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Effects of dispersion forces on the structure and thermodynamics of fluid krypton
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Semianalytical and numerical calculations are performed to predict the structural and thermodynamic prop-
erties of low-density Kr fluid. Assuming that the interatomic forces can be modelled by a pairwise potential
plus the three-body Axilrod-Teller potential, two different routes are explored. The first one is based on the
hybridized mean spherical approximation integral equation of the theory of liquids and the second one uses
large-scale molecular dynamics~MD!. Algorithms for MD simulation are constructed on parallel machines to
reduce the amount of computer time induced by the calculations of the three-body forces and the pair-
correlation function. Our results obtained with the two methods mentioned above are in quite good agreement
with the recent small-angle neutron-scattering experiments@Formisanoet al., Phys. Rev. Lett.79, 221~1997!;
Benmoreet al., J. Phys.: Condens. Matter11, 3091~1999!#. Moreover, the reliability of the asymptotic form
of the integral equation is assessed for the specific case of dispersion forces including the three-body contri-
butions, by an analysis at low wave vector and low density. It is seen that the effects of the Axilrod-Teller
triple-dipole potential cannot be ignored to describe the structure and the thermodynamic properties of fluid
krypton even at low density.

PACS number~s!: 61.20.2p, 51.30.1i
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I. INTRODUCTION

One of the fundamental tasks of liquid theory is to elu
date the basic interactions to be used as a starting poin
development of statistical-mechanical models. For sim
fluids, extensive studies have shown that the Lennard-Jo
12-6 potential~LJ! is a satisfactory effective pair potentia
though the true one is certainly not of the 12-6 form. S
using all available sources of information from experimen
observations for noble gases, Aziz and Slaman@1# have de-
rived an empirical pair potential, which includes only tw
body corrections to the London dispersion energy aris
from the multipole expansion. Such a description is n
strictly valid because the interaction between two partic
depends on the presence of a close third one, and at
three-body interactions coming from the third-order pert
bation have to be taken into account. Different ways of h
dling such three-body contributions have been explored
many years@2#. For instance, Barker, Fisher, and Watts@3#
have proposed a pair potential suitable for the physical pr
erties of liquid argon, in which three-body and quantum c
rections have been included, and more recently, Barker@4#
has built a pair potential with many-body effects that is d
voted to liquid krypton and xenon. Besides, following t
idea of Casanovaet al. @5#, Reatto and Tau@6# proposed to
complete the two-body interactions in noble gases by add
the three-body contribution of Axilrod-Teller@7# through a
state-dependent effective pair potential.

A direct probe of the interaction potential is possib
through the use of the density fluctuations, which is obtain
from the static structure factorS(q) or equivalently from the
pair-correlation functiong(r ) @8#. Besides, it has been dem
onstrated that the small-q behavior ofS(q), between 0.5 and
5 nm21, can yield the reliability of the long-range intera
tions. Those last four years, precise measurements ofS(q) at
PRE 621063-651X/2000/62~3!/3671~8!/$15.00
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small scattering angles have been performed on fluid Ar
Kr, which allowed the extraction of not only theC6 coeffi-
cient of the London dispersion potential@9,10#, but also the
strength of the three-body potential for Kr, assumed to be
the Axilrod-Teller form @11,12#. This detection represent
certainly the most unequivocal evidence of the presence
three-body forces in condensed matter~at least in their long-
range part! and supports the fact that these cannot be
nored. Therefore, the experimental structure of Kr at sm
scattering angle provides a stringent test for theoretical
culations dealing with three-body forces.

The purpose of this paper is to extend the previous th
retical work@13# on the structure of fluid Kr at lowq to the
thermodynamic properties at several temperatures. Thi
performed by using two different methods. On one hand,
have used a thermodynamically consistent integral equat
called hybridized mean spherical approximation~HMSA!
@14,15#, extended to include the three-body interactions@13#.
On the other hand, we have carried out molecular-dynam
~MD! simulations involving 6912 and 16384 particle
thanks to an efficient algorithm for parallel computers@16# in
order to calculate accurate structure factor at small scatte
angles. To describe the interactions between Kr atoms in
present paper, we combine the true pair potential of Az
Slaman@1# with the Axilrod-Teller triple-dipole one@7#, by
means of a state-dependent effective pair potential. A co
parison with the experimental data of structure and therm
dynamics allows us to test either the models of interaction
the HMSA.

II. MODELS AND SIMULATION

A. Effective interatomic potential

We assume that the interatomic interaction in Kr cons
of a N-body potential-energy function, constructed via a tr
pair potentialu2 plus a three-body potentialu3
3671 ©2000 The American Physical Society
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UN~r1 ,...,rN!5(
i , j

N

u2~r i ,r j !1 (
i , j ,k

N

u3~r i ,r j ,r k!. ~1!

Neglecting terms after the third-order one appears to b
reasonable approximation@2# for the physical properties un
der study. Asu2 , we select Aziz and Slaman’s~AS! @1# pair
potential that reads

u2~xi j !5A exp~2axi j 1bxi j
2 !2F~xi j !(

j 50

2
C2 j 16

2 j 16
, ~2!

wherexi j 5r i j /s is the reduced distance ands the position
of the node of the potential. According to the authors,
repulsive and attractive parts have to be matched with
switching function

F~xi j !5H expF2S D

xi j
21D 2G if xi j ,D,

1 if xi j >D.

~3!

The relevant parameters in Eqs.~2! and ~3! are listed in the
paper of Aziz and Slaman@1#. As u3 , we use the usua
expression derived by Axilrod-Teller~AT! @7#

u3~r i ,r j ,r k!5n
113 cosu i cosu j cosuk

r i j
3 r ik

3 r jk
3 , ~4!

which corresponds to an irreducible triple-dipole poten
between closed-shell atoms. The value of the strengthn is
2.204310226 J nm9 for Kr, and u i , u j , anduk denote, re-
spectively, the angles at vertexi, j , and k of the triangle
~i, j, k! with sides r i j 5ur j2r i u, r ik5ur k2r i u, and r jk5ur k
2r j u.

In performing the molecular-dynamics calculations, it
also necessary to consider the force acting on a partici
from a particle j, which is derived from the AS potentia
under the form

Fi j ~xi j !5H A exp~2axi j 1bxi j
2 !~2a12bxi j !2F~xi j !

3F (
j 50

2
~2 j 16!C2 j 16

xi j
2 j 17

2
2D~D2xi j !

xi j
3 (

j 50

2
C2 j 16

xi j
2 j 16 G J ei j , ~5!
a

e
e

l

where ei j is a unit vector in ther i j direction. For the AT
potential, the force acting on the particlei from the particles
j andk is given by

Fi , jk~r i j ,r jk ,r ik!5
]u3

]r i j
ei j 1

]u3

]r ik
eik , ~6!

while the forces acting onj andk are, respectively,

H Fj ,ik~r i j ,r jk ,r ik!52
]u3

]r i j
ei j 1

]u3

]r jk
ejk ,

Fk,i j ~r i j ,r jk ,r ik!52
]u3

]r ik
eik2

]u3

]r jk
ejk .

~7!

The standard expressions of the three partial derivative
u3 can be found in the paper of Hoheisel@17#.

B. Hybridized mean spherical approximation

The calculations of the structural and thermodynam
properties are performed by using the HMSA that is brie
described below. As attested in the literature@5,6,18,19,20#,
the basic assumption in this approach is that the three-b
potential reduces to a state-dependent effective pair pote
written as

u~r i j !5u2~r i j !1^u3~r i j !&, ~8!

with

^u3~r i j !&52
r

b E g~r ik!g~r jk!

3@exp$2bu3~r i ,r j ,r k!%21#dr k . ~9!

r is the number density,b(51/kBT) the inverse temperature
andkB is Boltzmann’s constant.

If the interactions are given in terms of the effective p
potential u(r i j ), the integral equation theory provides
scheme to yieldg(r i j ), which has reached nowadays a hig
degree of accuracy with the HMSA integral equation@14#.
The latter combines the Ornstein-Zernike~OZ! equation

g~r i j !215c~r i j !1rE @g~r ik!21#c~r jk!dr k , ~10!

wherec(r i j ) is the direct correlation function, with an ap
proximate closure that reads
g~r i j !5exp@2buR~r i j !#H 11
exp@ f ~r i j !$g~r i j !212c~r i j !2buA~r i j !%#21

f ~r i j !
J . ~11!

Here, the assumption is made that the effective pair potential@Eq. ~8!# may be split into a repulsive short-range partuR(r i j ),
and a weak attractive long-range partuA(r i j ), according to the prescription of Weeks, Chandler, and Andersen@21#

uR~r 12!5H u~r 12!2u~r m! if r 12,r m ,

0 if r 12.r m ,
~12!

uA~r 12!5H u~r m! if r 12,r m ,

u~r 12! if r 12.r m ,
~13!
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where r m is the location of the minimum of the potentia
well. The termf (r i j ) is a mixing function whose expressio
is that of Bretonnet and Jakse@15#, and which ensures th
thermodynamic self-consistency in requiring the equality
tween the compressibilities coming from the viral equat
of state and grand-canonical ensemble, namely,

rkBTxT5S~0!, ~14!

whereS(0) stands for the long-wavelength limit of the stru
ture factor. Therefore, Eqs.~8! to ~14! are solved in a ther-
modynamically self-consistent manner. The solution of
HMSA integral equation is obtained by the classical alg
rithm proposed by Labik, Malijevski, and Vonka@22#, which
consists in solving the nonlinear set of equations with
traditional iterative technique@23#. A good accuracy of
S(q), especially at smallq, is achieved when the function
are represented by a grid size of 1024 with a mesh of 0.

The HMSA discussed above includes automatically
calculation of the following thermodynamic properties due
the self-consistent condition~14!. When three-body forces
are assumed, the excess internal energy, the equation of
and the isothermal compressibility are given, respectively
@20#

Uex

^N&
5

r

2! E u2~r i j !g~r i j !dr i j 1
r2

3! E dr i j dr ikg~3!

3~r i j ,r ik!u3~r i j ,r ik!, ~15!

p5rkBT2
r2

2!3 E g~r i j !r i j •“ r i j
u2~r i j !dr i j

2
r3

3!3 E dr i j dr ikg~3!~r i j ,r ik!“ r i j
u3~r i j ,r ik!, ~16!

xT5
1

r S ]r

]pD
T

. ~17!

These expressions are formally exact and each of them
tains explicitly the two- and three body terms, which depe
on the pair and triplet distribution functionsg(r i j ) and
g(3)(r i j ,r ik). In practice, the three-particle distribution fun
tion is unknown and has to be approximated. In this wo
the Kirkwood superposition approximation@24# is used

g~3!~r i j ,r ik!5g~r i j !g~r ik!g~r jk!exp@2bu3~r i j ,r ik!#.
~18!

It is noticeable that the viral pressure remains exact to th
order in density when this approximation is set.

C. Molecular dynamics

In order to reach the small-q range ofS(q), we are com-
pelled to carry out large-scale molecular-dynamics simu
tions in the microcanonical ensemble~NVE!. We deal with
the individual motion ofN56912 pointlike particles situate
in a cubic box. The latter is subject to the usual perio
boundary conditions, whose volumeV is fixed to get the
desired number densityr. The equations of motion are inte
grated in a discrete form by means of a finite differen
-
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method@25#, using the convenient Verlet’s algorithm in th
velocity form. The time step isDt510215s, andg(r ) is
extracted over a sample of 8000 time-independent confi
rations every 10Dt.

The calculation of the forces at each time step is one
the most demanding tasks. SinceFi j 52Fj i , for the two-
body forces, andFi , jk52Fj ,ik2Fk,i j , for the three-body
forces, the forces can be calculated once only leading
computation time reduced roughly by a factor of 2. In ad
tion, taking advantage of the short-ranged potentials that
low the use of cutoff radii, we use the linked-cell lists@26# in
order to reduce the complexity of computations toO(N),
because only pairs and triplets of particles within the cut
radiusr c are taken into account@27#. In our case,r c equals
2.5s for two- and three-body forces.

Nevertheless, for large-scale simulations, involving ty
cally N.103 particles, the execution time is still large. Thu
algorithms suitable for parallel computers are nowad
commonly used@28#, and applied to liquid state studies@29#.
Recently, we have built an algorithm based on a spatial
composition~SD! method @30# that equally distributes the
computation among the processors of the parallel mach
The SD method consists in dividing the simulation box in
P regions. Each of them is assigned to a processor that
forms the calculations for the particles situated in it and co
municates the data to the other processors. Our program
which the calculations of the forces and the pair-correlat
function are parallelized, reduces the execution time b
factor RP whereR5t1 /(PtP) is the speedup,t1 and tP be-
ing, respectively, the execution time with 1 andP processors.
For this purpose, the plate decomposition associated wi
torus communication scheme has been used@16,30# with N
56912 particles andP56 processors. We also usedN
516384 withP58 processors to show that our results b
come insensible for system sizes beyondN56912. In both
cases,R takes values around 0.95.

III. RESULTS AND DISCUSSION

The HMSA and molecular dynamics have been used
study the physical properties of fluid Kr at temperatures a
densities for which experimental results are available. In
first paragraph, the reliability of the interaction scheme
assessed by comparing the structure factor obtained by
theoretical routes to the measurements of Formisanoet al.
@10#. Then, in the two subsequent paragraphs, we study
structural behavior at lowq and low density in order to de
duce reliable information on the two- and three-body int
actions from the structure. The objective is to access t
direct comparison with the experiment at the three-bo
level as suggested by Benmoreet al. @11# and Guariniet al.
@12#.

A. Structural properties

The first step of our paper concerns the calculation of
structure of fluid Kr forT5297 K and four different densi-
ties in the range between 1.52 and 4.277 nm23, correspond-
ing to the thermodynamic states studied by Formisanoet al.
@10# and Guariniet al. @12#. Since these authors have pe
formed their experiments only at small neutron-scatter
angle, for the sake of expediency we present the result
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the Fourier transform of the direct correlation functio
c(q)5@S(q)21#/rS(q) at low q, rather than those of the
structure factorS(q).

Figure 1 displays the curves ofc(q). It is seen that the
theoretical results, obtained by MD and HMSA with the A
plus AT potentials, are in excellent agreement with the
perimental data. For the sake of clearness, the curves c
lated with the two-body potential alone are not shown, n
ertheless the MD and the HMSA curves compare also q
well together. While the AT contribution is included b
means of an effective pair potential given by Eq.~8! in the
HMSA, it is used under its original form owing to Eqs.~6!
and ~7! in MD. This demonstrates that the treatment of t
three-body potential in the integral equation is valid in th
range of densities. In our previous paper@13#, we showed the
relative role of the three-body contribution using the HMS
by comparing the results obtained with the AS poten
alone to those obtained with the combination of AS and
potentials. The effect of the three-body contribution, wh
is only visible in the range ofq below 5 nm21, is to lower the
values ofc(q), that is to say to reduce the density fluctu
tions in the gas.

In that preceding work@13#, we also performed MD simu
lations with only 256 particles. We were therefore unable
extract a correctS(q) from the calculatedg(r ). Now, we
have done the simulations with a system containing 6
particles, which is sufficient for this purpose. In order
show that the results become insensitive for large number
particles, we also performed a simulation with 16 384 p
ticles. The results are essentially the same, albeit wit
smaller mesh. Since the MD compare favorably to both
periments@10,12# on the small-q part of c(q), it is possible
to affirm without ambiguity that the interaction schem
which consists in combining the AS two-body potential w
the AT three-body contribution, is suitable for studying flu
krypton. On the other hand, the good agreement found
tween the HMSA and the MD attests that the self-consis

FIG. 1. Direct correlation functionc(q) for T5297 K, at r
51.52, 1.97, 2.42, and 4.277 nm23 from the top to the bottom~the
curves forr51.52, 1.97, and 2.42 nm23 are shifted upwards by an
amount of 0.05, 0.1, and 0.15, respectively!, calculated with the
HMSA integral equation~solid line! and molecular dynamics~up
triangles! by using Aziz and Slaman’s pair potential plus th
Axilrod-Teller three-body contribution. Crosses with error bars c
respond to the experimental data of Formisanoet al. @10#, while
open circles stand for those of Guariniet al. @12#.
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integral equation, and its extension to the three-body po
tials, is very convenient. This shows once again the e
ciency of the self-consistent procedure@15# at smallq and
reinforces our previous conclusions based on the calcula
of the pair-correlation function@13#.

B. Low scattering angle behavior ofc„q…

Since the pioneering work of Johnson and March@31#, it
has been recognized that general features—and intere
details in some case—can be extracted from the meas
structure factor. However, it has emerged that the effec
potentials thus obtained are very sensitive to~i! the accuracy
of the experimental data ofS(q) in the small-q range, and
~ii ! the particular liquid state theory invoked. Consequen
it can be unclear which underlying features are truly physi
in origin. Formisanoet al. @10# took advantage of the ob
served variations ofc(q) to extract useful information on the
effective potential for Kr. This procedure, suggested by R
atto and Tau@32#, has the merit of yielding convenient ana
lytical expressions for certain Fourier coefficients of t
small-q expansion ofc(q), and could provide a useful test o
the asymptotic form of the integral equations, for the spec
case of the dispersion forces including the three-body
interactions.

If the structure is decided by an effective pair potent
u(r ), it has been demonstrated in the mean spherical
proximation~MSA! that the direct correlation functionc(r )
should rapidly approach2bu(r ) for large r. According to
Reatto and Tau@32#, this relationship, asymptotically exac
for large distance, holds quite well when the long-range d
persion term of the AS potential,2C6 /r 6, and the AT triple-
dipole potential,̂ u3(r )&;(8p/3)nr/r 6, are considered. So
the direct correlation function reads

c~r !;b@C62~8p/3!nr#/r 6 as r→`. ~19!

and can be predicted directly from givenC6 and n. When
using Eq. ~19! and the Fourier asymptotic analysis, it
readily shown@32# that c(q) has the small-q form

c~q!5c~0!1g2q21g3uq3u1g4q41¯ ~20!

without limitations on the integral equation used. In that e
pansion, it is found thatg2 andg4 have no tractable expres
sion, whileg3 takes the simple form

g35b~p2/12!@C62~8p/3!nr#. ~21!

Thus, from the theoretical aspect, it follows thatg3 depends
linearly on the density when the AT potential is involve
whereas it is a constant in its absence. Let us expand
direct correlation function at lowq, obtained with the
HMSA, by extracting the coefficientsg2 , g3 , and g4 . To
this end,c(q) has been calculated atT5297 K for many
densities between 1.52 and 4.277 nm23, and fitted in the
range between 0.5 and 5 nm21 by the function Eq.~20!.

Of particular interest to get additional information, and
study the relative role of the coefficientsg2 , g3 , andg4 , is
the function

l~q!5
c~q!2c~0!

q2 ~22!

-
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that can be directly extracted from our HMSA results as w
as the experimental data. In Fig. 2, we compare the theo
ical curve ofl(q) obtained from the HMSA, when the AT
three-body potential is included, using Eq.~22!, to the ex-
perimental data of Formisanoet al. @10#. The results of the
HMSA are in very good agreement with the experiment
all three densities. If we now expressl(q), owing to Eq.
~20!, as the following function

l~q!5g21g3uqu1g4q2, ~23!

it is hardly distinguishable from the HMSA curves~not dis-
played in Fig. 2!, showing that the expansion up to theq2

term is sufficient. The curvature ofl(q) at the upperq val-
ues is well reproduced revealing the presence of at leastq4

term, while its finite limit whenq tends to zero corroborate
the absence of a linear term in the low-q expansion ofc(q)
given by Eq.~20!.

In order to test the linearity of the HMSA integral equ
tion at low q, we also comparel(q) calculated using Eq
~22! to that obtained from Eq.~23! in which theq2 term has
been removed in Fig. 2. The merit of the latter expressio
to exhibit theq3 dependence ofc(q) and to reveal the rang
in which theq4 term can be neglected. This is particular
important from an experimental point of view sinceg3 al-

FIG. 2. Functionl(q) for T5297 K atr51.52, 1.97, and 2.42
nm23 from the top to the bottom~the curves forr51.52 and 1.97
are shifted upward by an amount of 0.005 and 0.01, respectiv!
calculated with the HMSA directly from the small-q expansion@Eq.
~23!# ~solid lines!, and also from Eq.~23! in which theq2 term was
removed~dashed lines!. The solid squares represent the experim
tal data of Formisanoet al. @10#.
ll
t-

r

is

lows the determination of theC6 coefficient of the London
dispersion forces and the strengthn of the AT three-body
potential @10,11,12# via Eq. ~19!. The curves show that the
linearity of the low-q expansion ofc(q) is limited to a range
1,q,3 nm21, which is slightly lower than the one est
mated by Reatto and Tau@32#.

C. Low-density behavior of c„q…

As far as the low-density behavior of the structure of Kr
concerned, the viral expansion is a valid theory with whi
to represent correlation functions. Neglecting terms after
first-order one in densityr, the direct correlation function is
written as@11#

c~q!5c0~q!1rc1~q!1O~r2!. ~24!

In this framework, it is useful to conside
the functions f 2(r i j )$5exp@2bu2(rij)#21% and
f 3(r i j ,r ik ,r jk)$5exp@2bu3(rij ,rik ,r jk)#21% for the interac-
tion scheme that combines the AS potentialu2 and the AT
contributionu3 . The zeroth-order term reads

c0~q!5E f 2~r i j !exp~ iq•r i j !dr i j ~25!

and the first-order one is composed of two terms

c1~q!5c1
~2!~q!1c1

~3!~q!. ~26!

While c1
(2)(q) depends only onu2 as

c1
~2!~q!5E f 2~r i j ! f 2~r ik! f 2~r jk!exp~ iq•r i j !dr i j dr ik ,

~27!

c1
(3)(q) contains bothu2 andu3 contributions and reads

c1
~3!~q!5E @ f 2~r i j !11#@ f 2~r ik!11#@ f 2~r jk!

11# f 3~r i j ,r ik ,r jk!exp~ iq•r i j !dr i j dr ik . ~28!

An important feature of the low-density expansion ofc(q) is
the presence of the functionc1

(3)(q). Its determination repre-
sents the only way to separate the effects of the three-b
effects on the correlation functions. From an experimen
point of view, it has been shown very recently@11,12# that it
is possible to extractc1

(3)(q0) from the measurements an
then to evaluate with a high degree of accuracy the stren
of the AT potential.

On the theoretical side, we propose using a sim
method to get the functionc1

(3)(q) from the HMSA integral
equation. First of all, we check that the HMSA numeric
results ofc(q) are linear in density. Thus, for a given valu
of q, sayq0 , we calculatec(q) for many densities betwee
1.52 and 4.277 nm23 and perform a linear fit that yields th
valuesc0(q0) andc1(q0), which are, respectively, the ordi
nate atr50 and slope of the direct correlation function.
doing so for eachq of the grid, we are able to buildc0(q)
and c1(q) representing the low-density expansion of t
HMSA. This method is applied to both results ofc(q), i.e.,
with and without the AT potential. The functionc1

(3)(q) is
finally obtained by simply subtractingc1(q) calculated with

y

-



n

ve
os
ve

tio
nt
ur

t
e
id
—
re
ro

.
ed

g
d

e
ty,
itial
ities,

-
ars
the
as

en-
the

if-
-
ility
at

the
ody

n
d

al

air

3676 PRE 62JAKSE, BOMONT, CHARPENTIER, AND BRETONNET
the AS potential alone from the one including the AT co
tribution because, as expected, the fittedc0(q) is insensitive
to the AT potential.

Figure 3 displays the theoretical and experimental cur
of c1

(3)(q). The comparison represents probably the m
stringent test for the integral equation at the three-body le
Moreover, it is relevant since Guariniet al. @12# have ex-
tracted their experimental data by using the same interac
model as in the present paper. An overall good agreeme
seen that ensures us of the quality of the HMSA proced
A slight overestimation appears forq,3.5 nm21 that can be
partly interpreted by the use of a different strengthn for the
three-body AT potential.

D. Thermodynamic properties

Once the inclusion of the AT potential has been shown
modify the curvature ofc(q) at small scattering angle, w
now turn to the thermodynamic properties. A good liqu
state theory and suitable interatomic interactions
particularly the three-body contribution—must be able to
produce the well-established trends exhibited by these p
erties.

The excess internal energy Eq.~15! and the pressure Eq
~16!—also called the compressibility factor—are display
in Fig. 4 as a function of density along the isothermT
5297 K. The calculations are performed over a wide ran
of densities using the HMSA for the AS potential with an

FIG. 3. Functionc1
(3)(q) calculated from low-density expansio

of the HMSA ~solid lines!. The solid circles with error bars stan
for the experimental data of Guariniet al. @12#.
-

s
t
l.

n
is

e.

o

-
p-

e

without the AT triple-dipole interaction. As expected, th
internal energy diminishes monotonically with the densi
whereas the compressibility factor increases after an in
decrease underneath the ideal-gas value. For all the dens
the agreement between theory and experiment@33# is excel-
lent when the AT contribution is included. It is worth men
tioning that the positive nature of the AT potential appe
clearly on both thermodynamic properties under study:
effect of the AT potential is to increase the internal energy
well as the compressibility factor compared to the AS pot
tial alone. Moreover, its influence is somewhat larger for
pressure than for the internal energy.

Figure 5 exhibits the isothermal compressibility four d
ferent temperaturesT5273, 297, 348, and 423 K. Our re
sults reproduce the general tendencies of the compressib
as a function of the density: a broad maximum is located
the critical density, which gives rise to divergence as
spinodal is approached. It can be seen that the three-b

FIG. 4. Excess internal energybUex/N, and equation of state
PV/NkBT, calculated with the HMSA integral equation for sever
reduced densitiesr* 5rs3 along theT5297 K isotherm, by using
the AS pair potential only~dotted lines! and by including the AT
three-body potential~solid lines!. The experimental data~open
circles! are those of Trappeniers, Wassenaar, and Wolker@33#.

FIG. 5. Isothermal compressibilityrkBTxT for four tempera-
tures calculated with the HMSA integral equation by using AS p
potential ~dotted lines! only and by including the AT three-body
contribution~solid lines!.
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forces have more influence when the temperature is decr
ing. At a given temperature, it is shown that Kr describ
with the AS1AT potential is much less compressible th
that modeled with the AS interaction only. This plot show
that the difference between the heights of the maxima
increasing when the temperature is becoming closer
closer to the experimental critical temperature (Tc

5209 K). It has been demonstrated@34# that Tc changes by
about 10% due to the presence of the three-body forces,
the curves indicate that the critical temperature of the mo
is substantially larger than the experimental one if only tw
body forces are taken into account. Therefore, the AT po
tial is a necessary ingredient as the critical region might
better described in this case.

The inclusion of the AT triple-dipole potential leads to a
increase in the internal energy and pressure, and a dec
in the isothermal compressibility with respect to the AS p
tential alone. Given that the three-body AT potential is po
tive for most configurations of three atoms, this is not s
prising. Since both AS and AT potentials behave asr 26 but
with opposite signs at long distance@32#, they tend to com-
pensate each other and reduce the strength of the attra
tail. Therefore, the effective potential has to be taken a
whole to justify the conclusion on the isothermal compre
ibility. We also have to point out that the influence of th
three-body AT interaction on the internal energy and
pressure becomes more significant as the density incre
while it is more important for the isothermal compressibil
at intermediate densities, i.e., in the vicinity of the critic
point (r* ;0.3). This feature is entirely consistent with o
previous calculations@13# in which the effect of AT interac-
tions on the height of the first peak of the pair-correlati
function is predominant close to the critical density.

IV. CONCLUSION

This paper is devoted to the structural and thermodyna
properties of fluid Kr. Concerning the structural properti
we have presented a comparative study on the small-q be-
havior of c(q) for the Kr gas, at room temperature and su
critical densities. To this end, we have used interatomic
teractions modelled by the two-body Aziz-Slaman poten
and the three-body Axilrod-Teller potential, on one han
and both the molecular-dynamics simulation and integ
equation theory in which an effective potential combini
the AS and AT potentials was constructed, on the other ha
The AS potential contains the most important dipole-dip
terms of the multipole expansion in its attractive part.
contrast, the AT term, which is an irreducible triple-dipo
potential, brings a mean positive contribution that redu
the attractive tail of the full potential. The interplay betwe
the AS and AT potentials and their respective roles in
description of the structural and thermodynamic propertie
as-
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nd
el
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noble gases are not very well understood. This is the rea
why calculations of the excess internal energy, pressure,
isothermal compressibility of Kr have been carried out ove
wide range of densities.

The main feature of this paper is to notice that both e
perimental and theoretical approaches yield very similar
sults. The convergence between calculations and experim
is due to three different reasons. First, the measurements
come much more precise than before, especially over
range of smallq difficult to explore. Second, the fact tha
suitable algorithms for parallel machines enable us to p
form large-scale simulation and shed much light on the
havior of correlation functions at small scattering ang
Third, HMSA is a substantial improvement of the integr
equation theory, which remains a semianalytical appro
competitive with the molecular dynamics.

It emerges from this paper that a very good concorda
is obtained forc(q) between the HMSA results, the MD
simulation, and the experimental data, when the three-b
AT potential is included. It has been shown that the A
potential has a small effect—though not negligible—on t
small-q behavior ofc(q), while its presence is essential t
get the correct thermodynamic properties. The main phys
meaning of the AT interactions is to reduce the density fl
tuations in the fluid. Thus, the agreement between the
and experimental results demonstrates that a simple and
curate representation of the interactions for gas Kr lies in
combination of the two-body AS potential and the thre
body AT contribution. The agreement between the HMS
integral equation and the experiment goes to prove that
HMSA is a competitive approach for the treatment of t
structural and thermodynamic properties of the gas
Therefore the present methodology could be used in the
ture to investigate theN-body interactions in other comple
systems. However, subsequent calculations have been
formed in liquid Kr near the critical temperature. Substa
tially, discrepancies have been seen between HMSA
MD, indicating that the HMSA extended to the three-bo
interactions could fail for liquid Kr near the critical poin
Works are in progress along these lines. Anyway, accu
experiments are needed for these thermodynamic state
order to test the validity of the theoretical approach.
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