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Buckling induced by dilative strain in two- and three-dimensional layered materials
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Buckling of stripes in two dimensions, or layers in three dimensions, induced by dilative strain, is observed
in thin films, in liquid crystals, and at interfaces. Equations for the buckling pattern are analyzed and solved in
this work. We have previously predicted buckling patterns in two-dimensional systems, which were subse-
quently successfully compared with experiment. Here we make predicted buckling profiles for three-
dimensional layered materials available for comparison with experiment. We also analyze dilative strain-
induced buckling on a qualitative level, in terms of mechanical analogy, and compare the modulation pattern
with that which arises in other contexts.

PACS numbes): 61.30~v, 83.70.Jr, 47.20.Ma, 87.16.Dg

Layered materials, such as stripe phases in twobuckling was also observed in a columnar liquid crygid].
dimensional Langmuir layers or thin magnetic films, or Our previously calculated buckling profil¢49] modulated
three-dimensional smectic phases, are host to a multitude @fong a single direction, have been successfully compared
phenomena whose detailed understanding is both scientifivith experiments for both chiral ferroelectric smectj@]
cally challenging and technologically significant. In this and columnar liquid crystalgl8]. The transition from sinu-
work we study periodic buckling in response to dilative soidal layer undulation near the buckling threshold to a chev-
strain, which occurs in a wide variety of layered materials.ron pattern with increasing strain was predicted in our pre-
Control of this effect in smectics is relevant to the design ofvious work[19], and confirmed experimental[20]. In this
liquid crystal display$1—11]. We provide new results on the work we predict fully three-dimensional patterns, including a
buckling pattern beyond the limit where it can be describedhree-dimensional analog of the transition from sinusoidal to
by one Fourier mode or a few. Buckling patterns beyond thechevron buckling, that will hopefully be tested against ex-
single-mode limit for three-dimensional materials like smec-periment as well.
tics are calculated for the first time in this work, to our The threshold condition for dilative strain-induced layer
knowledge. buckling was derived by Clark and Meyg21], assuming a

Dilative strain favors uniform tilting of the layers because single Fourier mode buckling pattern at threshold, a result
the perpendicular spacing between layers tilted by an afhgle which is unaffected by our more extensive analysis. Since
is reduced by a factor of cas as shown in Fig. 1, and the the continuum free energies under an applied electromag-
spacing thereby approaches the equilibrium spacing beforeetic field or under dilative strain are identical to second
the onset of strain. If it were possible for uniformly dilated order in the elastic displacement field, provided the proper
layers to tilt with no other associated energy costs, theyranscription is made between coupling constants in the two
could return to equilibrium by this path. The new equilib- cases, the threshold laws are analogous to those previously
rium state would be tilted by an angte=cos 1(1/(1+«))  derived by Helfrich[22,23 and Huraul{24] for layered ma-
in the presence of dilative straim. As a periodic buckling  terials (cholesterickin electromagnetic fields. Delrief25]
pattern, overall tilting can be classified as a zigzag or chevgave the critical strain for a fully three-dimensional situation,
ron pattern of infinitely large wavelength. However, bound-that is, for buckling patterns described by two or three non-
ary constraints thwart simple tilting as a route to equilibrium.coincident wave vectors of equal magnitude. Wang treated
For examp|e, in the case of smectics held between p|até%i|ative strain of a lamellar phase, but his treatment was also
parallel to the layers, the plates impose a boundary constraifigstricted to a single Fourier mode buckling patte2f.
that resists tilting and excludes a complete return to equilib-
rium by over all tilting or infinite wavelength zigzags. Now
the buckling pattern is selected by a competition between
strain release by layer tilting and the resistance at the bound
aries. In other systems, such as magnetic stripe phases, |cHEEE
controllable factors like pinning defects provide the resis-
tance that frustrates overall tilting.

Strain-induced periodic buckling has been observed in
two-dimensional magnetic stripe phag@g—15, ferrofluids #

[16], and in three-dimensional smec#c-liquid crystals
[1,17]. Modulations along both one and two directions were
observed in experiments on smectit$ The effect in chiral
ferroelectric smecticf2—11] is particularly important, since
the response of these materials is exploited in the construc- FIG. 1. Reduction of perpendicular layer spacing fratrto
tion of new liquid crystal displays. Strain-induced periodic d cosé upon overall layer tilting.
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Buckling patterns beyond the single Fourier mode limit atfurthermore suppose that the system is changing slowly in
threshold were previously treated for only two-dimensionalthis direction.(All of these restrictions are relaxed belgw.
systems, that is, for layers modulated along a single directhis leaves us with one-dimensional equations which can be
tion. Nakagawa developed a soliton theory for chevron kinksjualitatively interpreted. We will find that buckling phenom-
[27]. Pavel and Glogaroveerived expressions for buckling ena may be grouped into classes according to the relative
patterns which, like those of Nakagawa, are only valid in themagnitude of certain polynomial coefficients in an effective
chevron limit [28]. This was followed by derivations of potential, much like phase transitions within Landau theory.
buckling patterns valid from threshold to the chevron limit
by this author{19] and by Limat and ProgR9]. Kralj and A. Buckling driven by dilative layer strain
Sluckin examined the transition from sinusoidal to chevron
structure in smectié liquid crystals confined between par-
allel plates in the so-called bookshelf struct{86], treating

The free energy appropriate for a two-dimensional lay-
ered material is written in the Monge representation,

the system as two dimensional. Their calculation separately B[d(R)—de]2 K[ 1 \2
tracked both the molecular director and the layer density, F=f dR\/1+L{Xz > d eq} +§( ]
more cumbersome than our formulation but furnishing more eq R(R) e

detailed information. A similar study for chevron formation

upon the smectié: to smecticE transition was performed whered(R) is the actual layer spacing as a functionRof
by Vaupoticet al. [31]. Stewart studied the related problem =(X,2)

[32]. His analysis was specific to finite _samples, in contraste g ofU(R), the deviation of the layers from their equilib-
to our treatment of systems, which are finite perpendicular tQium positions:
the layers and infinite parallel to the layers. As discussed '

below, Stewart neglected terms in the elastic free energy ey
which, in the dilative strain case, are crucial to describe the d_deq: 1+tz 1+UX’ 2)
transition from sinusoidal to chevron buckling patterns with deq \/1+uX7
increasing strain.
A similar treatment of stripe buckling, this time in the 1 Usx
context of stripe domains in liquid crystalline elastomers, = (3)

: i : R:(1+u2)3’2'

was independently derived a few years later by Finkelmann X

et al. [33]. Layer buckling in smectic elastomers is a more that the | formlv dilated in zh
complicated problem, because it involves coupling betweelwe st_uppose a b € Zyers ?fre tunl orrgy liate I?h teth
the smectic layer displacements and other elastic variables. ff€CtOn, Ignore boundary €Iects, and suppose that the
was treated by Weilepp and Brand in the single FouriePUcKling pattern is independent af

mode limit [34]. Readet al. studied the two-dimensional _

transition from sinusoidal to chevron buckling patterns in UR)=aZ+u(X), “)
smectic elastomers using numerical finite element mOde"ingestrictions which are all removed in later sections of this
[35]. The variational scheme introduced in this work ShOU|dwork Plugging Eqs(2)—(4) into Eq. (1), and setting the

glr;tt):)em];uri three-dimensional studies of layer buckling "Nfunctional derivative with respect (X) to zero, we obtain
Besides extending the treatment of layer buckling to thezo?igeéglrc]:sn?rllogg quuatlon satisfied wX) =ux(X) (thin

full three-dimensional case, in Sec. | we develop a qualita- '

tive picture of the origins of strain-induced buckling using a

; : : ; 1 5( ww?

mechanical analogy. Using this formalism, we contrast the Wy == W(1+w?)(W2— a(a+2))+= _X) (5)

factors governing buckling via dilative strain to another situ- 2 2\ 1+w?

ation, buckling of a monolayer in response to compression

[36]. The quallitatively different buckling patterns can be un-In the preceding equation, we us¥d=Ax=K/Bx, where

derstood in terms of the effective potential of the mechanicak is the usual penetration depth, to remove explicit depen-

analogy. In Secs. -1V, the equations for full three- dence on the elastic constants from the equation.

dimensional layer buckling are simplified. Results for two-  For smallify, we can neglect the metri¢1+ux2 in Eq.

and three-dimensional buckling patterns are given in Sec. (1), and take only leading powers of in Eq. (2) and (3).

Using uniform dilation[Eq. (4)], we obtain a simplified free

I. A MECHANICAL ANALOGY AND energy
COMPARISON TO BUCKLING IN )
B 1 K
ANOTHER CONTEXT F~ f drR [§< a— EWZ + Ewi] , (6)

Before presenting detailed results, it is worthwhile to ex-
plore the qualitative features of equations governing buckWwhich, when minimized, yields the following approximate
ling patterns. For the purpose of this discussion, we work ir@nalog to Eq(5):
the relative simplicity of buckling along a single direction.

We also postpone consideration of boundary conditions in

1
= — 2—
the direction perpendicular to the layers, thdirection, and W= WW" = 2a0). 0

2
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FIG. 2. Effective potentials in a mechanical analogy for the

equations governing layer bucklin@) Full equationg5) or (9). (b)

Approximate equation§7) or (8). Functions are drawn for the di- 0.25

0.5

lative straina=0.2. =

= 4
This approximation is used in later sections of this work, % 005
where boundary conditions in th2 direction and three- '
dimensional buckling situations are tackled. Equatinad- -0.5
mits a closed form solution in terms of Jacabifunctions

[19] (thin dashed curves in Fig),3as described in Sec. Il B. 075
There is a simple mechanical analodh9] that explains

how periodic solutions to EqJ5), or its approximate form . . ) / .
P q5) P culated using either the full equatidf), shown by the thin solid

[Eq. (7)], arise. Considering to be a time variable, Eq7) is curves, or Eq(7), with neglect of “velocity” dependenti.e., w,

w:“e&l){[ztrll%glfor a classical trajectory in the inverted quartlcdependehtterms, as shown by the thin dashed curves. Functions

are drawn for the dilative strair=0.2. As explained in the text,

the character of the buckling profiles is controlled by the particle
4 (8) energy in the mechanical analogy. The particle energy edagls
2 8 25% or(b) 99% of the barrier height in Fig. 2. From the different

scales of the axes, note that the buckling wavelength increases with

The first term on the right of the exact equati@) is, in the  the particle energy. The thick solid curve is the integrated buckling
mechanical analogy, the force arising from the potential  profile u(x), including thew, dependent terms in E¢5), scaled by
either(a) 0.2 or(b) 0.5 to fit on the same plot wittv(x).

FIG. 3. Optimum buckling profile derivativeg(x) = u,(x), cal-

o

2

o
1+ -

> 6 9)

1
w2 — §(1—2a— a?)w*—

1_2W B. Comparison with surface area driven buckling
o o o Membranes and Langmuir monolayers can buckle in re-
The potentials in Eqs(8) and (9) have similar qualitative  sponse to compression, or coupling of composition and spon-
forms, as shown in Fig. 2. _ taneous curvature in multicomponent systei®8—3§. For

Of the two boundary conditions needed to specify thethe qualitative purposes of this section, we will examine the

solution of the second order differential equati¢dsor (7),  simplest case of one-dimensional buckling as treated by Mil-
one controls the phase of the periodic solution and is noker, Joanny and Pincuf36]. The effective free energy,
important unless boundary conditions in thelirection are  analogous to Eq(1) in the case of layer strain, is
invoked. The other may be pictured, in the mechanical anal- ,

ogy, as the energy of a particle. For small energies, the par- — 1

ticle executes harmonic motion. Therefovg(x) [ = u,(x)], F:J dRV1+Ux W) ] (10

and also its integrali(x), are both sinusoidal functior(&ig.

3). The period of classical motion, and hence the stripe buck- .

ling wavelength, lengthens with increasing energy in the meWhere o measures the compressive pressure on the mem-
chanical analogy. For large particle energies, the particidrane or monolayer, an®(R) is defined in Eq(3). Buck-
spends most of its time just inside the two maxima shown irfing is induced wherr<<0. At this stage, the effect of grav-
Fig. 2. As a result, the solutionvg(x) acquire a square wave 1ty iS neglected. o

character, the flat portions arising as the particle lingers at With _the  substitution 2/ (X)=w(x), where X

the turning points located just inside the potential maxima in= VK/(— a)x (recall that buckling occurs far<0), the Eu-
the mechanical analogy. Since flat portionswdix) are re- ler equation for the minimum energy profile becomes
gions of constant slope in(x), the square wave limit of

LK
)

w(x) implies thatu(x) appears like a zigzag or chevron. The 5( ww?
“velocity dependent” term in Eq(5) is seen in Fig. 3 to Wy= —wW(1+w?)2+ = X | (11)
have only slight effect on the buckling profiles. 2\ 1+w?
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FIG. 4. Effective potentials in a mechanical analogy for the b)
equations governing compression-induced monolayer or membran
buckling. (a) Full equationg11) or (9). (b) Approximate equations
(13) or (14).

Just as in the case of layer strain-induced buckling, the aboviz.
equation can be interpreted in a classical analogy as the mc
tion of a particle. The qualitative behavior of the analogous 2
particle is dominated by the potential

w(x), u(x)

FIG. 5. Optimum buckling profile derivativas(x)=u,(x) cal-
E[(1+w2)3— 1] (12) culated using either the full equatigthl), shown by the thin solid
6 ' curves, or Eq(13) with neglect of the “velocity” dependent.e.,
w, dependentterms, as shown by the thin dashed curves. As ex-
plained in the text, the character of the buckling profiles is con-
which arises from the first term on the right of H41). trolled by the particle energy in the mechanical analogy. The par-
The potential function in the mechanical analogy forticle energy equalga 0.5 or (b) 2.0. Note that the buckling
compression-induced monolayer or membrane buckling, Egvavelength decreases with particle energy. The thick solid curve is
(12) or Fig. 4, increases monotonically away from the origin, the integrated buckling profile(x), scaled by eithefa) 1.3 or(b) 2
and is qualitatively different from that of E) for dilative O fit on the same plot witfw(x).

strain-induced layer buckling. Consequently, beyond the har- ) . )
monic limit (small energy in the mechanical analdgshe An appropriate approximation of Eqsll) and (12) is

character of the buckling patterns are also qualitatively dif-°Ptained by dropping the velocity dependent term in @d)
ferent. For compression-induced monolayer buckling, thétd the highest order term in potentidi2). The resulting
particle is rapidly accelerated from its turning points, unlike €duation
the case of strain-induced layer buckling, where the particle
experiences little acceleration near the potential maxima of
Fig. 2. Consequently theerivativefunctionw(x) (=Uy) for s that of a particle moving in the potential:
compression-induced buckling approaches a zigzag or chev-
ron shape, as shown in Fig. 5, not the buckling pattern itself _—
as for strain-induced layer buckling. The slope of the zigzag 5 (WoH+w). (14)
pattern is diminished neav(x)=0, the region of maximum
velocity, by the “velocity” dependent term in Eqll)  The qualitative difference from the layer strain case is the
whose action opposes that of the first te@ompare the difference in sign of the quartic term. Equatiofik3) and
solid and dashed thin lines of Fig).SWith increasing en- (14) also admit a closed form solution in terms of Jacobi
ergy, the compression-induced buckling pattern itself betheta functiong39].
comesmore rounded than the sinusoidal, low-energy limit,
in contrast to the dilative strain-induced layer buckling. Il REDUCED FREE ENERGY FOR BUCKLING INDUCED

The effective potential for compression-induced buckling BY DILATIVE LAYER STRAIN
(Fig. 4) increases more rapidly than a harmonic potential as
one moves away from the origin, unlike the effective poten- Using the results of Sec. | as a guide, we now consider
tial for dilative strain-induced buckling. This feature of the dilative strain-induced layer buckling on a quantitative level
mechanical analogy explains why the compression-inducetbr either two- or three-dimensional layered materials, in-
buckling wavelengtitlecreasess one moves away from the cluding smecticA liquid crystals. TheZ direction is perpen-
harmonic limit, in contrast to dilative strain-induced buck- dicular to the smectic layers. The smectic free energy, appro-
ling. Of course, this behavior is to be expected from monoriate for small distortions [corresponding to the
layers or membranes under compression. approximate formg7) and(8) abovd, is

Wy = — W(1+2w?) (13
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B 2 LK a (L)% a® 1 )
:f dR) 5 _—(Ux“‘uv) (Uxx+uYY) szhaBF N E(‘f’ M%)
(15
—
2 2.1 4 2
N | | (VP2 + (ST +(¢?)
The integration oveR extends betweertL,/2 in thex di-
rection, =L /2 in they direction, and*L,/2 in thez direc-
tion. Inclusion of the first derivative term proportional to X{(V2)?)], (20

(u§(+u$) in the compression and/or dilation energy is es-
sential to describe the transition from sinusoidal to chevron

buckling patterns as strain is increased beyond the threshomhereA IS t_he area of a unit cell of the periodically repli-
value. Physically, this term, missing in the work of Stewartcate‘j buckling pattern, and the angle brackets denote aver-

[32], “informs” the free energy that dilation followed by ages over a unit cell foxy integrals or over the system size

tilting can return the system to equilibrium, as discussed |H(0r zintegrals. We condensed our expressions usiig to
the introduction. stand foronly x andy derivatives ofi(x,y). For example,

L,/2
The material is uniformly strained in thedirection. Ex-  (#)=(1L,)[ %] /2d2¢2(Z) Yidz¢?(2) and (V%)
press the displacement field as =(1/A)ff4dxdy(¢)2<{r v3). _ _
The optimalz profile ¢(z) is found by setting the func-
N tional derivative off with respect tog(z) equal to zero:
M(X,Y,Z):aZH\u(X,Y,Z)EL—EZH\u(X,Y,Z),
z

(16)

-2

L (V) + (V29D b+ S (Tl 8

(21)

d?¢
2_:
<¢f>d22

where A=+K/B is the usual penetration depth, and the
above equation serves to define a scaled strain
=(L,/\)a.

In terms of the reduced distances,

As introduced in Sec. |, the above equation is isomorphic to
the classical mechanical equation of motion for a particle in
an inverted quartic double-well potential,

. v="Tv and =2, 4 A6 [A o gy
X=—X, y=— and z=—, —
N VIR L m =42 ¢ Bé (22
the smectic free energy takes the form wherez in the buckling problem maps onto time in the clas-
sical analogy, the mass is the classical analogy is
B)\ 1 2 a? =(y?
F= dr[ a+u,— (u§+u§) +7(uxx+uyy)2]. m={y7), (23
a
(18)  the constants in the inverted quartic potential are
—_ 2 v, 2\ _ V2 2 ) 24
The integration over the scaled coordina&xtends between V)= (V)] 249
+ 1. Assuming a semi-infinite system in ttxeandy direc- —
ti_ons, the reduced layer P_rofile(r) depends only on the :a—<|V{//|4>, (25)
dimensionless scaled strain 8

and the equation of motion is to be solved subject to
I1l. SEPARATION OF THE DISPLACEMENT FIELD AND

THE z-PROFILE, ¢(2)
(26)

A. Factorization of the displacement field

To make further progress, we approximate the dlsplace
ment fieldu(r) as a product:

u(r)=¢(x.y)é(2).

This analogy with a classical mechanical problem was first
observed in earlier work on layer buckling in two-
dimensional systend.9], and is seen to carry over to higher
dimensions in this work.

(19

Boundary conditions are enforced by requirigsg+ 3)=0.

Since thexy plane is a symmetry plane for our system, B. Standard solutionsp(s) to the Euler equation

¥(x,y) should exhibit no bias toward positive or negative
values. As a consequence, all odd powersygxk,y) will

Since differential equations like Eqé7), (21), and (22)
will appear yet again in another context, it is convenient to

integrate to zero. Using these simplifying features, we find aspecify ¢(z) is terms of solution®(s|€) to a standard prob-

reduced free energy densitys given as

lem,
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d?p

Jd
EZ—%{ZPZ—W‘}, (27)

wheree is the energy of the particle in the standard situation.
The choice of this standard is arbitrary, although convenlen{NI

since the peaks of the potentd(p)=2p?— p* occur atp

==+1, and the value of the potential at the peaks is als

equal to 1. With this choice, only9e<1 could lead to
solutions of physical interest. Further restrictions omill
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A 1/2
r(ez>=(5) =al([Vyl?) = (V2 HTVA(y?) 12
(36)

In the limit of small €, 7(€)=m+ (37el16)+O(€?).
th increasinge, 7(€) increases monotonically. As ap-
roaches 1;7(€) diverges logarithmically. The lower limit
n 7(e,) provides a threshold condition for layer buck-
ling. This can be seen by taking(x,y) to be the linear
combination,

also apply, and lead to the threshold condition for buckling.

By straightforward coordinate transformatio#(z) is
given in terms of solutions to the standard problef(s|e):

1/A 1/2
d)(z):E(E) p(sle),

m 1/2
z=2 N S—2Z;.

(28)

(29

The parameters, and e will be chosen to satisfy the bound-

ary condition(26). The energyE of the particle in the clas-

sical analogy of Eq(22), before transformation to the stan-

dard problem, is related te by
(30)

The standard trajectorigs(s|e) admit an analytic solu-
tion. They are given implicitly in terms df (8|m), elliptic
integrals of the first kind40:

s=(2§+)1’2F(9§—+), (31
{o=1x(1-)" (32)
sing= ¢~ Y%, (33

The period of motion is
(€)= 23’2§+1’2K( g—) : (34

whereK(m) is the complete elliptic integral of the first kind
[40]. The trajectories are also given explicitly in terms of

Jacobi elliptic function$40]:

-
m__

p(s|e)=+¢_sn+2¢,s|m), .

(35

C. Threshold condition

Definition (31) and the periodicity of the trajectories im-

ply that p(0|€)=p([r(€)/2]|e)=0. Furthermore,p(s|e)

>0 in the range 8&.s<7(€)/2. Therefore, the boundary con-

dition ¢(—3) =0 is satisfied by choosingy= 3 in Eq. (29).
The boundary conditiom(3)=0 is satisfied by choosing

to be the special value, here denoted,;” for which (by
substitution ofz=3, z —% ands=[7(€,)/2] into Eq.(29)),

¢<x,y>~; Cpelkn, (37)

where k,, are members of a finite set of reciprocal lattice
vectors from a two-dimensional lattice. Inserting the limiting
form of #(x,y) into Eqg.(36), we find

1/2
rte)=al 3 Ie k=l

-1/2

o]
(38)

Since 7(€,) =, the right hand side of the preceding equa-
tion must be greater than or equal #oto satisfy boundary
conditions(26). To determine threshold conditions, we seek
the wave vector&,, which make the right hand side of Eq.
(38) as large as possible. The magnitudeskpfare easily
found to be

[kn|=2"12 (39
At these wave vectors, the right hand side of E8g) is
independent o€, and equal tax/2, which must be greater
than the threshold value of:

a=27. (40
Recalling the definition of reduced units in Sec. Il, this is in
agreement with previous derivations of the threshold condi-
tion [21,25. Combining Egs(28) and (29) with properties
(38)—(40) at threshold, we obtain, for future reference, the
profile at threshold:

1/A 1/2
¢(Z):Z(§EZ> cogmz) (threshold. (41

D. Form of the free energy with the optimum z profile

Henceforth thez profile ¢(z) will be regarded as a func-
tional of thexy profile, as specified in Eq$23)—(25) and
(28). The reduced free enerdygiven in Eq.(20) takes a
simpler form when the explicit dependence of the optimum
#(2) on ¢¥(x,y) is taken into account.

The ¢§ term in the free energy can be removed using the
analog to the conservation of energy in Eg2), which is
isomorphic to a classical equation of motion:

de)\?
dz

1 2

=M

5 (42

A
+ 5 ¢2 Bo*=E= =€z

The last equality follows upon comparison with the standard
problem(28) for which 3 (dp/ds)?+ 2p?—p*=e.



3742

The fourth moment of the profile, { $*) = s A%/B%(p?),
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can be related to the second moment using a standard iden-

tity from the theory of Jacobian elliptic functiorigl]. In
terms of the standard solutions, this identity reads

4 1
(p)=3(P*)~3€. (43

Substituting Eqs(42) and (43) into expression(20) for the
free energy, we obtain

@ @ (Ve —(V*)?)*

f=
2 6 (|Vyl*

(€= 4p%)e)-
(44)

pOuy) =y YAp(x,y) (47)
in Eq. (46). With that substitution, we find that
al¥lyl=y tal¥l1]=y""g[¥]. (48

Hence the optimal pattergy with y set equal to unity is
related to the optimal buckling profile with any other fixed
normalization by transformatiori47). In all subsequent
work, we work with the scaledly profile ¥, in effect adopt-

ing a standard normalization fa¥(x,y). Of course, the nor-
malization of ¢ is arbitrary, although that of the complete
buckling profile ¢(z) (x,y) is not. While the functionafy

has no explicit dependence on any parameters, boundary

conditions in the form of specifying a wavelength for the

periodic functionsj will introduce a free parameter for each
modulation direction.

To gain further insight and simplicity, we do not pursue
the straightforward approach of numerically optimizing Eq.
(20) or (44) while self-consistently allowing for the depe-
dence of the optimung on . Instead, we restrict the varia-

B X ; tion of ¢ to the family of solutionsjs obtained by minimiz-
fl¢,¢]1=1l¢,4[¢]], and could conceivably be directly j,o g in Eq. (46) with variable boundary conditions and

r_ninimized With respect tgy. However, a further ap_pro>_<ima- variable scaling factors, as parametrizectigyandag, , in the
tion results in a less cumbersome procedure which involveg andy directions:

minimization over just a few parameters. We isolate a por-
tion of the free energy of Eq. (20), identified asg in the
following equation, which governs the behavior of thg
buckling patterrys away from the boundaries at= =+ 3:

o

f=5+ §<¢§><¢2>+%<¢Z>g[ v %

IV. XY PROFILE, ¥(X,Y), AND MIDSAMPLE BUCKLING
PATTERN

SinceA,B, andm in Eq. (22) depend on they profile
¥(Xx,y), the optimumz profile is a functional of thexy pro-
file: ¢= [ ¥(X,y)]. Under the ansatz of Eq19) the free
energy can be regarded as a functional of yeprofile,

P(X,Y) = (axX,QyY). (49
This is a considerable simplification because, for a fixed unit
cell geometry, this leads to a low-dimensional minimization,
turning the minimization off into a search over just two
parameters for each independent direction of modulation.
For a one-dimensional buckling pattern, or, for example, for
a square buckling pattern for which we expegt=q,, the
optimization is over only two parameters. This approxima-
tion was already shown to reproduce all qualitative features
. ) of experiments involving single-wave vector buckling pat-
When thez coordinate is not too close to the systemterns[12—-16, and was successfully put to a quantitative test
boundaries az= =3, we expect the buckling pattern to be iy some instancekl8,20.
relatively independent of the coordinate. If thez variation
of the buckling profile is neglected, minimization of the free
energy reduces to a minimization gfregardless of whether
the buckling profile is approximately factored into a product Buckling patterns along both one and two directions are
of xy andz parts as in Eq(19). This is easily seen by letting observed in smectié- materials subjected to dilative strain
u,—0 in Eq.(18). [1]. We treated the single-wave vector case in previous work
We will soon find thaty in Eq. (46) only affects the [19], butitis useful to briefly review and extend these results
normalization ofy. To within that normalization, the buck- here before proceeding to the full three-dimensional case.
ling profiles ¢ that minimizeg only depend upon the unit The previous results are further simplifed in this work.
cell size and shape chosen for the buckling patt€rhe free
energy is subsequently minimized with respect to the unit

cell dimensions. Hence we need only consider profilgs If layers are modulated along a single direction, taken as
that optimize a functional, which is defined below to be the the x direction, the limiting expression fag[ ]

functionalg, wherevy is set to a conventional value which we
arbitrarily take to be unity. This is expected on physical
grounds, sincey depends only omb, and for a slowly vary-
ing z profile ¢ only contains information on the normaliza-
tion of the buckling pattern. Hence the valuejoshould not

affect theshapeof the profile.

Demonstrating thaty does not affect the shape gf is
achieved with the substitution

a? 1
, (45

oLl Y=~ (V) + (VU +((V20)?).  (46)

V. RESULTS

A. Unidirectional buckling pattern

~ ~ ~ 1 - ~
oY1=~ (A + () (D0 (50

is minimized whenys satisfies

~ ~ 1.
D= — Pyt E(‘ﬂx)a (51
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and g, parametrizey(q,x) as given in Eqs(49) and (54). e, is
regarded as a functional of the buckling profile in #hdirection, as
in Eq. (36).

Settingw= 9, we find thatw satisfies

d [Wz w?

: (52

which is precisely of the same form as Eg2), the equation
of motion in an inverted double-well potentidSee the dis-
cussion of Sec. ).Therefore, the optimum single-wave vec-
tor buckling patterns are

w(x)=\2p(sle), s=3X, (53

2
wherep(s|e,) is defined in Eqs(31)—(35). The actual buck-
ling pattern is obtained by integrating the above equation,

o dn(v2£ . s|m) — Vmen(y2Z . s|m)
Ji-m '

wheres=3x, m=/_/{,, and{.=1+1— ¢, The param-
etere, controls the shape of thedirection buckling profile,
sinusoidal for smalk, and chevrons foe,— 1. Just like the
z- profile, thex-direction buckling pattern is related to the
trajectory of a particle in an inverted double well, andis
the scaled energy in the mechanical analogy. Inxtharofile

P(X) (54)

FIG. 7. Buckling profile(solid line) and elastic energy density
(dashed ling for layer buckling in a two-dimensional system for
straina/ @g=1.1(top panel anda/ay=5.0. Strain is given relative
to the threshold value aky=2m\/L,. The elastic energy density
is the integrand in Eq(20) evaluated atz=0. With increasing
strain, the buckling pattern changes from sinusoidal to zigzag in
nature, and the elastic energy density becomes concentrated near
the corners of the zigzag pattern.

strain, and the buckling pattern must be described by the full
nonlinear theory. According to Eq&s3) and (54), the wave
length A of the buckling pattern in the reduced distanxds

L\ 27(e)
Ox

and is shown in Fig. 6 to increase steadily with increasing
strain.[To obtain a physical length, the above expression for
A should be multiplied by/a'? as specified in Eq(17).]
The behavior of our calculated explains why buckled
stripe domains in a thin magnetic film are observed to have
an increasing zigzag wavelength with increasing dilative
strain[13,14).

The nature of the buckling profiles in a two-dimensional
system is depicted in Fig. 7. The pattern evolves from sinu-
soidal to zigzig, in character with increasing strain. Also
shown in Fig. 7 is the elastic energy density, the integrand in
Eq. (20), plotted forz=0 at the middle of the sample. The

: (59

case, the integral of the trajectory with respect to time is thgastic energy steadily concentrates near the kinks of the
physically relevant quantity in the layer buckling problem. In ckling profile in the zigzag limit.

the mechanical problem the parametgrcontrols the period

of motion, and hence in the buckling problem controls the

buckling wavelength. The actual value &f is determined
by optimizing the full free energy expression, EgQ) or Eq.

B. Modulation of the buckling pattern in two directions

We have obtained optimal buckling patterns, modulated

(44). in two directions, beyond the single wave vector limit, by
Results for optimizingf, as given in Eq.44), are pre- expanding(x,y) in a Fourier series. Since Delrieu showed
sented in Fig. 6. At threshol@, ande, are both zero, and a that at threshold the triangular buckling pattern is higher in
single Fourier mode treatment is accurate. However, botenergy than one with two orthogonal wave vect®s|, we
these parameters rapidly increase to unity with increasingonfine our attention to rectangular patterns. First, buckling
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FIG. 8. Buckling patterng/ which minimize the free energy defined in Eqs(45—(48). The patterns are calculated for different
boundary conditions as determined bihe length of the square unit cellt/27)?= (a) 1.1, (b) 10, (c) 30, and(d) 100. The independent
variables arex/| andy/l, and a total of four periodic cells are shown in each case. Buckling pa@giis optimum for a straine/ «
~1.5, pattern(b) is optimum for strain ofa/ay=~5.9, and patterngc) and (d) are observed for strain values af @y>20. (aq is the
threshold value of strain,2\/L,.) With increasing strain, the buckling pattern evolves in a manner that reflects the change from sinusoidal
to zigzag in nature, as seen in the two-dimensional buckling patterns of Fig. 7.

points. We expect the flat regions of the buckling pattern to
contain very little of the total elastic energy in the high strain
limit. The fact that there is some residual elastic energy in

square buckling pattern, or two parametgrandl, for the the flat regions of the buckling pattern, as in the lower panel

general rectangular pattern. Samples of these solutions af F_|g. bl% IS ﬁartl)qcldute ;[ﬁ Sfmat”tﬁutr\;ﬁturbe alil_thls Iet\':el OT
presented in Fig. 8, illustrating the transition from sinusoida/STaiN, but partly retiects the tact that the buckiing pattern IS

to chevron character for the three-dimensional case. Ju& Mean field compromise for the entire sample, not just for

above thresholfla/ay=1.1 in panel(a)], the buckling pat- 15
tern is essentially a single Fourier mode in each orthogona ’
direction. With increasing wavelengttthe buckling pattern

patterns that optimize the functiongl[Eq. (48)] are deter-

mined. This generates a family of solutio@$x,y) indexed
by a single parameter, the unit cell sikén the case of a

evolves toward flat regions joined at creases. & 13
Once the patterns which minimize the reduced functional 038 |
g are generated, a variational scale paramgtir inserted {55
. . -~ B - o
for each direction, ¥(qx,qy) for square patterns or | 06 g g

Tp(qxx,qyy) for the general rectangular case, and the free”
energyf [Eq. (44)] is optimized with respect to two param- 04 F
eters| and g for a square lattice, and four parameters
lx.ly,ax, andqy, for the general rectangular lattice. The 1.5
parameterd or (I,,l,) control the nature of the buckling
pattern, as did the parametgrin the two-dimensional case.
Shown in Fig. 9 is the buckling wavelength=I/q for a 0 : '

2 . . . 6 8 10
square buckling pattern as a function of strain. The optimal ola
buckling pattern rapidly departs from the single mode solu- 0
tion as the strain rises above threshold. Likewise, the pig 9. parametee, and wavelength\ of the optimal pattern
z-profile parametek, rises steeply to unity with increasing for three-dimensional square buckling as a function of steain
strain, indicating the failure of the single-mode solution for strain is given relative to the threshold valueaf=27\/L,. The
¢(z) as well. The distribution of elastic energy, as measureduckling wavelength is relative to the threshold value /bf
by the integrand in Eq20) evaluated ar=0, is depicted in = .\/47L,\. ¢, is regarded as a functional of the buckling profile in
Fig. 10. The elastic energy tends to concentrate at apicahe x- direction, as in Eq(36).




PRE 62 BUCKLING INDUCED BY DILATIVE STRAIN IN TWO -. .. 3745

600

400 -
1-wave vector

2-wave vector

f (elastic energy)

[\
[=3
o

alog

FIG. 11. Comparison of the elastic energy of layers buckling
along a single direction, or two directions. They are degenerate in
the single-mode limit, but the bidirectional solution with a square

4000 unit cell becomes lower in energy when nonlinear terms come into
3000 \ play. Solutions with a rectangular unit cell are intermediate in en-
2000 ergy between the unidirectional and square buckling patterns.
1000
X Despite the lack of universality in the buckling pattern, both
o5 f-’~‘3'-"‘.,,m,"':::::7 1 cases can _be analyzed vyithi_n the same analog_y with a par-
o4 S ,','0,6‘," ticle executing bound oscillations within a potential. The dif-
NS 80/ ferences in buckling patterns are understood, within the me-

chanical analogy, in terms of qualitative features of the
7o potential.
Even the three-dimensional profiles presented in Sec. V B
FIG. 10. Elastic energy density for layer buckling in a two- may yet succumb to simple analytic forms. As can be seen in
dimensional system for straia/ay,=1.1 and 5.0. Strain is given Fig. 8, the three-dimensional buckling profile approaches the
relative to the threshold value efy=2m\/L,. The elastic energy function
density is the integrand in EQR0) evaluated az=0. The indepen-
dent variables arg/l andy/l. The elastic energy density becomes ~ 1

2Xx
concentrated near apical points with increasing strain. (x.y)= _(5_

SIRER

y

‘ E(;)L'jck"ng patterns modulated in both one and two direc_withi_n a unit g:ell cente'red at the origin, after which 'Fhe pat-
tions are observed in experiments on smectic liquid crystal&ern is periodically replicated. At threshold, the buckling pro-
under dilative straiff1]. Near threshold, in the limit of a file is a sum of the lowest order Fourier modes:

single Fourier mode for each direction, unidirectional and 2% o

b|d|rec_t|0_nal solutions are exactly degenerate. The_ degen- Tp(x,y)=ax005<— +aycos<—y>. (57)
eracy is lifted, and the square pattern is favored with increas- ly

ing strain and the appearance of higher Fourier m@8as _

11), accounting for the experimental observation that theSince ¢ becomes of sum of a purelydependent function
square pattern emerges in smectics beyond threhplave  and a purelyy-dependent function in the limit of both high
have also calculated buckling patterns and overall energy foand low dilative strain, this suggests that separation into a
rectangular patterns. The rectangular patterns are intermedium ofx andy functions would be a fruitful area for future
ate in energy between the unidirectional modulation andapproximations, if desired.

Iy

square patterns, and are not shown here. Our calculated strain-induced buckling profile for stripes
in thin films [13—19 or liquid crystals, modulated along a
VI. DISCUSSION single direction[9—-11], was previously calculatedl9] and

already compared with experim€lrit8,20. In this work, we

Both a qualitative analysis and a calculation of dilativetruly predict three-dimensional modulation patterns, that is,
strain-induced buckling patterns are presented in this workayer buckling modulated along more than one direction,
Our qualitative analysis, couched in terms of a mechanicahich will hopefully be compared with experiment.
analogy, suggests that layer buckling patterns are not univer-
sal. For example, the compression-induced interface modu- ACKNOWLEDGMENTS
lation yields a profile in which the peaks become more
rounded with increasing strain. This is just the opposite of Acknowledgement is made to the donors of The Petro-
dilative strain-induced buckling, where the profile turns intoleum Research Fund, administered by the ACS, for support
straight segments joined by kinks in the large strain limit.of this research.
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