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Coupling between meniscus and smectié-films: Circular and catenoid profiles, induced stress,
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In this paper we discuss the formation and shape of the meniscus between a free-standing film of @Asmectic-
phase and a walin practice the frame that supports the filithe wall may be flat or circular, and the system
with or without a reservoir of particles. The formation of the meniscus is always an irreversible thermodynamic
process, since it involves the creation of dislocations in the tibkkrefore it involves friction The four basic
shapes of meniscus discussed are the following: exponential, algekf&)c €ircular, and catenoid. Three
principal regions of the whole meniscus must be distinguished: close to the wall with a high density of
dislocations, away from the wall with medium density of dislocations, and far from the(iveallclose to the
film) with a low density of dislocationgvicinal regimg. The region with medium density of dislocations is
observable using a microscope, and is determined by the competition between surface tension, energy of
dislocations, and pressure difference set by the mass of the meniscus or by the reservoir. Its profile is circular
as observed in recent experimeffs-C. Geninard, R. Holyst, and P. Oswald, Phys. Rev. L&8, 1924
(1997]. By contrast, the vicinal regime with low density of dislocations is never observable with an optical
microscope. In the regime with a high density of dislocations, the reasons why the dislocations tend to gather
by forming giant dislocations and rows of focal conics are discussed. Finally, we discuss the stability of a
smectic film with respect to the formation of a dislocation loop. We show experimentally that the critical radius
of the loop is proportional to the curvature radius of the meniscus in its circular part, in agreement with the
theory. In addition, we show that the mobility of edge dislocations measured in thick films is in agreement with
that found in bulk samples from a creep experiment. This result confirms again our model of the meniscus.

PACS numbe(s): 61.30.Eb, 61.30.Jf, 68.16m

I. INTRODUCTION h(x)=hgexp(—x/l;). (1.9
The size of the meniscus in ordinary liquids is set by theThe experiments performed on smectic liquid crystal films
capillary length[1] give completely different resulf®]. First of all the size of
the smectic meniscus may be about two orders of magnitude
yia) Y2 smaller than the simple estimate based on the capillary
le= pg) (1.1 length given by Eq(1.2). Moreover, its shape is circular and

not exponential. These observations called for some theoret-

which reflects the competition between the gravity and thécal explanation, and it is the purpose of this paper to de-
surface tension in the creation of the meniscus. Hegreis  Scribe the formation of smectic meniscus and to describe the
the liquid-air surface tensiop,is the liquid density, andis  differences between simple liquids and smeétidiquid

the gravitational acceleration. The height of the meniscus &&rystals. As far as we know the problem of formation of a
the wall h, is set by the competition between the capillarity Meniscus in complex liquids has just started to be studied

forces and the gravitjfFig. 1(a)], ,
J ¥Fig ] The paper is organized as follows. In Sec. Il we discuss

—si 12 the main differences between the formation of a smectic me-
YLa(l—sing) . : ; : -
_— (1.2 niscus and a meniscus in ordinary liquids. In Sec. Il we

P9 derive the form of the meniscus for smectic liquid crystals
near a flat wall. In Sec. IV we discuss the stability of a
smectic film with respect to the formation of a dislocation
B loop, and we show that our theoretical model is in agreement
YwaAT YwL (1.3  With the experiment.

YLA

ho: ( 2
and ¢ is a contact angle at the wall given by

cosé=

. . Il. FORMATION OF A MENISCUS IN SMECTICS
The following surface tensions appeaf:a, ywL, andywa,

whereW stands for wallL for liquid, andA for air. Taking Molecules in smectié liquid crystal are arranged in lig-
typical values we find that the horizontal size of the menis-uidlike layers parallel to each other. The distance between
cus is of the order of 0.2 cm, and that is why we can see ithe layersd~30A is set by the length of the liquid crys-
easily. Far away from the wall, located»at 0, the meniscus talline molecules [<d=<2l). Dislocations, known from the
has the exponential form theory of solid structurg4], also appear in smectic liquid
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thermodynamic state, the meniscus will be different in these
two cases.

Another difference between ordinary liquids and smectics
is more subtle, yet it determines the shape of the smectic
meniscus and explains the metastability of the films. Indeed,
it is common knowledge that, due to mechanical equilibrium,
an isotropic liquid in contact with air must have the same
pressure as the air if its interface is flat. However, this does
not have to be so in a smecticliquid crystal, because its
layers are elastic and can support a normal elastic stress. This
stresso can equilibrate any pressure differendg=p,;

— Psmectic IMposed by the meniscus, providing it is not too
large(this point will discussed belowThis remark is crucial
for understanding thenetastabilityof smectic free-standing
films where we know that the numben of layers can be
experimentally controlled one by one from very large
down tom=2 [9,10]. It also explains why the film tension
linearly depends on its thickness=md,

T:2'ySA+ApH, (21)

whereys, is the surface free energy of the smectic-air inter-

face. This law has was found experimentally in R§®s.11].

Finally, the stress will be permanent in the film if the system
FIG. 1. Schematic representation of the water-air meniscus neas not coupled to a reservoir of particles at the same pressure

a vertical wall(a), and of the meniscus between a smectic film andas Pair» With a value directly related to the total volume of

a vertical wall(b). Regions(1)—(3) are defined in the text. the meniscus. More precisely, we will show in Sec. llI that

the meniscus profile is essentially circul@] (of radiusR)

crystals[5-8]. _If we want to (_:hange the number of layers in |nse to the film, and that the stress- — Ap is related toR
a monodomain of a smectic sample, we have to nucleatgy the Laplace law

elementary edge dislocations. An elementary dislocation

changes the number of layers of the sample by one; in prin- Ysa

ciple one can have edge dislocations that change the number R= A_p (2.2
of layers by more than one layer. The nucleation of disloca-

tions has a clear implication for the formation of the menis-|t is important to note that the elastic strass/anishes on
cus that forms between a free-standing film and its supporyerage inside the meniscus because the dislocatidrish
namely, the height of the meniscus depends on the process @ know to be repulsed by free surfaces in smeatjghases

its creation, i.e., on the number of dislocations created during12]) can climb parallel to the layers to relax the stress. We
the process. If the number of dislocations in the meniscus iglso emphasize that all these results are true providing that
N, its height at the wall is fixed, and is equalMol. Here we  we neglect the elastic interactions between dislocations,
assume that the smectic layers are perpendicular to the vejhich we know to be true when they are located in the same

tical wall of the frame. plane[7,8]. Below, we discuss the meniscus shape in more
In simple liquids, the height of the meniscus given by details.

Egs. (1.2 and (1.3 does not depend on the process which
leads to its creation, while in smectic liquid crystals the
height is fixed by the process. Because the energy barrier for
the creation of an edge dislocation is usually much greater
than the thermal energy, the capillary forces do not play any Let us assume that we have a flat wall in contact with the
role in determining the meniscus height. This is the first cleasmectic. Thez axis is along the wall, and the axis is per-
difference between simple liquids and smectic liquid crys-pendicular to the wall.
tals. In smecticA liquid crystals, we distinguish three principal

Needless to say, the creation of the meniscus in an ordiregions of the whole meniscUyfig. 1(b)]: close to the wall
nary liquid can be obtained in a reversible process. In awith a high density of dislocations, away from the wall with
smectic this is not true, and any process leading to the crea medium density of dislocations, and far from the wad.,
ation of the meniscus is irreversible. This is due to the neclose to the film with a low density of dislocations. In the
cessity to nucleate dislocations. first region(the least knownthe dislocations group together

It is therefore obvious that in an ordinary liquid the final to form giant dislocations of very large Burgers vectQuip
state of the meniscus will be always the same irrespective db hundreds of layejs These dislocations are unstable with
the particular process leading to its creation. This is not trugespect to the formation of focal coni¢&3], and turn into
in smectics, where different processes may lead to differertoily streaks” which are well visible through the micro-
final states. In one process we may creMidislocations, and scope[14]. In the region with a medium density of disloca-
in the otherN+1, and, although we may reach the sametions the typical distance between the dislocations is smaller

) meniscus film

Ill. SHAPE OF THE SMECTIC MENISCUS
NEAR A FLAT WALL
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| region where the dislocations are far apart from each other to
I S be considered as independg¢FRtg. 2(a)]. This condition is
I_M fullfilled if the distanceA between two neighboring disloca-
J 1. H tions is larger than the widtkV of the distorsion they pro-
! b duce at the free surface. According to Réfl2], W
I__f—f_-h I =2\27\D/f(&), whereD=H+2h is the total thickness
I | [H is the thickness of the flat film, arfu(x) is the height of
0 x'=x' the meniscus above the flat fijmh={K/B is the smectic
penetration length, anfl ¢) is a function of the dimension-
less parameteré=(ysa— VKB)/(ysa+ VKB). Function
f(&) varies from 1 to 0 wherg varies from O to 1, but is
always very close to 1 with usual valueskfB, andyg, in
smecticgK is the bending modulus of the layers, @dtheir

smooth surface

1 compressibility modulus Thus condition
_+-:|-H-|-|-;-|-|-|—-|-|_-|-:-c——-|~ -4 ‘H
A=2\2m7\D (3.13

X=X¢

must be satisfied in the vicinal regime. In this case, the film
| surface is flat between two dislocations so that the excess of
{b) x=0 the surface free energy may be included in the self-energy of
) ) o ) ) ) each dislocation. This way, the calculation of the shape of
FIG. 2. (a) Meniscus in the vicinal regime. The dislocations are ho meniscus is the same as in the theory of s¢lid§ The
well separated(b) Meniscus in the regime with medium density of main steps of the calculation are the following.
dislocations. The distancA between two dislocations is smaller First of all, we assume that the Burgers vedaof each
than the widthW of the distortion produced by one dislocation at i, ation is equal to the layer thicknessand that the total
the surface. In this fimit, the surface is smooth. number of dislocations is fixed and given bia2d, where
) i ) i ho=h(x=0) is the height of the meniscus at the wall. The
than the size of typical deformations at the surface induced;rf5ce energy is constant because the surface between the
by a single dislocation, but large enough to prevent the forgisiocations is flat.
mation of giant dislocations and focal conics. This part of the  Now the free energy associated with the dislocations must
meniscus was studied experimentally and theoretically inontain their self-energy and the interactions between the
Ref. [2], but is described here theoretically in more detail. gisjocations. There are two contributions to the dislocation
Finally, when the typical distance between dislocations beisteractions: one is entropic and one is elastia the defor-
comes larger than the typical size of the deformation of thg5tions of the free surfageThe former has the form/(x
surface one enters the vicinal regime, which we discuss for_Xr)z, wherex andx’ are the locations of two dislocations.
the first time in this paper, to our knowledge. We emphasizerne "coefficientA depends on both the temperature and the
that .in the first region the.energy of foca} conics a”d_theenergyE of the dislocation§15], and scales likeKgT)%/E.
gravity play most probably important roles in the determina-thg |atter decreases exponentially with the distance between
tion of the shape of the meniscus. In the second region, thg,e dislocationg 8] [as exp-(x—x')?]. Numerical calcula-
surface tension, pressure difference, and energy of dislocgng show that elastic interactions are negligible with re-

tions dominate, whereas in the third regiuicinal regime  gpect o entropic interactioridess than 109when A =|x
entropic interactions between dislocations are important. —x'|=3W. This condition, which reads

In the following, we describe the vicinal regime and the
intermediate region with medium density of dislocations. P
Their spatial extensions are also estimated. A=6y2m\D, (310

is more restrictive than Eq3.19. We assume it is satisfied
A. Vicinal regime in the vicinal regime. Finally, we assume that the interactions
. . . . are restricted to the nearest neighbors. This way, the elastic
In this section we calculate the meniscus profile in the

vicinal region, and in particular estimate its vertical size. Foroergy of the system witN dislocations minus the energy of

simplicity we will set the boundary conditions at the wall, the system with zero dislocation per unit length is given by
neglecting for a moment the two regions of medium and high N A

density of dislocations, and assuming that our vicinal region N _

extends from the wall up to infinity. We find that the vertical F(x)= ;2 |Xi—Xi_1]? EN+2(yws™ ywa)ho,

size of the vicinal region is comparable to the smectic period (3.2

d. It means that the vicinal region is so small that from the

practical point of view it can be neglected, since it cannot bevherex; is the distance of theth dislocation from the wall.
even observed in the experiments. Below we present a d&-he following surface tensions appeaga, yws, andywa.,
tailed discussion and calculations. At the matching point bewhereW stands for the wallS for the smectic, ané for the
tween the film and its meniscus, the distance between dislair. If the system is not connected to a reservoir of particles,
cations must diverge. As a consequence, there should existtiaen the volume of the meniscus is fixed, i.e.,
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N-1 B. Region with a medium density of dislocations

X1ho+ ;1 [Xi+1=Xi|h;=const, (3.3 According to the previous discussion, the dislocations are

always so close to each other that they can never be consid-
where hj=(N—i)d/2 is the thickness of the meniscus be- €red as independent. Moreoveér<6y27\D in the region
tween dislocations andi + 1. The shape of the meniscus is 0bservable with an optical microscope. In this limit the dis-
given by the locationx; of the dislocations that minimize locations can be replaced by a continuous distribution of
Eq. (3.2) with condition(3.3). In the continuous fornteasier  Infinitesimal dislocations along the axis, so that the free

tends to the matching point with the filtatx= x;), since the

Xg 5 vicinal regime has a negligible extension, so we may set that
F[h]= fo dx A(p(x))°+2Ehg/d+2(yws— ywa)ho, h=0 at pointx=x;. The energy of the system minus the
3.4 energy of the system with(x)=0 per unit length is then
' given by[2]

where p(x) = —(2/d)(dh/dx) is the density of dislocations

per unit length, andh(x) the height of the meniscus above F[h(x)]=2ySAfodx(\/1+(dh/dx)2—1)
the flat surface of the film. Conditiof8.3) is now given by 0

X¢

X —
2f 'dx h(x) = const. (3.5 +2(vws yWA)hOJFZApfO dxh(x)

0

Xt 2 dh
By taking condition(3.5) into account, minimization of —f dx Ea ax (3.10
Eq. (3.4) with respect tch(x) gives 0

127 d (dh\2 The first term corresponds to the excess of surface free
— _(_ +Ap=0. (3.6)  energy in the limit of a continuous distribution of disloca-
d” dx|dx tions in the midle plane of the film; the second tefwhich

is constant ifh, is fixed) corresponds to the change of sur-
face energy at the wall; the third term corresponds to the
32 work of the pressure/Ap is the difference between the air
, (3.7) pressure and the pressure in the smgcdiad the fourth term
describes the energy of the dislocations, that we assume to be
proportional to their local density(x)= —(2/d)(dh/dx)
wherea=27A/(d3Ap) is a characteristic length. The length and to some energig. The important point here is th&
x; and the differencé p=p,— Psmeciicoetween the air pres- does not depend explicitly dnanddh/dx, and corresponds
sure and the pressure in the smectic are obtained from the the core energy of the dislocations in the limit of a con-
boundary conditiorh(x=0)=h, and the condition of fixed tinuous distribution.

The solution of Eq(3.6) is

Xi—X
h(x)=a

volume[Eq. (3.5)]. In the system there are two boundary conditions
In practice Ap is fixed by the rest of the menisc@shich
plays the role of a reservgjrwhile hy may be defined as the h(x=0)=h, (3.11

maximal height of the meniscus above which condition

(3.1b fails. With this definition, hy/(d/2) represents the and

maximal number of dislocations in the vicinal regime. Equa- dh

tions (3.7) and(3.1b) give, by assuming thaiy<H, &(x=xf)=0 (3.12

ho 1 (kgT)? 1 . . .
2= at point x=x;, where the meniscus matches the smectic
42~ 27/3 EP2\2 ApnP?’ 38 P !

prr film. This condition is fulfilled if the interactions between the
two free surfaces are negligible, which assumes that the film

wherem is the number of layers in the free-standing film is thick enougHtypically, its thickness must be more than 50

(H=md). With d=30A, A=10A, andE=5x10"dyn layers, a point we will discuss in a forthcoming publication

we calculate(in CGS unit$ Another condition depends on whether the meniscus is
coupled to a reservoir of particles or not. If there is no res-
m_ 60 3.9 ervoir, then the total volume of the meniscus is fixed, and
dr2 Apm37 ) (3.9 this gives rise to the additional condition, i.e.,
In typical experimentsAp=100 dyn/cr? (see Sec. Y and ZJdex h(x) = const 31
m=3 which givesh,/(d/2)<0.3(sohy<H, as we assumed 0 () ' (313

above. This result shows that it does not make sense to

speak about the vicinal regime in typical experiments, andVith this condition, the point wheré(x)=0 (i.e., for x
that entropic interactions are negligible and always domi-=x;) and the pressure differendgp depend on the volume.
nated by elastic and surface tension effects. If the system is coupled to a reservoir of particlaq is
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_ ; These dislocations are rapidly unstable with respect to the
Him meniscus i formation of focal conics, and form strings of focal conics

: 3 : well visible in the thicker part of the meniscus. This phenom-
enon was explained by Boltenhagen, Lavrentovich, and Kle
man [13]. The first dislocation that nucleates has a typical
width of 1 um in the transmission microscope, which corre-
sponds to a Burgers vector of about 30 layers. The Burgers
vector then systematically increases when the meniscus
thickness increases. In Sec. Il C, we discuss at which con-
ditions giant dislocations may appear in the meniscus.

C. Formation of giant dislocations in the regime
with a high density of dislocations

It is well known that in smectics, the dislocations tend to

FIG. 3. Microscopic observation of a film and its meniscus : : . : .
. ) . > gr her to form giant disl ions. This effect i
using both transmitted and reflected monochromatic light. The m-g oup together to form giant dislocations s effect is due

. : : ) . to the fact that in a bulk sample, the elastic energy of a
terference fringes observed in the thinnest part of the meniscus glv&islocation is probortional to its Buraers vector. Then arounp-
the curvature radius of the meniscue=2.8 mm). Giant disloca- prop 9 ’ group

tions and chains of focal conics are visible in the thickest part of thd"9 N elementary dislocations together to form a giant dislo-

meniscus. The distanca,, defines the part of the meniscus in caton of Burgers vectond is energetically favorable, since
which the dislocations are elementary. it allows to reduce the core ener@yne core instead af). In

confined geometry, the situation is more complicated be-
given, which allows us to calculate the positiep of the  Cause of the influence of the surfaces that limit the sample. In

matching point and the volume of the meniscus. particular, the confinement effect and the interactions with
The minimization off[h(x)] with respect toh(x) gives the surfaces must be Faken into account. This problem is
the following equation for the profila(x): solved when the smectic is confined between a plane and a

sphere treated in homeotropic anchoring. In this case the
elementary dislocations first group together two by two, then

Ap— YSAtjE __dhdx =0. (3.14  three by three, and so on, when the thickness of the sample
X\ 1+ (dh/dx)? (and so the density of dislocationiacreases. This effect was

) observed experimentally both in thermotropic and lyotropic
Please note thdt does not appear in E(3.14) due to the  |iquid crystals[16,17.

specific form of the energy term associated with dislocations. ' The situation is similar inside a meniscus apart from the
Also, the forces acting between the wall and the smectic dgact that now, the two limiting surfaces are no longer solid

not appear in the boundary condition because the total heighfyt deformable. This difference is important and leads to a
of the meniscus at the wall is supposed to be fixed by thejifferent behavior.

number of dislocatiops. ) To analyze this problem, we first consider a circular me-
The second term in Eq3.14) can be rewritten as niscus of radius of curvaturi@ much greater thah,
(d2h/dx?) a1 1 ,
YSAT 1 (dhidx) 22" (3.19 h(x)= 55 (Xi=%)% (3.17

which is simply the curvature at point multiplied by the and we assume that all the dislocations are elemehFagy
surface tension. Thus Ed3.14) is nothing more than a 4(a)]. We then consider a set of dislocations at distance
Laplace law. Its solution is a circle of radiuR  A=x;—x from the rim of the film.

=(Ap/ysp, i.e., In which conditions is it energetically favorable to gather
these dislocation§Fig. 4(b)]? To answer this question, we
h(x)=R— VR?—(x—Xx¢). (3.16  successively calculate the excess energy of the two configu-

rations (with respect to the configuration with zero disloca-

Finally we note that we have completely neglected thetion). For the first one(n elementary dislocation separated
gravitational force, which is completely justified in usual ex- one from the othér we have
perimentghy<l., the gravitational capillary length defined
in Eqg. (1.1)]. In Appendix A, we describe the case of a me- E;=nE+nygaad. (3.18
niscus near a cylindrical wall. Its shape resembles a catenoid,
but its radial profile differs greatly from the circular one only In this expressiork is the energy of an elementary disloca-
whenAp=0. This case is not very pertinent experimentally, tion. It contains two contributions: the core enefgyand an
so we report the calculation in Appendix A. elastic energy proportional t and equal to (KB/2)d (by

All these descriptiongwith a circular or a catenoid pro- assuming the core radius is equathd 18]. The second term
file) are valid close to the film, as long as the density ofin ysa corresponds to the excess of surface free energy due
dislocations is not too high. On the other hand, the experito the slopex of the free surface. This term is proportional to
ment shows that giant dislocations parallel to the rim of thethe slope squarébecausend=al, wherel is the distance
film nucleate in the thicker part of the menisc(Eg. 3. covered by then dislocation$, and may be understood as the
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FIG. 5. Difference between the energy of a dislocation of the
Burgers vectond and the energy af elementary dislocations as a
function of the distancé from the edge of the film for different
values ofn. The increment oh between two thin curves is 2 and 10
between two thick lines. The valuk;, is the minimal distance
below which grouping is unfavorable. A, the first giant dislo-
cation that forms has a Burgers vector ofi20 his calculation was
performed by choosing a 1-mm radius of the curvature of the me-

I
I niscus.
I film
| In order to find under which condition a giant dislocation
| " giant | of Burgers vectond may develop, in Fig. 5 we numerically
| dislocation | plotted the differenc&,— E; as a function ofA for different
x=0 X=X¢ values ofn. To do this calculation, we have chosén
(b) =0.1K (which is usual for a core energy in smect[d9])
) _ and typical values forB, K, ysa, and R, namely, B
FIG. 4. Meniscus beforea) and after(b) the grouping ofn =1 erg/cn¥, K=10 ®dyn, ysx=25erg/cnd, and R
elementary dislocations at a distansefrom the edge of the film.  —1 mm. Please note that in E(B.20 “the surface term”
Note that in(b) a giant dislocation has formed. decreases as A/ so that giant dislocations must appear in
surface mediated interaction between dislocations. As df€ thick part of the meniscus whedfeis large. .
point x,@=A/R (with x;—x=A), Eq. (3.18 becomes The_ graphin Fig. 5 show; thh‘ng, thereT exists a mini-
mal distanceA ,,;, below which the dislocations remain el-

\/@ ysad A ementary. This limit unambiguously defines the regime with
Eix(nA)=nEtn——dtn——2. 319  medium density of dislocations discussed before. Beyond
this limit (i.e., in the thick part of the meniscugiant dislo-
In the second configuration,elementary dislocations are cations tend to form. A surprising result shown by the nu-
replaced by a dislocation of Burgers veckor nd. For large  merical calculations is that at the distandg,,, the first
n, it is reasonablle to suppose that the1d|slocat|on splits intyrouping energetically favorable has a Burgers vedior
two wedge disclinations of ranksand —. In this case, the =nNpmid With n,i,#2. For instance, for a curvature radiBs
d|sloc_at|0_n energy contains four terms: the core energy of the 1 mm we obtaim,,;;=20. This result is a consequence of
two disclinations of the order ofE%;; the curvature energy the deformability of the free surface. The calculation also

of the layers of the 1/2 disclination, of the order Offshows that the thicker the meniscus, the larger the Burgers

(77K/2d)|n§n)ﬁ thedelas?((:\/%(/aggydout&dﬁ tEe central zgge Nector of the giant dislocations should be. We also calculate
sizend, of the order o )nd, to which we mustadd a o o\ o1ution ofA ;. andn,,; as a function of the curvature

fourth term corre;ponding to the interaction energy with the,_ i s of the meniscugFig. 6. The results are thah,,

free surfacezs. 2T his term has been calculated exgt8ly and 7105 ikeR and thatn,,,, does not change significantly.
equals BAN“d*/4ymAD)Liy(£), W:oth A=VK/B, £=(ysa These predictions are well verified experimentally. In-
- \/'2<_B)/(7’SA+ \/K_Bf)' L'l/2(§)=,2p=1§p(1/\/5)’ and D geed, microscope observation shows that the first giant dis-
~A*/R, the total thickness at point —x=A (by neglecting  |ocations have very large Burgers vectf86 layers typically

the film thickness Collecting all the terms gives in Fig. 3, while the theory predicts 24 layers fd®
\/@ K =2.8mm; see Fig. ®)]. The width of the circular regime
E,(n,A)=2E.+ ——nd+7—=In(n) (without giant dislocationalso increases wheR increases,
2 2 and is of the same order of magnitude as that we predict. For
BAN2d2\R instance, we measur&,;;=170um in Fig. 3, while Fig.
Liyo ). (3.20 6(@ gives the theoretical valued;;=200um for R

+—
4\ m7\NA =2.8mm.
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o ) ) ] dislocation when its radius is much larger thenas a function
FIG. 6. (8) Minimal grouping distance as a function of the cur- of 1/R.

vature radius of the meniscud) Burgers vecton,,,,d of the giant
dislocation at distanca ,i, as a function of the curvature radius of

; interval of time(1-2 mg, and then returns to its initial tem-
the meniscus.

perature(i.e., that of the ovenin a few ms. There are then
) two possibilities: either the loop radius is smaller than the
In Sec. ll, we propose an experiment to check the modeyitica| radius of nucleation and it collapses, or the loop is
of the meniscus in the case of fixed nonzanp. The experi-  |5ger and it grows to finally join the meniscus. Repeated
ment consists of nucleating a dislocation loop in the freeéeasurements of the loop diameter as a function of time
standing film, and of measuring its critical radius of nucle-gows measurements of the critical radius of nucleation and
ation and its mobility as a function of the radius of curvature,q mobility of the dislocation. We recall that the critical
of the meniscus in its circular part. These two quantitieszqius of nucleation is simply given by=E/dAp, and that
depend on the model of meniscus, and are compared to simze mobility x is defined to bev=(w/d)f, wheref is the

lar data deduced from two other experiments. force acting on the dislocation and its velocity. In the
asymptotic regime, when the radius of the loop is much

IV. NUCLEATION OF DISLOCATION LOOPS larger thanr, we have simplyWV=uAp. We now need to

AND METASTABILITY OF SMECTIC FILMS know the pressure difference to calcul&teandu. According

, i o to the meniscus theorA p is given by the Laplace La\\Eq.
As we already mentioned in Sec. I, a smectic film is stablgy 2] As a consequence, andV are related to the radius of
over many daysand even several months in an atmosphere,,ryatureR of the meniscus via the relations
without dust particlesin spite of the stress to which it is

subjected. In practice, the pressure in the smectic is less than E

the air pressure, so that the film is homogeneously com- re=g R, 4.0
pressed over its whole surface. This stressxerts a Peach- Ysa

Koehler force with magnitude-d on any dislocation of Bur-

gers vectord in the film. This force tends to make the film VZME 4.2)
thinner, and allows the fabrication of films with homoge- R’ '

neous thicknesses. In practice, there are many dislocations

(forming arch textureg9]) in the films immediately after Thus the theory predicts that is proportional toR and that
stretching. These dislocations progressively disappear by eihe asymptotic velocity is inversely proportional t&.

ther annealing or moving to the meniscus. Usually, many We performed systematic measurements by changing the
hours are necessary to stabilize a film of constant thicknessadius of curvature of the meniscus by one order of magni-
In Ref.[2], we showed that it is then possible to remove thetude. All the measurements were performed in thick films
layers one by one by heating the film locally up to its tran-(more than 100 layeysof 8CB (octylcyanobiphenyl at
sition temperature to the nematic phase. A very thin heatin@8 °C. Our experimental results are displayed in Fig. 7. As
wire placed below the film is used to achieve the good conexpected we found that, within experimental errars,is
dition of nucleation. The film is heated during a very shortproportional toR andV is inversely proportional t&R. We
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deduce E~8X10 “dyn and u~4.4x10 "cnfsg L preciation the support from CNRS and the Ministry of Edu-
These two values are also in good agreement with those olgation of France, and the hospitality of the Ecole Normale
tained from two other experiments that do not imply theSupgieure de Lyon where a large part of this work was
meniscus model. Thus the line energy was obtained by me#lone.

suring the deformation of a dislocation loop in a vertical film

under the action of the gravity fielf0]: it gives E~6 APPENDIX A: CATENOID MENISCUS NEAR

x 10" "dyn at 28°C, in good agreement with the previous A CYLINDRICAL WALL

value. The mobility was obtained from a creep experiment. . . .
In this experiment we measured the viscoelastic response of AN unusual meniscus shape can be obtained near a cylin-
a sample sandwiched between two glass plates treated giical wall forApfO._Flrst_, we will discuss it in the gen_eral
homeotropic anchoring and subjected to a sinusoidal defo€@€ &p#0). This situation occurs when a needle pierces
mation (see Appendix B for more detallslt gives u~4.2 the film[2]. We then show that when the system is coupled
%107 cmPs gt in excellent agreement with that found in 10 & reservoir of particulesAp=0) the meniscus has a
thick films. This again confirms that the pressure field is welicatenoid shape. Unfortunately the experimental realization of

given by the Laplace law in a smectic meniscus. this case is beyond our reach. _ ,
Let us consider a cylindrical wall of radiug, with the

smectic film around it. Leh be the height of the meniscus
andr the distance from the center of the cylindrical wall. We
assume thah(ry) is fixed and we define point; by h(r,)

The profile of a smectic meniscus is circular and not ex-— By analogy with Eq.(3.10, the total energy may be
ponential as in usual liquids. It matches tangentially the film, o " the form D

(when it is thick enoughwhich suggests that the vicinal
regime with profilex®? is very small. This result is con- r
firmed by the theory, which shows that it does not make F[h(r)]=275AJ 2ardr(y1+ (dh/dr)2—1)
sense to speak about this regime in typical experiments. In fo

the circular regime the dislocations are elementary, but so +2(yws— Ywa) 27T oh(rg)

close to each other that the deformations they induce at the
free surface strongly overlap. In this limit the free surface is
smooth, and its excess of free energy may be calculated as in
typical liquids. This observation leads to the typical Laplace
law that gives the hydrostatic pressure in the meniscus. At

equilibrium, the pressure is the same in the film as in the _j,
meniscus, so that the film is compressed. It turns out that the

layers are elastic and can support this stress. This is the regere we have added the termr®,E; corresponding to
son why it is possible to make stable films of variable thick-some energy excess of the first dislocation in the meniscus.
nesses. It is also possible to change the pressure in the m&s we shall see later, this term is necessary to obtain a so-

niscus, by changing the volume of the smectic sample or thg;tion whenA p=0. Minimization with respect thi(r) gives
stretching velocity of the film during its preparation. This

V. SUMMARY

;
+2Apf 127rrdr h(r)
"o

S drEo Oy o E Al
07rrrOldr 7rEq, (A1)

observation shows that the final state depends on the way the d r dh/dr
film has been created. We also checked experimentally that —rAp—E/d+ ysp— —) =0 (A2
the Laplace law can be applied to smectic, by measuring Adr | 1+ (dh/dr)?

both the critical radius of nucleation of a dislocation loop ) _ o
and the mobility of an elementary dislocation. Finally we WhereAp is set by the size of the menisci(is the case of a
have shown that elementary dislocations group together tixed volume, or is zero when the film is coupled to a res-
form giant dislocations and chains of focal conic in the thick®rVvoir at the air pressure. Note that we have neglected the
part of the meniscus. An interesting result is that the firsgravity force since the meniscus is small. Equatiag) can
tor (typically 20 layer$, which is different from what is ob- Very instructive. Therefore, let us c0|j5|der some limiting
served between rigid surfaces where the dislocations grougases. For large, and largeAp we obtain the circular me-
progressively two by two. We mention that when the film ishiscus studied in Sec. IV. This is true whepAp>E/d.
very thin (less than 20 layeJsthe circular profile is no Now let us consider the opposite case of a small meniscus
longer tangent to the film but makes an apparent angle thaf(r =ro) =ho is fixed and small with respect to the capil-
increases when the film thickness decreases. The presdaty length(1.1)] with Ap=0, i.e., the meniscus is coupled
theory cannot explain this angle which is probably due to thd0 a reservoir of particles at the atmospheric pressure. In this
disjoining pressure in the film. This effect will be described case there are two terms in E@1): the term with the en-
in a forthcoming publication. ergy of dislocation, and the term with surface tension. It is
easy to find that the dislocation term is rather small, i.e.,
E/ysad=~0.1. For this reason we can treat the former as a
perturbation.

This work was supported in part by the KBN, Grant No.  Without the dislocations the meniscus would assume the
2P03B12516, and by the European Research Network, Corshape of a minimal surface. A minimal surface is a surface
tract No. FMRX-CT96-0085. R.H. acknowledges with ap-whose area is minimal under the given boundary conditions.
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r (cm) FIG. 9. Equivalent mechanical model for the dilation cell used

FIG. 8. Catenoid profile calculated from E®3) with e=0.1,  © Measure the mobility of the dislocations.

h,=60um, andr,=100um. Note that the meniscus makes a

nenzero angle with the film surface. by three stacks of piezoelectrics through a rigid frame, and

that the sample thickned3 and the angle3 are fixed with
hree differential screws. The temperature is stable within
.01°C. The deformation of the sample is measured with a
LVDT (linear variable differential transformemhich is
fixed on the oven close to the sample. It turns out that the
cell is not infinitely rigid, and may be replaced by the
equivalent mechanical model shown in Fig. 9. In this model,
u(t) is the displacement imposed by the ceramégs) is the
h(r)=h,—r. In[r/r.+\(r/r)2—1]—er.\J(rir.)>—1, displacement measured with the LVDT, akdandk, are
(A3) the force constants of the oven and the frame. Displacements
u(t) anda(t), and their phase shifp, are measured with a
wherer,, and h., are integration constants that define thelock-in amplifier (Stanford SR850 The internal function
point of the surface with a vertical tangent. Of course thegenerator of the lock-in amplifier is used to supply the ce-
radius of the cylinderrg is greater tharr,,. The first two  ramics. Sinusoidal deformations are used
terms give simply the catenoid and the last term is the small

Here we have the surface that is spanned between two ¢
axial circles of radiiry (radius of the cylinderandr, (the
second radius Such a surface is called a catengd]. If we
include the dislocations and expand the solution of B&)

in a small parametee=E/(ysad), we find the following
equation for the profile:

correction, sinc&~0.1. This solution must satisfy boundary u(t)=ugsin(wt), (B1)
conditions h(r=rg)=hg, h(r{)=0, and 2yg,cos@) —1] )
—E, /r;=0 at pointr=r, with ¢ the contact angle between a(t)=agsin(wt+¢). (B2

the meniscus and the flat film. This third condition that gives . K h q A id
the force equilibrium at the edge of the meniscus is obtained\ fIrSt, We take care tha, never exceeds 50 A to avoid an

. ; ; : dulation of the layer§23] and a helical instability of the
by minimizing energy(A1) with respect ta;, while keeping YN ) ) " ;
h(r,)=0. It does not correspond to the 1zero contact anglescrew dislocation$22,1§. In these conditions the only dis-

since at the point of contact the dislocation is not a Straigh[ocanons that contribute to the plastic deformation are the

line as in the case of flat wall, but has a circular shape. | dge dislocations introduced by the misfit angleA calcu-

other words the circular dislocation cannot wet the flat sur-a,tion of the amplitude rati@,/uop and of the phase shif

face (Fig. 8. Thus the shape of the meniscus far away from9'Ves
the wall is mainly determined by the energy of dislocation,

a, V[fZ+C(C+1)f2]2+f2f2

providing that the system is coupled to the reservoir of par- — 5 ' (B3)
ticles which giveAp=0. The conditions are sufficient to Up fe+(1+C)%f?
determine the constant,, h.., andr;.
tg(P)=— s B4
APPENDIX B 9(¢) f24+(1+C)f2’ (B4)

In this appendix, we recall how the mobility of a disloca- wheref is the frequencyC a dimensionless parameter
tion can be deduced from a creep experiment. The experi-
ment consists of imposing a sinusoidal deformation to a ki kD
sample of 8CB sandwiched between two glass plates treated C= k_2 + B (BS)
in homeotropic. The two plates make a small angléhat
can be controlled with a very high accura@f the order of  andf, a relaxation frequency
10" “rad). Because of this angle, an array of elementary edge
dislocations form in the middle of the sampleecause they kiBu
are repelled from the two surfage$n a good sample, these fe= 20 (B6)
equilibrium dislocations are separated by distadtg@, and
are the only dislocations that remain after recovery. Thevhich depends on the mobility of the dislocations. Measure-
sample is placed in a dilation cell that is described in detailsnents are performed at low frequency between 0.01 and 20

in Ref. [22]. We just recall that the deformation is imposed Hz (so that inertial effects can be negledteGonstantsk,
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FIG. 10. (a) Ratio of the amplitudes measurea,} and imposed
(ug) as a function of the frequencyb) Phase shifip between the 5 A
measured displaceme(d) and the imposed displaceme) as a [l'"“"‘""' A
function of the frequency.
and k, may be obtained by measuring the viscoelastic re- 0 -
sponse of a silicon oil of known viscosity. This givés I I I l
=8.9x 108 dyncm 2 andk, /k,=0.097. In Fig. 10 we show ) 50 100( 1?0 200
u, (hm

our experimental data for a sample of thickneBs
=100um and angleB=5x10 “*rad. The best fit to Egs.
(Bfg),;"‘“g]z(Bf‘)l g|¥(a_82$o:(él..??1;[08 eTg/cm: ;md Mb:'I'4-2' imposed displacement, at f =10 Hz (the results are independent
.X cnrsg - atT= o Is value of 1 _e mo '_ ity 'S of the frequency between 10 and 50)H@) Phase shiftp as a
in excellent agreement with that found previously in thICkfunction of ug. It significantly increases when an array of focal

smectic films. . ) parabolae nucleates.
We also measured the penetration lengtfio do this, we

impose on the sample a sinusoidal modulation of increasing1e layers[23]. It is very well known that this instability

amphtu_de. The frequency chpsen is much larger than th%evelops(in 1 m9 when the sample thickness variation is
relaxation frequency. In practice, we performed our experi-

: : more thane§=2m\. Let a§ be the value ofy, at the onset.

ments in a 10Qum-thick sample between parallel glass According to our mechanical model. we have
plates 3~10"*rad) atf=20Hz, but we checked that the 9 '
results were independent of the frequency above 5 Hz. In
Fig. 11 we plot the amplituday, and phase shif$ as func-
tions of the displacement, imposed by the ceramics.

As expected, the response is linear as longugs ug
(elastic regimg In this regime, the phase shiftis constant  This equation allows us to calculaie In 8CB at 28 °C, we

FIG. 11. (a) Measured displacemerat, as a function of the

Ky
e=ag— E(US_ag)' (B8)

and close to zer@the dissipation is negligibjeand found A~8 A. Note that the phase shift does not change
significantly in the undulation regime, which means that the
a :Lu 87) dissipation is negligible in this regime. The situation be-

o Cc+1” comes different whem,>1.2a5. In this range of deforma-

tion, ¢ (and consequently the dissipatjastrongly increases
Thus measuring the slope givBs (Fig. 13). This effect is due to the nucleation of an array of
Whenuy>ug, the curvea, vs uq shifts from the linear parabolic focal conic§24]. These defects are clearly visible
law. This behavior results from the undulation instability of in the microscope.
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