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Four-dimensional polymer collapse: Pseudo-first-order transition
in interacting self-avoiding walks

T. Prellberg1,* and A. L. Owczarek2,†
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In an earlier work we provided the first evidence that the collapse, or coil-globule transition of an isolated
polymer in solution can be seen in a four-dimensional model. Here we investigate, via Monte Carlo simula-
tions, the canonical lattice model of polymer collapse, namely, interacting self-avoiding walks, to show that it
not only has a distinct collapse transition at finite temperature but that for any finite polymer length this
collapse has many characteristics of a rounded first-order phase transition. However, we also show that there
exists a ‘‘u point’’ where the polymer behaves in a simple Gaussian manner~which is a critical state!, to which
these finite-size transition temperatures approach as the polymer length is increased. The resolution of these
seemingly incompatible conclusions involves the argument that the first-order-like rounded transition is scaled
away in the thermodynamic limit to leave a mean-field second-order transition. Essentially this happens
because the finite-sizeshift of the transition is asymptotically much larger than thewidth of the pseudotransi-
tion and the latent heat decays to zero~algebraically! with polymer length. This scenario can be inferred from
the application of the theory of Lifshitz, Grosberg, and Khokhlov~based upon the framework of Lifshitz! to
four dimensions: the conclusions of which were written down some time ago by Khokhlov. In fact it is
precisely above the upper critical dimension, which is 3 for this problem, that the theory of Lifshitz may be
quantitatively applicable to polymer collapse.

PACS number~s!: 61.20.Ja, 61.41.1e, 64.60.Kw, 05.70.Fh
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I. INTRODUCTION

The collapse or coil-globule transition of an isolated po
mer in solution has been studied by a variety of differe
theoretical approaches over the past 50 years ranging
phenomenological arguments, field theoretic renor
alization-group approaches, continuum path integrals,
the analysis of discrete lattice walks@1#. Application and
testing of these theories has mainly been confined to
‘‘physical’’ dimensions of two and three. However, th
phase transition of polymer collapse has been long belie
to have an upper critical dimension of three (du53) and so
the differences between the predictions of many of the th
ries in that dimension lie in subtle logarithmic factors th
are difficult to ascertain numerically@2#. In two dimensions
the field theoretic~excluding conformal field theories! and
continuum models have not given exact answers and ca
be compared to the conjectured@3# and numerically resolved
@4# values of universal quantities. Until recently@5# four di-
mensions has largely been ignored but here we argue tha
only may four-dimensional studies be important to deline
which theoretical descriptions are valid, but that the colla
transition in four dimensions has some intriguing features
general interest in the field of phase transition and criti
phenomena in statistical mechanics.

An isolated polymer in solution is usually considered

*Present address: Institut fu¨r Theoretische Physik, Technisch
Universität Clausthal, Clausthal-Zellerfeld, Germany. Email a
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be in one of three states depending on the strength of
intermonomer interactions that are mediated by the solv
molecules and can be controlled via the temperatureT. At
high temperatures, and in so-called ‘‘good solvents,’’ a po
mer chain is expected to be in a swollen phase~swollen coil!
relative to a reference Gaussian state so that the average
of the polymer scales with chain length algebraically fas
than it would if it were behaving as a random walk. At lo
temperatures or in poor solvents the polymer is expecte
be in a collapsed globular form with a macroscopic dens
inside the polymer. This implies an average size that sc
slower than a random walk. Between these two states the
expected to be a second-order phase transition~sharp in the
infinite chain length limit!.

The standard description of the collapse transition is
tricritical point related to the n→0 limit of the
(f2)2– (f2)3 O(n) field theory@6–8#. One might then ex-
pect that above the upper critical dimension (du53) some
type of self-consistent mean-field theory based upon a s
able tricritical Landau-Ginzberg Hamiltonian@9# would give
a full description of the transition, and hence conclude tha
all dimensionsd.3 there is a collapse transition from
swollen state to the globular state with classical tricritic
behavior. There have been various other mean-field type
proaches to this problem though their conclusions in th
dimensions are similar@6,10# to each other.

The application of the mean-field theory of a tricritic
point to polymer collapse predicts that at the transition po
the polymer behaves as a random walk (n51/2), and this
point has been known as theu point ~the u point was origi-
nally defined as the point where the second virial coeffici
of a dilute solution of polymers is zero, though it is expect
that these definitions are equivalent!. Thermodynamically,
one expects a weak transition with a jump in the specific h
3780 ©2000 The American Physical Society
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PRE 62 3781FOUR-DIMENSIONAL POLYMER COLLAPSE: PSEUDO- . . .
a50 ~note that the thermodynamic polymer exponenta is
related to the shift exponentc522a in tricritical theory
@9#, itself not to be confused with the polymer theory finit
size scaling shift exponent!. For finite polymer lengthN
there is no sharp transition for an isolated polymer~unless
one examines a macroscopic number of such polymers! and
so this mean-field transition is rounded. In three dimensi
the application of various self-consistent mean-field-like
proaches leads to the prediction that the second-order tra
tion is rounded and shifted on the same scale ofN21/2, that
is, the crossover exponentf is 1/2, though strictly the powe
laws involved are modified via renormalization-group arg
ments @11,12# by confluent logarithms.~In particular note
that it is predicted that in three dimensions the specific h
should be divergent logarithmically.! In four and higher di-
mensions no confluent logarithms should be present and
may expect pure mean-field behavior with a crossover ex
nent of 1/2 (f t is the relevant tricritical exponent here@9#!.

On the other hand, Domb@13# suggested some time ag
that polymer collapse may be a first-order transition in th
dimensions and the analysis by de Gennes@6# of the three-
dimensional case of a suitably extended~Flory type! self-
consistent mean-field approach predicted in some param
regions a first-order transition: this was superseded by
renormalization-group approach@6,14#. In contrast some
time ago there was the conjecture that the collapse trans
disappears altogether above three dimensions, at least
nite temperature@15#. For d.3, Sokal@16# has also pointed
out that the field theoretic/Edwards model approaches h
difficulties: in fact, if one analyzes the Edwards model o
finds the crossover exponent is given byf522d/2, which
for d54 givesf50! In passing we note here that the sam
analysis predicts the shift of theu point, defined say via the
universal ratio of the radius of gyration to the end-to-e
distance equalling its Gaussian value, should scale
N2(d/221) which has~polymer! shift exponent 1 in dimen-
sion d54. This difference between the shift and the cro
over exponent implies that strict crossover scaling has b
ken down. Of course, the theoretical fact that the swol
phase should also be Gaussian ford.4 does raise the sus
picion that the analysis of the Edwards model for polym
collapse may be subtle ford.3.

As a first attempt to explore the issues raised above,
recently @5# considered the problem of interacting se
avoiding trails on the four-dimensional hyper-cubic latti
with a special set of Boltzmann weights as generated b
kinetic growth algorithm. Interacting self-avoiding trails a
a candidate lattice model for polymer collapse. They are
fined to be lattice paths such that each bond of the lat
may either be unoccupied or occupied by a single bond
the path, though sites can be multiply occupied. Attract
interactions are associated with those multiply visited s
so that the strength of this interaction drives a collapse. T
paper had several virtues. First, since trails are allowed
intersect, but still possess excluded volume, we were abl
grow configurations without the normal attrition that appe
in growing self-avoiding walks through the ‘‘trapping’’ o
the growth in dense sections of the polymer. Second
lower dimensions it had been seen that whenever a kin
growth algorithm was unhindered by trapping it mapped p
cisely onto the collapse transition point of the mod
s
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@17,18,4,19#. In Ref. @5# we indeed found a set of Boltzman
weights where the model appears to have the Gaussian c
acteristics of au point. The two drawbacks of this approac
are, first, that the simulations cannot effectively be exten
away from the special temperature and, second, that the
nonical lattice model of polymer collapse is rather se
avoiding walks~SAW! interacting via nearest-neighbor si
~monomer! attraction. This canonical model is known as i
teracting self-avoiding walks, hence ISAW. A new alg
rithm, known as pruned-enriched Rosenbluth meth
~PERM!, for the Monte Carlo simulation of ISAW~among
other things! has been recently developed by Grassber
and collaborators@20–22#. This is essentially a kinetic
growth strategy that adds clever enhancements to simu
neously allow a wide range of temperatures to be acces
and for the attrition of samples through trapping to be le
ened~see Sec. IV for a fuller description!. In this paper we
have simulated ISAW on the four-dimensional hyper-cu
lattice using thePERM algorithm over a wide range of tem
peratures.

The reason for choosing thePERM algorithm for this par-
ticular simulation was the claim thatPERM was particularly
well suited for the simulation of a collapse transition in pol
mers@20–22#. Moreover, while the basic algorithmic idea o
PERM was quite straightforward, there seemed to be quit
flexibility in the choice of the actual implementation. Due
the authors’ previous experience with kinetic growth ty
algorithms @4,19,5#, PERM was therefore a natural choic
over other established algorithms, such as Markov Ch
Monte Carlo methods@23,24#, which may perform equally
well. Moreover, this paper presents the first implementat
of PERM independent of Grassberger and collaborators.

Now, to begin, our results suggest that there is indee
collapse transition in four dimensions at a finite temperatu
However, the character of that transition is particularly
triguing! We find a distinct double peak distribution for th
internal energy far below a point that we clearly identify as
candidateu point. This double peak distribution become
more pronounced as the chain length is increased. T
would seem to suggest a first-order transition. If this was
case there would be a delta function peak forming in
specific heat but we find that while a peak is indeed form
it seems not to be growing linearly with the size of the po
mer. More importantly, the location of a distinctu point is
incompatible with a first-order transition if there is only on
collapse! However there is a theoretical framework~whose
conclusions are suitably extended here! that is consistent
with the evidence we present. This framework was explain
in a paper by Khokhlov@25# who applied the mean-field
approach of Lifshitz, Grosberg, and Khokhlov~LGK!
@10,26,27# to arbitrary dimensions.1 The LGK theory is
based on a phenomenological free energy in which the c
petition between a bulk free energy of a dense globule and
surface tension drive the transition. Until recently@28# the

1We warn the reader that the abstract~and parts of the conclu-
sions! of the paper@25# may be misleading as it reads that ‘‘ford
.3 the coil-globule transition is of first-order.’’ Moreover the ap
plication of this mean-field theory tod,3 is inappropriate and its
conclusions have now been superseded.
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3782 PRE 62T. PRELLBERG AND A. L. OWCZAREK
consequences of this surface free energy were largely
nored in the polymer literature. Its effect on the scaling fo
of the finite-size partition function was argued and confirm
@28,29,2,30#. We shall refer to the LGK theory as applied
dimensions four and above as KLG to distinguish it from t
original three-dimensional work of Lifshitz, Grosberg, a
Khokhlov @26,27#.

Hence the major conclusions of our paper are that
finite-size character of the coil-globule transition in four d
mensions is first-order despite the thermodynamic limit
ing probably adequately described by mean-field tricriti
behavior. The only alternative conclusion from our data
that the transition is truly first order and our finding of au
state is fortuitous. The whole theory of crossover scaling
this transition needs to be reworked. This curious state
affairs where a second-order transition looks distinctly fi
order may be of interest in other physical situations wh
mean-field theory is used to describe thermodynamics.

The layout of the paper is as follows. In the next sect
we define the model we consider and review the gener
expected behavior of the quantities we have calculated
four dimensions. Then in Sec. III we explain the results
KLG theory as applied to four dimensions. In Sec. IV w
explain our Monte Carlo approach,PERM, and finally in Sec.
V we carefully describe the numerical results of our simu
tions and how well they conform to the theory of KLG.

II. THE ISAW MODEL AND A REVIEW
OF BASIC SCALING RESULTS

The interacting self-avoiding walk model is the canonic
lattice model of the coil-globule transition and has been lo
studied in two and three dimensions. Here we shall cons
the four-dimensional hyper-cubic lattice~coordination num-
ber 8!. The monomers are imagined to be sitting on the s
of the lattice and a self-avoiding path of such sites form
polymer. The self-avoidance means that no two monom
can sit at the same site of the lattice.

The partition function of the self-interacting self-avoidin
walk model~ISAW! is given by

ZN~v!5 (
wPVN

vm(w), ~2.1!

where the sum is over the set of all self-avoiding walksVN
of length N steps (N11 monomers! with one end at some
fixed origin and m(w) is the number of nonconsecutiv
nearest-neighbor monomers for a given walkw. The Boltz-
mann weightv5ebe is associated with a nearest-neighb
contact of energy2e so thatv.1.0 for attractive interac-
tions. We define a reduced finite-size free energy per s
kN(v) as

kN~v!5
1

N
logZN~v!. ~2.2!

The usual free energy is related to this by2bFN
[NkN(v).

The average of any quantityQ over the ensemble set o
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allowed pathsVN of lengthN is given generically by

^Q&N~v!5

(
wPVN

Q~w!vm(w)

(
wPVN

vm(w)

. ~2.3!

We define a normalized finite-size internal energy per s
by

UN~v!5
^m&
N

, ~2.4!

and a normalized finite-size specific heat per step by

CN~v!5
^m2&2^m&2

N
. ~2.5!

These quantities are related in the usual way to the redu
free energy viaUN5]kN /] logv andCN5]UN /] logv.

The thermodynamic limit in this problem is given by th
limit N→` so that the thermodynamic free energy per s
f `(v) is given by

2b f `~v!5k`~v!5 lim
N→`

kN~v!. ~2.6!

This quantity determines the partition function asymptoti
i.e., ZN(v) grows to leading order exponentially asm(v)N

with m(v)5ek`(v).
In our simulations we calculated two measures of

polymer’s average size. First, specifying a walk by the
quence of position vectorsr0 ,r1 , . . . ,rN the average mean
square end-to-end distance is

^Re
2&N5^~rN2r0!•~rN2r0!&. ~2.7!

We shall use the symbolRe,N
2 to be equivalent to

Re,N
2 ~v![^Re

2&N . ~2.8!

The mean-square distance of a monomer from the endp
r0 is given by

^Rm
2 &N5

1

N11 (
i 50

N

^~r i2r0!•~r i2r0!&. ~2.9!

Again we define

Rm,N
2 ~v![^Rm

2 &N . ~2.10!

We also define the ratio

BN~v!5
Rm,N

2

Re,N
2

, ~2.11!

which should have a universal limit in each critical phase
the model.

Now let us assumefor a moment that there is a singl
collapse transition at some value ofv and let us explore the
~four-dimensional! behavior we might expect from th
above-defined quantities in each of the phases. As discu
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PRE 62 3783FOUR-DIMENSIONAL POLYMER COLLAPSE: PSEUDO- . . .
above, the basic physics of the coil-globule~collapse! tran-
sition can be understood by the consideration of the ave
size of the polymerRN , eitherRe,N or Rm,N , as a function of
length N in each of the phases, so let us consider this fi
Generally one always expects that

RN
2 ;a~v!N2n as N→` ~2.12!

for any fixed temperature. In four dimensions at infinite te
perature,v51, it has been predicted@31# that

RN
2 ;a1N@ log~N!#1/4. ~2.13!

If there does exist a collapse transition then one would
pect that this scaling extends~with a constanta1 that de-
pends on temperature! down to the transition point. In the
collapsed phase the polymer is expected to assume a d
configuration on average and hence the globular value of
radius-of-gyration exponent isng51/d51/4 @6# with

RN
2 ;a2~v!N1/2. ~2.14!

Finally at some finite transition temperature 1.0,v t,` a
Gaussian scaling of the radius of gyration should occur,
is

RN
2 ;auN, ~2.15!

so thatn t51/2. This Gaussian scaling is often used~theoreti-
cally at least! to define theu point v5vu of an isolated
polymer so thatv t5vu . The universal ratioBN is expected
to converge to the valueB`51/2 both in the swollen phas
and at vu . However, one would expect slow logarithm
corrections forv,vu and algebraic corrections atvu . For
v.vu the phase is no longer expected to be critical and
B` is no longer universal and may be a nonconstant func
of v.

One can also consider the scaling of the partition funct
in each of the regimes, given that there is a transition.
high temperatures 1.0,v,vu , one expects the infinite tem
perature behavior, which is@31#

ZN;b1~v!m~v!N~ logN!1/4, ~2.16!

while at low temperatures@28# one expects asymptotics o
the form

ZN;b2~v!m~v!Nms~v!N3/4
Ng, ~2.17!

wherems is related to the surface free energy of the polym
globule and the exponentg need not be universal~we only
write it for completeness of the asymptotic form!. For v
5vu one expects

ZN;bum~vu!N ~2.18!

as a reflection of Gaussian behavior.
In the thermodynamic limit the thermodynamic functio

f `(v), U`(v), andC`(v) are all expected to be analyti
functions ofv except atvu . By using the correspondence
the tricritical model@6# the mean-field theory would imply
that the specific heat had a jump discontinuity atvu since
a522c50. Of course, for finiteN there is no sharp tran
ge

t.
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sition for an isolated polymer~unless one examines a ma
roscopic number of such polymers!. Around the collapse
temperature inthree dimensions the finite-size correction
are expected to take on a crossover scaling form@6# so that

RN
2 ;auN R„~T2Tu!Nf

… ~2.19!

with f51/2 but this form implies that the transition i
rounded and shifted on thesamescale ofN2f and so its
applicability to four dimensions needs careful thought.

III. THE THEORY OF KHOKHLOV, LIFSHITZ, AND
GROSBERG „KLG …

We now review the results of Khokhlov@25# paying spe-
cial attention to the predicted behavior of the quantities
have calculated. The theory originally proposed by Lifsh
for the general mean-field description of the globular sta
extended by Lifshitz, Grosberg, and Khokhlov to fully d
scribe the transition, and finally applied to four dimensio
by Khokhlov @25#, is based on several phenomenologic
mean-field assumptions. First, there exists a state where
excluded volume property of long chain molecules is exac
cancelled by the attractive interactions between parts of
polymer as mediated by the solvent. This is theu state. Sec-
ond, when the attraction becomes even stronger, there e
tuates a globular state where the polymer behaves as a li
drop. The results of the theory are based on a phenom
logical free energy of that globular state relative to the fr
energy of the pure Gaussian state of theu point atTu . Hence
the condition applied to find the finite-size position of th
transition is to equate the relative free energy to zero. T
relative free energy is given as

FN5Fbulk1Fsur f ace, ~3.1!

where theFbulk andFsur f aceare given in terms of the secon
and third virial coefficients, the length of the chains, and
linear size of the polymer found from the globular density.
particular both the bulk and surface free energies are pro
tional to the square of the second virial coefficient. It is a
sumed that on approaching theu point the second virial co-
efficient goes to zero linearly with temperature while t
third virial coefficient remains nonzero. Note that this im
plies a quadratic dependence of the bulk free energy on
distance to theu point. Since the free energy has expone
22a this implies an exponenta50 ~assuming that this par
of the free energy is singular!. Therefore a second-orde
phase transition occurs in the thermodynamic limit.

It is further assumed that the density in the globule
proportional to the second virial coefficient and hence a
goes to zero linearly with temperature on approaching thu
point (b51). By applying the conditionFN50, Khokhlov
@25# finds a finite-size transition temperatureTc,N that ap-
proaches theu temperature from below asN21/3. Applying
this result to the ISAW model gives

vc,N2vu;
s

N1/3
~3.2!

for some constants. That is, the polymer collapseshift ex-
ponent is 1/3.
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3784 PRE 62T. PRELLBERG AND A. L. OWCZAREK
Now Khokhlov @25# found that the free energy~for T
,Tu) can be rewritten in terms ofTc,N as

FN;2NT~Tu2T!2S 12UTu2Tc,N

Tu2T U3/4D . ~3.3!

Actually KLG’s unwritten assumption is thatFN is the mini-
mum of zero and the right-hand side of Eq.~3.3! so it is zero
for Tu,T,Tc,N . Khokhlov @25# deduces that the width o
the transitionDT at finite N can be found from this and
scales asN22/3. Hence the ISAW model should have a tra
sition width Dv that scales as

Dv;
w

N2/3
~3.4!

for some constantw. That is, the polymer collapsecrossover
exponent is 2/3. Hence note that the size of the crosso
region is asymptotically small relative to the shift of th
transition, and that crossover forms such as Eq.~2.19! may
not be useful.

Even though there can be no sharp transition for a sin
polymer of finite lengthN, the theory can describe the natu
of the rounded transition by considering the difference
tween the density of the globular staterg at Tc,N and that of
the coil staterc at the same temperature. This is

rg~Tc,N!2rc~Tc,N!

rc~Tc,N!
} N2/3, ~3.5!

which diverges asN becomes large. Hence Khokhlov@25#
concluded that ‘‘the coil-globule transition is first order,
though we now interpret this to mean that the finite-s
corrections to the thermodynamic second-order transition
first-order-like.2 However, bothrg(Tc,N) and rc(Tc,N) tend
to zero asN→` and it is simply thatrg(Tc,N) tends to zero
asymptotically slower thanrc(Tc,N) that makes the relative
difference quoted above diverge. Noting thatr5N/R4 and
Rc;N1/2, the above equation can be used to deduce the s
ing of RN at Tc,N as

RN~Tc,N!;acN1/3. ~3.6!

Hence we define an effective radius-of-gyration expon
nc51/3 for the scaling of the size of the polymer when fo
lowing the finite-size transition temperatures. Note that t
exponent value obeysnu51/2.nc.ng51/4.

Following the work of Lifshitz, Grosberg, and Khokhlo
@27# one can also calculate the change in the internal ene
over the crossover width of the transitionDT as the latent
heat~or ‘‘heat of the transition’’! by using expression~3.3!:

DU;
uc

N1/3
. ~3.7!

The corresponding height of the peak in the specific hea

2We point out that the terminology of Khokhlov was presumab
that explained in Sec. I C 2 of@27# but may be misleading to the
modern reader.
er
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is

CN~Tc,N!;hc N1/3. ~3.8!

So to summarize the picture so far, the theory predict
thermodynamic second-order transition at au point with a
jump in the specific heat. For finite polymer length this tra
sition is shifted below theu point by a temperature of the
order of O(N21/3) with the width of the transition of the
order ofO(N22/3). Over this width there is a rapid change
the internal energy that scales asO(N21/3): the important
point here of course is that this tends to zero for infin
length so the effect of the peak in the specific heat is sca
away forN large, leaving a finite jump in the thermodynam
limit. To understand this further let us consider the distrib
tion of internal energy as a function of temperature a
length. For any temperature above theu point and well be-
low Tc,N one expects the distribution of internal energy
look like a single peaked distribution centered close to
thermodynamic limit value: a Gaussian distribution is e
pected around the peak with varianceO(N21/2). In fact, this
picture should be valid for all temperatures outside the ra
@Tc,N2O(N22/3),Tc,N1O(N22/3)#. When we enter this re-
gion we expect to see a double peaked distribution as
first-order transition region. For any temperature in this
gion there should be two peaks in the internal energy dis
bution separated by a gapdU of the order ofdU'DU
}O(N21/3). Each peak is of Gaussian type with individu
variances again of the order ofO(N21/2). Hence asN in-
creases, the peaks will become more and more distinct
relatively sharper but the peak positions will be getti
closer together. We refer to this scenario as apseudo-first-
order transition or, more correctly, as first-order-like finit
size corrections to a second-order phase transition. If th
were a real first-order transition then the distance betw
the peaks should converge to a nonzero constant.

IV. PERM

We have simulated ISAW usingPERM, a recently pro-
posed generalization of a simple kinetic growth algorith
@20,21#. PERM builds upon the Rosenbluth-Rosenblu
method@32#, in which walks are generated by simply grow
ing an existing walk kinetically, i.e., by choosing the ne
step with equal probability from all possible accessible l
tice sites. Eventually, a walk generated thus gets trapped
configuration in which it cannot be continued, leading ge
erally to an exponential ‘‘attrition.’’ Moreover, in order to
simulate ISAW at a particular temperature, one needs to
weight the kinetically grown samples in such a way that
generated sample is usually dominated by a few configu
tions that carry large weight after the reweighting.

In order to overcome these obstacles,PERM uses a com-
bination of enrichment and pruning strategies to gene
walks whose weights are largely distributed around the
pected peak of the distribution. On the one hand, if
weight of a configuration becomes too small, the configu
tion gets pruned probabilistically and the weight adjus
correspondingly. Alternatively, if the weight of a configur
tion becomes too large, copies of the walk are made and
respective weights reduced accordingly. While this does
eliminate trapping, it is generally sufficient to compensa
for it: trapping occurs when the end of the walk is in an ar
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of high density, which in turn increases the likelihood
enrichment. The algorithm can be implemented in a s
tuning way by choosing dynamically adjusted upper- a
lower-threshold values to control pruning and enrichm
rates.

It is plausible that the algorithm works best at tempe
tures in which the thermal distribution is close to the dis
bution of walks generated by kinetic growth. In sufficient
large dimensions, this temperature should be quite clos
the u temperature, so that the algorithm is expected to
well suited to the study of polymer collapse. As mentioned
the introduction, there are lattice models of interacting po
mers for which there is an exact mapping of the correspo
ing kinetic growth models to their respectiveu points, in
which case aPERM simulation at theu temperature reduce
to simple kinetic growth. In fact, it turns out that the alg
rithm performs well over a whole range of temperatures c
ering all of the swollen phase and the scaling regions aro
the collapse transition. However, we find that the perf
mance ofPERM in the collapsed phase is far less satisfacto

The guiding principle for any choice of implementatio
should be the observation@20# that the algorithm essentiall
produces a random walk in chain length with reflecti
boundaries at 0 andNmax. Considered in such a way, th
algorithm performs best if this random walk is unbiased a
if the associated diffusion coefficient is large. To elimina
bias, pruning, trapping, and enrichment rates have to c
pensate each other. To maximize the diffusion coefficie
the pruning and trapping rates have to be as small as
sible. The choice of pruning and enrichment thresholds ne
to take both into account.~In contrast with the original work
on PERM, where trapping was viewed as a special case
pruning, we find it instructive to distinguish between the
two effects: trapping is unavoidable due to the geometry
the lattice, whereas pruning is done optionally to adj
weights.!

In our implementation, we chose upper and lower thre
olds Wu and Wl proportional to the current estimate of th
average weight of a walk at lengthN, ^ZN&/sN , wheresN is
the number of generated samples at lengthN, and^ZN& is the
current estimate of the partition function at lengthN. That is
to say,

WN
u 5cN

u ^ZN&/sN , WN
l 5cN

l ^ZN&/sN . ~4.1!

In order to enforce an even sample size distribution we al

FIG. 1. Re,N
2 /N versusv for lengths N51024, 2048, 4096,

8192, and 16 384. The error is less than the size of the symbo
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for dynamic adjustment ofcN
u andcN

l . Thus, if for example,
at any particular length, we have an excess of pruning,
algorithm ‘‘relents’’ and increases bothcN

u andcN
l in order to

reduce pruning and enhance enrichment, keeping the q
tient of the thresholdsQ5cN

u /cN
l constant. To stabilize the

dynamic adjustment, we enforcecN
u .cmin

u and cN
l ,cmax

l .
After some initial experimentation, we chosecmin

u 52 and
cmax

l 51/2, which leaves us with the threshold quotientQ as
the sole adjustable parameter.~We also experimented with a
dynamic length-dependentQN , but the dynamic adjustmen
seemed to be too unstable to pursue this avenue further.! For
each run, we attempted to choose the smallest threshold
tient Q for which we could obtain an even sample size d
tribution.

The disadvantage ofPERM is that due to the enrichmen
the generated data is not independent. All the data gener
during one ‘‘tour,’’ i.e., between two successive returns
the algorithm to length 0, is correlated. Therefore, we ke
track of the statistics of tour sizest to get a rough idea of the
quality of the data. In our statistical evaluation we u
~somewhat arbitrarily! the quotient ofsN andA^t2& as a mea-
sure of an effective independent sample size. This is cor
as long as the tour sizes don’t fluctuate too strongly, a
more importantly, as long as individual tours explore t
sample space evenly. When simulating in the collap
phase, both of these assumptions break down, and the sa
is dominated by few huge tours. Moreover, the pruning a
enrichment rates become so large that the efficiency of
algorithm is significantly decreased.

FIG. 2. Re,N
2 /N versusN at v51.0 andv51.1. The curves are

fits to Re,N
2 /N5a log(N1b)c over the shown range.

FIG. 3. Re,N
2 /N versus 1/N in the u region: v51.180, 1.181,

1.182, 1.183, and 1.184 from top to bottom.
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For further details of the algorithm and suggestions
various other improvements such as Markovian anticipat
we refer to Refs.@21# and @22#.

V. RESULTS

We simulated ISAW on a four-dimensional hyper-cub
lattice usingPERM with Nmax set to 1024, 2048, 4096, 8192
and 16 384 at values ofv ranging from 1.0 to 1.4 (Nmax
51024) to 1.2175 to 1.2225 (Nmax516 384) and the thresh
old quotientQ ranging from 10 to 160. At each fixedv, we
generated 107 walks. To illustrate the computational effor
the generation of a sample of size 107 at length Nmax
516 384 took about 2 weeks CPU time on a 600 MHz DE
Alpha.

We computed statistics forRe,N
2 and Rm,N

2 , the partition
function ZN , the internal energyUN , and specific heatCN .
Moreover, we generated the distribution of the number
interactions atNmax. The distributions obtained at variou
temperatures were then combined using the multiple hi
gram method@33#.

Error bars, when given, are based on our method of e
estimation as described in the previous section. This met
gives reasonable error estimates in the swollen regime u
the u point. On the other hand, in the collapsed regime o
highly subjective error estimates are possible. Therefore
error bars are given in e.g., Figs. 11 and 14, even though
data has converged sufficiently.

FIG. 4. Re,N
2 versusN for v51.4.

FIG. 5. ZN /mN versusN at v51.0 andv51.1. At each value of
v, three different values ofm are shown. We estimatem(1.0)
56.774 04(2) andm(1.1)56.896 99(2). The filled circles corre-
spond to the central estimates ofm while open circles correspond t
shifting m by the error estimate quoted.
f
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In discussing our findings on the nature of this polym
collapse transition, it is natural to first present the change
size of the polymer as the interaction strength changes
Fig. 1, we display the mean-squared end-to-end distance
malized by walk length,Re,N

2 /N for lengths 1024 up to
16 384~we have analogous data for the quantityRm,N

2 /N). As
discussed, one expects this quantity to increase logarith
cally in N in the swollen regime, approach a constant a
random-walk-likeu point, and decrease inN as a power law
in the collapsed regime. As can be seen clearly from Fig
there is indeed a transition from a swollen region, where t
parameter increases withN to a collapsed region, where th
value has dropped sharply. In the transition region, howe
two phenomena can be noticed. On the one hand, arounv
51.18, the quantityRe,N

2 /N approaches a constant, which
indicative of u point behavior. On the other hand, the co
lapse occurs in a region that is well separated from thiu
point. With increasing polymer length, the region where t
collapse occurs approaches theu point, but simultaneously
sharpens so strongly that it remains well separated from

In the swollen phase, our results are in corresponde
with the logarithmic corrections seen by Grassbergeret al.
@34#, see Fig. 2. As in that paper, we observe thatRe,N

2 grows
asN(logN)c, albeit not with the exponent predicted by fie
theory. At v51.0 we findc50.30. This value shifts toc
50.22 at v51.1, indicating the presence of stron
temperature-dependent correction terms.

Near the suspectedu point, we extended our simulation
to walks of length 32 768. Figure 3 shows a plot ofRe,N

2 /N

FIG. 6. ZN /mN versus 1/N using our best estimates ofm in the
u region: v51.180, 1.181, 1.182, 1.183, and 1.184 from top
bottom.

FIG. 7. Finite-size free energykN versusN21/4 for v51.4. The
error is less than the size of the symbols.
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versus 1/N for values ofv between 1.180 and 1.184. Atv
51.182(1) we have indeed an asymptotically linear dep
dence ofRe,N

2 on N. Moreover, atv51.182 we estimate
from our dataBN5Rm,N

2 /Re,N
2 50.500(1), which is also in-

dicative of Gaussian behavior.
As was already seen from Fig. 1, the collapse happ

very rapidly asv increases. An alternative way of visualiz
ing this is to consider how the size of the polymer change
fixed v in the collapsed phase as the lengthN increases. As
shown in Fig. 4 forv51.4, Re,N

2 changes nonmonotonicall
in N! After an initial increase, the size of the polymer act
ally shrinks aroundN5250 as it undergoes collapse3 corre-
sponding to a rapid increase of the density. For large eno
N, we expect to see the true collapsed behavior, i.e.,Re,N

2

growing again asN1/2, but this regime is beyond the reach
our PERM simulations on current computer hardware.

The swollen phase and theu-point behavior can also b
clearly identified from the free-energy scaling. In the swoll
phase we find again the same behavior as Ref.@34#. Figure 5
showsZN /mN for v51.0 andv51.1. For eachv, this quan-
tity is plotted with three values ofm, which differ in the sixth
digit, showing both the accuracy in the estimation of the f
energy and the presence of logarithmic corrections. Atv
51, we estimatem(1)5mSAW56.77 404(2). Our estimate
is based on Fig. 5, where the central estimate is comme
rate with a power-law dependence ofZN /mN on logN, while
the estimate obtained by shiftingm by the error quoted is
not. This can be compared to earlier estimates of 6.7720
@35#, 6.774(5)@36#, and 6.774 04(3)@34#.

In the u region, a similar analysis shows that hereZN
scales asmN with weak 1/N corrections. Figure 6 show
ZN /mN plotted versus 1/N, with respective values ofm ob-
tained in a similar fashion to the one shown in Fig. 5. W
estimate theu point to bevu51.182(1) andmu57.011(2).
@At fixed v, the accuracy is of course higher: forv51.182,
we estimatem57.011 767 5(5).#

In the collapsed region, one expects the finite-size f
energy to have a strong correction term of the orderN21/4

3Note that this lack of monotonicity isnot an indication of a
first-order transition. A similar nonmonotonous behavior can be
served for ISAW in three dimensions, where the collapse transi
is second-order@2#.

FIG. 8. Internal energyUN versusv for lengthsN51024, 2048,
4096, 8192, and 16 384 from right to left, respectively, using
multihistogram method.
-

s
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e

due to surface effects. Figure 7 shows this forv51.4. As
argued above, the globule collapses when the length is ab
N5250, and we notice here the onset of a correspond
strong change in the behavior of the finite-size free ene
around this length (N21/4'0.25). Even though we canno
simulate long enough chain lengths to clearly determine
precise nature of the correction term, our data is certa
compatible with aN21/4 correction forN21/4,0.2.

In order to study the collapse transition more closely,
now focus our attention on the internal energy and spec
heat. As can be seen from Figs. 8 and 9, the internal ene
increases rapidly over a small temperature interval with
corresponding diverging specific heat. AsN increases, the
transition becomes sharper and stays well separated from
u point, even though the location of the transition approac
the u point slowly.

The scaling of the shift of the transition towards theu
point vc,N2vu and the sharpening of the transition wid
Dv are both shown in Fig. 10. Here, we defined the locat
of the collapse transition by the location of the specific-h
peak, and the width of the transition is given by the interv
in which the specific heat is greater or equal to half the va
of the peak height. Expecting from the KLG theory th
vc,N2vu scales asN21/3 and thatDv scales asN22/3, we
plot both N1/3(vc,N2vu) and DvN2/3 versusN22/3 which
was chosen empirically. Both quantities can be seen to
asymptotic to constants: on the graph extrapolations g
nonzero intercepts. Hence, Fig. 10 shows that the KLG p

-
n

e

FIG. 9. Specific-heatCN versusv for lengthsN51024, 2048,
4096, 8192, and 16 384 from right to left, respectively, using
multihistogram method.

FIG. 10. Scaling of the transition: shift and width of the collap
region. Shown are the scaling combinationsN1/3(vc,N2vu) and
N2/3Dv versusN22/3.
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dictions are compatible with our simulations. We do no
that the corrections to scaling forDv are much larger than
for vc,N2vu .

The character of the transition becomes apparent if
plots the internal energy density distribution~rescaled den-
sity of interactions! at the finite-size collapse transitionvc,N .
Figure 11 shows the emergence of a bimodal distribution
length 2048 one sees a slight nonconvexity, which at len
16 384 has evolved into a distribution dominated by t
sharp and well-separated peaks. The values of the min
and maxima of the distribution are different by two orders
magnitude.

It is instructive to study the transition by how this distr
bution changes over a large range ofv. Figure 12 shows this
for N54096. One sees that there is not much of a chang
the shape and location of the distribution between the n
interacting casev51 and theu point v51.182. However,
in a very small interval around the collapse transition,
density distribution changes dramatically asv increases. The
density distribution switches from a peak located around
to a peak located around 0.55, corresponding to a sud
change in the internal energy. In the collapsed phase,
width of the peak is much wider than in the swollen pha
implying a larger specific heat. It is this difference betwe
the swollen and collapsed phases’ specific heats that
eventually become the thermodynamic second-order jum

The rapid first-order-like switch between two peaks in t
distribution becomes more pronounced at larger polym
lengths. AtN516 384, this ‘‘switching’’ is shown in Fig. 13:

FIG. 11. Internal energy density distributions atvc,N for 2048
and 16 384. The more highly peaked distribution is associated
length 16 384.

FIG. 12. Internal energy density distributions atv51.0, 1.182,
1.2465, and 1.26 forN54096.
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over a range ofv of the order of 1023, a peak nearx50.3
disappears while another peak nearx50.5 emerges.

Returning to the scaling predictions from KLG theory,
suitably defined finite-size latent heat,DQ, should tend to
zero asN21/3 in the thermodynamic limit. One possible me
sure of this latent heat is given by the product of speci
heat peakCN(vc,N) and specific-heat widthDv, and another
is given by the distancedU of the peaks in the bimoda
internal energy distribution. Figure 14 shows the behavior
both of these quantities. One notices two things from t
figure. First, we are unable to confirm or deny the predic
scaling behavior forDU and, second, even at lengthN
52048 (N21/3'0.08) there is considerable discrepancy b
tween the two quantities, so that it is not surprising that o
cannot discern a clear scaling behavior. The explanation
the discrepancy between the two quantities as well as of
difficulty of observing the predicted scaling behavior is
course that in order to observe the asymptotic behavior
two peaks in the histogram have to be well separated
distinct, and we see from Fig. 11 that this is only the ca
when N is of the order of 104. This explains why we are
unable to find a value for the exponent related to the div
gence of the specific heat consistent with the rest of
theoretical picture. We do concede that Fig. 14 alone co
be used to argue for the existence of a real first-order tra
tion in the thermodynamic limit, but we believe the rest
our data and other theoretical facts provide a more consis
picture.

In conclusion, our ISAW simulations elucidate the stru
ture of the polymer collapse transition in four dimension

th
FIG. 13. Internal energy density distributions atv51.2195 and

1.2210 forN516 384.

FIG. 14. Scaling of the latent heatDU: our two measures of
DU, CN(vc,N)Dv and peak distancedU are plotted versusN21/3.
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We show conclusively that there is indeed a collapse tra
tion at a finite temperature. Secondly, we find evidence fo
u temperature at which the polymer is well approximated
Gaussian behavior as well as for a collapse transition tha
well separated from theu point. The collapse transition
shows many first-order-like features, such as a bimodal
tribution in the internal energy. An analysis of the scali
behavior of this transition in the context of the theory
Lifshitz, Grosberg, and Khokhlov@27,25# shows that a con-
sistent interpretation of these findings is that of first-ord
like finite-size corrections to a thermodynamic second-or
transition. We note that these findings are reminiscent
results for interacting self-avoiding trails on the diamond l
tice, where au point was found in@19# and subsequent simu
lations revealed a bimodal distribution in the internal ene
density@37#. In Ref. @19# it was concluded that the transitio
is second order, whereas in Ref.@37# the conclusion was tha
l
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a
y
is

s-

-
r
f

-

y

the transition is first order. In the context of the findin
presented here, it is tempting to expect a similar resolution
this apparent contradiction in terms of a pseudo-first-or
transition.
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