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Effects of dispersion forces on the structure and thermodynamics of fluid krypton
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Semianalytical and numerical calculations are performed to predict the structural and thermodynamic prop-
erties of low-density Kr fluid. Assuming that the interatomic forces can be modelled by a pairwise potential
plus the three-body Axilrod-Teller potential, two different routes are explored. The first one is based on the
hybridized mean spherical approximation integral equation of the theory of liquids and the second one uses
large-scale molecular dynami¢8ID). Algorithms for MD simulation are constructed on parallel machines to
reduce the amount of computer time induced by the calculations of the three-body forces and the pair-
correlation function. Our results obtained with the two methods mentioned above are in quite good agreement
with the recent small-angle neutron-scattering experim@riamisancet al, Phys. Rev. Lett79, 221(1997);
Benmoreet al, J. Phys.: Condens. Mattéd, 3091(1999]. Moreover, the reliability of the asymptotic form
of the integral equation is assessed for the specific case of dispersion forces including the three-body contri-
butions, by an analysis at low wave vector and low density. It is seen that the effects of the Axilrod-Teller
triple-dipole potential cannot be ignored to describe the structure and the thermodynamic properties of fluid
krypton even at low density.

PACS numbegps): 61.20—p, 51.30+i

[. INTRODUCTION small scattering angles have been performed on fluid Ar and
Kr, which allowed the extraction of not only thgg coeffi-
One of the fundamental tasks of liquid theory is to eluci-cient of the London dispersion potent{&,10], but also the
date the basic interactions to be used as a starting point f&trength of the three-body potential for Kr, assumed to be of
development of statistical-mechanical models. For simpldh® Axilrod-Teller form[11,13. This detection represents

fluids, extensive studies have shown that the Lennard-Jon&ﬁrtaiT)lydth‘f* most.uneqL(invoca(Ij eviden?e of .thehp.relsence of
12-6 potential(LJ) is a satisfactory effective pair potential 1r€€-pody forces in condensed materieast in their long-

though the true one is certainly not of the 12-6 form. So,ange pait and supports the fact that these cannot be ig-

. . : : . nored. Therefore, the experimental structure of Kr at small
using all available sources of information from experimental . o . . i
observations for noble gases, Aziz and Slarfinhave de- scattering angle provides a stringent test for theoretical cal

. L ; . s culations dealing with three-body forces.
rived an empirical pair potential, which includes only two- The purpose of this paper is to extend the previous theo-

body correctio.ns to the Lolndon dispersion energy ‘,"lrismgretical work[13] on the structure of fluid Kr at lovg to the
from the multipole expansion. Such a description is NOkpermodynamic properties at several temperatures. This is
strictly valid because the interaction between two pa”'C|e§)erformed by using two different methods. On one hand, we
depends on the presence of a close third one, and at leagiye ysed a thermodynamically consistent integral equation,
three-body interactions coming from the third-order pertur-c5jjeq hybridized mean spherical approximatitAMSA)
bation have to be taken into account. Different ways of han[14 15, extended to include the three-body interactifta.

dling such three-body contributions have been explored fop, the other hand, we have carried out molecular-dynamics
many yearg?2]. For instance, Barker, Fisher, and W  (\ip) simulations involving 6912 and 16384 particles,
have proposed a pair potential suitable for the physical propmanks to an efficient algorithm for parallel computgt] in
erties of liquid argon, in which three-body and quantum cor-yqer to calculate accurate structure factor at small scattering
rections have been included, and more recently, Baiker angles. To describe the interactions between Kr atoms in the
has built a pair potential with many-body effects that is de-present paper, we combine the true pair potential of Aziz-
yoted to liquid krypton and xenon. Besides, following the Slaman[1] with the Axilrod-Teller triple-dipole oné7], by
idea of Casanovat al.[5], Reatto and Tali6] proposed t0  means of a state-dependent effective pair potential. A com-
complete the two-body interactions in noble gases by addingison with the experimental data of structure and thermo-
the three-body contribution of Axilrod-Telldi7] through & gynamics allows us to test either the models of interaction or

state-dependent effective pair potential. the HVISA.
A direct probe of the interaction potential is possible
through the use of the density fluctuations, which is obtained Il. MODELS AND SIMULATION

from the static structure fact®(q) or equivalently from the
pair-correlation functiomg(r) [8]. Besides, it has been dem-
onstrated that the smajlbehavior ofS(q), between 0.5 and We assume that the interatomic interaction in Kr consists
5 nm %, can yield the reliability of the long-range interac- of a N-body potential-energy function, constructed via a true
tions. Those last four years, precise measuremerégdfat  pair potentialu, plus a three-body potential;

A. Effective interatomic potential
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N N

JN):Z uy(r; ,rj)+i<12<k Us(ri,ry,rg. (1)

i<j

where g; is a unit vector in therj; direction. For the AT
potential, the force acting on the partiél&rom the particles
j andk is given by

Un(rq,...

Neglecting terms after the third-order one appears to be a

reasonable approximatid] for the physical properties un- Fiik(rij T = %QJ + %ka (6)
der study. Asu,, we select Aziz and Slaman(&S) [1] pair arj ik
potential that reads . . . .
2 o while the forces acting opandk are, respectively,
2j+6
Uy(xij) = Aexpl — axij + Bx) ~F(x) 2 55 (2) Py Py
=0 2j+6 _ 3 3
Fii(rij FjeoTin) =— oG _ﬁr'kejky
I
wherex;; =r;; /o is the reduced distance amdthe position . : (7
of the node of the potential. According to the authors, the P (Ti T Ti) = — U3 e — U3 .
repulsive and attractive parts have to be matched with the AR ik i

switching function ) . —
The standard expressions of the three partial derivatives of

D 2 usz can be found in the paper of Hoheigé7].
exp{—(——l) } if x;<D, 3 pap $er]
F(xij)= Xij () - herical N
1 if X”_ZD_ B. Hybridized mean spherical approximation

The calculations of the structural and thermodynamic
properties are performed by using the HMSA that is briefly
described below. As attested in the literat{fe5,18,19,20
the basic assumption in this approach is that the three-body
potential reduces to a state-dependent effective pair potential
written as

The relevant parameters in Eq®) and(3) are listed in the
paper of Aziz and Slamafl]. As u;, we use the usual
expression derived by Axilrod-TelldAT) [7]

1+ 3 cos#; cost; cosb
3,3,3
LT

Ug(ri W ,rk):V

: (4)

u(rij) =uy(rij)+{us(ri)), (8
which corresponds to an irreducible triple-dipole potentialwi,[h
between closed-shell atoms. The value of the stremgith
2.204< 10 2® Jnn? for Kr, and ¢;, ¢;, and 6 denote, re- P f
spectively, the angles at vertéxj, and k of the triangle {us(ri))= - B 9(ri)9(rji)
(i, j, k) with sidesry;=[r;—r;|, rye=|r,—ri|, andrj=|ry
—rl. X[exp{—pBus(r;,rj,rgf—1ldr,. (9

In performing the molecular-dynamics calculations, it is . . .
also necessary to consider the force acting on a paiticle P S the number density3(=1/kgT) the inverse temperature,

from a particlej, which is derived from the AS potential andkg IS Boltzm_ann's constant. . .
under the form If the interactions are given in terms of the effective pair

potential u(r;;), the integral equation theory provides a
scheme to yieldy(r;;), which has reached nowadays a high

Fij(xij) = Aexrx—axij+,8xi2j)(—a+2Bxij)—F(xij) degree of accuracy with the HMSA integral equat{dd].
The latter combines the Ornstein-Zernii@Z) equation
2 .
> (2] +6)Cyj 6
<o x?]—'” g(rij)—lzc(fij)+Pf [9(rik) —1]c(rj)dry, (10)
2
_ 2D(D—x;) E Caj+o e (5) wherec(rj;) is the direct correlation function, with an ap-
X o xg e proximate closure that reads

|
quf(rij){g(rij)_1_C(rij)_BuA(rij)}]_1]
f(rij) '

Here, the assumption is made that the effective pair potdital(8)] may be split into a repulsive short-range pa?(rij),
and a weak attractive long-range paﬁ(rij), according to the prescription of Weeks, Chandler, and And€izEn

g(rij):exq_ﬂuR(rij)][l+ (11

R _ u(r12)_u(rm) if r12<rmy
! (“2)_[ 0 it rsr (12
A B u(ry) if rp<<rgy,
u (rlz)_[u(rlz) it r>r, (13
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wherer, is the location of the minimum of the potential method[25], using the convenient Verlet's algorithm in the
well. The termf(rj;) is a mixing function whose expression velocity form. The time step ifAt=10 s, andg(r) is

is that of Bretonnet and Jak$&5], and which ensures the extracted over a sample of 8000 time-independent configu-
thermodynamic self-consistency in requiring the equality berations every 10Qt.

tween the compressibilities coming from the viral equation The calculation of the forces at each time step is one of

of state and grand-canonical ensemble, namely, the most demanding tasks. Sineg=—F;;, for the two-
body forces, andF; jx=—F;x—Fy,j, for the three-body
pkeTx7=$S(0), (14 forces, the forces can be calculated once only leading to a

. computation time reduced roughly by a factor of 2. In addi-
whereS(0) stands for the long-wavelength limit of the struc- o “taking advantage of the short-ranged potentials that al-
ture factor. Therefore, Eqs8) to (14) are solved in a ther- |4y the use of cutoff radii, we use the linked-cell li§28] in
modynamically self-consistent manner. The solution of the, qer to reduce the complexity of computationsQ@¢N),
HMSA integral equation is obtained by the classical algo-pecayse only pairs and triplets of particles within the cutoff
rithm proposed by Labik, Malijevski, and Vonka2], which o iysr are ‘taken into accouri27]. In our caser. equals
consists in solving the nonlinear set of equations with the, ¢, tor two- and three-body forces.
traditional iterative techniqug23]. A good accuracy of Nevertheless, for large-scale simulations, involving typi-
S(q), especially at smalg, is achieved when the functions 1y N> 10% particles, the execution time is still large. Thus,
are represented _by a grid size Of.1024 with a mesh of 0'Ozalgorithms suitable for parallel computers are nowadays

The HMSA dlscusse_d above mclude_s automa_tlcally thecommonly used28], and applied to liquid state studif2g)].
calculation of.the foIIowm_g_ thermodynamic properties due tORecentIy, we have built an algorithm based on a spatial de-
the self-consistent conditiofil4). When three-body forces composition(SD) method[30] that equally distributes the

are assumed, the excess internal energy, the equation of stglgmn tation among the processors of the parallel machine.
and the isothermal compressibility are given, respectively, byrhe sp method consists in dividing the simulation box into

[20] P regions. Each of them is assigned to a processor that per-
ex 2 forms the calculations for the particles situated in it and com-

U= _»p p 3) icates the data to the oth o) i
o =50 | ua(ri)g(ripdry+ = | dr;dryg municates the data to the other processors. Our program, in

(N) 2! 3! which the calculations of the forces and the pair-correlation
(1 T Ua(Tii i), (15) function are parallelized, reduces the execution time by a

factor RP whereR=t,/(Ptp) is the speedup,; andty be-
2 ing, respectively, the execution time with 1 aRgrocessors.
p=pkgT— 2PT3J g(ri)ry; 'VrijUZ(rij)drij For this purpose, .the plate decomposition associqted with a
: torus communication scheme has been Jd4&43Q with N
=6912 particles and®=6 processors. We also used
f dri;drg®(r;; i) Ve Ua(rij i), (16)  =16384 withP=8 processors to show that our results be-
come insensible for system sizes beyadwe 6912. In both
casesR takes values around 0.95.

3

313

()
XT_p(&p - (17

lll. RESULTS AND DISCUSSION

These expressions are formally exact and each of them con- The HMSA and molecular dynamics have been used to

tains explicitly the two- and three body terms, which dependstudy the physical properties of fluid Kr at temperatures and

on the pair and triplet distribution functiong(r;;) and densities for which experimental results are available. In the

9(3)(fij .ri). In practice, the three-particle distribution func- first paragraph, the rehablhty of the interaction _scheme is

tion is unknown and has to be approximated. In this work.assessed by comparing the structure factor obtained by both

the Kirkwood superposition approximati¢@4] is used theoretical r_outes to the measurements of Formisatral.
[10]. Then, in the two subsequent paragraphs, we study the
g®(rij,ri) =9(ri)g(ri)gri exd — Bus(rij ,ri) 1. structural behavior at low and low density in order to de-

(18) duce reliable information on the two- and three-body inter-
actions from the structure. The objective is to access to a
It is noticeable that the viral pressure remains exact to thir@jjrect comparison with the experiment at the three-body
order in density when this approximation is set. level as suggested by Benmageal.[11] and Guariniet al.
[12].
C. Molecular dynamics

In order to reach the smatj+ange ofS(q), we are com- A. Structural properties

pelled to carry out large-scale molecular-dynamics simula- The first step of our paper concerns the calculation of the
tions in the microcanonical ensembVE). We deal with  structure of fluid Kr forT=297 K and four different densi-
the individual motion olN=6912 pointlike particles situated ties in the range between 1.52 and 4.277 fincorrespond-

in a cubic box. The latter is subject to the usual periodicing to the thermodynamic states studied by Formiseinal.
boundary conditions, whose volumé is fixed to get the [10] and Guariniet al. [12]. Since these authors have per-
desired number densify. The equations of motion are inte- formed their experiments only at small neutron-scattering
grated in a discrete form by means of a finite differenceangle, for the sake of expediency we present the results of
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integral equation, and its extension to the three-body poten-
03 tials, is very convenient. This shows once again the effi-
ciency of the self-consistent procedyrEs] at smallq and

reinforces our previous conclusions based on the calculation

2 of the pair-correlation functiohl3].

c(q)

B. Low scattering angle behavior ofc(q)

Since the pioneering work of Johnson and Maf8h], it
has been recognized that general features—and interesting
details in some case—can be extracted from the measured
structure factor. However, it has emerged that the effective
potentials thus obtained are very sensitivéijdhe accuracy
y of the experimental data &(q) in the smallg range, and
q@m) (ii) the particular liquid state theory invoked. Consequently,

FIG. 1. Direct correlation functiore(q) for T=297K, atp ?t can t_)e unclegr which underlying features are truly physical
=152, 1.97, 2.42, and 4.277 fithfrom the top to the bottorithe N Origin. Formisanoet al. [10] took advantage of the ob-
curves forp=1.52, 1.97, and 2.42 nni are shifted upwards by an served variations af(q) to extract useful information on the
amount of 0.05, 0.1, and 0.15, respectiVelgalculated with the €ffective potential for Kr. This procedure, suggested by Re-
HMSA integral equatior(solid line and molecular dynamicaup ~ atto and Tay32], has the merit of yielding convenient ana-
triangles by using Aziz and Slaman’s pair potential plus the lytical expressions for certain Fourier coefficients of the
Axilrod-Teller three-body contribution. Crosses with error bars cor-small-q expansion ot(q), and could provide a useful test of
respond to the experimental data of Formisatal. [10], while  the asymptotic form of the integral equations, for the specific
open circles stand for those of Guardtial. [12]. case of the dispersion forces including the three-body AT

) ) . _interactions.
the Fourier transform of the direct correlation function f the structure is decided by an effective pair potential
c(q)=[S(a)—11/pS(q) at low g, rather than those of the (1), it has been demonstrated in the mean spherical ap-
structure factoiS(q). . proximation(MSA) that the direct correlation function(r)

Figure 1 displays the curves ofq). It is seen that the shouid rapidly approachBu(r) for larger. According to
theoretical results, obtained by MD and HMSA with the AS Reatto and Ta(i32], this relationship, asymptotically exact
plus AT potentials, are in excellent agreement with the exsor |arge distance, holds quite well when the long-range dis-
perimental data. For the sake of clearness, the curves Ca|CHersion term of the AS potential; C¢/r®, and the AT triple-

lated with the two-body potential alone are not shown, NeVyipole potential{us(r))~ (8/3)vp/r®, are considered. So,
ertheless the MD and the HMSA curves compare also quitghe direct correlation function reads

well together. While the AT contribution is included by

means of an effective pair potential given by E8) in the c(r)~B[Cs—(8m/3)vp]lr® asr—w, (19
HMSA, it is used under its original form owing to Eq®)

and (7) in MD. This demonstrates that the treatment of theand can be predicted directly from giveZy and ». When
three-body potential in the integral equation is valid in thisusing Eq.(19) and the Fourier asymptotic analysis, it is
range of densities. In our previous pape8], we showed the readily shown32] thatc(q) has the smalg form

relative role of the three-body contribution using the HMSA, _ ’ 3 4

by comparing the results obtained with the AS potential c(@)=c(0)+ 720+ 73|a°| + g™+ (20
alone to those obtained with the combination of AS and AT\ ihq ¢ limitations on the integral equation used. In that ex-
potentials. The effect of the three-body contribution, whichy,gion it is found thay, and y, have no tractable expres-
is only visible in the range af below 5 nm -, is to lower the

values ofc(q), that is to say to reduce the density fluctua- sion, while s takes the simple form
tions in the gas. _ y3=B(m?I12)[Cs— (87/3)vp]. (21)

In that preceding work13], we also performed MD simu-
lations with only 256 particles. We were therefore unable toThus, from the theoretical aspect, it follows that depends
extract a correc(q) from the calculatedy(r). Now, we linearly on the density when the AT potential is involved,
have done the simulations with a system containing 691avhereas it is a constant in its absence. Let us expand the
particles, which is sufficient for this purpose. In order todirect correlation function at lowg, obtained with the
show that the results become insensitive for large numbers diMSA, by extracting the coefficienty,, y3, andy,. To
particles, we also performed a simulation with 16 384 parthis end,c(q) has been calculated dt=297 K for many
ticles. The results are essentially the same, albeit with aensities between 1.52 and 4.277 Tinand fitted in the
smaller mesh. Since the MD compare favorably to both exfange between 0.5 and 5 nfmby the function Eq(20).
perimentg 10,12 on the smallg part ofc(q), it is possible Of particular interest to get additional information, and to
to affirm without ambiguity that the interaction scheme, study the relative role of the coefficienys, vz, andy,, is
which consists in combining the AS two-body potential with the function
the AT three-body contribution, is suitable for studying fluid
krypton. On the other hand, the good agreement found be- Q)
tween the HMSA and the MD attests that the self-consistent q

0.0 |

() ~<(0)
e 22
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lows the determination of th€g coefficient of the London
dispersion forces and the strengthof the AT three-body
potential[10,11,12 via Eq. (19). The curves show that the
linearity of the lowg expansion ot(q) is limited to a range
1<qg<3nm !, which is slightly lower than the one esti-
mated by Reatto and Td32].

0,000

10,005 - C. Low-density behavior of c(q)

As far as the low-density behavior of the structure of Kr is
concerned, the viral expansion is a valid theory with which
to represent correlation functions. Neglecting terms after the
first-order one in density, the direct correlation function is
written as[11]

c(q)=co(q) + pca(q) +O(p?). (24)

In this framework, it is wuseful to consider
the functions  f,(rjj){=exd—Buy(rj)]—1} and
fa(rij ik, rj) i =exd —Bus(rj ric.ry)1—1} for the interac-
tion scheme that combines the AS potentigland the AT
contributionus. The zeroth-order term reads

-0,010 +

-0,015 H

CO(Q)ZJ fo(rij)expliq-rij)dr; (25

-0,020 r T r r r r r r r and the first-order one is composed of two terms
c1(q)=ci?(q)+ci¥(q). (26)

While c{?(q) depends only omi, as

q(nm”)

FIG. 2. Function\(q) for T=297K atp=1.52, 1.97, and 2.42
nm2 from the top to the bottonithe curves fop=1.52 and 1.97 2) .
are shifted upward by an amount of 0.005 and 0.01, respectively €1 (Q)zf fa(rip fa(ri) fa(rj)expiq-rij)dry;dryy,
calculated with the HMSA directly from the smajlexpansiofEq. 27
(23)] (solid lineg, and also from Eq(23) in which theg? term was
removed(dashed lines The solid squares represent the experimen-c$>(q) contains bottu, andus contributions and reads
tal data of Formisanet al.[10].
(3) -

that can be directly extracted from our HMSA results as well cr(@= J [Fa(ry) LI F2(rio) + 11Fo(r )
as the experimental data. In Fig. 2, we compare the theoret- .
ical curve of\(q) obtained from the HMSA, when the AT L1 Py explirrig)dridriy. (28)
three-body potential is included, using E@2), to the ex-  An important feature of the low-density expansiorcéd) is
perimental _data of Formisanet al. [10]._ The results_of the the presence of the functim/f)(q)_ Its determination repre-
HMSA are in very good agreement with the experiment forgenis the only way to separate the effects of the three-body
all three densities. If we now expreagq), owing to EQ.  effects on the correlation functions. From an experimental
(20), as the following function point of view, it has been shown very recerithyl, 17 that it

NQ)= 72+ 73| q| + 7402, (23) is possible to extrgct(f)(_qo) from the measurements and

then to evaluate with a high degree of accuracy the strength
it is hardly distinguishable from the HMSA curvésot dis-  of the AT potential.
played in Fig. 2, showing that the expansion up to thé On the theoretical side, we propose using a similar
term is sufficient. The curvature af(q) at the upperjval- ~ method to get the function{®(q) from the HMSA integral
ues is well reproduced revealing the presence of at legt a equation. First of all, we check that the HMSA numerical
term, while its finite limit wheng tends to zero corroborates results ofc(q) are linear in density. Thus, for a given value
the absence of a linear term in the lapexpansion oft(q) of q, sayqg, we calculatec(q) for many densities between
given by Eq.(20). 1.52 and 4.277 nit? and perform a linear fit that yields the
In order to test the linearity of the HMSA integral equa- valuescy(go) andc,(dg), which are, respectively, the ordi-

tion at low g, we also compare.(q) calculated using Eq. nate atp=0 and slope of the direct correlation function. In
(22) to that obtained from Eg23) in which theq? term has  doing so for eachy of the grid, we are able to buildy(q)
been removed in Fig. 2. The merit of the latter expression isind c,(q) representing the low-density expansion of the
to exhibit theq® dependence af(q) and to reveal the range HMSA. This method is applied to both results affg), i.e.,
in which theq®* term can be neglected. This is particularly with and without the AT potential. The functiou:f)(q) is
important from an experimental point of view singg al-  finally obtained by simply subtracting; (q) calculated with
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o FIG. 4. Excess internal energgU®/N, and equation of state
PV/NKgT, calculated with the HMSA integral equation for several
reduced densities* = po? along theT=297 K isotherm, by using
the AS pair potential onlydotted line$ and by including the AT

-6 1 three-body potentialsolid lineg. The experimental dat&open
circles are those of Trappeniers, Wassenaar, and WqB&l
without the AT triple-dipole interaction. As expected, the

8 : , : : : internal energy diminishes monotonically with the density,

0 1 > 3 4 5 whereas the compressibility factor increases after an initial

decrease underneath the ideal-gas value. For all the densities,
the agreement between theory and experin@8t is excel-
lent when the AT contribution is included. It is worth men-
tioning that the positive nature of the AT potential appears
clearly on both thermodynamic properties under study: the
effect of the AT potential is to increase the internal energy as
well as the compressibility factor compared to the AS poten-
the AS potential alone from the one including the AT con-tial alone. Moreover, its influence is somewhat larger for the
tribution because, as expected, the fittg¢lg) is insensitive  pressure than for the internal energy.
to the AT potential. Figure 5 exhibits the isothermal compressibility four dif-
Figure 3 displays the theoretical and experimental curveferent temperature¥ =273, 297, 348, and 423 K. Our re-
of c(l3)(q)_ The comparison represents probably the mossults reproduce the general tendencies of the compressibility
stringent test for the integral equation at the three-body leves a function of the density: a broad maximum is located at
Moreover, it is relevant since Guarieit al. [12] have ex- the critical density, which gives rise to divergence as the
tracted their experimental data by using the same interactiodpinodal is approached. It can be seen that the three-body
model as in the present paper. An overall good agreement is
seen that ensures us of the quality of the HMSA procedure
A slight overestimation appears fqr<3.5 nm * that can be o
partly interpreted by the use of a different strengtfor the ‘

three-body AT potential. 20t ?

D. Thermodynamic properties £

q (mn’)

FIG. 3. Functiom(13)(q) calculated from low-density expansion
of the HMSA (solid lineg. The solid circles with error bars stand
for the experimental data of Guariaet al.[12].

T=297.15K

Once the inclusion of the AT potential has been shown to% o
modify the curvature ot(q) at small scattering angle, we

now turn to the thermodynamic properties. A good liquid
state theory and suitable interatomic interactions—
particularly the three-body contribution—must be able to re-
produce the well-established trends exhibited by these prop
erties.
The excess internal energy Ed.5 and the pressure Eq.

(16)—also called the compressibility factor—are displayed
in Fig. 4 as a function of density along the isotheiim

05 |

0.0

T=348.15K

T=423.15K
I I

0.0

02 04

p

0.6

08

FIG. 5. Isothermal compressibilitpkgT x for four tempera-
tures calculated with the HMSA integral equation by using AS pair

=297 K. The calculations are performed over a wide ranggotential (dotted lines only and by including the AT three-body
of densities using the HMSA for the AS potential with and contribution(solid lineg.
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forces have more influence when the temperature is decreaseble gases are not very well understood. This is the reason
ing. At a given temperature, it is shown that Kr describedwhy calculations of the excess internal energy, pressure, and
with the AS+AT potential is much less compressible than isothermal compressibility of Kr have been carried out over a

that modeled with the AS interaction only. This plot showsWide range of densities.

that the difference between the heights of the maxima is The main feature of this paper is to notice that both ex-

increasing when the temperature is becoming closer anBerimental and theoretical approaches yield very similar re-
closer to the experimental critical temperaturel, ( sults. The convergence between calculations and experiment

=209K). It has been demonstrati24] that T, changes by is due to three different reasons. First, the measurements be-

about 10% due to the presence of the three-body forces, arfme much more precise than before, especially over that

the curves indicate that the critical temperature of the mode2N9e of smaliq difficult to explore. Second, the fact that

is substantially larger than the experimental one if only two_swtable algonthms for parallel machines enz_able us to per-
. form large-scale simulation and shed much light on the be-
body forces are taken into account. Therefore, the AT poten;

- ) . i . . havior of correlation functions at small scattering angle.
tial is a necessary ingredient as the critical region might bel’hird HMSA is a substantial improvement of the integral
better described in this case. X

. X ; . . equation theory, which remains a semianalytical approach
_ The mc_:lu;l]on_ otf the IAT trlple-dli)jole potential Iedadsdto an competitive with the molecular dynamics.
increase In e internal energy and pressure, and a decrease emerges from this paper that a very good concordance

in the isothermal compressibility with respect to the AS PO-is obtained forc(q) between the HMSA results, the MD

tential alone. Given that the three-body AT potential is pos"simulation, and the experimental data, when the three-body

tlv_e_for rg_ost Ct?rlfrl]gxrsatlorésAczlf thrtee tat?mbs,hthls I_sgnkg)ttsur-AT potential is included. It has been shown that the AT
pr_ltilng. m_tt:e 0 tlan di tpoﬁe@g]lati et avderta u potential has a small effect—though not negligible—on the
\pllvtlansg?g chi Sc;?r?:r an r:’?%dl.lli: The s:trer?élthegf thoecz:trtrr]z_actisga”q behavior ofc(q), while its presence is essential to
tail. Therefore, the effective potential has to be taken as t the correct thermodynamic properties. The main physical

hole to iustify th usi the isoth | eaning of the AT interactions is to reduce the density fluc-
whole to Jus ify the conc usion on the isothermal COMpressy, -4ions’in the fluid. Thus, the agreement between the MD
ibility. We also have to point out that the influence of the

three-bodv AT interaction on the internal enerav and theand experimental results demonstrates that a simple and ac-
y U 9y curate representation of the interactions for gas Kr lies in the
pressure becomes more significant as the density increas

o . . CreaSeymbination of the two-body AS potential and the three-
while it is more important for the isothermal compressibility body AT contribution. The agreement between the HMSA
at intermediate densities, i.e., in the vicinity of the critical '

: g . ; . . . integral equation and the experiment goes to prove that the
B(r)é?/}o(gs cacl)é?,l)lét-irohr:Elfs?]ai;u:/(vahliir??ﬁléeé);fggpg}sz\?gn\{[v;rggur HMSA is a competitive approach for the treatment of the
X : ; . ) r ral and thermodynamic properti f th Kr.
tions on the height of the first peak of the palr—correlatlonSt uctural ‘and thermodynamic properties of the gas

function i dominant cl to the critical densit Therefore the present methodology could be used in the fu-
unction Is predominant close fo the critical density. ture to investigate th&l-body interactions in other complex

systems. However, subsequent calculations have been per-
IV. CONCLUSION formed in liquid Kr near the critical temperature. Substan-

This paper is devoted to the structural and thermodynamiti@!ly, discrepancies have been seen between HMSA and
properties of fluid Kr. Concerning the structural properties,MD, indicating that the HMSA extended to the three-body

we have presented a comparative study on the sgbé- interactions_ could fail for liquid Kr near the critical point.
havior ofc(q) for the Kr gas, at room temperature and sub-WOrks are in progress along these lines. Anyway, accurate
critical densities. To this end, we have used interatomic in€xPeriments are needed for these thermodynamic states in
teractions modelled by the two-body Aziz-Slaman potentiaPrder to test the validity of the theoretical approach.
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