finite-size position of the
transition is to equate the relative free energy to zero. The
relative free energy is given as

so thaty,= 1/2. This Gaussian scaling is often ugéteoreti-
cally at least to define thef point w=w, of an isolated
polymer so thatw;=w,. The universal ratidy is expected
to converge to the valuB,,=1/2 both in the swollen phase
and atw,. However, one would expect slow logarithmic
corrections fore<w, and algebraic corrections at,. For
w>w, the phase is no longer expected to be critical and so
B.. is no longer universal and may be a nonconstant function
of w. where the~ ) andFg, tace@re given in terms of the second
One can also consider the scaling of the partition functiorand third virial coefficients, the length of the chains, and the
in each of the regimes, given that there is a transition. Folinear size of the polymer found from the globular density. In
high temperatures 10w <w,, one expects the infinite tem- particular both the bulk and surface free energies are propor-

Fn=Fpuit Fsurfaces (3.1

perature behavior, which {81] tional to the square of the second virial coefficient. It is as-
N \ va sumed that on approaching tl#epoint the second virial co-
Zy~b" (w)u(w)"(logN)~*, (2.16  efficient goes to zero linearly with temperature while the

third virial coefficient remains nonzero. Note that this im-
plies a quadratic dependence of the bulk free energy on the
distance to the point. Since the free energy has exponent

_ 34 2— « this implies an exponent=0 (assuming that this part
Zy~b (@) ()" pus(@)™ N, 217 of the free energy is singular Therefore a second-order
rphase transition occurs in the thermodynamic limit.

It is further assumed that the density in the globule is
proportional to the second virial coefficient and hence also
goes to zero linearly with temperature on approachingfthe
point (8=1). By applying the conditior =0, Khokhlov

while at low temperaturef28] one expects asymptotics of
the form

whereu, is related to the surface free energy of the polyme
globule and the exponeigt need not be universdive only
write it for completeness of the asymptotic fornfor w
=wy ONe expects

Zu~b?u(w )N (2.189 [25] finds a finite-size transition temperatufe y that ap-
¢ proaches the temperature from below a¥~ %, Applying
as a reflection of Gaussian behavior. this result to the ISAW model gives
In the thermodynamic limit the thermodynamic functions
fu(w), U.(w), andC,(w) are all expected to be analytic S
W N— W~ (3.2

functions ofw except atw,. By using the correspondence to N_1/3
the ftricritical model[6] the mean-field theory would imply
that the specific heat had a jump discontinuityegt since  for some constans. That is, the polymer collapsghift ex-

a=2—¢=0. Of course, for finiteN there is no sharp tran- ponent is 1/3.
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Now Khokhlov [25] found that the free energgfor T Cn(Ten)~h® N3, (3.9
<T,) can be rewritten in terms of; \ as
To_T. |4 So to summarize the picture so far, the theory predicts a
Frn~ —NT(TG—T)Z( 1—|-2 _¢cN ) (3.3  thermodynamic second-order transition at goint with a
Ty—T jump in the specific heat. For finite polymer length this tran-

sition is shifted below th& point by a temperature of the
order of O(N~*3) with the width of the transition of the
order ofO(N~23). Over this width there is a rapid change in
the internal energy that scales @&N~3): the important
point here of course is that this tends to zero for infinite
length so the effect of the peak in the specific heat is scaled
away forN large, leaving a finite jump in the thermodynamic
limit. To understand this further let us consider the distribu-
Awwi (3.4) tion of internal energy as a function o_f temperature and
N23 length. For any temperature above thgoint and well be-
low T\ one expects the distribution of internal energy to
for some constanw. That is, the polymer collapsgrossover  |ook like a single peaked distribution centered close to the
exponent is 2/3. Hence note that the size of the crossovehermodynamic limit value: a Gaussian distribution is ex-
region is asymptotically small relative to the shift of the pected around the peak with variar@éN~*?). In fact, this
transition, and that crossover forms such as @ql9 may picture should be valid for all temperatures outside the range
not be useful. [Ten—O(N™29) T, +O(N"23]. When we enter this re-
Even though there can be no sharp transition for a singlgion we expect to see a double peaked distribution as in a
polymer of finite lengttN, the theory can describe the nature first-order transition region. For any temperature in this re-
of the rounded transition by considering the difference begjon there should be two peaks in the internal energy distri-
tween the density of the globular staigat T. y and that of  pution separated by a gapu of the order of SU~AU

Actually KLG’s unwritten assumption is th&ty is the mini-
mum of zero and the right-hand side of £8.3) so it is zero
for T,<T<T.\. Khokhlov[25] deduces that the width of
the transitionAT at finite N can be found from this and
scales ad?\~ %%, Hence the ISAW model should have a tran-
sition width A w that scales as

the coil statep. at the same temperature. This is «O(N~Y3). Each peak is of Gaussian type with individual
variances again of the order @(N~'?). Hence asN in-
Pg(Ten) ~pc(Ten) o« N2/3 (3.5 creases, the peaks will become more and more distinct and
pc(Ten) ’ ' relatively sharper but the peak positions will be getting

) ) closer together. We refer to this scenario agsaudefirst-
which diverges j"‘m becomes large. Hence Khokhl¢25] ., order transition or, more correctly, as first-order-like finite-
concluded that “the coil-globule transition is first order,” gj;o corrections to a second-order phase transition. If there

though we now interpret this to mean that the finite-sizeyere g real first-order transition then the distance between
corrections to the thermodynamic second-order transition arg,q peaks should converge to a nonzero constant.

first-order-like? However, bothpy(T.n) and pe(T¢ ) tend
to zero adlN—o and it is simply thajpy(T¢ n) tends to zero
asymptotically slower thap.(T, ) that makes the relative IV. PERM
differe{]/ge quoted above diverge. Noting thet N/R* and We have simulated ISAW usingerm, a recently pro-
R.~N", the above equation can be used to deduce the scalpsed generalization of a simple kinetic growth algorithm
ing of Ry at Ty as [20,21. PERM builds upon the Rosenbluth-Rosenbluth
oni1/3 method[32], in which walks are generated by simply grow-
Rn(Ten)~a™N™™ (3.6 ing an existing walk kinetically, i.e., by choosing the next
step with equal probability from all possible accessible lat-
tice sites. Eventually, a walk generated thus gets trapped in a
Sconfiguration in which it cannot be continued, leading gen-
erally to an exponential “attrition.” Moreover, in order to
and Khokhlov simulate ISAW ata particular temperature, one needs to re-
eight the kinetically grown samples in such a way that the
enerated sample is usually dominated by a few configura-
tions that carry large weight after the reweighting.
In order to overcome these obstaclesRM uses a com-
uc bination of enrichment and pruning strategies to generate
(3.77  walks whose weights are largely distributed around the ex-
pected peak of the distribution. On the one hand, if the
) ) ) » _weight of a configuration becomes too small, the configura-
The corresponding height of the peak in the specific heat i§jon gets pruned probabilistically and the weight adjusted
correspondingly. Alternatively, if the weight of a configura-
tion becomes too large, copies of the walk are made and the
2We point out that the terminology of Khokhlov was presumably respective weights reduced accordingly. While this does not
that explained in Sec. | C2 d27] but may be misleading to the €eliminate trapping, it is generally sufficient to compensate
modern reader. for it: trapping occurs when the end of the walk is in an area

Hence we define an effective radius-of-gyration exponen
v.= 1/3 for the scaling of the size of the polymer when fol-
lowing the finite-size transition temperatures. Note that thi
exponent value obeysg,= 1/2> v >v,= 1/4.
Following the work of Lifshitz, Grosberg,
[27] one can also calculate the change in the internal energ
over the crossover width of the transitidil as the latent
heat(or “heat of the transition’} by using expressiof3.3):

AU

- Nl/3'



PRE 62 FOUR-DIMENSIONAL POLYMER COLLAPSE: PSEUDQ .. 3785
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FIG. 1. RZ\/N versusw for lengths N=1024, 2048, 4096, FIG. 2. RZ\/N versusN at w=1.0 andw=1.1. The curves are

8192, and 16 384. The error is less than the size of the symbols. fits to RéyN/N=a log(N+b)€ over the shown range.

of high density, which in turn increases the likelihood of

teunnri'rﬁhmﬁ;t‘ k;r hih"gggirr']thn; zz%iizll'mgfumsigéei me?_ Saenld'at any particular length, we have an excess of pruning, the
g way by 9 dy y ad PP algorithm “relents” and increases botf§, andc}, in order to

lower-threshold values to control pruning and enrichment : . )
rates. reduce pruning and enhance enrichment, keeping the quo-

It is plausible that the algorithm works best at tempera-i€nt of the FhreShOIdQ:CWC:\I consta&nt. To stlabmlze the
tures in which the thermal distribution is close to the distri-dynamic adjustment, we enforag>cp,;y and cy<Cpay.
bution of walks generated by kinetic growth. In sufficiently After some initial experimentation, we chos,,=2 and
large dimensions, this temperature should be quite close ®max=1/2, which leaves us with the threshold quoti€ntis
the ¢ temperature, so that the algorithm is expected to béhe sole adjustable paramet@Ve also experimented with a
well suited to the study of polymer collapse. As mentioned indynamic length-depende@y, but the dynamic adjustment
the introduction, there are lattice models of interacting poly-seemed to be too unstable to pursue this avenue further.
mers for which there is an exact mapping of the correspondeach run, we attempted to choose the smallest threshold quo-
ing kinetic growth models to their respective points, in  tient Q for which we could obtain an even sample size dis-
which case @ERM simulation at thef temperature reduces tribution.
to simple kinetic growth. In fact, it turns out that the algo- The disadvantage ofERMm is that due to the enrichment
rithm performs well over a whole range of temperatures covthe generated data is not independent. All the data generated
ering all of the swollen phase and the scaling regions arounéluring one “tour,” i.e., between two successive returns of
the collapse transition. However, we find that the perfor-the algorithm to length 0, is correlated. Therefore, we keep
mance ofPERMn the collapsed phase is far less satisfactorytrack of the statistics of tour sizé$o get a rough idea of the

The guiding principle for any choice of implementation quality of the data. In our statistical evaluation we use
should be the observatid@0] that the algorithm essentially (somewhat arbitrarilythe quotient ofy and(t?) as a mea-
produces a random walk in chain length with reflectingsure of an effective independent sample size. This is correct
boundaries at 0 andl,,,. Considered in such a way, the as long as the tour sizes don't fluctuate too strongly, and,
algorithm performs best if this random walk is unbiased andnore importantly, as long as individual tours explore the
if the associated diffusion coefficient is large. To eliminatesample space evenly. When simulating in the collapsed
bias, pruning, trapping, and enrichment rates have to conmphase, both of these assumptions break down, and the sample
pensate each other. To maximize the diffusion coefficientjs dominated by few huge tours. Moreover, the pruning and
the pruning and trapping rates have to be as small as pognrichment rates become so large that the efficiency of the
sible. The choice of pruning and enrichment thresholds needdgorithm is significantly decreased.
to take both into accoun(ln contrast with the original work

for dynamic adjustment ofy, andc'N. Thus, if for example,

on PERM, where trapping was viewed as a special case of 148 . . . .

pruning, we find it instructive to distinguish between these

two effects: trapping is unavoidable due to the geometry of }E

the lattice, whereas pruning is done optionally to adjust o Iy Ty i

weights) g Il i i I
In our implementation, we chose upper and lower thresh-R2 /N 1.46 |- T 1 I g

olds W' and W' proportional to the current estimate of the Hﬂi I3 i i i

average weight of a walk at lenghty, (Zy)/sy, wheresy is L5 'iﬁ% ¥ ¥ % % %_

the number of generated samples at leigtAnd(zy) is the 111 T i 1 i I

current estimate of the partition function at len@thThat is III

to Say’ 1.‘(1)‘%0000 0.0;]02 0.0;)04 0.0I006 0.0I008 0.0010

Wi=cl(Zuisy, Wh=ch(Zwisy.  (4.) "

FIG. 3. RZ\/N versus IN in the @ region: o=1.180, 1.181,
In order to enforce an even sample size distribution we allow1.182, 1.183, and 1.184 from top to bottom.
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FIG. 4. ngN versusN for w=1.4. FIG. 6. Zy/u™ versus 1IN using our best estimates @af in the

0 region: »=1.180, 1.181, 1.182, 1.183, and 1.184 from top to

For further details of the algorithm and suggestions ofPottom.
various other improvements such as Markovian anticipation,

we refer to Refs[21] and[22]. In discussing our findings on the nature of this polymer

collapse transition, it is natural to first present the change of
size of the polymer as the interaction strength changes. In
V. RESULTS Fig. 1, we display the mean-squared end-to-end distance nor-

We simulated ISAW on a four-dimensional hyper-cubic Malized by walk lengthRg /N for lengths 1024 up to
lattice usingPERM with N, set to 1024, 2048, 4096, 8192, 16 384(we have analogous data for the quangfy/\/N). As
and 16384 at values ab ranging from 1.0 to 1.4, discussed, one expects this quantity to increase logarithmi-
=1024) to 1.2175 to 1.2229\,,,,= 16 384) and the thresh- cally in N in the swolllen regime, approach a constant at a
old quotientQ ranging from 10 to 160. At each fixed, we ~ random-walk-like¢ point, and decrease N as a power law
generated 10walks. To illustrate the computational effort, in the collapsed regime. As can be seen clearly from Fig. 1,
the generation of a sample of size’1@t length N,y there is indeed a transition from a swollen region, where this

=16 384 took about 2 weeks CPU time on a 600 MHz DEcCParameter increases witth to a collapsed region, where the

Alpha. value has dropped sharply. In the transition region, however,
We computed statistics fdR%,, and R , the partiton WO phenomena (_:anzbe noticed. On the one hand, araund
function Z, the internal energyy, and specific heat,,. =1.18, the quantityRg /N approaches a constant, which is

Moreover, we generated the distribution of the number ofndicative of 6 point behavior. On the other hand, the col-
interactions atN,,,,. The distributions obtained at various lapPse occurs in a region that is well separated from this
temperatures were then combined using the multiple histoP0int. With increasing polymer length, the region where the
gram method33]. collapse occurs approaches thgoint, but simultaneously
Error bars, when given, are based on our method of errotharpens so strongly that it remains well separated from it.
estimation as described in the previous section. This method In the swollen phase, our results are in correspondence
gives reasonable error estimates in the swollen regime up ith the logarithmic corrections seen by Grassberefeal.
the 6 point. On the other hand, in the collapsed regime only[34], see Fig. 2. As in that paper, we observe Raf, grows
highly subjective error estimates are possible. Therefore nasN(logN)c, albeit not with the exponent predicted by field
error bars are given in e.g., Figs. 11 and 14, even though th&eory. At o=1.0 we findc=0.30. This value shifts te

data has converged sufficiently. =0.22 at w=1.1, indicating the presence of strong
temperature-dependent correction terms.
19 —————— ———— Near the suspected point, we extended our simulations
Sl o] to walks of length 32 768. Figure 3 shows a plotRf /N
L7l w=10 4 8 8 : " 218 L
8
]
Zn/uN 16 .0l o stk |
i § 3 o o
15 . g 8
apb, o " w=11 | KN 205 . 4
00 1000 10000 200 el L L e i
N
FIG. 5. Zy/uN versusN at w=1.0 andw=1.1. At each value of 195 ' ' ! ! ! ! ! !

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9

w, three different values of. are shown. We estimatg(1.0) N1/

=6.77404(2) andu(1.1)=6.896 992). Thefilled circles corre-
spond to the central estimatesgofwhile open circles correspond to FIG. 7. Finite-size free energyy versusN™ Y4 for w=1.4. The
shifting w by the error estimate quoted. error is less than the size of the symbols.
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FIG. 9. Specific-hea€y versusw for lengthsN=1024, 2048,

FIG. 8. Internal energyy versusw for lengthsN= 1024, 2048, . B .
4096, 8192, and 16 384 from right to left, respectively, using the409§'_8192’ and 16 384 from right to left, respectively, using the
multihistogram method.

multihistogram method.

versus 1IN for values ofw between 1.180 and 1.184. At  due to surface effects. Figure 7 shows this éor1.4. As
=1.182(1) we have indeed an asymptotically linear depenargued above, the globule collapses when the length is above
dence ofR2, on N. Moreover, atw=1.182 we estimate N=250, and we notice here the onset of a corresponding
from our da{taBN:ern N/RgN:0-50C(l), which is also in- Strong change in the behavior of the finite-size free energy
dicative of Gaussian behavior. around this length N~ 4~0.25). Even though we cannot
As was already seen from Fig. 1, the collapse happengimulate long enough chain lengths to clearly determine the
very rapidly aso increases. An alternative way of visualiz- Precise nature of tb(l-:'mcorrectlpn term, our data is certainly
ing this is to consider how the size of the polymer changes ggompatible with aN™~** correction forN~*"<0.2.
fixed w in the collapsed phase as the lendtincreases. As In order to study the collapse transition more closely, we
shown in Fig. 4 foro=1.4, RZ  changes nonmonotonically NOW focus our attention on the internal energy and specific
. 4, R, ' _
in N! After an initial increase, the size of the polymer actu- _heat. As can pe seen from Figs. 8 and 9, the_mternal energy
ally shrinks aroundN=250 as it undergoes collapseorre- Increases r_ap|dly over a sma.II. temperature interval with a
sponding to a rapid increase of the density. For large enougﬁorre.s.pondmg diverging specific heat. Asincreases, the
N, we expect to see the true collapsed behavior, R3 transition becomes sharper and stays well separated from the
gr,owing again ad¥2, but this regime is beyond the,rea'glh of 6 point, even though the location of the transition approaches

4 1 the 6 point slowly.
Ou;T}?Z;éﬁ?;ﬂagﬁgzeogncdurtgg;ﬁ:nggﬁg\/g?rg;vﬁr;'SO be The scaling of the shift of the transition towards the
clearly identified from the free-energy scaling. In the swollenpOInt wen— @y and the sharpening of the transition width

. : . : Aw are both shown in Fig. 10. Here, we defined the location
gagivizwi:lmc?rgzlf ;hg z:r? 52) e_blega\lélcc))rr : :C[Efﬂihig;l:z: of the collapse transition by the location of the specific-heat
N — 1. — 1.1, y -

tity is plotted with three values of, which differ in the sixth  P€ak: and the width of the transition is given by the interval

digit, showing both the accuracy in the estimation of the free | which the specific heat is greater or equal to half the value

energy and the presence of logarithmic corrections.«At of the peak height. Expecting from the KLG theory that

: : —w, scales aN~ 3 and thatAw scales asN™ 23 we
=1, we estimateu(1)= ugaw=6.77 4042). Our estimate A 13 - 23 ot
is based on Fig. 5, where the central estimate is commenSlFJ)-IOt both N™*(we,y—w,) and AwN"" versusN which

) N . was chosen empirically. Both quantities can be seen to be
rate with a power-law dependencezyf/ ™ on logN, while asymptotic to constants: on the graph extrapolations give
the estimate obtained by shifting by the error quoted is ymp : grap P g

not. This can be compared to earlier estimates of 6.7720(5r)10nzer0 intercepts. Hence, Fig. 10 shows that the KLG pre-
[35], 6.774(5)[36], and 6.774 04(3)34].

In the 6 region, a similar analysis shows that hetg
scales asu™ with weak 1N corrections. Figure 6 shows
Zy/ uN plotted versus M, with respective values g ob-
tained in a similar fashion to the one shown in Fig. 5. We
estimate the point to bew,=1.182(1) andu,=7.0112).

[At fixed w, the accuracy is of course higher: for=1.182,
we estimateu=7.011767 §5).]

In the collapsed region, one expects the finite-size free

energy to have a strong correction term of the order’

5.0 T T T T

20 B
Nl/s(wc,N - wg)

10

0.0 1 1 1 1
0.000 0.002 0.004 0.006 0.008 0.010

N-2/3

Note that this lack of monotonicity imot an indication of a
first-order transition. A similar nonmonotonous behavior can be ob- FIG. 10. Scaling of the transition: shift and width of the collapse
served for ISAW in three dimensions, where the collapse transitiomegion. Shown are the scaling combinatidném(wcnywa) and
is second-ordef2]. N?3A @ versusN 23,
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FIG. 11. Internal energy density distributionsa@fy for 2048 5 13 |nternal energy density distributionsaat 1.2195 and
and 16 384. The more highly peaked distribution is associated W'ﬂl.2210 forN= 16 384.

length 16 384.

- . . ) . over a range ofv of the order of 103, a peak neak=0.3
dictions are compatible with our simulations. We do nOtedisappears while another peak near0.5 emerges.

that the corrections to scaling fdvrw are much larger than Returning to the scaling predictions from KLG theory, a
for wen—w,. -~ _ suitably defined finite-size latent hea&tQ, should tend to
The character of the transition becomes apparent if onga g agN~3in the thermodynamic limit. One possible mea-
plots the internal energy density distributiorescaled den-  gyre of this latent heat is given by the product of specific-
sity of interactiongat the finite-size collapse transition, y . heat pealCy(w. n) and specific-heat width », and another
Figure 11 shows the emergence of a bimodal distribution. Afg given by the distanceU of the peaks in the bimodal
length 2048 one sees a slight nonconvexity, which at lengthyernal energy distribution. Figure 14 shows the behavior of
16384 has evolved into a distribution dominated by twopgih of these quantities. One notices two things from this
sharp and well-separated peaks. The values of the miniM@yre. First, we are unable to confirm or deny the predicted
and maxima of the distribution are different by two orders Ofscaling behavior forAU and, second, even at length
magnitude. - . =2048 (N 3~0.08) there is considerable discrepancy be-
It is instructive to study the transition by how this distri- yyeen the two quantities, so that it is not surprising that one
bution changes over a large rangewofFigure 12 shows this - cannot discern a clear scaling behavior. The explanation for
for N=4096. One sees that there is not much of a change ifhe giscrepancy between the two quantities as well as of the
the shape and location of the distribution between the nongitficulty of observing the predicted scaling behavior is of
interacting caseo=1 and thef point w=1.182. However, cqyrse that in order to observe the asymptotic behavior the

in a very small_interval around the_ coIIap_se transition, theyyo peaks in the histogram have to be well separated and
density distribution changes dramatically@sncreases. The (istinct, and we see from Fig. 11 that this is only the case

density distribution switches from a peak located around 0.3yhen N is of the order of 16. This explains why we are
to a peak located around 0.55, corresponding to a suddeghable to find a value for the exponent related to the diver-
change in the internal energy. In the collapsed phase, thgence of the specific heat consistent with the rest of our

width of the peak is much wider than in the swollen phaseheoretical picture. We do concede that Fig. 14 alone could
implying a larger specific heat. It is this difference betweenpe ysed to argue for the existence of a real first-order transi-

the swollen and collapsed phases’ specific heats that Wilion in the thermodynamic limit, but we believe the rest of

eventually become the thermodynamic second-order jump. oyr data and other theoretical facts provide a more consistent
The rapid first-order-like switch between two peaks in thepjctyre.

distribution becomes more pronounced at larger polymer |n conclusion, our ISAW simulations elucidate the struc-
lengths. AtN=16 384, this “switching” is shown in Fig. 13:  tyre of the polymer collapse transition in four dimensions.

50 T T T T T T T 0.8 T T T

40 - 1.0 .
| 0.6

30 - N

CN(wc'N)Aw

o(z) AR 04 B

20 - =

02 L 0/k’exe\;

10 1 U

0 1 00 1 1 Il 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 0.00 0.02 0.04 0.06 0.08 0.10

z=m/N N-1/3

FIG. 12. Internal energy density distributions«at= 1.0, 1.182, FIG. 14. Scaling of the latent heatU: our two measures of

1.2465, and 1.26 foN=4096. AU, Cy(wen)Aw and peak distanc8U are plotted versubl ™3,
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We show conclusively that there is indeed a collapse transithe transition is first order. In the context of the findings
tion at a finite temperature. Secondly, we find evidence for gresented here, it is tempting to expect a similar resolution of
0 temperature at which the polymer is well approximated bythis apparent contradiction in terms of a pseudo-first-order
Gaussian behavior as well as for a collapse transition that isansition.
well separated from the point. The collapse transition

shows many first-order-like features, such as a bimodal dis-
tribution in the internal energy. An analysis of the scaling

behavior of this transition in the context of the theory of Financial support from the Australian Research Council is
Lifshitz, Grosberg, and Khokhlof27,25 shows that a con- gratefully acknowledged by A.L.O. while T.P. thanks the
sistent interpretation of these findings is that of first-order-Department of Physics at the University of Manchester and
like finite-size corrections to a thermodynamic second-ordethe Department of Mathematics and Statistics at the Univer-
transition. We note that these findings are reminiscent os8ity of Melbourne where parts of this work were completed.
results for interacting self-avoiding trails on the diamond lat-This work was partially supported by EPSRC Grant No. GR/
tice, where & point was found iff19] and subsequent simu- K79307, the University of Melbourne’s Collaborative Re-
lations revealed a bimodal distribution in the internal energysearch Grants scheme, and the Australian Research Council’'s
density[37]. In Ref.[19] it was concluded that the transition small grants scheme. We thank A. J. Guttmann for many
is second order, whereas in RE37] the conclusion was that useful comments on the manuscript.
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