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Buckling induced by dilative strain in two- and three-dimensional layered materials

Sherwin J. Singer
Department of Chemistry, Ohio State University, Columbus, Ohio 43210

~Received 30 March 2000!

Buckling of stripes in two dimensions, or layers in three dimensions, induced by dilative strain, is observed
in thin films, in liquid crystals, and at interfaces. Equations for the buckling pattern are analyzed and solved in
this work. We have previously predicted buckling patterns in two-dimensional systems, which were subse-
quently successfully compared with experiment. Here we make predicted buckling profiles for three-
dimensional layered materials available for comparison with experiment. We also analyze dilative strain-
induced buckling on a qualitative level, in terms of mechanical analogy, and compare the modulation pattern
with that which arises in other contexts.

PACS number~s!: 61.30.2v, 83.70.Jr, 47.20.Ma, 87.16.Dg
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Layered materials, such as stripe phases in tw
dimensional Langmuir layers or thin magnetic films,
three-dimensional smectic phases, are host to a multitud
phenomena whose detailed understanding is both scie
cally challenging and technologically significant. In th
work we study periodic buckling in response to dilati
strain, which occurs in a wide variety of layered materia
Control of this effect in smectics is relevant to the design
liquid crystal displays@1–11#. We provide new results on th
buckling pattern beyond the limit where it can be describ
by one Fourier mode or a few. Buckling patterns beyond
single-mode limit for three-dimensional materials like sme
tics are calculated for the first time in this work, to o
knowledge.

Dilative strain favors uniform tilting of the layers becau
the perpendicular spacing between layers tilted by an angu
is reduced by a factor of cosu, as shown in Fig. 1, and th
spacing thereby approaches the equilibrium spacing be
the onset of strain. If it were possible for uniformly dilate
layers to tilt with no other associated energy costs, th
could return to equilibrium by this path. The new equili
rium state would be tilted by an angleu5cos21

„1/(11a)…
in the presence of dilative straina. As a periodic buckling
pattern, overall tilting can be classified as a zigzag or ch
ron pattern of infinitely large wavelength. However, boun
ary constraints thwart simple tilting as a route to equilibriu
For example, in the case of smectics held between pl
parallel to the layers, the plates impose a boundary const
that resists tilting and excludes a complete return to equ
rium by over all tilting or infinite wavelength zigzags. No
the buckling pattern is selected by a competition betw
strain release by layer tilting and the resistance at the bou
aries. In other systems, such as magnetic stripe phases
controllable factors like pinning defects provide the res
tance that frustrates overall tilting.

Strain-induced periodic buckling has been observed
two-dimensional magnetic stripe phases@12–15#, ferrofluids
@16#, and in three-dimensional smectic-A liquid crystals
@1,17#. Modulations along both one and two directions we
observed in experiments on smectics@1#. The effect in chiral
ferroelectric smectics@2–11# is particularly important, since
the response of these materials is exploited in the const
tion of new liquid crystal displays. Strain-induced period
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buckling was also observed in a columnar liquid crystal@18#.
Our previously calculated buckling profiles@19# modulated
along a single direction, have been successfully compa
with experiments for both chiral ferroelectric smectics@20#
and columnar liquid crystals@18#. The transition from sinu-
soidal layer undulation near the buckling threshold to a ch
ron pattern with increasing strain was predicted in our p
vious work @19#, and confirmed experimentally@20#. In this
work we predict fully three-dimensional patterns, including
three-dimensional analog of the transition from sinusoida
chevron buckling, that will hopefully be tested against e
periment as well.

The threshold condition for dilative strain-induced lay
buckling was derived by Clark and Meyer@21#, assuming a
single Fourier mode buckling pattern at threshold, a res
which is unaffected by our more extensive analysis. Sin
the continuum free energies under an applied electrom
netic field or under dilative strain are identical to seco
order in the elastic displacement field, provided the pro
transcription is made between coupling constants in the
cases, the threshold laws are analogous to those previo
derived by Helfrich@22,23# and Hurault@24# for layered ma-
terials ~cholesterics! in electromagnetic fields. Delrieu@25#
gave the critical strain for a fully three-dimensional situatio
that is, for buckling patterns described by two or three no
coincident wave vectors of equal magnitude. Wang trea
dilative strain of a lamellar phase, but his treatment was a
restricted to a single Fourier mode buckling pattern@26#.

FIG. 1. Reduction of perpendicular layer spacing fromd to
d cosu upon overall layer tilting.
3736 ©2000 The American Physical Society
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Buckling patterns beyond the single Fourier mode limit
threshold were previously treated for only two-dimensio
systems, that is, for layers modulated along a single di
tion. Nakagawa developed a soliton theory for chevron kin
@27#. Pavel and Glogarova´ derived expressions for bucklin
patterns which, like those of Nakagawa, are only valid in
chevron limit @28#. This was followed by derivations o
buckling patterns valid from threshold to the chevron lim
by this author@19# and by Limat and Prost@29#. Kralj and
Sluckin examined the transition from sinusoidal to chevr
structure in smectic-A liquid crystals confined between pa
allel plates in the so-called bookshelf structure@30#, treating
the system as two dimensional. Their calculation separa
tracked both the molecular director and the layer dens
more cumbersome than our formulation but furnishing m
detailed information. A similar study for chevron formatio
upon the smectic-A to smectic-C transition was performed
by Vaupoticet al. @31#. Stewart studied the related proble
of layer undulation caused by magnetic fields in smec
@32#. His analysis was specific to finite samples, in contr
to our treatment of systems, which are finite perpendicula
the layers and infinite parallel to the layers. As discus
below, Stewart neglected terms in the elastic free ene
which, in the dilative strain case, are crucial to describe
transition from sinusoidal to chevron buckling patterns w
increasing strain.

A similar treatment of stripe buckling, this time in th
context of stripe domains in liquid crystalline elastome
was independently derived a few years later by Finkelm
et al. @33#. Layer buckling in smectic elastomers is a mo
complicated problem, because it involves coupling betw
the smectic layer displacements and other elastic variable
was treated by Weilepp and Brand in the single Fou
mode limit @34#. Read et al. studied the two-dimensiona
transition from sinusoidal to chevron buckling patterns
smectic elastomers using numerical finite element model
@35#. The variational scheme introduced in this work shou
enable full three-dimensional studies of layer buckling
elastomers.

Besides extending the treatment of layer buckling to
full three-dimensional case, in Sec. I we develop a qual
tive picture of the origins of strain-induced buckling using
mechanical analogy. Using this formalism, we contrast
factors governing buckling via dilative strain to another si
ation, buckling of a monolayer in response to compress
@36#. The qualitatively different buckling patterns can be u
derstood in terms of the effective potential of the mechan
analogy. In Secs. II–IV, the equations for full thre
dimensional layer buckling are simplified. Results for tw
and three-dimensional buckling patterns are given in Sec

I. A MECHANICAL ANALOGY AND
COMPARISON TO BUCKLING IN

ANOTHER CONTEXT

Before presenting detailed results, it is worthwhile to e
plore the qualitative features of equations governing bu
ling patterns. For the purpose of this discussion, we work
the relative simplicity of buckling along a single directio
We also postpone consideration of boundary conditions
the direction perpendicular to the layers, theZ direction, and
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furthermore suppose that the system is changing slowly
this direction.~All of these restrictions are relaxed below!
This leaves us with one-dimensional equations which can
qualitatively interpreted. We will find that buckling phenom
ena may be grouped into classes according to the rela
magnitude of certain polynomial coefficients in an effecti
potential, much like phase transitions within Landau theo

A. Buckling driven by dilative layer strain

The free energy appropriate for a two-dimensional la
ered material is written in the Monge representation,

F5E dRA11U X
2 H B

2 Fd~R!2deq

deq
G2

1
K

2 S 1

R~R! D
2J ,

~1!

whered(R) is the actual layer spacing as a function ofR
5(X,Z), deq is the equilibrium value, andR(R) is the ra-
dius of curvature. Both these quantities can be expresse
terms ofU(R), the deviation of the layers from their equilib
rium positions:

d2deq

deq
5

11UZ2A11U X
2

A11U X
2

, ~2!

1

R 5
UXX

~11U X
2 !3/2

. ~3!

We suppose that the layers are uniformly dilated in theZ
direction, ignore boundary effects, and suppose that
buckling pattern is independent ofz,

U~R!5aZ1u~X!, ~4!

restrictions which are all removed in later sections of t
work. Plugging Eqs.~2!–~4! into Eq. ~1!, and setting the
functional derivative with respect tou(X) to zero, we obtain
a one-dimensional equation satisfied byw(X)[uX(X) ~thin
solid curves in Fig. 3!:

wxx5
1

2
w~11w2!„w22a~a12!…1

5

2 S wwx
2

11w2D . ~5!

In the preceding equation, we usedX5lx5AK/Bx, where
l is the usual penetration depth, to remove explicit dep
dence on the elastic constants from the equation.

For smallUX , we can neglect the metricA11U X
2 in Eq.

~1!, and take only leading powers ofU in Eq. ~2! and ~3!.
Using uniform dilation@Eq. ~4!#, we obtain a simplified free
energy

F'E dR H B

2 S a2
1

2
w2D 2

1
K

2
wX

2 J , ~6!

which, when minimized, yields the following approxima
analog to Eq.~5!:

wxx5
1

2
w~w222a!. ~7!
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3738 PRE 62SHERWIN J. SINGER
This approximation is used in later sections of this wo
where boundary conditions in theZ direction and three-
dimensional buckling situations are tackled. Equation~7! ad-
mits a closed form solution in terms of Jacobiu functions
@19# ~thin dashed curves in Fig. 3!, as described in Sec. III B

There is a simple mechanical analogy@19# that explains
how periodic solutions to Eq.~5!, or its approximate form
@Eq. ~7!#, arise. Consideringx to be a time variable, Eq.~7! is
the equation for a classical trajectory in the inverted qua
well potential:

a

2
w22

1

8
w4. ~8!

The first term on the right of the exact equation~5! is, in the
mechanical analogy, the force arising from the potential

a

2 S 11
a

2 Dw22
1

8
~122a2a2!w42

1

12
w6. ~9!

The potentials in Eqs.~8! and ~9! have similar qualitative
forms, as shown in Fig. 2.

Of the two boundary conditions needed to specify
solution of the second order differential equations~5! or ~7!,
one controls the phase of the periodic solution and is
important unless boundary conditions in thex direction are
invoked. The other may be pictured, in the mechanical a
ogy, as the energy of a particle. For small energies, the
ticle executes harmonic motion. Therefore,w(x) @5ux(x)#,
and also its integralu(x), are both sinusoidal functions~Fig.
3!. The period of classical motion, and hence the stripe bu
ling wavelength, lengthens with increasing energy in the m
chanical analogy. For large particle energies, the part
spends most of its time just inside the two maxima shown
Fig. 2. As a result, the solutionsw(x) acquire a square wav
character, the flat portions arising as the particle lingers
the turning points located just inside the potential maxima
the mechanical analogy. Since flat portions ofw(x) are re-
gions of constant slope inu(x), the square wave limit of
w(x) implies thatu(x) appears like a zigzag or chevron. Th
‘‘velocity dependent’’ term in Eq.~5! is seen in Fig. 3 to
have only slight effect on the buckling profiles.

FIG. 2. Effective potentials in a mechanical analogy for t
equations governing layer buckling.~a! Full equations~5! or ~9!. ~b!
Approximate equations~7! or ~8!. Functions are drawn for the di
lative straina50.2.
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B. Comparison with surface area driven buckling

Membranes and Langmuir monolayers can buckle in
sponse to compression, or coupling of composition and sp
taneous curvature in multicomponent systems@36–38#. For
the qualitative purposes of this section, we will examine
simplest case of one-dimensional buckling as treated by M
ner, Joanny and Pincus@36#. The effective free energy
analogous to Eq.~1! in the case of layer strain, is

F5E dRA11U X
2 H s1

K

2 S 1

R~R! D
2J , ~10!

where s measures the compressive pressure on the m
brane or monolayer, andR(R) is defined in Eq.~3!. Buck-
ling is induced whens,0. At this stage, the effect of grav
ity is neglected.

With the substitution UX(X)5w(x), where X
5AK/(2s)x ~recall that buckling occurs fors,0), the Eu-
ler equation for the minimum energy profile becomes

wxx52w~11w2!21
5

2 S wwx
2

11w2D . ~11!

FIG. 3. Optimum buckling profile derivativesw(x)5ux(x), cal-
culated using either the full equation~5!, shown by the thin solid
curves, or Eq.~7!, with neglect of ‘‘velocity’’ dependent~i.e., wx

dependent! terms, as shown by the thin dashed curves. Functi
are drawn for the dilative straina50.2. As explained in the text
the character of the buckling profiles is controlled by the parti
energy in the mechanical analogy. The particle energy equals~a!
25% or ~b! 99% of the barrier height in Fig. 2. From the differe
scales of the axes, note that the buckling wavelength increases
the particle energy. The thick solid curve is the integrated buckl
profile u(x), including thewx dependent terms in Eq.~5!, scaled by
either ~a! 0.2 or ~b! 0.5 to fit on the same plot withw(x).
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Just as in the case of layer strain-induced buckling, the ab
equation can be interpreted in a classical analogy as the
tion of a particle. The qualitative behavior of the analogo
particle is dominated by the potential

1

6
@~11w2!321#, ~12!

which arises from the first term on the right of Eq.~11!.
The potential function in the mechanical analogy f

compression-induced monolayer or membrane buckling,
~12! or Fig. 4, increases monotonically away from the orig
and is qualitatively different from that of Eq.~2! for dilative
strain-induced layer buckling. Consequently, beyond the h
monic limit ~small energy in the mechanical analogy!, the
character of the buckling patterns are also qualitatively
ferent. For compression-induced monolayer buckling,
particle is rapidly accelerated from its turning points, unli
the case of strain-induced layer buckling, where the part
experiences little acceleration near the potential maxima
Fig. 2. Consequently thederivativefunctionw(x) (5UX) for
compression-induced buckling approaches a zigzag or c
ron shape, as shown in Fig. 5, not the buckling pattern it
as for strain-induced layer buckling. The slope of the zigz
pattern is diminished nearw(x)50, the region of maximum
velocity, by the ‘‘velocity’’ dependent term in Eq.~11!
whose action opposes that of the first term.~Compare the
solid and dashed thin lines of Fig. 5!. With increasing en-
ergy, the compression-induced buckling pattern itself
comesmore rounded than the sinusoidal, low-energy lim
in contrast to the dilative strain-induced layer buckling.

The effective potential for compression-induced buckli
~Fig. 4! increases more rapidly than a harmonic potentia
one moves away from the origin, unlike the effective pote
tial for dilative strain-induced buckling. This feature of th
mechanical analogy explains why the compression-indu
buckling wavelengthdecreasesas one moves away from th
harmonic limit, in contrast to dilative strain-induced buc
ling. Of course, this behavior is to be expected from mo
layers or membranes under compression.

FIG. 4. Effective potentials in a mechanical analogy for t
equations governing compression-induced monolayer or memb
buckling. ~a! Full equations~11! or ~9!. ~b! Approximate equations
~13! or ~14!.
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An appropriate approximation of Eqs.~11! and ~12! is
obtained by dropping the velocity dependent term in Eq.~11!
and the highest order term in potential~12!. The resulting
equation

wxx52w~112w2! ~13!

is that of a particle moving in the potential:

1

2
~w21w4!. ~14!

The qualitative difference from the layer strain case is
difference in sign of the quartic term. Equations~13! and
~14! also admit a closed form solution in terms of Jaco
theta functions@39#.

II. REDUCED FREE ENERGY FOR BUCKLING INDUCED
BY DILATIVE LAYER STRAIN

Using the results of Sec. I as a guide, we now consi
dilative strain-induced layer buckling on a quantitative lev
for either two- or three-dimensional layered materials,
cluding smectic-A liquid crystals. TheZ direction is perpen-
dicular to the smectic layers. The smectic free energy, ap
priate for small distortions @corresponding to the
approximate forms~7! and ~8! above#, is

ne

FIG. 5. Optimum buckling profile derivativesw(x)5ux(x) cal-
culated using either the full equation~11!, shown by the thin solid
curves, or Eq.~13! with neglect of the ‘‘velocity’’ dependent~i.e.,
wx dependent! terms, as shown by the thin dashed curves. As
plained in the text, the character of the buckling profiles is co
trolled by the particle energy in the mechanical analogy. The p
ticle energy equals~a! 0.5 or ~b! 2.0. Note that the buckling
wavelength decreases with particle energy. The thick solid curv
the integrated buckling profileu(x), scaled by either~a! 1.3 or~b! 2
to fit on the same plot withw(x).
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F5E dRH B

2 FUZ2
1

2
~U X

21U Y
2 !G2

1
K

2
~UXX1UYY!2J .

~15!

The integration overR extends between6Lx/2 in thex di-
rection,6Ly/2 in they direction, and6Lz/2 in thez direc-
tion. Inclusion of the first derivative term proportional
(U X

21U Y
2) in the compression and/or dilation energy is e

sential to describe the transition from sinusoidal to chev
buckling patterns as strain is increased beyond the thres
value. Physically, this term, missing in the work of Stew
@32#, ‘‘informs’’ the free energy that dilation followed by
tilting can return the system to equilibrium, as discussed
the introduction.

The material is uniformly strained in thez direction. Ex-
press the displacement field as

U~X,Y,Z!5aZ1lu~X,Y,Z![
l

Lz
āZ1lu~X,Y,Z!,

~16!

where l5AK/B is the usual penetration depth, and t
above equation serves to define a scaled strainā
[(Lz /l)a.

In terms of the reduced distances,

x[
a1/2

l
X, y[

a1/2

l
Y and z[

Z

Lz
, ~17!

the smectic free energy takes the form

F5
Bl3

ā
E dr H 1

2 F ā1uz2
ā

2
~ux

21uy
2!G2

1
ā2

2
~uxx1uyy!

2J .

~18!

The integration over the scaled coordinatez extends between
6 1

2 . Assuming a semi-infinite system in thex and y direc-
tions, the reduced layer profileu(r ) depends only on the
dimensionless scaled strainā.

III. SEPARATION OF THE DISPLACEMENT FIELD AND
THE z-PROFILE, f„z…

A. Factorization of the displacement field

To make further progress, we approximate the displa
ment fieldu(r ) as a product:

u~r !'c~x,y!f~z!. ~19!

Boundary conditions are enforced by requiringf(6 1
2 )50.

Since thexy plane is a symmetry plane for our system
c(x,y) should exhibit no bias toward positive or negati
values. As a consequence, all odd powers ofc(x,y) will
integrate to zero. Using these simplifying features, we fin
reduced free energy densityf is given as
-
n
ld

t

n

e-

,

a

f [
ā

Al3B
FS Lz

l D 2

5
ā2

2
1

1

2
^fz

2&^c2&

1
ā2

2 F2^f2&^u¹cu2&1
1

4
^f4&^u¹cu4&1^f2&

3^~¹2c!2&G , ~20!

whereA is the area of a unit cell of the periodically repl
cated buckling pattern, and the angle brackets denote a
ages over a unit cell forxy integrals or over the system siz
for z integrals. We condensed our expressions using ‘‘¹ ’’ to
stand foronly x and y derivatives ofc(x,y). For example,
^f2&[(1/Lz)*

2Lz/2
Lz/2 dZf2(Z)5*21/2

1/2 dzf2(z) and ^u¹cu2&
[(1/A)**Adxdy(cx

21cy
2).

The optimalz profile f(z) is found by setting the func-
tional derivative off with respect tof(z) equal to zero:

^c2&
d2f

dz2
5ā2@2^u¹cu2&1^~¹2c!2&#f1

ā2

2
^u¹cu4&f3.

~21!

As introduced in Sec. I, the above equation is isomorphic
the classical mechanical equation of motion for a particle
an inverted quartic double-well potential,

m
d2f

dz2
52

]

]f H A

2
f22Bf4J , ~22!

wherez in the buckling problem maps onto time in the cla
sical analogy, the mass is the classical analogy is

m5^c2&, ~23!

the constants in the inverted quartic potential are

A5ā2@^u¹cu2&2^~¹2c!2&#, ~24!

B5
ā2

8
^u¹cu4&, ~25!

and the equation of motion is to be solved subject to

fS 6
1

2D50. ~26!

This analogy with a classical mechanical problem was fi
observed in earlier work on layer buckling in two
dimensional systems@19#, and is seen to carry over to highe
dimensions in this work.

B. Standard solutionsp„s… to the Euler equation

Since differential equations like Eqs.~7!, ~21!, and ~22!
will appear yet again in another context, it is convenient
specifyf(z) is terms of solutionsp(sue) to a standard prob-
lem,
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d2p

ds2
52

]

]p
$2p22p4%, ~27!

wheree is the energy of the particle in the standard situati
The choice of this standard is arbitrary, although conven
since the peaks of the potentialV(p)52p22p4 occur atp
561, and the value of the potential at the peaks is a
equal to 1. With this choice, only 0<e,1 could lead to
solutions of physical interest. Further restrictions one will
also apply, and lead to the threshold condition for buckli

By straightforward coordinate transformationf(z) is
given in terms of solutions to the standard problem,p(sue):

f~z!5
1

2 S A

BD 1/2

p~sue!, ~28!

z52S m

A D 1/2

s2z0 . ~29!

The parametersz0 ande will be chosen to satisfy the bound
ary condition~26!. The energyE of the particle in the clas-
sical analogy of Eq.~22!, before transformation to the stan
dard problem, is related toe by

E5
A2

16B
e. ~30!

The standard trajectoriesp(sue) admit an analytic solu-
tion. They are given implicitly in terms ofF(uum), elliptic
integrals of the first kind@40#:

s5~2z1!21/2FS uUz2

z1
D , ~31!

z6516~12e!1/2, ~32!

sinu5z2
21/2p. ~33!

The period of motion is

t~e!523/2z1
21/2KS z2

z1
D , ~34!

whereK(m) is the complete elliptic integral of the first kin
@40#. The trajectories are also given explicitly in terms
Jacobi elliptic functions@40#:

p~sue!5Az2sn~A2z1sum!, m[
z2

z1
. ~35!

C. Threshold condition

Definition ~31! and the periodicity of the trajectories im
ply that p(0ue)5p„@t(e)/2#ue…50. Furthermore,p(sue)
.0 in the range 0,s,t(e)/2. Therefore, the boundary con
dition f(2 1

2 )50 is satisfied by choosingz05 1
2 in Eq. ~29!.

The boundary conditionf( 1
2 )50 is satisfied by choosinge

to be the special value, here denoted ‘‘ez , ’’ for which „by
substitution ofz5 1

2 , z05 1
2 , ands5@t(ez)/2# into Eq.~29!…,
.
nt

o

.

t~ez!5S A

mD 1/2

5ā@^u¹cu2&2^~¹2c!2&#1/2^c2&21/2.

~36!

In the limit of small e, t(e)5p1(3pe/16)1O(e2).
With increasinge, t(e) increases monotonically. Ase ap-
proaches 1,t(e) diverges logarithmically. The lower limit
on t(ez) provides a threshold condition for layer buc
ling. This can be seen by takingc(x,y) to be the linear
combination,

c~x,y!'(
n

Cneikn•r, ~37!

where kn are members of a finite set of reciprocal latti
vectors from a two-dimensional lattice. Inserting the limitin
form of c(x,y) into Eq. ~36!, we find

t~ez!5āF(
n

uCnu2~ uknu22uknu4!G1/2S (
n

uCnu2D 21/2

.

~38!

Sincet(ez)>p, the right hand side of the preceding equ
tion must be greater than or equal top to satisfy boundary
conditions~26!. To determine threshold conditions, we se
the wave vectorskn which make the right hand side of Eq
~38! as large as possible. The magnitudes ofkn are easily
found to be

uknu5221/2. ~39!

At these wave vectors, the right hand side of Eq.~38! is
independent ofCn , and equal toā/2, which must be greate
than the threshold value ofp:

ā>2p. ~40!

Recalling the definition of reduced units in Sec. II, this is
agreement with previous derivations of the threshold con
tion @21,25#. Combining Eqs.~28! and ~29! with properties
~38!–~40! at threshold, we obtain, for future reference, thez
profile at threshold:

f~z!5
1

4 S A

B
ezD 1/2

cos~pz! ~threshold!. ~41!

D. Form of the free energy with the optimum z profile

Henceforth thez profile f(z) will be regarded as a func
tional of thexy profile, as specified in Eqs.~23!–~25! and
~28!. The reduced free energyf given in Eq. ~20! takes a
simpler form when the explicit dependence of the optimu
f(z) on c(x,y) is taken into account.

Thefz
2 term in the free energy can be removed using

analog to the conservation of energy in Eq.~22!, which is
isomorphic to a classical equation of motion:

1

2
mS df

dzD 2

1
A

2
f22Bf45E5

A2

16B
ez . ~42!

The last equality follows upon comparison with the stand
problem~28! for which 1

2 (dp/ds)212p22p45e.
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The fourth moment of thez profile, ^f4&5 1
16 A2/B2^p4&,

can be related to the second moment using a standard
tity from the theory of Jacobian elliptic functions@41#. In
terms of the standard solutions, this identity reads

^p4&5
4

3
^p2&2

1

3
ez . ~43!

Substituting Eqs.~42! and ~43! into expression~20! for the
free energy, we obtain

f 5
ā2

2
1

ā2

6

„^u¹cu2&2^~¹2c!2&…2

^u¹cu4&
~ez24^p2&ez

!.

~44!

IV. XY PROFILE, c„X,Y…, AND MIDSAMPLE BUCKLING
PATTERN

SinceA,B, and m in Eq. ~22! depend on thexy profile
c(x,y), the optimumz profile is a functional of thexy pro-
file: f5f@c(x,y)#. Under the ansatz of Eq.~19! the free
energy can be regarded as a functional of thexy profile,
f @c,f#5 f †c,f@c#‡, and could conceivably be directl
minimized with respect toc. However, a further approxima
tion results in a less cumbersome procedure which invo
minimization over just a few parameters. We isolate a p
tion of the free energyf of Eq. ~20!, identified asg in the
following equation, which governs the behavior of thexy
buckling patternc away from the boundaries atz56 1

2 :

f 5
ā2

2
1

1

2
^fz

2&^c2&1
ā2

2
^f2&gFcU ^f4&

^f2&
G , ~45!

g@cug#[2^u¹cu2&1
g

4
^u¹cu4&1^~¹2c!2&. ~46!

When thez coordinate is not too close to the syste
boundaries atz56 1

2 , we expect the buckling pattern to b
relatively independent of thez coordinate. If thez variation
of the buckling profile is neglected, minimization of the fre
energy reduces to a minimization ofg, regardless of whethe
the buckling profile is approximately factored into a produ
of xy andz parts as in Eq.~19!. This is easily seen by letting
uz→0 in Eq. ~18!.

We will soon find thatg in Eq. ~46! only affects the
normalization ofc. To within that normalization, the buck
ling profiles c that minimizeg only depend upon the uni
cell size and shape chosen for the buckling pattern.~The free
energy is subsequently minimized with respect to the u
cell dimensions.! Hence we need only consider profilesc̃

that optimize a functionalg̃, which is defined below to be th
functionalg, whereg is set to a conventional value which w
arbitrarily take to be unity. This is expected on physic
grounds, sinceg depends only onf, and for a slowly vary-
ing z profile f only contains information on the normaliza
tion of the buckling pattern. Hence the value ofg should not
affect theshapeof the profilec̃.

Demonstrating thatg does not affect the shape ofc̃ is
achieved with the substitution
n-

s
r-

t

it

l

c~x,y!5g21/2c̃~x,y! ~47!

in Eq. ~46!. With that substitution, we find that

g@cug#5g21g@c̃u1#[g21g̃@c̃#. ~48!

Hence the optimal patternc̃ with g set equal to unity is
related to the optimal buckling profile with any other fixe
normalization by transformation~47!. In all subsequent
work, we work with the scaledxy profile c̃, in effect adopt-
ing a standard normalization forc(x,y). Of course, the nor-
malization ofc is arbitrary, although that of the complet
buckling profilef(z)c(x,y) is not. While the functionalg̃
has no explicit dependence on any parameters, boun
conditions in the form of specifying a wavelength for th
periodic functionsc̃ will introduce a free parameter for eac
modulation direction.

To gain further insight and simplicity, we do not pursu
the straightforward approach of numerically optimizing E
~20! or ~44! while self-consistently allowing for the depe
dence of the optimumf on c. Instead, we restrict the varia
tion of c to the family of solutionsc̃ obtained by minimiz-
ing g in Eq. ~46! with variable boundary conditions an
variable scaling factors, as parametrized byqx andqy , in the
x andy directions:

c~x,y!'c̃~qxx,qyy!. ~49!

This is a considerable simplification because, for a fixed u
cell geometry, this leads to a low-dimensional minimizatio
turning the minimization off into a search over just two
parameters for each independent direction of modulat
For a one-dimensional buckling pattern, or, for example,
a square buckling pattern for which we expectqx5qy , the
optimization is over only two parameters. This approxim
tion was already shown to reproduce all qualitative featu
of experiments involving single-wave vector buckling pa
terns@12–16#, and was successfully put to a quantitative te
in some instances@18,20#.

V. RESULTS

Buckling patterns along both one and two directions
observed in smectic-A materials subjected to dilative strai
@1#. We treated the single-wave vector case in previous w
@19#, but it is useful to briefly review and extend these resu
here before proceeding to the full three-dimensional ca
The previous results are further simplifed in this work.

A. Unidirectional buckling pattern

If layers are modulated along a single direction, taken
the x direction, the limiting expression forg̃@c̃#

g̃@c̃#52^~ c̃x!
2&1

1

4
^~ c̃x!

4&1^~ c̃ !xx
2 & ~50!

is minimized whenc̃ satisfies

c̃xxx52c̃x1
1

2
~ c̃x!

3. ~51!
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Settingw5c̃x , we find thatw satisfies

wxx52
]

]w Fw2

2
2

w4

8 G , ~52!

which is precisely of the same form as Eq.~22!, the equation
of motion in an inverted double-well potential.~See the dis-
cussion of Sec. I.! Therefore, the optimum single-wave ve
tor buckling patterns are

w~x!5A2p~suex!, s5
1

2
x, ~53!

wherep(suex) is defined in Eqs.~31!–~35!. The actual buck-
ling pattern is obtained by integrating the above equation

c̃~x!52lnFdn~A2z1sum!2Amcn~A2z1sum!

A12m
G , ~54!

wheres5 1
2 x, m5z2 /z1 , andz6516A12ex. The param-

eterex controls the shape of thex-direction buckling profile,
sinusoidal for smallex and chevrons forex→1. Just like the
z- profile, thex-direction buckling pattern is related to th
trajectory of a particle in an inverted double well, andex is
the scaled energy in the mechanical analogy. In thex- profile
case, the integral of the trajectory with respect to time is
physically relevant quantity in the layer buckling problem.
the mechanical problem the parameterex controls the period
of motion, and hence in the buckling problem controls t
buckling wavelength. The actual value ofex is determined
by optimizing the full free energy expression, Eq.~20! or Eq.
~44!.

Results for optimizingf, as given in Eq.~44!, are pre-
sented in Fig. 6. At threshold,ex andez are both zero, and a
single Fourier mode treatment is accurate. However, b
these parameters rapidly increase to unity with increas

FIG. 6. Parametersex ~solid line!, ez ~long dashed line!, and
wavelengthL52t(ex)/qx ~short dashed line! of the optimal pattern
for two-dimensional buckling as a function of straina. Strain is
given relative to the threshold value ofa052pl/Lz . The buckling
wavelength is relative to the threshold value ofL05A4pLzl. ex

and qx parametrizec̃(qxx) as given in Eqs.~49! and ~54!. ez is
regarded as a functional of the buckling profile in thex direction, as
in Eq. ~36!.
e

e

th
g

strain, and the buckling pattern must be described by the
nonlinear theory. According to Eqs.~53! and~54!, the wave
lengthL of the buckling pattern in the reduced distancex is

L5
2t~ex!

qx
, ~55!

and is shown in Fig. 6 to increase steadily with increas
strain.@To obtain a physical length, the above expression
L should be multiplied byl/a1/2, as specified in Eq.~17!.#
The behavior of our calculatedL explains why buckled
stripe domains in a thin magnetic film are observed to h
an increasing zigzag wavelength with increasing dilat
strain @13,14#.

The nature of the buckling profiles in a two-dimension
system is depicted in Fig. 7. The pattern evolves from si
soidal to zigzig, in character with increasing strain. Al
shown in Fig. 7 is the elastic energy density, the integrand
Eq. ~20!, plotted forz50 at the middle of the sample. Th
elastic energy steadily concentrates near the kinks of
buckling profile in the zigzag limit.

B. Modulation of the buckling pattern in two directions

We have obtained optimal buckling patterns, modula
in two directions, beyond the single wave vector limit, b
expandingc̃(x,y) in a Fourier series. Since Delrieu showe
that at threshold the triangular buckling pattern is higher
energy than one with two orthogonal wave vectors@25#, we
confine our attention to rectangular patterns. First, buckl

FIG. 7. Buckling profile~solid line! and elastic energy densit
~dashed line! for layer buckling in a two-dimensional system fo
straina/a051.1 ~top panel! anda/a055.0. Strain is given relative
to the threshold value ofa052pl/Lz . The elastic energy density
is the integrand in Eq.~20! evaluated atz50. With increasing
strain, the buckling pattern changes from sinusoidal to zigzag
nature, and the elastic energy density becomes concentrated
the corners of the zigzag pattern.
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FIG. 8. Buckling patternsc̃ which minimize the free energyg̃ defined in Eqs.~45!–~48!. The patterns are calculated for differe
boundary conditions as determined byl the length of the square unit cell: (l /2p)25 ~a! 1.1, ~b! 10, ~c! 30, and~d! 100. The independen
variables arex/ l and y/ l , and a total of four periodic cells are shown in each case. Buckling pattern~a! is optimum for a straina/a0

'1.5, pattern~b! is optimum for strain ofa/a0'5.9, and patterns~c! and ~d! are observed for strain values ofa/a0.20. (a0 is the
threshold value of strain, 2pl/Lz .) With increasing strain, the buckling pattern evolves in a manner that reflects the change from sin
to zigzag in nature, as seen in the two-dimensional buckling patterns of Fig. 7.
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patterns that optimize the functionalg̃ @Eq. ~48!# are deter-
mined. This generates a family of solutionsc̃(x,y) indexed
by a single parameter, the unit cell sizel in the case of a
square buckling pattern, or two parametersl x and l y for the
general rectangular pattern. Samples of these solutions
presented in Fig. 8, illustrating the transition from sinusoi
to chevron character for the three-dimensional case.
above threshold@a/a051.1 in panel~a!#, the buckling pat-
tern is essentially a single Fourier mode in each orthogo
direction. With increasing wavelengthl the buckling pattern
evolves toward flat regions joined at creases.

Once the patterns which minimize the reduced functio
g̃ are generated, a variational scale parameterq is inserted
for each direction, c̃(qx,qy) for square patterns o
c̃(qxx,qyy) for the general rectangular case, and the f
energyf @Eq. ~44!# is optimized with respect to two param
eters l and q for a square lattice, and four paramete
l x ,l y ,qx , and qy , for the general rectangular lattice. Th
parametersl or (l x ,l y) control the nature of the buckling
pattern, as did the parameterex in the two-dimensional case
Shown in Fig. 9 is the buckling wavelengthL5 l /q for a
square buckling pattern as a function of strain. The optim
buckling pattern rapidly departs from the single mode so
tion as the strain rises above threshold. Likewise,
z-profile parameterez rises steeply to unity with increasin
strain, indicating the failure of the single-mode solution f
f(z) as well. The distribution of elastic energy, as measu
by the integrand in Eq.~20! evaluated atz50, is depicted in
Fig. 10. The elastic energy tends to concentrate at ap
re
l
st

al

l

e

l
-
e

r
d

al

points. We expect the flat regions of the buckling pattern
contain very little of the total elastic energy in the high stra
limit. The fact that there is some residual elastic energy
the flat regions of the buckling pattern, as in the lower pa
of Fig. 10, is partly due to small curvature at this level
strain, but partly reflects the fact that the buckling pattern
a mean field compromise for the entire sample, not just

FIG. 9. Parameterez and wavelengthL of the optimal pattern
for three-dimensional square buckling as a function of straina.
Strain is given relative to the threshold value ofa052pl/Lz . The
buckling wavelength is relative to the threshold value ofL0

5A4pLzl. ez is regarded as a functional of the buckling profile
the x- direction, as in Eq.~36!.
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z50.
Buckling patterns modulated in both one and two dire

tions are observed in experiments on smectic liquid crys
under dilative strain@1#. Near threshold, in the limit of a
single Fourier mode for each direction, unidirectional a
bidirectional solutions are exactly degenerate. The deg
eracy is lifted, and the square pattern is favored with incre
ing strain and the appearance of higher Fourier modes~Fig.
11!, accounting for the experimental observation that
square pattern emerges in smectics beyond threshold@1#. We
have also calculated buckling patterns and overall energy
rectangular patterns. The rectangular patterns are interm
ate in energy between the unidirectional modulation a
square patterns, and are not shown here.

VI. DISCUSSION

Both a qualitative analysis and a calculation of dilati
strain-induced buckling patterns are presented in this w
Our qualitative analysis, couched in terms of a mechan
analogy, suggests that layer buckling patterns are not uni
sal. For example, the compression-induced interface mo
lation yields a profile in which the peaks become mo
rounded with increasing strain. This is just the opposite
dilative strain-induced buckling, where the profile turns in
straight segments joined by kinks in the large strain lim

FIG. 10. Elastic energy density for layer buckling in a tw
dimensional system for straina/a051.1 and 5.0. Strain is given
relative to the threshold value ofa052pl/Lz . The elastic energy
density is the integrand in Eq.~20! evaluated atz50. The indepen-
dent variables arex/ l andy/ l . The elastic energy density becom
concentrated near apical points with increasing strain.
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Despite the lack of universality in the buckling pattern, bo
cases can be analyzed within the same analogy with a
ticle executing bound oscillations within a potential. The d
ferences in buckling patterns are understood, within the m
chanical analogy, in terms of qualitative features of t
potential.

Even the three-dimensional profiles presented in Sec.
may yet succumb to simple analytic forms. As can be see
Fig. 8, the three-dimensional buckling profile approaches
function

c̃~x,y!}2S 1

2
2U2x

l x
U D2S 1

2
2U2y

l y
U D , S 2

1

2
<

x

l x
,

y

l y
<

1

2D
~56!

within a unit cell centered at the origin, after which the pa
tern is periodically replicated. At threshold, the buckling pr
file is a sum of the lowest order Fourier modes:

c̃~x,y!5axcosS 2px

l x
D1aycosS 2py

l y
D . ~57!

Since c̃ becomes of sum of a purelyx-dependent function
and a purelyy-dependent function in the limit of both hig
and low dilative strain, this suggests that separation int
sum ofx andy functions would be a fruitful area for future
approximations, if desired.

Our calculated strain-induced buckling profile for strip
in thin films @13–15# or liquid crystals, modulated along
single direction@9–11#, was previously calculated@19# and
already compared with experiment@18,20#. In this work, we
truly predict three-dimensional modulation patterns, that
layer buckling modulated along more than one directio
which will hopefully be compared with experiment.
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FIG. 11. Comparison of the elastic energy of layers buckl
along a single direction, or two directions. They are degenerat
the single-mode limit, but the bidirectional solution with a squa
unit cell becomes lower in energy when nonlinear terms come
play. Solutions with a rectangular unit cell are intermediate in
ergy between the unidirectional and square buckling patterns.
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