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Density-functional theory of inhomogeneous systems of hard spherocylinders
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The smecticA phase boundaries of a hard-spherocylinder fluid are calculated using a density-functional
theory based on one proposed earlier by Somoza and TarfRbys Rev. A41, 965(1990]. Our calculations
do not employ the translation-rotation decoupling approximation used in previous density-functional theories.
The calculated phase boundaries agree well with computer simulation results up to aspett Eatids and
are in better agreement with the simulations than are previous theories. We generalize the model fluid by
including long-range interactions with quadrupolar orientational symmetry, which are taken into account by
mean-field approximation. For sufficiently large strength, these interactions produce a sthphtse, which
undergoes either a continuous or weakly first-order transition to the snfepti@se. The theory and numerical
methods discussed here can be applied to the analysis of interfacial phenomena.

PACS numbes): 64.70.Md, 05.70.Fh

[. INTRODUCTION tions in Ref.[2]. However, the coupling is expected to be
more relevant in other situations, such as wetting and an-
It was first shown by Onsagdi] that a fluid of hard choring phenomena at interfacelsl], where the present ap-
spherocylinders could undergo a nematit) ¢isotropic (I) proximation can be used directly.
phase transition. Onsager’s analysis was based on a lowest- The practical relevance of a hard-core model to the study
order(i.e., second-ordgwirial approximation to the free en- of real liquid crystals is based on the idea that repulsive
ergy, which is accurate only in the limit of very long mol- intermolecular forces are mainly responsible for fluid struc-
ecules. In recent years, computer-simulation studies haveire, a notion deeply grounded in modern perturbation theo-
shown that hard spherocylinders of finite length exhibit anries of fluids[12]. Implementation of perturbation theory for
I-N transition, as well as transitions to the layered smea&tic- liquid crystals with more realistic intermolecular potentials
(SmA) phasd2,3]. The hard-spherocylinder model has alsorequires an accurate assessment of the behavior of a suitable
been studied using density-functional thedBFT) [4—-10.  reference model such as the hard-spherocylinder fluid. This
Although based on approximations that generally yield re-model has advantages with respect to other hard-core models
sults less accurate than those obtained from simulationf liquid crystals used in recent studies, such as hard ellip-
DFT has the advantage of being less time consuming, pasoids, since the latter model does not exhibit a &mphase
ticularly in determining phase boundaries and for studyind13].
inhomogeneous systems. A second objective of the present work is to test the suit-
However, as recently pointed out by van Retjal. [8], ability of the model as a reference system by including long-
previous DFT studies of smectic phases in hard+ange intermolecular interactions with quadrupolar orienta-
spherocylinder fluids have made the unphysical assumptiotional symmetry, which are treated by a simple mean-field
that translational and orientational ordering are decoupledpproximation. Several studies, beginning with work by
[5,6]. This approximation was dropped in a DFT analysisPriest[14], have shown that interactions of this symmetry
considered in Ref8], although the latter work was restricted are able to induce formation of the smed8d-Sm-C) phase,
to the low-density Onsager theory. One of the objectives ofvhich is characterized by an average tilt of the molecular
the present work is to remove the translation-orientation deaxes with respect to the smectic layer noriidd]. The same
coupling assumption of earlier DFT theorigs6] and apply  type of interaction has also been shown to account for tilted
the resulting theory to hard spherocylinders of arbitrary deniextures at free surfaces of nematic liquid crysf{dl§,17.
sity and elongation using a more accurate DFT approximaRecently, there have been several DFT studies ofCSm
tion, which can also be used to study inhomogeneous syghases based on models incorporating both hard-core and
tems with general spatial variations in order parameter anquadrupolar interactions, although these works have been
director orientation. We show that the coupling between oridimited either by restricting the molecules to be in perfect
entational and translational degrees of freedom, which is ceiparallel alignmenf18] or by using a hard-ellipsoid model for
tainly present, does not quantitatively affect the bulk phasehe repulsive coregl9]. The model used in Ref19] has the
behavior and that the theory reproduces wellliheid phase disadvantage that additional long-range interactions of ap-
boundaries of this system obtained by Monte Carlo simulapropriate orientational symmetry must be included to gener-
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ate smectic ordering. In consequence, this model did not pro- PHS
. Felp] ex(pHS) ~ LA ~
duce aN-Sm-A—-Sm-C (NAC) point where the three N s dQ | dQ'f(Q)f(Q)
orientationally ordered phases simultaneously coexist, and Vexe
also generated phase boundafeg., SmA—-Sm-C) having o
a too strongly first-order character. The present model, which X J drVe,dr,Q,Q), (2)

is closely akin to that of Ref[18], removes most of these

defects, although we do find that the Sk-Sm-C transition whereV!S is the excluded volume of two sphergjual to
changes from continuous to first order with increasing mo443/3), V. {r,Q,9Q’') is the (orientation-dependenex-
lecular elongation. In contrast with R¢1.8], due to relaxing  cluded volume function of two hard spherocylinders

the constraint of perfect molecular alignment, we find that

the N—Sm-A transition is first order, in agreement with the , e Q'):{
simulations of Ref[2]. exa 0 otherwise,

As mentioned before, the ultimate goal of our studies is to 3)
develop an accurate a_nd.numerically tractable DFT .theorxénd WHS(p) is the excess free energy per molecule of a
for realistic models of liquid crystals that can be applied to ex . L
more complex situations, such as those due to the presené%Stem of hard spheres. The effective denpliy is usually

of interfaces and accompanying phenomena like wetting anghosen such that the packing fractions of the effective hard-

anchoring. Although the present work is confined to thesphere system and the real hard spherocylinders are the

analysis of macroscopically uniform liquids, the smectic >2Me- This condi'gion alone.is sufficient since th? free energy
phases examined here exhibit spatial modulation (@nthe .Of harfd sphereds IS a f%n%t'on onlyf of the pg\cklng fracl:tlon,
case of SmE) tilt ordering, and therefore involve most of ll'i %At 1€ pro quHS‘T , but ?Ot opr”S O.r.UI Seﬁ’f?r.ate y: f
the same complexities occurring in the presence of inter- € bAIs equiva ent.to a scaling of all virial coefficients o
faces. Here we extend and refine several techniques deveﬂ—rder higher than 2 in terms of those of a system of hard
oped in previous wor19,2Q to facilitate the numerical Sphereg 23],

solution of the DFT, which will also be applicable to more fori"l]icii?jtjcr:raga;lri]ntglss g?grigilihgniuc?i)c/z thr;g:éybg?:ug'
general studies involving interfaces. q Y Y P 9

particular casg a proper non-local density-functional ap-
proximation must be used. One may envisage several ways
to generalize the DA in order to make it nonlo¢&B]. Fol-
lowing Somoza and Tarazor&T) [5], we use the general-

1 if r is within the excluded volume

Il. THEORY FOR HARD SPHEROCYLINDERS

A. Theoretical model ized decoupling approximation
Let p(r,Q) be the one-molecule density distribution, giv- B VEEp() [ -
ing the mean local density of molecules at positioand Felp]= | dr ;PHE(r) dQp(r,€)
with orientationQ=(6,¢) of their principal axes. Without
loss Aof generallty this dlstr|bu.t|on can be factorlzed- as Xf fdr’dﬂ’p(r’,fl’)vex‘{r—r’,fl,ﬂ’).
p(r,Q)=p(r)f(r,Q), wherep(r) is the number density dis-
tribution andf(r,€) accounts for the distribution of orien- 4

tations. The decoupling of translational and orientational de- PH .
grees of freedom at this levélvhich we will not assumg HereWe, "(p) is the(known) excess free energy of an effec

amounts to considering a spatially uniforgr, ) =f(Q). 1€ syst(ra]m ofkpargllel hard elllpﬁmdp(rl) |s|a weighted
For phases with orientational order this function is peakecgﬁgs'ty that takes into account the nonlocal structi,
around some direction, called the director.

In density-functional theory one writes a free-energy

functional of the one-molecule density distributioR]p],
which can be split into idedF;4[ p] and exces& | p] parts,

Flpl=Fidp]l+Felp], where

ppre(n) = f dr’p(r")Veetr—r") (5)

is an average density, witi:!!r) being the excluded vol-
ume function of two such ellipsoidsee Eq.(12) below].
- N - The choice of a system of parallel ellipsoids as a reference
Fillp]= ij f drdQp(r, Q){In[A%p(r,. )] -1} (D) system is particularly convenient because all of its properties

can be mapped onto those of a system of hard spheres
(whose properties are well documentedth an appropriate

with A the thermal wavelength Boltzmann’s constant, and scaling along the direction of alignment. Lef and o, be

T the temperature. The excess part, which contains the effeghe length and breadth of the ellipsoids, respectively. The

of interactions, must be approximated for lack of an exactyeighted density is then given §§3]

expression. A popular approximation, first introduced for

spatially uniform phasefor which p(r,Q)=pf(Q), p be- — N T 3 ~

ing the mean number densjtis the decoupling approxima- p(r)—f dSN(|S|’p(r)Geq)p(r+G's)’ ©)

tion (DA) [4,21,23. The idea behind the DA is to map the > 13 . .

free energy in terms of an effective system of hard sphere¢here oe= (o 0y)™ is the equivalent hard-sphere diam-

(HS’s) of diametero: eter,w a weight function, andr a tensor. The integration
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variables is dimensionless. The tensoris diagonal in the ~and write all densities as a function pfonly. Let us work
principal-axis frame set by the directar with components out the different factors in E¢4) and see how they can be

o) along the axis parallel t6 and o, along each axis per- simplified. The averaged densiﬂgHE(r) is written as fol-

- I :
pendicular ton. A sensible choice of weight function has ows
been discussed in detail [@4]. Here it suffices to say that o . . .
may be approximated by a quadratic polynomialo(rrr)crgq pPHE(Z) j dz’p(z )J’ dR Vexc z-z',R-R")
which allows us to express the weighted dengify) in (10

terms of three average densitiegr), n=0,1,2, with R=(x.y). Since

ool = [ dswn(lsp(r+7-9. Y N A
4 g -

Formulas forw,(s) can be found iff24]. We simply note Vo(z,R)= o? (13)
that wy(s)=30(1—s)/4w is a step function and conse- 0,
quently po(r) is an average over an ellipsoidal volume. Fi-

nally, as mentioned beforel ?"%p) is the excess free en- We have

ergy per molecule of the fluid of parallel hard ellipsoids,

which is equal to that of hard spheres with diametgy, f drR"VPHE z— 72 R—R")

—_— exc
evaluated at the weighted densjtyr). This can be accu-

otherwise,

rately represented by the Carnahan-Starling expre$&i?n 5 z—7"\2 ,
When the density is uniform, E@4) reduces to the DA, ) moi1- p ) , 0<|z-Z"|<g
Eqg. (2). The ST theory, which can be viewed again as a B ”
mapping onto some reference system, in this case a corre- 0, |z=2"|> 0,
sponding system of parallel hard ellipsoids, can be applied to (12)

different hard-body systems and, in particular, was originally
used for hard spherocylindef§], giving reasonable agree- and it can be readily shown that
ment with simulationgsee Sec. IV beloy

For a given type of spherocylinder, the question arises as
to what are the optimum ellipsoid molecular parameteys
and o, [which are needed separately in E6)] to perform
the mapping. In contrast with the simpler DA theory, which We now turn to the factor in Eq4) containing the double
requires only one condition, here we therefore need two conangular integral. This factor can be written in the form
ditions. As a first choice we can start by demanding equal
molecular volumev (hence equal packing f_ractiﬁ)rand J' dﬂp(l’,ﬂ)j f dR’dQ p(r', QW dr—r',0,0")
length-to-breadth ratio for the hard ellipsoids and hard
spherocylindergHSPC’s, i.e.,

wsec_ e -TD_ o
v =y, ——=—=—, (8) ~ . . .
D o, Herewvgpcis an effective potential that depends on the ori-

entational distribution,

PPHE(Z)

- eq) pol2). 13

=p(2)p(2')vspd 2,2';[f]). (14)

whereL andD are the length of the cylinder and the diameter
of the spherical caps, respectively. The condition above of R R R R

equal length-to-breadth ratio is simpler than the condition vspdz,z’;[f])=f dﬂf dQ'f(z,Q)f(z', Q')
originally used by ST, which was based on equal principal

values of an averaged inertia tensor. Sin€&™“= wD3y/6 , A A

with y=1+3y/2 and x=L/D, and v"E=no?c /6 XJ dR'Vedz—2',R",Q, Q7). (19
—770646 the above equations provide explicit formulas to

obtain the relevant dimensions of the effective ellipsoid for aUsing ideas proposed i20] for the Gay-Berne model, we
given value ofy=L/D of the original spherocylinder: first parametrize the angular distribution functibfz, ) in

terms of the three order parameters

g 1
- =(1+x )2B, T TR ) A A
eq ea (1+x) n(z):fzo(z)=f dQP,(cosd)f(z,Q),

For a given value of the average molecular dengitythe

excess free energy o' p) is to be evaluated at the packing 12
fraction p* = pv"SPC= (77/6)pa'eq o(2)= (5) fo(z)= f dQ sir? 6 cos 25f(z,Q),
B. Calculation of the excess free energy . R
Let us consider a liquid crystal structured along some par- ( ) f2(2)= f d€2 sin 20 cos$T(z.42),

ticular direction; we will choose that direction as thexis (16
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where P,(x) is the second-order Legendre polynomial, andtions at the level of the one-particle density. The numerical

fim are the coeificients of a general spherical-harmonic exgalculation Of’ljeff is explained in Appendix section 1.
pansion forf(z,Q) in a space-fixed frame. For axially sym-  Although a spherical-harmonic expansion of the hard-
metric molecules, this expansion reads spherocylinder interaction would contain terms with higher
angular momentum valudsand therefore the effective po-
N “e 21+1\12 . tential should be expressed in terms of additional order pa-
f(z,ﬂ)=|20 m;I (W) fim(2Yim(2). (17 rameters, it is clear that, within the approximati¢i®) for
the orientational distribution functiofwhich should also in-
A biaxial state, such as is expected whenever a tilted directdylude these additional order paramejetise effective poten-
configuration occurs, is characterized by nonvanishing valfial becomes a functional only of the order parametgss,
ues of ¢ and v. The actual parametrization that we haveand ».

used, Our approximation for the excess free-energy functional
is then
f(2,0)=1(Q; 7(2),0(2),1(2), (18 —
- » Vo'p(2)
considers only prder. parameters corresponding to the sub- Felp]= [(477/3)qu] ﬂchp(Z) ;o(z)
spacel =2, and is written as
A ST , 1(2)+ (2)
f(Q;n,0,v) X | dZ'p(Z)ven| 22", 5 ,

eAle(cose)+A2 sin 20 cos¢+ A3 sir? 6 cos 2p

p(2)+p(z) w2+ v(z')), 3

f dQeAle(cosa)+A2 sin 26 cos¢+ A3 sin? 0 cos 2p 2 , 2

whereA is area of the system in they plane. The above
description is valid whenever the system of spherocylinders

Here{A} are(in principle unknown functions ofz, which is spatially structured along some direction, which we have

can be thought of as external one-body potentials that set utFa,ken as the direction. In principle, it could be used even if

an orientational structure in the system, characterized by th!€ director is at an anglgs with respect to this direction
three order parameters. For each value dfiese potentials SInce we have allowed for general values of the order param-

can be obtained by inverting Eqd6) with f(z,£2) given by etersyn, o, andv. However, this situation requires modifying

; . (with respect to the untilted casehe calculation of the
Eq.(19). Thus,z merely pla¥s~the role OT an .|ndex. Equation weighted density by Ed6), since the principal-axis frame of
(15) for the effective potentiad gpc then implies

the tensoiv is tilted from the space-fixed Cartesian frame by
Tepd 2.2 [F]) =D epd 2.2 [ o v]). (20) the gnglel,//. It is not difficult to de_LnonstratSee Appe_ndix

section 2 that the averaged densipfz) for a system with a
Now comes the important approximation in our model,tilted director configuration can be written in the same form
which consists of writing as in the case of a nontilted configuration but with an effec-
tive o given by

19

~ ~ 2)+n(z'
USPdZaZ’;[W:O'vV])”Ueﬁ Z_Z’;W1 o-i
O’|Tff= o cos z,/;+—23|n2 W, (29
a(2)+a(z) v(2)+v(Z) o
2 ' 2 ’ which corrects a relation used in REL9]. The prescription
(21)  outlined here for the reference hard core is particularly useful
in that it is general and can be used in studies of liquid-

where we define an effectiecal potential as crystal interfaces in which the interesting phenomenology is
associated with inhomogeneities in both density and orienta-
tion of the director across the interfaces.

;eﬁ(z;n,a,v)Ej dﬂf dﬂ’f(ﬂ;n,a,v)f(ﬂ';n,a,v)
C. Rotational entropy

X f dRVed Z,R,Q,€7). (22) Having written the excess term of the free energy in terms
of the threel =2 order-parameter components we now turn

Equations(21) and (22) approximately incorporate nonlocal to the evaluation of the rotational entropy. The ideal free
effects due to spatial inhomogeneities in the order paramenergy of Eq(1) can be split into translational and rotational
eters and are exact for a uniform phase. Note that in the limiparts,
of a perfectly ordered smectic the approximation also be-
comes exact since the orientation_al profile_is e_xpepted to bégFid[p] — fw dzp(2)[In A3p(z)—1]— foc dzp(2)Se(2),
independent of. Also note that this approximation is exact A — —o
if one assumes a decoupling between orientations and posi- (25
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where 8=1/kT and the local rotational entropy per particle

is FQ[p]Z%f fdrdr’f fdﬂdﬂ'p(r,fz)

Sul(2)= —f dQf(z,0)In47f(z,0). (26) Xp(r', Q" )WVo(r—r',Q,0). (31)

_ _ . The results of the angular integrals in E§1) can be easily
In [19] it was shown that, iff(z,(2) is given by Eq.(19),  expressed in terms of the order parametgrs, and v by
then the rotational entropy can be expressed exactly in termserforming the integral over the relative planar coordinate

of the order parameters,o,v as R'—R:
dQ Folp] _2Q [~ SR
So(2)=A1(2)n(2) + Ax(2)0(2) + A5(D)¥(2) — In | — A~ 3 | 92| dZp(z)v(z-2)
% @M 1(2)P2(cosb) +Ap(2)sin 26 cosp+ Ag(2)sir? 6 cos 25 3
' X| 67n(z)n(z")+ ZU(Z)O’(Z')—3V(Z)V(Z’) ,
(27)
. (32
To evaluate this entropy for a set of order parametgrs, v
we use the scheme explained in the previous section and ighere
Appendix section1 to first obtain a table of the numbers
A1,A5,A3 as a function ofp,o,v on a three-dimensional ~ *
mesh; this table is then interpolated as necessary. Note that v(z)=2m ‘Zldrrv(r)P4(z/r) (33

this table is calculated once and for all, and that it is also

gsed for thelevaluation of the effective potentsge Appen-  andP,(x) is the fourth-order Legendre polynomial.
ix section J.

IV. RESULTS
ll. ADDITION OF A LINEAR QUADRUPOLE
A. Hard spherocylinders
In this section we augment our model by including a long-

range anisotropic term. As mentioned in the Introduction, o

our aim is to test the capability of the hard-core model as é\laSm-Af, IN'I’ ﬁnd Ib_SrS'ﬁ‘ transnggs-/([))sz;gd sApherocyll-
reference system to describe general nonuniform structuré[ aers odengtb—to- reat.t rg]t'O? - b S #sua
such as smecti€ phases. A possible molecular mechanism IS was done by compuling the iree-energy branches corre-

to produce a tilted director in these phases is a term wit pond|r|1|g to the qllfferlgnt phf_:lses mvolvgd a.nd ﬁlpglylng a
quadrupolar symmetry. axwell construction. For a given mean density the free

We assume each molecule carries a linear quadrupole &f'€'9Y tOf the ?mo\ IDPaS$ was minimized using a four-
magnitude\|Q[; the quadrupolar energy associated with twoParameter vanational tamiy,

We have calculated the coexistence densities for the

such molecules is taken to be o) cos(2rz/d)
A oA, -y P(Z)zpol d ’
VQ(I‘,Q,Q )=Qu(r)['(r,2,0') (28 _f dz@ cos(2rz/d)
dJo
with
A A oA PPN ) e)\’cos(zfrzld)
I(r,0,0)=1-5:1)2-5(€' 1) 2= n07 g , (34)
A A A my A A - " cos(2rz/d)
+2(0-0)24+35- N2 12 a),dze
-20Q-1)(Q' -1 (Q-Q), (29)

where the variational parameters are\’, which give the

- ) , . amplitude of the spatial modulation in density and order pa-
wherer=r/r andr=|r|. The choice of the radial function 5yeter, respectivelyy,, the mean order parameter, and the
v(r) is not critical from the qualitative point of view, since ¢meactic layer spacing. These functions can also describe
the mechanism giving rise to the molecular tilt comes fromy,o nematic phase for which=\'=0. Free-energy minima

the angular symmetry of the interactions. Following our préyyere ghtained using a standard Newton-Raphson minimiza-
vious studied 19] we take tion algorithm.

o \12 [ g6 Tables | and Il contain our results, which are compared
(ﬂ _(ﬂ> ' r>21/6%q with the original calculations by S[5] of the same model,
r r (300 with theoretical results by Graf and w@n[10], and with the
—1/4, r <216, Monte Carlo simulations of Bolhuis and FrenKégl]. Our
results for thd-N transition agree closely with those of ST,
Neglecting anisotropic correlations originating from the hardwhich in turn are identical to those obtained by L[d¢ note
core, the free energy acquires a mean-field contribution fronthat the calculations in Reff4,5] did not restrict the angular
this anisotropic interaction, which is given by distribution function to thé =2 subspace as was done here

v(r)=

eq-
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TABLE |. Comparison of the predictions for the coexistence  TABLE Il. As in Table | but for different values of the length-
packing fractiongp* = pv"SFC of isotropic (o)) and nematic g¥)  to-breadth ratio.

phases at thé-N transition, and nematiCpﬁ,') and smectiA

(p%,) phases at thal-SmA transition from different theories: Pw, ~ L/D Theory i PN ok PEm
present work; ST, original Somoza and Tarazona th¢bty GL,
Graf and Laven theory[10]; MC, results from Monte Carlo simu- > PW 0.401 0.418 0.477 0.503
lations of Bolhuis and Frenk¢R]. The asterisk indicates estimates ST 0.400 0.417 0.507 0.554
from figures in the source papersindicates that the corresponding GL 0339 0408 0449  0.530
phase is not stable; in this case there is a dire®m-A transition mMC 0.398 0.398 0.453 0.482
at the indicated coexistence packing fractions.
6 PW 0.358 0.377 0.473 0.496
L/D Theory pr PN ok PSm ST 0.357 0.377
3.5 PW 0.483 n n 0.525 Eé 833; 822:
ST 0.487 0.499 0.537 0.584 ' '
f/l'é g'gg " : 8'24512* 7 PW 0324 0344 0470  0.497
' : : ' ST 0322  0.344
3.8 PW 0.468 0.481 0.485 0.515 f/ll(': 0.442 0-528
ST 0.466 0.480 0.526 0.580
:;/IIE: 8233 %25734 064234 nggs 10 PW 0.251 0.273 0.465 0.493
' ' ' ' ST 0.251 0.275
GL
4 PW 0.455 0.469 0.483 0.511
ST 0.454 0.468 0.5¥3 0.559 MC 0.245 0.268 0.440 0.450
GL 0.388 0.447F 0.454 0.535
MC 0.462 0.462 0.479 0.518 . . . T . .
modulation of the orientational distribution function in the
45 PW 0.426 0.442 0.480 0.506 Sm-A phase of HSPC_s: our resylts sh'ow that the variation
of 7(z) along a smectic period is as high a20%. How-
ST 0.425 0.441 0.5Z21 0.568 in th ighborhood of th ic | h h
GL 0.367 0.426 0.455 0.52¢ ever, In the neighborhood o the smectic ayers, where the
’ ‘ ' ‘ number density is highly peaked and the contribution to the
mMC 0.432 0.43Z 0.466 0.500°

free energy is largest, the variation @{z) over the range
where the density is nonzero is significantly smaller than
20% and, as a consequence, the free-energy density is not
sensitive to the decoupling assumption.

in Eq. (19). The present results for the SAphase bound-
aries differ from those of ST and are significantly closer to
the simulations, primarily due to the different criteria used to
choose the reference parallel ellipsoids, the relevance of B Hard spherocylinders with quadrupolar interactions
which was recognized by ST. Also, our results are superior _
to those reported by Graf and wen [9] using a modified !N the SmC phase we have to allow for general varia-
weighted-density functional theory, which predictenaong  tions of the three order parameteyso, v to describe tilted
positive slope of theN—Sm-A phase boundary in the director conflguratlons. From a practpal pplnt Of'VIQW it is
densityL/D phase diagram. In a subsequent pdfét, Graf ~ More convenient to transform tp the directoe., prmmpgl-
and Laven present a hybrid theoretical approach which com@XiS) reference frame by rotating by an angle (the tilt
bines scaled-particle and cell-theory concepts. This theor§"9!é to obtainz,, the degree of order around the director,
improves the results for thd—Sm-A transition in the sense a1d 0, the biaxial order parametésee Appendix section
that the slope is now correct, but the predicted density jump)- A Simplification can be introduced by assuming that the
is considerably overestimated. biaxial ordgr parameter is zero. The relation between the two
We note that foi./D = 3.5, the SmA phase coexists with S€tS of variables is then
the isotropic phase while fot/D=3.8, we find bothl-N _
andN—Sm-A transitions. Hence the-N—Sm-A triple point 7(2)=my(2)Pa(cosy),
is predicted to lie between these valuesldD, in good
agreement with the simulation reslltD~3.7 [2]. o(2) = 7,(2)Sir? o
Note that our results were obtainedthout the usual de- P '
coupling assumptiori(z,)=f(Q) used by ST and other
workers(Graf and Laven[9,10] and Poniewierski and Ho- v(z) = np(z)sin 24 (35
lyst [6]); however, we find that the coexistence densities
change by less than 0.2% f&/D=5 when making this
assumption. This insensitivity of the coexistence results tarhe variational parameters, included in the parametric ex-
the decoupling assumption is not inconsistent with the statepressions fop(z) and ,,(z), are nowy, 79,, N, A", andd,
ment by van Roijet al. [8] concerning the strong spatial with
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FIG. 1. Tilt angle, in degrees, versus reduced mean density for FIG. 3. As in Fig. 1 but for molecular aspect ratiéD = 10.
different values of—Q/kT and molecular aspect ratib/D=5.

Continuous lines are a guide to the eye. that for an aspect ratib/D =6 the character of the transition
changes over from second to first order as the quadrupole
e\” cos(2rz/d) strength is decreased. The first-order nature of the transition
7p(2) = 7op 1rd (36 s signaled by the discontinuous change in tilt angle at some
—f dze” cos(2mz/d) density that depends on the quadrupole strength, and by hys-
dJo teresis loops present in the free energy. This change in the

nature of the transition is associated with the existence of a
Figure 1 shows the behavior of the tilt anglewith density tricritical point. Note, however, that the tilt-angle jump is
for different values of the quadrupole stren@bkT and for  less than 10°, so the transition could be considered weakly
molecules of aspect ratib/D=5. Note that, for a given first order. As the molecular elongation is further increased,
value of the quadrupole strength, the tilt angle eventualljthe transition becomes first order at lower densities until
adopts a nonzero value as the density is increased, whigtventually the whole Smi—Sm-C transition line is first or-
indicates a transition from a S#-to a SmC phase. Given der; Fig. 3 shows this for the aspect rati¢D = 10.
that the change iny is continuous in all cases it may be  The above results were obtained assuming that the one-
expected that the transition is second order. This is corrobonolecule distribution function is decoupled, i.e=0,
rated by examining the free energy and searching for hystessince this reduces the computation time considerably. When
esis loops, which are nonexistent. As is intuitively expectedthis approximation is relaxed some quantitative changes oc-
stronger quadrupoles induce the tilted smectic phase to apur. This is indicated in Fig. 4 fdt/D =5, which shows that
pear at lower densities. The values of the tilt angle chang#he transition density changes by a few percent, in line with
with density but are of order 10°. This is to be comparedthe changes observed in the system of pure hard spherocyl-
with the tilt angles obtained ifiL9] which were in the range inders. However, these changes have no impact whatsoever
35°—40°. Our presentlower values, which are more in on the phase behavior from a qualitative point of view.
accord with experimental findind25], are due to the better The complete phase diagram, in the plapg,Q/kT), is
treatment of the hard core. The agreement with experiment ishown in Fig. 5 for elongatioh./D=5. Note that for this
also better concerning the second-order nature of the transtase the SmA—Sm-C transition is always continuous. Fig-
tion obtained with the present theory, in contrast with the

096 100 104 108 112 1.16

first-order behavior predicted by Velasebal.[19]. On the
other hand, we find that the order of the transition changes 9 L/D=5 )
when considering more elongated molecules. Figure 2 shows | Q/kT=-0.4875
v 6
12 ) |
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| BRI R PR R FIG. 4. Tilt angle, in degrees, versus reduced mean density for

096 100 104 108 1.12 1.16 Q/kT=—0.4875 and molecular aspect ratiéD=5. Dots are re-

poagq sults obtained with the decoupling assumption, whereas triangles
are results obtained without such an assumption. Continuous lines

FIG. 2. As in Fig. 1 but for molecular aspect ratiéD=6. are only a guide to the eye.
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15 1T o introduced by ST[5] some years ago, but using a simpler
i T prescription for the underlying reference fluid of parallel
1101 ] hard ellipsoids as well as removing the translation-rotation
1.05 - SmA SmC i decoupling approximation. The long-range quadrupolar in-
o 5 - teractions are treated by a simple mean-field approximation.
”b‘" 1.00 |- — We have also applied several approximations to significantly
° b7 / / simplify the numerical calculations. One is the use, which is
< 05 quite common, of exponential parametrizations of the den-
0.90 - 4 sity and orientational order parameters in modulated phases
5 - [see Eqs(34) and(36)]. The other “numerical” approxima-
0.86 - N - tions are the truncation of the angular distribution function in
s s ] thel =2 subspacgEq. (19)] and use of the “local” approxi-
0’88,36 0.42 0.48 0.54 0.60 mation[Egs. (21) and (22)] for the hard-spherocylinder ef-
fective potential.
1Q/kT] We first applied the theory to calculate the bulk liquid

FIG. 5. Phase diagram in the density-quadrupole plane foPNas€é boundaries of pure hard spherocylinders. The theory
L/D=5. Shadowed region indicates two-phase coexistence. agrees well with simulation dafe2] up to elongatiorL/D
~5, although our results for both the mean density and den-
ure 5 also shows that the S-phase becomes less stable SItY 9ap at theN—Sm-A transition deteriorate at largesD.

with increasing quadrupole strength and eventually is pre]ne deterioration is much weaker for theN transition, in
empted by the first-ordeX—Sm-C transition. Wr_m_:h case the present theory is in c_Io_se agreement with the
Finally, Fig. 6 shows the effect of density and quadrupoleor'g'”al DA calculatl.ons of LeeE4_]. This |mpI|e§ that use of
strength on the equilibrium layer thicknedsfor molecular ~ the truncated spherical-harmonic representation of the angu-
elongationL/D=5. The data show the existence of two re- lar distribution fur_lctlon(whlch is the only d|fference be-
gimes of different average slope, corresponding to the tWévyeen our calculatlon's and those_ of'l_.ee for the umfo.rm nem-
smectic phases. For a given value of the quadrupole strengtRtic Phasg does not introduce significant error. While it is
the effect of density on layer thickness in the case of thélifficult to assess whether the discrepancies foNRe&SmA
Sm-A phase is relatively minor, reflecting the low value of transition are due to the other numerical approximations
the layer compressibility in this systefnomparable to that made here or to the basic structure of the density-functional

of solids. In the tilted SmE phase, however, molecules are theory itself, the relative accuracy of the former is supported

tilting and the tilt angle becomes higher as the density inPY calculations elsewher@0]. This suggests that the main

creases; therefore the change in layer thickness is more pr imitations are in the underlying density—functional treatment
nounced as it reflects a geometric effect. Likewise, a higher>] Of the inhomogeneous hard-spherocylinder fluid. None-

quadrupole strength favors thinner smectic layers as the mofi€less, the accuracy of the theory for elongations up to
ecules are more tilted. L/D=~5, which are realistic for typical thermotropic liquid

crystals, is encouraging.
We have not made the translation-rotation decoupling ap-
V. CONCLUSIONS proximation in our calculations, but have demonstrated that
In summary, we have formulated a density-functionalthis approxima’_[ion has quite minor effects on bulk pha_se
theory for inhomogeneous liquid crystals composed of hardpehavior. This is due to the fact t[]at the spatlél modulation
spherocylinders having additional long-range interactions off the full distribution functionp(z,€2) = p(2)f(z,€2) over a
quadrupolar orientational symmetry. Our treatment of thesmectic period is due primarily to the number dengify).
hard-core contribution to the free energy is essentially thatt should be noted that the parametrization employed in Egs.
(19) and (34) for f(z,Q) is not capable of producing the

3.15 bimodal behavior observed in computer simulatip86].
I L/D=5 Since the bimodality occurs only at valueszdfetween den-
3.1z - sity maxima, its influence on bulk phase behavior should
L again be very weak.

g 3091 0.45 On including interactions of quadrupolar symmetry, we
Q 3 . have shown that the theory can also generate a tilted smectic-
o 308 0.525 C phase. In contrast with the interaction model used in Ref.

03 L [19], the present model yields either a continuousveakly

L first-order SmA—-Sm-C transition as well as a NAC point.

S T T T T T While the SmA—-Sm-C transition is most often found ex-
096 1.00 104 108 112 1.186 perimentally to be continuous, first-order transitions have

Poogq been observ_ed for some opt_ically active comp(_)unds and their
occurrence is compatible with phenomenological arguments
FIG. 6. Smectic layer spacing versus mean density for different27]. The present results for Sinbehavior are similar to
values of— Q/kT and molecular aspect ratldD=5. Continuous those obtained in Ref18], although all transitions in the
lines are only a guide to the eye. latter work were found to be continuous. In the present work,
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both theN—Sm-A and N—Sm-C transitions are first order; potential(Al) as a Fourier serig$]. The coefficients of the
hence the NAC point is either a critical end point or a tripleresulting series are functions of the order parametgrs v
point, depending on whether the S&-Sm-C line is con-  Which we have tabulated.

tinuous or first order, respectively. One drawback that is We write

shared with Ref[18] is the weak positive slope of the

N—Sm-A andN—Sm-C coexistence lines in thepf, Q/kT) -~ = g ( ok, =T
plane, seen in Fig. 5, which produces transitions from&m- Ve Z 70 0)= 24 vn(7,0,0)€0%  Kn={=5,
or Sm-C to nematic ondecreasingtemperature at fixeg, (A3)

and Q. A related drawback is the fact that the SmSmC
tricritical point develops on decreasin@|/kT, so that(at ~ Which is a Fourier representation of the function in the inter-
fixed Q) the transition between those phases changes fromal [—L—D,L+D] [note that this is the interval where the
continuous to first order witlincreasingtemperature. We function has nonzero values; the periodic replicas outside
attribute these features to the particular interaction modethis interval generated by EGA3) are of no relevandeThe
used here rather than to approximations in the theory such &oefficientsv, are given by
its lack of fluctuation effects. True thermotropic liquid crys-
tals should include additional long-range interactighsth
isotropic and anisotropjdesides the quadrupolar term con-
sidered heregsee, e.g9.[17,19,20), which would result in
destabilizing the lower-symmetry phases at high tempera-
tures.

We have demonstrated that the theory can feasibly be
applied to inhomogeneous liquid crystals with both strongly Xf dRVeXC(Z,R,Q,ﬂ’))
anisotropic repulsive and attractive interactions. Our work
has considered only systems with spatial modulation in one 1
direction, namely, théiquid smectic phases. Further study is = —f dﬂf dQ/ f(Q; 7,0,v)
required to extend the theory to crystalline phases with more 2(L+D)
than one direction of modulation. The methods described R .
here can be applied directly to the study of liquid interfaces X f(Q’;n,o,v)f dre='kn?, (A4)
having arbitrary spatial variation of the densities, order pa- exc
rameters, and tilt angle in thedirection. Most of the nu-
merical techniques described here can be used without mo
fication in such cases, the only exceptions being th
parametrizations in Eq$34) and (36) of the densities and
order parameters.

L+D

1 :
- - —iknz
vn( 7710-;1/)_ 2(L+ D)f—L—Ddze

x(fdﬂf dQ f(Q; 5,0, F(Q';5,0,v)

OM\Zhere the integral over now extends over the excluded
volume. This integral is much easier to calculate than that in
eEq. (A2). In order to exploit the symmetries of the excluded
volume, it is convenient to perform a rotation of axes to a

frame with axes along the principal ax[ah} of the excluded

volume,
APPENDIX
1. Calculation of the effective local potentialv o al:ﬂ, azzﬁ, aszﬂ_
The effective local potential 2% 8’| | @+ €| |- €] (A5)
;eﬁ(z;n,gly):j dﬂf dQ' f(Q;9,0,0)(Q;5,0,v) Since the Jacobian of this transformation is unity, it follows
that
Xf dRVexc(ZvRiﬂaﬂ,) (A1) f dre*ian:J' due ikn-u (AB)
exc exc ,
can be numerically computed as follows. Let us first conside{yhere k, is a vector of magnitudé,, in the space-fixed
the spatial integral direction. The limits of integration are easily written in this

frame and the integrals can be evaluated by Gaussian quadra-
o ture. The wave vectok,, becomes angle dependent when
f dRV¢,{(Z,R,Q,Q7). (A2)  expressed in the principal-axis frame.
The coefficients ,( ,0,v) can now be evaluated for dif-
ferent values of the order parameters and a table with three
This is numerically equal to the area of a planar section ontries can be constructed. Values of the coefficients for or-
the excluded volume of two spherocylinders, a complicatedier parameters not in the table are obtained by interpolation.
volume that depends on the orientations of the spherocyling/e have found that it is numerically more convenient to
ders, such that their separation in the thairection isz. In  construct the table withy, 07,4 as entries, wherg is the
principle, this area could be computed analytically and intetiit angle and ¢, ,0,) the uniaxial and biaial order param-
grated numerically ovef,€)’ to give the effective potential. eters in the principal-axis frame, respectively. Transforma-
We have chosen, however, to represent the whole effectiviion from one set to the other is obtained via the expressions
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3
n=npP,(cosy)+ 290 Sir? o,
, 1
o=, Sin? ¢+ 5 op(1+ cos ),

1
v=1,Ssin 2¢— 5% sin 2y (A7)

Another question is the number of Fourier components used

to represent the function. Clearly.«(z; 7,o,v) is an even
function of z, which means that only coefficients witi=0
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p(r+r')y=p(z+2'), (A12)

wherez' is given by Eq.(A11). We can do a further trans-
formation of the vectosin Eq. (A8). Let us rotate from the
principal-axis frame back to a new frame, by an arbiti@oy
now) angley,. Let us call the components sfin this new
frame simply 6,,sy,S;). These will be related to the com-
ponents §;,s)=s,,s}) by the analogs of Eq(A10). The
inverse relations are

sk=s, cosy,—s,siny,,

p_—
Sy—Sy,

are necessary. We have found that a reasonable accuracy is

obtained using only 21 Fourier components.

2. Scaling of the system of parallel ellipsoids
for the smectic-C phase

Let us consider the weighted densities in EQ,

p_n(r)=f dsw,(s)p(r+o-9). (A8)

sP=s,siny,+s,C0S,. (A13)

Note that this is an orthogonal transformation and conse-
quently the magnitude afis preserved, so that,(|g) is the
same function in both frames, and the Jacobian of the trans-
formation is unity. On substituting E¢A13) into Eq.(A11),

we obtain

Z' =s,(oy cosysing,— o, sinyg cosyy)

+5 (o) cosycosy,+ o, singsingy). (Ald)

In the space-fixed system of Cartesian axes, we assume that

the densityp(r) varies only in thez direction. In the smectic-
C phase, the molecules are tilted by an anglwith respect

to the z axis. However, the tensar is diagonal only in an

axis frame along the principal molecular axes, which are now
rotated with respect to the space-fixed axes by the apigle

The argument of the density in the integrand of E4g8)
isr+a-s=r+r’ with r'=¢-s. In the principal-axis frame

of the tilted molecules is diagonal. Let us denote the com-
ponents ofr’ ands in this frame by subscripts and super-

scriptsp, respectively, so that

!

Xp (o) S)'?
I

Yo |=| o1y (A9)
4 p

Zp O'HSZ

Now we calculate the corresponding components’' ah the

original space-fixed axis frame. We assume that the director

lies in thexz plane. By rotating about thg axis by ¢, we
obtain

X' =Xp, COSy+ 2, siny,

Y =Yp,
z' = —x, sing+z, cosy. (A10)
Substituting forx;, andz, from Eq. (A9),
7'=—o, s} siny+oysh cosy. (A11)

Now the densityp(r+r’) in Eq. (A8) varies only in thez
direction, so we can write

As mentioned ), is arbitrary. It would be convenient if we
could choose/y, so that the coefficient o, in Eq. (A14) is
zero. This gives the equation

o) cosysinyg,= o, siny cosy, (A15)
or
g,
tany,=— tany. (A16)

g]

Remember thats is the smectice tilt angle, which physi-
cally satisfies 6<¢</2. Since(normally) o, /o<1, we
can always find a unique solution of EGA16) with 0<,

< /2. Now Eq.(Al4) simplifies to

Z' =s,( o) cosycosy,+ o, singsingy)

ag
=S,0 COSYs cos://p( 1+ ?] tany tany, |. (AL7)

Using Eq.(A16) and trigonometric relations, this becomes

2
o .
z'=s,0 \/0052 y+—5sint g=s,0f".

i

(A18)

The identity in Eq.(A12), which is in the integrand of Eq.
(A8), becomes

p(r+1")=p(z+s,0f". (A19)

This is analogous to the case of the smegétiphase, but
with aneffectives given by Eq.(24) in the text. Notice that
of'"= o when =0 while of"= ¢, when y= /2.
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