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Convection in two-layer systems with an anomalous thermocapillary effect
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Recently, it was found that the anomalous thermocapillary effénet interfacial tension increases with
temperaturgis typical for various liquid-liquid systems. We consider the combined action of buoyancy and
thermocapillary instability mechanisms in systems with an anomalous thermocapillary effect on the interface.
The problem is solved in both linear and nonlinear formulations. A special type of oscillatory instability has
been found and investigated.

PACS numbds): 47.27—i

[. INTRODUCTION mocapillary effect, this situation takes place in a two-layer
system if the buoyancy convection is generated mainly in the
The phenomenon of Rayleigh~Bard convection in a upper layer[29]. The interfacial temperature distribution
horizontal layer between rigid boundaries, which is a paraproduced by the buoyancy convection generates tangential
digmatic example of the pattern formation in nonequilibriumstresses which brake the fluid motion. In this case, the sta-
systems, has been studied extensively during the last decadisnary instability threshold increases. Moreover, in the case
[1,2]. The convection phenomena in the presencarofn-  where the characteristic time scales of heat transfer and mo-
terfaceare still less investigated. mentum transfer differ essentially, the competition between
Two main instability mechanisms exist in systems with antwo mechanisms of stationary instability can produce oscil-
interface. Theébuoyancyinstability mechanisnfcaused by a lations[8,29].
volumeeffect is more important for relatively thick layers, In this paper we investigate the interaction between buoy-
while the thermocapillarity (an interfacial effec) plays the ancy and thermocapillary instability mechanisms in a two-
dominant role in the case of thin layers or under microgravdayer system in the case of amomalousthermocapillary
ity conditions. Many works are devoted to the limit cases ofeffect (the interfacial tension increases with temperatulte
“pure” buoyancy-driven(Rayleigh—Beard convection and was observed in aqueous alcohol solutions, nematic liquid
“pure” thermocapillarity-driven (Marangoni—Beard con-  crystals, binary metallic alloys, et¢see, e.g., Ref.30] and
vection. For the Rayleigh—Bard convection in systems references thereinThere are indications that the occurrence
with an interface both stationaf8] and oscillatory[4—7]  of an anomalous thermocapillary effect might be a typical
instabilities are possible; for a review, see R@l. Several property of various liquid—liquid systenj81]. That is why
phenomena, which include cellular pattern formafi®nr13],  the realistic models of multilayer convection should take into
deformational instability leading to the appearance of a dryaccount the possibility of the anomalous thermocapillary ef-
spot[14,15,13, longitudinal[16—19 and transversg20,21, fect.
oscillatory instabilities, have been discovered in the case of To our knowledge, until now the investigation of convec-
the Marangoni—Beard convection. tion in a two-layer system with anomalous thermocapillary
Novel effects are expected to arise from the combinedkffect was done only in the series of papd2—34. In those
action of buoyancy and thermocapillary forces. There argapers, the attention was paid to the buoyancy-driven con-
only a few works where the combined action of both insta-vection in the presence of the thermocapillary effect, inter-
bility mechanisms is investigated. The case where both inface viscosity, and interface deformation. It was found that
stability mechanisms produce forces acting in the same dithe anomalous thermocapillary effect could essentially en-
rection, is better explored. Such a situation takes place, e.chance the width of the interval of the oscillatory instability.
for the stationary convection in a liquid layer with the free  Here we demonstrate that the anomalous thermocapillary
upper surface in the case of the normal thermocapillary efeffect can lead to a new kind of the oscillatory instability
fect (when the surface tension decreases with tempepjaturecaused by the competition between the buoyancy force and
The corresponding linear stability theory was developed byhe thermocapillary tangential stresses. This kind of the os-
Nield [22] in the framework of a one-layer approach, andcillatory instability sets in when the buoyancy convection is
later it was extended to the case of liquid—liquid two-layergenerated mainly in the lower layer.
systems by Refd.23,24. The nonlinear development of in- The paper is organized as follows. After formulating the
stability was studied theoretically in Refi25,26] and ex-  problem in Sec. Il we analyze the linear stability of the sys-
perimentally in Refs[23,24,27,28 tem in Sec. lll. The special features of the particular convec-
There is another possibility: both effects produce forcedive regimes are studied by means of two-dimensional nu-
acting in opposite directions. In the case of the normal thermerical simulations in Sec. IV. To be close to real systems,
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The complete nonlinear equations of convection in frames
of the Boussinesq approximati¢8] for both fluids have the
following form:

vy ,
E"’(Vl' V)Vj_: —Vp1+V V1+ GTl‘}/,

FIG. 1. Geometrical configuration of the region and coordinate

axes. T,

1
7+V1'VT]_:EV2T1, (1)
the majority of calculations are done for the two-layer sys-

tem 10 cS silicone oil over ethylenglycol which reveals the V.v,=0;
anomalous thermocapillary effect.

Vv, 1_, G
Il. FORMULATION OF THE PROBLEM Tt TV VIVe= VPt DV E ETz’"
We consider a system of two horizontal layers of immis- JT 1
cible fluids with different physical propertiesee Fig. 1 —2+v2-VT2=—V2T2, 2)
The system is bounded from above and from below by two at xP
isothermic rigid plates kept at constant different temperatures
(the total temperature drop 6; the heating is from belo V.v,=0.

It is assumed that the interfacial tensiengrows linearly 3 2. ,
with the temperatureo= oy— aT, wherea<0. We disre- HereG=gB10a;/v1 is the Grashof number(is the grav-
gard the deformation of the interface, because it can esseffy acceleration P=wv,/y, is the Prandtl numbery is the
tially influence the convective instability only in the case of Unit vector directed vertically upward. The conditions on the
extremely thin layer$15] or in the case of a small density iSothermic rigid boundaries are:
difference between fluid$3], [34]. These cases are not con-
sidered in this paper. The variables referring to the upper
layer are marked by index 1, the variables referring to the
lower layer are marked by index 2. V2=0, Tp=1, z=-a. 4
Density, kinematic and dynamic viscosity, heat conduc-
tivity, thermal diffusivity, heat expansion coefficient of the
mth fluid are, respectivelyp,n, Ym» 7ms Km» Xm: @andBum;
a, is the thickness of thenth layer (n=1,2). Let us intro-
duce the following notations:

V]_:O, T]_:O, Z:]., (3)

The boundary conditions on the interfaze-0 include
conditions for the tangential stresses:

-0, ®)

p=pilp2, v=vilvy, n=mn1lny, Kk=kilky,

X=x1/x2, B=PB1lB2, a=ala;. "—>—— 15 o =0, (6)

As the units of length, time, velocity, pressure, and temperathe continuity of the velocity field:
ture we usea,, as/v,, vi/as, pyvi/as, and®.
The investigation of the convection were performed for Vi=V,, z=0, (7)
the 10 cS silicone oil—ethylenglycol real system. The physi-
cal parameters are summarized in Table |. The measuremetiite continuity of the temperature field:
of the temperature dependence of interfacial tension, done by
the LAUDA AG (Germany, showed the existence of an T,=T,, z=0, (8)
anomalous thermocapillary effeet:=—0.0127 mN/mK. A
more detailed study of this effect is in preparat[@i]. The and the continuity of the heat flux normal components:
ratios of parameters of two fluids arep=0.846, v
=0.6493, 7=0.549, k=0.6194, y=1.096, 3=1.4516; the gy dT,

Prandtl numbeP =94, Koz oz -0 270 9

TABLE |. Material properties of the silicone oil—ethylenglycol system.

pi Vi Ki Xi Bi
(kgm3 (104 m?’sY) (WmikhH (10* m?’sl) (K

Silicone oil (i=1) 940.0 0.10 0.16 0.00106 0.0009
Ethylenglycol(i=2) 1110.0 0.154 0.258 0.00097 0.0006
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Here M=a®a, /75y, is the Marangoni number, which is W=y, (17
negative by definition in the case of an anomalous ther-
mocapillary effect. 1= p=0, (18
The problem(1)—(9) for any choice of parameters has the

solution T,=T,, (19
Vi=v=0, KTi=Tj, (20
0 z—1 0 kz—1 Where 01=b1=d1=el=1, C2:1/V, bzzllﬂ, d2
h=—1ra "2 1ra =1, e=p; A=dTVdz=—1/(1+«a), A,=dTYdz

= —«k/(1+ ka) are the dimensionless temperature gradients.

G [Z2 We found the linear stability boundaries by means of the

p‘l)—— 17 xal2 ) (10)  following method. In the case of a stationary instability

mode, we puh =0 for fixed values ofc andk. We construct

G 2 ) three linearly independent solutions of E¢E2) and(13) in
Z/,

pl=— ——— the upper fluid satisfying the boundary conditiaiig), and
2 pB(1+«ka)

three linearly independent solutions in the lower fluid satis-
. i . . fying the boundary condition@ 5), by means of the standard

corresponding to mechanical equilibrium. In the following Runge—Kutta—Merson method, and construct a linear com-
sections we shall investigate its instability and the regimes ofination of these solutions satisfying boundary conditions

2

convection which appear due to this instability. (17)—(20). Then we calculate the Marangoni number from
the boundary conditior{16). In the case of an oscillatory
. LINEAR STABILITY THEORY instability, we put\,=0 and take some trial;. The Ma-

rangoni number obtained from E@L6) is generally com-
plex: M=M,+iM;. Then frequency; and the correspond-

The stability of the mechanical equilibrium can be inves-jng stability boundaryM =M, is found from the relation
tigated in frames of the linear stability theory. The boundary

value problem(1)—(9) is linearized around the solutiqi0). M;(\;)=0
The solutions of the linearized problem are presented as a ) ) _
superposition of normal modes characterized by a wave vedy means of iterations. Thus, we obtain theutral surfaces

A. Description of the method

tor k= (K, ,k,) and a complex growth rate=N\,+i\; : A (M,G,k)=0 in the formM=M(G,Kk).
[V1(2),p1(2), T1(2),Vo(2),p2(2), T2(2)] B. Stationary instability (layers with equal thicknesse}
X explik,X+ikyy +At); (11 Let us define thdocal Rayleigh numbers determined by
parameters of each layer:
where subsequently the sign “tilde” will be omitted. 4
Since the problem is isotropic, the growth ratelepends R _9BmAman m=12
only on the wave vector modulilks= |k| but not on its direc- ™ veXm -

tion. That is why it is sufficient to consider only two- o
dimensional disturbances wikh= (k,0) which do not depend Their ratio
on the coordinatg. Introducing the stream function distur- 4
bances R, _«vxa
Ri B
UVmx=¥m» Umz= —1Kn(m=1,2),

e m " can be used in order to estimate in which layer the buoyancy
where the prime stands fa/dz, and eliminating pressure effects are stronger. We will consider the system with the
disturbances in the usual way, we obtain the followingphysical parameters given in Table I. If we choase 1,

boundary eigenvalue problem: thenR,/R;=0.304. Becaus®,;>R,, we can expect that the
buoyancy convection is generated mainly in the upper layer,
—AD = —Cc D2, +ikGb, Ty, (120  while in the lower layer only a weak induced motion ap-

pears. In this case the temperature distribution on the inter-

_ m face formed by the buoyancy convection, generates the ther-

M= ikAngm="5DTn, (M=1.2), (13)  mocapillary stresses which support the buoyancy convection
(under the condition of the anomalous thermocapillary ef-
fect, i.e.,M<0). In such a situation we can expect the ap-

Y1=¢1=T1=0, 2z=1, (14) pearance of the stationary instability and the absence of the
, oscillatory one.
ho=9p=T,=0, z=-a, (19 Let us describe the results of calculations in the case
. =1. The typical cross sections of the neutral surfaces
o iknM T.-0 -0 16 N (G,M k) for fixed values ofG are presented in Fig. 2.
mhi— Y2 p 1 =5 (16) Solid lines correspond to boundaries of stationary instability,
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is constant, e.g., in the case of the two-layer system with
=1 and the total thickness;+a,=1 cm we find K
=5.75 (see line 3 of Fig. B In the latter case, using the
results shown in Fig. 3 we can predict that the convection
will start asG=G, =21.4, M=M, =—123 which corre-
sponds to the total temperature drép=1.94 K.

100000

C. Oscillatory instability (layers with unequal thicknessep

~100000+ Next we consider the case where the buoyancy convection
first appears mainly in the lower layer. As an example, we
present results obtained for the thickness ratiasf1.8 cor-
responding to the Rayleigh numbers’ railg/R;=3.19. We

now have the situation where the buoyancy convection first
appears in the lower layer.

. . ) ) . In order to understand the relations between buoyancy
dashed lines correspond to boundaries of oscillatory instabily 4 thermocapillary effect in the given system, let us assume
ity. If G=0, the stationary instability would be realized only {hat there is a local positive temperature fluctuatithot

in the case ohormalthermocapillary effectM >0, see line  gpot) on the interface. The buoyancy generates an upstream
1). WhenG grows, a local maximum appears on the station-io,y heneath the hot spot, and a divergent flow on the inter-
ary stability curve(see line 2. For a certain value oG the  f5ce near the hot spot. At the same time, the anomalous
maximum tends to infinity, and the stationary stability curveihermocapillary effect produces thermocapillary stresses that
is split into three fragmenttsee line 3. Only one of these  end to form a convergent flow on the interface near the hot
fragments is located in the physical regibh<<O and de-  gpot and a downstream flow in the lower layer. Thus, ther-
scribes some stationary instability in the caseaobmalous mocapillary stresses tend to suppress the buoyancy convec-
thermocapillary effect. AG=22.6 this “physical” fragment  tjon. The competition between the buoyancy and the ther-
of the stability curve touches the at=0. That means that mocapillary effect leads to stabilization of the stationary
for this value of the Grashof number the buoyancy convecinstapility. Moreover, the asynchronic action of the buoy-

tion would appear in the system in the absence of the theryncy and the thermocapillary effect may lead to the appear-
mocapillary effect. For larger values @ this fragment ance of oscillatory instability.

FIG. 2. Neutral curves in the case=1: G=0 (line 1), G=5
(lines 2, 5, G=6 (lines 3, §, G=24 (line 4).

crosses the axib! =0 (see line 4. The boundaries of oscil- | the next section we shall discuss the convective oscil-
latory instability (lines 5, § are located in the regioM >0 |ations in more detail. Here we present the results of the
which is physically irrelevant. linear stability theory. Some typical neutral curves are shown

The Stab|l|ty region Obta!ned by m.inim.iza.tio.n of the neu- in F|g 4(a) Corresponding dependencies of the frequ@qcy
tral curves with respect tk is shown in Fig. 3(lines 1, 3. on the wave numbek along the neutral curves are presented
Let us emphasize that in real experiments the geometric pap Fig. 4(b). One can see that in the region4d6< 15.5 the
rameters of the system are fixed, while the temperature droﬁ’tationary neutral curvessolid line§ change rather slowly
is changed, so that the Marangoni numbkand the Grashof  yith G, As G<G,=15.1, the oscillatory neutral curve is
numberG are proportional, and their ratio absent. AtG>G,, a closed region of oscillatory instability
(dashed ling appears. It grows rapidly witls and at last
touches the stationary neutral curve @s- G,=15.3. The
el stability boundaries in theM —G)-plane for the stationary

G gBipal and oscillatory instabilities are shown in Fig. 5. One can
conclude that in the cask=|M|/G<K,=31.7 only the
stationary instability will be observed. Using the physical

\ parameters of the system, we find that the latter case will

\ take place if the total thickness of the two-layer system is

2000 F N larger than 5.9 mm. If the thickness of the two-layer system

\( is smaller than the critical one, some slow oscillations appear

S 1000} \\ near the threshold. The dependencies of the frequency

1 N =\; and of the wave number on the ratiofor the critical
oscillatory mode are shown in Fig. 6. Let us note that the
dimensionafrequency) = w v, /a2. For instance, in the case

Gy« ‘s of the total thickness,;+a,=4 mm (K=70.3) we findQ
— =1
1000 - =0.21 s%.
/

IV. 2D SIMULATIONS OF NONLINEAR
CONVECTIVE REGIMES

M| |a|P

K=

FIG. 3. Stability region in the casa=1: stationary stability
boundary(line 1); oscillatory stability boundaryline 2); straight The linear theory predicts the behavior of infinitesimally
line corresponding t& =5.75. small disturbances in the infinite layers. Actually, the real
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FIG. 4. (a) Neutral curves in the case=1.8: G=15 (line 1),
G=15.2(lines 2, 4, G=15.5(lines 3, 9. (b) Dependencies;(k):
G=15.2(line 4), G=15.5(line 5).

system has rigid lateral boundaries. The influence of the lat-
eral boundaries depends on the kind of instability. In the case
of a stationary instability, which is alwaysbsolute(the dis-
turbance grows in any spatial pojrthe influence of the lat-
eral boundaries is restricted to a quantization of eigenmodes
and to an additional viscous dissipation near the boundaries.
As the result, the threshold Marangoni numbgv|, and
Grashof numberG, are slightly enhanced compared with the
case of an infinite layer. In the case of an oscillatory insta-
bility, the influence of the lateral boundaries can be much
stronger, especially near the threshold where the oscillatory

-4000 [

- 2000

———

15 16 i7 18

FIG. 5. Stability regions in the case=1.8; |-stability, 11—

0.12

0.06

- 400 =200

@) K

-400 <200

K

(b) 1.8

FIG. 6. Dependencies d#) critical frequencyw=|\;| and (b)

critical wave numbek on the ratioK in the casea=1.8.

""""""""

.....

FIG. 7. Stationary convective motion driven mainly by ther-

mocapillarity. (@) Streamlines andb) isotherms. Parameterst

stationary instability; Ill—oscillatory instability. =1; G=25, M=—4.275< 10",
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FIG. 8. The diagram of different regimes in the plang, (
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instability isconvectiveln the latter case, small disturbances
in the infinite layers grow only in the moving reference
frame but decay in any fixed spatial point. In the finite re-
gion, some steady wavy patterns can appear in the region of
a convective instability, only if the reflection of waves on the
lateral boundaries is strong enough. Generally, one can ex-
pect that the shift of the critical Marangoni and Grashof
numbers is more essential in the case of the oscillatory in-
stability than in the case of the stationary instability.

In order to analyze the influence of the lateral boundaries,
we perform nonlinear simulations of convection in a closed
cavity. Another reason for nonlinear simulations is the fact
that the linear theory cannot predict the type of the nonsta-
tionary motion, e.g., the motion in the form of a traveling
wave or a standing wave. Motivated by premilinary experi-
ments showing roll-like structures, we restrict ourselves to
two-dimensional simulations.

A. Description of the method

We have performed nonlinear simulations of nonstation-
ary two-dimensional flow$v ,,,=0, (m=1,2); the fields of
physical variables do not depend gh In this case, we can
introduce the stream function:

____________________

\\\\

FIG. 9. Stationary convective motions driven by buoyan@). Streamlines andb) isotherms. The figure shows the two possible
solutions named by structure @1), (b1) and B(a2), (b2). Parametersa=1.8; G=18, M=0.
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FIG. 10. (a)—(f1) Streamlines anda2—(f2) isotherms for the oscillatory motions in the system wath 1.8; G=18, M= —3933.

Im

I
=— 2 Um=—— (m=12).

Umx— 97

Eliminating the pressure and defining the vorticity

Umz  Umy
mTgx Jz

connected withj,, by
Vzwm: — &m,

we can rewrite the boundary value probldf)—(9) to the
following form:

Ipm  IYm Ibm  IYm (9¢m_ 2 T

oz ax  ox oz _CmY $mTbmGS,
(21)

0T Ohm 0T O dTry Ay,
Tz X ox ez PV m (22
V2y=—c¢n, m=12, (23
Ay

1—5—0, T,=0, z=1, (24
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1 i 1 1 ] L L 1 1 1
a, da
_.—----"-~~~—-~.___~~‘__'_'_'_.___,_»—-—'""""'—~: ____________________________________________________ :
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bo eo
| 1 [ ) 1 1 1 ! ] I
Ca f2
FIG. 10(Continued.
alﬂz M n &Tl
Yo=—-=0, Tp=1 z=-a, (25) ba=nd1t 5 - (28)
Y= 1h,=0 ‘Lﬂl: % 7=0 (26) The calculations were performed in a finite regioX
TR 9z gz ' <L with the following types of boundary conditions on the
lateral boundaries:
T,=T M _ 9Tz 27
1= 2 KT @7 (a) Free heat-insulated boundaries:
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FIG. 11. Time evolution of integral characteristi€s, i=1,2;
a=1.8; G=18; M=—3933.

dTm _

= pn=""=0, m=12, x=0L. (29

m=

(b) Rigid well-conducting boundariegnith the fixed tem-
perature distribution

S,

o5t
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FIG. 12. Phase trajectory of the oscillatory motia¥:1.8; G
=18, M=—3933.
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FIG. 13. Dependence of the inverse period of symmetric oscil-
lations 7% on —M.

m_——l/, =0 m=1,2 [,= z>0
lﬁ dX ' o 1 1+Ka( = )’
2 1+ ka ( ) X T ( )

The boundary condition&) correspond to roll-like spatially
periodic patterns in a lateraliyfinite two-layer system, and
are used for the comparison of numerical results with those
of the linear theory developed for the infinite system. The
boundary conditiongb) correspond to a closed cavity with
well conducting lateral walls.

The boundary value problert21)—(30) is solved by the
finite difference methodfor details, see Ref8]). A second
order approximation on a uniform mesh is used for the spa-
tial coordinates. The integration of evolution equations is
performed by means of an explicit scheme. We used a rect-
angular mesh 2856.

In order to estimate the precision of our numerical
method, as well as the influence of the lateral boundary con-
ditions on the threshold of the oscillatory instability, we
found the critical Grashof numb&, for a fixed value of the
Marangoni numbeM = — 3933 for geometrical parameters
a=1.8 andL = 3. For this goal, we calculated the asymptotic
(at larget) growth rate of small disturbances imposed on the
equilibrium state. We foundG{’=13.0 for free heat-
insulated boundary condition@9) and G{?’=17.5 for rigid
isothermic boundary condition$30). The corresponding
critical Grashof number obtained by means of the standard
linear theory is G{”’=15.5. The discrepancy|(G{"

-G)/G"|~0.16 characterizes the precision of our
method, while the parametef(G¥—GM)/G?)|~0.35
evaluates the influence of the rigid isothermic boundary con-
ditions.

B. Numerical results

We focus now on the convective motions in the closed
cavity having a lateral extension bf= 3, with well conduct-
ing lateral walls. The chosen value lofis close to the wave-
length of the critical disturbance. We expect that for such a



3628 L. M. BRAVERMAN et al. PRE 62

FIG. 14. Streamlines for the asymmetttgpe |) oscillatory motion in the system wita=1.8, G=23, M= —20520.

value ofL the influence of lateral boundaries is essential, butayer. Both of them are perfectly symmetric:
it cannot completely suppress the oscillations.

As was predicted by linear theory, in the case1 only Tn(X,2)=Tn(L=X,2),  ¥m(X,2)=— (L =X,2),
stationary motions were found. An example of such a motion
is shown in Fig. 7. The structure of the motion is typical for m=1,2. (3D
the thermocapillary convection in the closed cayige Ref.
[8]); the buoyancy effects are not essential. In the presence of the thermocapillary effect, several

In the case= 1.8, both stationary and oscillatory motions types of oscillatory motions can appear. First, let us describe
were found. The map of regimes is shown in Fig. 8. If thethe symmetridime-periodic convective oscillations for some
thermocapillary effect is negligible, the convection is station-fixed values ofMl andG. In a certain moment of time, the
ary, and it takes place mainly in the lower laysee Fig. 9. structure of the convective motidifrigs. 1Gal) and 1@a2)]
There exist two different stable stationary motions with op-is similar to the structure A of the buoyancy convectisee
posite directions of vortices’ rotation: structure A with an Fig. 8). The upward motion in the lower layer generates the
upward motion in the middle of the lower layer, and struc-temperature field on the interface which has a maximum in
ture B with a downward motion in the middle of the lower the middle of the interface. Because of the anomalous ther-
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mocapillary effect the tangential stresses appear which areg ' ' ' '
directed toward this maximum. These stresses produce :
four-vortex motion near the interface, so that a three-story
structure is producefsee Figs. 1(1) and 1@b2)]. Because
the Prandtl numbers of both fluids are rather large, the field
of temperature is much more inertial than that of the stream
function. That is why the field of temperature generated by
the structure A exists during some time and supports both the
buoyancy-induced motion in the lower part of the second
layer and the thermocapillarity induced motion around the
interface. Finally the former motion is completely ousted by
the latter ondsee Figs. 1@1) and 1@c2)]. Consequently,
the temperature maximum in the middle of the interface dis-
appears. The thermocapillary motion near the interface de-
cays, while in the lower layer the buoyancy convection of the
type B is developeflsee Figs. 1@1) and 1@d2)]. The tran-
sition between the structures A and B takes place during the
first half of the period. The subsequent evolution can be un-
derstood in the similar way: the temperature field generatec %
by the structure B produce a thermocapillary motion near the . . i : !
interface[see Figs. 1@1) and 1@e2] which replaces the S
buoyancy-induced motion in the lower Ia)[ee_e Flgs. 101) FIG. 15. Transition betweeen symmetric and asymmetric oscil-
and 1@f2)], but afterwards the temperature field in the loOWer | 4tions (type ) on the phase planeS(.S,); G=23, M
layer is rearranged and the structurdske Figs. 1&1) and  _ _ 55500 B ’

10(a2)] is restored.

Though th_e transitions look complicgted, a}ctu_ally theretions are unstable, and a certain tyjpeof asymmetric time-
are rathe_r simple, Wea_kly nonharmonic oscillations CONheriodic oscillations appeatsee Fig. 14 The latter type of
nected with the only oscillatory mode. That becomes clear ifygijjations is characterized by the appearance of vortices of
we pongder the time evolution of integral variables of they relatively large horizontal size in the lowgthicker layer.
motion like Note that a similar phenomenon was observed in the case of

L2 1 the steady Rayleigh—Marangonis®d convection in a
Su(t):f dxf dzy(x,z,t), two-layer system by Cardin and Natg3]. The phase tra-
0 0 jectory in variablesS;;, S;,, which demonstrates the transi-
(32)  tion between the two types of oscillations is shown in Fig.
15. The symmetry propertie81) and (34) are violated for
this type of asymmetric oscillations, but the following rela-
tions hold:
characterizing the intensity of the motion in the left halves of
the layers(see Fig. 11 and the corresponding phase trajec- Tm(X,2,t+7/12) =T (L—X,2,t),
tory (see Fig. 12 In every instance of time, the field of the (35)
temperatureT(x,z) and the field of the stream function Um(X,2,t+7/12) = — ¢y (L—x%,z,t), m=1,2,
¥(x,z) satisfy the symmetry condition@1). Therefore the
integral variables where 7 is the period of oscillations. Therefore, the phase
] . trajectory in variables;;, Sy, is symmetridsee Fig. 169)].
_ If the absolute value of the Marangoni numi&t| de-
Sir(t)= J._,deJo dzin(x,2.0), creases for a fixe@=28, a transition from the asymmetric
(33 oscillations of the type | to another tygd) of asymmetric
[ 0 time-periodic oscillations takes place. The phase trajectory in
Sor(t)= fuzdxf dzy,(X,z,t) variablesS;,, Sy, is not symmetric anymorgsee Figs. 1)
e and 16c)]; thus,(35) does not hold. Actually, there are two

characterizing the intensity of the motion in the right halvesdifferent solutions connected by the transformatios: L

L2

SZ|(t)=J deldzd;z(x,z,t)

0

of layers are given by the relations —X. We note that there is a wide hysteresis between asym-
metric oscillations and symmetric stationary motions. For
S () ==5Sy(t), S, (t)=—Sy(1). (34)  lower values of|M| complicated time periodi¢see Figs.

16(d) and 16e)] and aperiodic oscillatory motions take
For a fixed value ofG, the frequency of symmetric oscilla- place. AtG= 31 the asymmetric oscillations of the type | are
tions grows with|M| (see Fig. 18 restored see Fig. 1€)].

Some different types of oscillations were found for larger We have also calculated convective motions in cavities
values ofG. For instance, if the Marangoni number is fixed with larger values of the aspect ratla We came to the
asM = —20520, the symmetric oscillations take place in theconclusion that the oscillatory structures are qualitatively
region 2k G<22.5. WhenG=23, the symmetric oscilla- similar to those found at =3. A snapshot of an oscillatory
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FIG. 16. Phase trajectorie@) G=28, M= —20520;(b) G=28, M=—11115;(c) G=28, M=—23078;(d) G=28, M= —2394;(e)

G=28, M=-770;(f) G=31; M=—2394.

motion atL=6 is shown in Fig. 17. As was mentioned new types of convective oscillations. The nature of the con-
above, in the lowefthicken layer one observes some vorti- sidered oscillatory instability mechanism is different from

ces of a relatively large horizontal sizsee Ref[33]).

V. CONCLUSIONS

both Rayleigh—Beard oscillations and Marangoni oscilla-
tions. The appearance of the previously oscillations is caused
by the competitionof the buoyancy and the anomalous ther-
mocapillary effect. The observed oscillations have different

We found that the combined action of the buoyancy andsymmetry properties. The stability regions of oscillations and
the anomalous thermocapillary effect generates some specifitationary motions overlap.
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FIG. 17. (a) Streamlines an¢b) isotherms for
the oscillatory motion in the system with=6
(G=40, M =—6849).
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