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Upper bounds on convective heat transport in a rotating fluid layer of infinite Prandtl number:
Case of intermediate Taylor numbers

Nikolay K. Vitanov
Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Straße 38, D-01187 Dresden, Germany

~Received 1 February 2000!

By means of the Howard-Busse method of the optimum theory of turbulence we obtain upper bounds on the
convective heat transport in a heated from below layer of fluid of infinite Prandtl number rotating with a
constant angular velocity about the vertical axis. We consider the region of intermediate Taylor numbers:
a1

4!Ta!a1
6 wherea1 is the wave number connected to the 12a-solution of the variational problem. The

studied optimum fields possess a three-layer or four-layer structure: in addition to the internal, intermediate,
and boundary layers, Ekman layers could arise between the intermediate and boundary ones. For the discussed
interval of Taylor numbers the intermediate layers do not expand in the direction of the internal layers. We
present an asymptotic theory for the case of the fluid layer with rigid lower boundary and stress-free upper
boundary. We use an improved solution of the Euler-Lagrange equations of the variational problem for the
intermediate sublayer of the optimum field. This solution leads also to correction of the thicknesses of the
boundary layers and to lowering of the upper bounds on the convective heat transport for the cases of fluid
layer with stress-free or with rigid boundaries. Thus the known upper bounds for these cases can be treated as
upper bounds on the upper bounds on the convective heat transport. For the case of the fluid layer with
stress-free boundaries the four-layer optimum fields leads to bounds on the convective heat transport which
change fromR1/3 at the lower boundary of their interval of validity to values slightly large thanR2/7 near the
upper boundary of the interval of validity. Finally we discuss the area of application of the obtained bounds
with respect to the Taylor number Ta and Rayleigh numberR.

PACS number~s!: 47.27.Te, 47.27.Cn
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I. INTRODUCTION

The methods of the optimum theory of turbulence a
among the few tools for obtaining rigorous estimates of
turbulent quantities directly from the Navier-Stokes equ
tions. Because of the lack of knowledge of the turbule
solutions of the Navier-Stokes equations and because the
numerical simulations of the turbulence flows with ve
large Rayleigh or Reynolds numbers which are out of re
today, we use the methods of the turbulence theory in o
to obtain expressions for the mean properties of the turbu
flows. The Navier-Stokes equations are nonlinear and th
sequence of coupled equations arise because of the fac
the equation for thenth statistical moment of the flow quan
tities depends on the (n11)th moment. One way to dea
with this situation is to use closure schemes which repl
the above-mentioned infinite system with a finite one in su
a way that the solution of the finite system of equatio
becomes close to the real flow. Despite this closeness
not definite that the solution obtained in such a way is
solution of the Navier-Stokes equations. The optimum the
of turbulence is based on another approach. By means o
methods we derive upper bounds on the turbulent quant
using integral constraints which are a part of an infinite s
tem of moment equations. Using a finite number of the
integral constraints we enlarge the class of fields am
which the upper-bound solution of the corresponding va
tional problem is sought. Thus it is ensured that all solutio
of the Navier-Stokes equations are contained in the obta
manifold of fields, and moreover the energy balance of
real flow is retained. We can further restrict the class
admissible fields by taking into an account additional in
gral constraints. Thus the obtained bounds could be lowe
PRE 621063-651X/2000/62~3!/3581~11!/$15.00
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and we obtain a sequence of problems whose solutions
verge to the solution of the problem with full Navier-Stok
equations as constraints.

In the simplest problems of the optimum theory of turb
lence we use the lowest possible number of integral c
straints, normally the first two in the case of thermal conv
tion. The use of more integral constraints complicates
variational problem in such a way that in most cases it can
solved only numerically. The simplest variational problem
allow us to obtain asymptotic analytical upper bounds for
turbulent quantities when the control parameters~Rayleigh
number, Reynolds number, Taylor number, etc.! have large
values. The corresponding variational functionals lead
Euler-Lagrange equations which contain as a particular c
the onset of the thermal convection for the studied sys
and whose solutions allow us to obtain power laws~eventu-
ally with logarithmic corrections! for the case of large value
of the control parameters. It must be expected that the
perimental data are well below these upper bounds obta
by using only several of the infinite number of integral co
straints. In some cases however, for example, for the cas
a thermal convection in a porous medium@1,2# the obtained
numerical bounds are surprisingly close to the experime
values of the corresponding quantities. And in principle ad
ing more constraints to the corresponding variational pr
lem could lead to improved bounds.

There exist two methods of the optimum theory of turb
lence. Malkus @3,4# suggested that the convecting flu
should transport a maximum amount of heat. This hypothe
is not valid in general but the ideas of Malkus stimulat
Howard@5# to obtain upper bounds on the heat flux throu
a horizontally infinite layer of fluid by means of a variation
problem subject to some constraints. Busse@7# introduced
3581 ©2000 The American Physical Society
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3582 PRE 62NIKOLAY K. VITANOV
the multi-a-solutions of the variational problem. Th
Howard-Busse method was further developed by Chan@8#
and applied to many cases of fluid flows and thermal c
vection @9–19#.

Doering and Constantin@20# proposed another method fo
obtaining bounds on the quantities connected to the fl
flow, based on the idea for a decomposition of the veloc
fields into a steady background field which carries the in
mogeneous boundary conditions, and a homogeneous
tuations field. If an appropriate background field is co
structed~it has to satisfy certain spectral constraints! one
easily obtains an upper bound on the corresponding turbu
quantity. The Doering-Constantin method and its modifi
tion, proposed by Nicodemus, Grossmann, and Holthaus@21#
have found many applications in the last several ye
@22–31#. The relationship between the Howard-Busse a
Doering-Constantin methods as well as formulation of va
tional problems for the Navier-Stokes equations are d
cussed in Refs.@32–35#. The optimum theory of turbulenc
was applied also in plasma physics for obtaining up
bounds on the heat transport due to the ion-temperature
dient, on the energy dissipation in a turbulent pinch, e
@36–42#.

The turbulent thermal convection under the action of
tation is important for the studying of the earth’s atmosph
and oceans as well as for the dynamics of solar and plane
atmospheres. Thus it is the subject of extensive theore
and experimental investigations@43–70#. In this article we
shall derive upper bounds on the convective heat transpo
the horizontal layer, rotating about a vertical axis, of fluid f
the case of moderate rotation rates, i.e., for such values o
Taylor number for which the rotation does not influence
internal layers of the fields which are solutions of the Eul
Lagrange equations of the corresponding variational pr
lem. The problem for obtaining an upper bound on the h
transport in a fluid layer, heated from below, rotating abou
vertical axis has been discussed from the point of view of
Howard-Busse method in Ref.@71# for the case of stress-fre
boundaries and in Ref.@72# for the case of rigid boundaries
The first discussion of the problem from the point of view
the Doering-Constantin method is presented in Ref.@73#.
The structure of the article is as follows. In Sec. II we fo
mulate the variational problem using tho two integral co
straints, obtained from Boussinesq equations, contin
equation, and the assumption of infinite Prandtl numb
Then we derive the corresponding Euler-Lagrange equati
The solutions of these equations are referred further as o
mum fields. In Sec. III we discuss the possible structures
the optimum fields and select the range of rotation rates
shall investigate. In Sec. IV we derive the upper bound
the convective heat transport for the case of a fluid layer w
rigid lower boundary and stress-free upper boundary. In S
V we obtain upper bounds on the convective heat trans
in a rotating layer with stress-free boundaries. We use m
fied solutions of the Euler-Lagrange equations of the va
tional problem for the intermediate layers of the optimu
fields and consider the cases of three-layer and four-la
optimum fields. In Sec. VI we use again the above m
tioned improved solution of the Euler-Lagrange equatio
and obtain upper bound on the convective heat transport
rotating layer with rigid boundaries on the basis of four-lay
-
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optimum fields. The last section is devoted to a discussion
obtained results and their application area. In the appen
we present the equations of the quasilinear approxima
which is connected with the simplest variational problems
the optimum theory of turbulence.

II. MATHEMATICAL FORMULATION OF THE
PROBLEM

Let us consider a horizontal layer of fluid, heated fro
below, which rotates about the vertical axis with a const
angular velocityV. We shall discuss the idealized situatio
of an infinite layer and as a model we consider the Bou
inesq approximation to the equations of the fluid flow@6#.
We denote the layer thickness asd, the thermometric con-
ductivity and kinematic viscosity of the fluid ask andn, the
acceleration of the gravity asg, the temperature differenc
between the upper and lower fluid boundary asDT, and the
density of the fluid asr. Takingd as a unit for length,k/d as
unit for velocity, d2/k as unit for time, andrnk/d2 as unit
for pressure, we obtain the dimensionless form of the Bou
inesq equations

1

P S ]u

]t
1u•“uD52

1

E
“p1“

2u1RTk1
2

E
u3k, ~1!

]Q

]t
1u•“Q5¹2Q, ~2!

“•u50, ~3!

with rigid boundary conditions atz521/2: u35]u3 /]z
5T50, and stress-free boundary conditions atz51/2: u3
5]2u3 /]z25T50. P5n/k is the Prandtl number,E
5n/(Vd2) is the Ekman number,R5(ggDTd3)/(kn) is the
Rayleigh number,g is the coefficient of thermal expansion,p
is the pressure, andk is the unit vector in the direction op
posite to the gravity. The quantityQ in Eq. ~2! is the total
temperature field andT is the deviation of the temperatur
field from its horizontal mean,

Q5Q̄1T. ~4!

Below we shall use also the Taylor number, Ta5(2/E)2,
and averages of the quantities over the planesz5const~de-
noted asq̄) and over the fluid layer~denoted aŝq&). Denot-
ing the horizontal size of the fluid layer asL and the limes
whenL→` as lim we define

q̄5 lim
1

4L2 E2 l

l E
2L

L

dx dy q~x,y,z,t !, ~5!

^q&5 lim
1

4L2 E2L

L E
2L

L E
21/2

1/2

dx dy dz q~x,y,z,t !. ~6!

We shall formulate a variational problem using two m
ment equations obtained on the basis of the Boussinesq e
tions. We shall assume that all necessary horizontal aver
of the functions describing the flow exist, that the horizon
averages of the fluctuation quantities vanish, and that
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PRE 62 3583UPPER BOUNDS ON CONVECTIVE HEAT TRANSPORT . . .
flow is statistically steady in time and homogeneous in
horizontal averages. Our goal is to obtain an upper bound
the convective heat transport through the fluid layer, i.e.,
the Nusselt number

Nu511^u3T&. ~7!

We introduce Eq.~4! in the Boussinesq equations, mult
ply Eq. ~1! by the velocityu and the average over the flui
layer. Thus we obtain the relationship~known also as a
power integral in the optimum theory of turbulence!

^u¹uu2&5R^u3T&. ~8!

Another power integral can be obtained by a multiplic
tion of Eq.~2! by T and by averaging the result over the flu
layer. The obtained relationship contains the te

^u3T(]Q̄/]z)&. We transform this term by a horizontal av
eraging of the heat equation and integrating the obtai
result with respect toz. Thus we obtain the relationship

^u¹Tu2&5^u3T&22^u3T2&1^u3T&. ~9!

The assumption that the Prandtl number is infinite allo
us to include additional restrictions on the manifold of fiel
from which we shall extract the upper bounds on the conv
tive heat transport. The above assumption simplifies
mathematical analysis and has been used in Refs.@71–73#.
The problem for the dependence of the upper bounds on
convective heat transport on the Prandtl number is quite
teresting. Our investigations@74# show that the upper boun
on the convective heat transport in the case of a horizo
fluid layer, heated from below and rotating about a verti
axis, depends weakly on the Prandtl number when
Prandtl number is about 7 and larger. This defines the reg
of Prandtl numbers for which the approximation of the in
nite Prandtl number, used here, is valid.

When the Prandtl number is infinite, the Navier-Stok
equation becomes linear and we can include it as a const
in the variational problem. We shall take into account t
equation of continuity by the general representation of a
lenoidal fieldu in terms of a poloidal and a toroidal compo
nent

u5“3~“3kf!1“3kc. ~10!

We introduce Eq.~10! into the Navier-Stokes equatio
(P5`) and perform the rescalings

u5^u3T&1/2R1/2v, T5^u3T&1/2R21/2u. ~11!

Let us denote thez-component of the rescaled veloci
field v asw. Taking thez-component of the horizontal cur
and z-component of the double curl of the result we obta
the relationships

¹2f 1
2

E

]w

]z
50, ~12!

¹4w1¹1
2u2

2

E

] f

]z
50, ~13!
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where f 52¹1c is the vertical component of the vorticity
After the rescaling the power integral Eq.~9! becomes

^u3T&5
^wT&2~1/R!^u¹uu2&

Š~^wu&2wū !2
‹

. ~14!

We impose the condition:̂wu&51 and write the varia-
tional problem as follows:

Find the maximumF(R,Ta) of the variational functiona

F~w,u, f ,R,Ta!5
12~1/R!^u¹uu2&

^~12wū2&
12l* ^wu21&

12K p* S ¹2f 1
2

E

]w

]z D L
12K q* S ¹4w1¹1

2u2
2

E

] f

]zD L , ~15!

among all fieldsw,u, f subject to the boundary conditions
w5u5]w/]z5 f 50 at z521/2, and w5u5]2w/]2z
5] f /]z50 at z51/2. p* ,q* ,l* are Lagrange multipliers
The functional, Eq.~15!, is obtained on the basis of th
power integral, Eq.~9!. It can be easily checked that oncew
and u are determined from the corresponding Eule
Lagrange equations then the other power integral, Eq.~8!, is
automatically satisfied.

After the elimination of the Lagrange multipliers th
Euler-Lagrange equations for the above variational prob
become

1

RF
¹2S ¹61Ta

]2

]z2D u1S ¹61Ta
]2

]z2D FwS 12wū2
l

F1
D G

2¹1
2¹2FuS 12wū1

l

F1
D G50, ~16!

in addition to Eqs.~12! and~13!. We can exclude the vortic
ity in one of the Eqs.~12! and ~13! and thus obtain

S ¹61Ta
]2

]z2D w1¹1
2¹2u50, ~17!

¹2f 1
2

E

]w

]z
50. ~18!

In the cases discussed below, we shall use this one o
equivalent systems of equations~12!, ~13!, ~16!, or ~16!,
~17!, ~18! which is more convenient for description of th
corresponding case.

The kind of the nonlinearity present in the obtained Eul
Lagrange equations allows solutions in which the horizon
dependence is separated from the vertical dependence.
in general we can write the solutions of the Euler-Lagran
equations as Fourier series~multi-a-solutions of Busse@7#!
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w5(
i 51

N

wn~z!fn~x,y!, u5(
i 51

N

un~z!fn~x,y!, ~19!

f 5(
i 51

N

f n~z!fn~x,y!,

where N51,2,3, . . . , fnfm5dnm , dnm is the Kronecker
delta-symbol, and¹1fn52anfn . The equations corre
sponding to the 12a-solution of the variational problem
@N51 in Eq. ~19!# are

S d2

dz2
2a1

2D 3

w11Ta
d2w1

dz2
2a1

2S d2

dz2
2a1

2D u150,

~20!

1

RF1
S d2

dz2
2a1

2D F S d2

dz2
2a1

2D 3

1Ta
d2

dz2Gu1

1F S d2

dz2
2a1

2D 3

1Ta
d2

dz2G Fw1S 12w1u11
l

F D G
2a1

2S d2

dz2
2a1

2D Fu1S 12w1u11
l

F1
D G50, ~21!

S d2

dz2
2a1

2D f 11
2

E

dw1

dz
50, ~22!

where

1

2
<l5

1

2 S 22
1

R
^u¹uu2& D<1. ~23!

In order to obtain the quasilinear approximation~see the
appendix! from the Euler equations of the variational pro
lem we shall rearrange Eq.~16! as follows:

S ¹61Ta
]2

]z2D F¹2u

RF
1S 12wū1

l

F1
DwG

5¹2¹1
2FuS 12wū1

l

F1
D G . ~24!

When the Rayleigh number is large enough the terms of
right-hand side of Eq.~24! can be neglected. Thus we obta
Eq. ~A8! taking into account thatF5Nu21. Introducing the
multi-a-solutions we obtain from Eq.~24! for the caseN
51

1

R~Nu21! S d2

dz2
2a1

2D u15Fw1u1212
l

Nu21Gw1 .

~25!

We note that the close relation between the Eu
Lagrange equations of the optimum theory of turbulence
the equations of the quasilinear approximation exists for
relative simple variational functionals based only on the fi
power integrals of the equations of the fluid motion. If w
take into account more power integrals the Euler-Lagra
e

-
d
e
t

e

equations of the variational problem become more com
cated than the equations of the quasilinear approximatio

III. STRUCTURE OF THE OPTIMUM FIELDS AND
INTERVALS OF TAYLOR NUMBERS

The presence of rotation complicates the problem for
construction of the optimum fields. First of all, the flo
fields which are solutions of the Navier-Stokes equations
develop Ekman layers, and second, when the Rayleigh n
ber is fixed and the Taylor number increases, the thickne
of the layers of the flow fields can change. We shall inc
porate these two points in the process of construction of
fields which satisfy the Euler-Lagrange equations obtaine
the previous section. In the case without rotation the o
mum fields have three-layer structure from the middle pla
of the fluid layer to one of its boundaries. The optimu
fields have an internal layer which fills almost the entire flu
layer, except the small regions near the boundaries, wher
intermediate layer ensures the transition between the inte
layer and the boundary layer in which the optimum fiel
have appropriate behavior in order to satisfy the correspo
ing boundary conditions. In the internal and intermediate l
ers we have the relationshipw1u151 which is broken in the
boundary layer. The terms containing derivatives are ne
gible in the internal layers and dominant in the bounda
layers. The presence of the rotation leads to the possibilit
arising of additional Ekman layers between the intermed
and boundary layers. Here we have again two possibilit
The first one is that the internal layers are not influenced
the rotation which is the case for some intermediate inter
of Taylor numbers. When the Taylor number increases f
ther even the internal layers of the optimum fields begin
feel the rotation and the intermediate layers expand in
direction of the internal layers. Thus the four-layer optimu
fields tend again to three-layer ones and the rotation lead
decreasing of the bound on the Nusselt number. The stu
system possesses three parameters which can be change
Rayleigh number, the Taylor number, and the wave num
connected with the optimum field corresponding to the
2a-solution of the variational problem. Let us fix the Ra
leigh number at some large enough value. In this regionl
!F1 and assuming that in the intermediate layers the te
containing derivatives in Eq.~20! are small compared with
the other terms, we obtain the equation

2a1
6w11Ta

d2w1

dz2
1a1

4u50, ~26!

in which we keep the term containing the Taylor number
order to investigate the influence of the rotation. This term
zero without rotation. The increasing of the Taylor numb
leads to an increase of the influence of the rotation and w
Ta}a1

4 the term is considerably large and must be taken i
an account. From this value of the Taylor number the ro
tion begins to influence the intermediate layers of the o
mum fields. The term containing rotation in Eq.~26! be-
comes dominant and this is the case when Ta}a1

6 and the
rotation begins to also influence the internal layers of
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PRE 62 3585UPPER BOUNDS ON CONVECTIVE HEAT TRANSPORT . . .
optimum field. Thus we have the following possibilities wi
respect to the Taylor number and the wave number of
optimum field:

~1! Ta50: no rotation. The optimum fields have thre
layer structure which is symmetric for the case of a flu
layer with two rigid boundaries@8# and for the case of a fluid
layer with two stress-free boundaries@16#. The optimum
fields become asymmetric for the case of a fluid layer w
rigid lower boundary and stress-free upper boundary@18,19#.

~2! Ta!a1
4: The rotation is weak enough and the lay

structure of the optimum fields is the same as in the c
without rotation.

~3! Ta}O(a1
4): All layers of the optimum fields excep

the internal ones feel the rotation. This region is quite int
esting because here the optimum fields could have diffe
structure, i.e., we can consider three-layer optimum fields
we can impose an additional requirement that the optim
fields must possess an Ekman layer in addition to inter
intermediate, and boundary ones.

~4! a1
4!Ta!a1

6: For the case of a fluid layer with two
stress-free boundaries we shall obtain bounds on the con
tive heat transport on the basis of three-layer and four-la
optimum fields. For the case of a fluid layer with two rig
boundaries we discuss the four-layer structure of the o
mum fields. We note here that the Euler-Lagrange equat
of the variational problem considered in this article do n
allow solutions describing three-layer optimum fields for t
discussed interval of Taylor numbers in the case of ri
boundary conditions. For the case of a fluid layer with rig
lower boundary and stress-free upper boundary we shal
vestigate optimum fields with four layers.

~5! Ta}O(a1
6): The intermediate layers begin their e

pansion in the direction of the internal layers.
~6! Ta@a1

6: The intermediate layers expand in directio
of the internal layers. The increasing of the Taylor numb
leads to decreasing of the Nusselt number. As the Nus
number is connected with the thickness of the boundary
ers, a process of a thickening of the boundary layers be
and the Ekman layers become the thinnest ones for the
mum fields. The further increasing of the Taylor numb
leads to Nu51, i.e., the heat is transported only by therm
conduction.

In this article we shall present a theory for the casea1
4

! Ta!a1
6 . We shall refer to these Taylor numbers as int

mediate ones. We shall treat these as large Taylor num
for which the rotation influences the internal layers of t
optimum fields~i.e., Ta@a1

6).

IV. THE CASE OF FLUID LAYER WITH RIGID LOWER
BOUNDARY AND STRESS-FREE UPPER BOUNDARY

In the intervala1
4! Ta!a1

6 the coordinate remainsz for
the upper and lower internal sublayers of the optimum fie
Moreover we havew1u151 and f 150. We remember tha
l/F1!1 and assuming also¹2u/(RF1)!1 we obtain the
solutions of the Euler-Lagrange equations:w15w̃1 /a; u1

5 ũ1a; w̃15 ũ151.
The Euler-Lagrange equations for the lower and up

intermediate layers are Eq.~26! and
e
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a1
2f 15Ta1/2

dw1

dz
, ~27!

w1u151. ~28!

Let w15w̌1 /a1 , u5a1ǔ1, and the coordinates for th
upper and lower intermediate layers be as follows:j l2j0l

5a1
3 Ta21/2(z11/2); ju2j0u5a3 Ta21/2(1/22z). Here

j l0 ,ju,0 are parameters which can be determined by a ma
ing to the corresponding Ekman layers. Thus we have
solve the equation

w̌1S d2

dju,l
2

21D w̌11150. ~29!

For our purposes we need only an approximate solution
Eq. ~29! when ju,l→0. This solution must satisfy the re
quirementw̌1→0, Eq.~29!, and the first integral of Eq.~29!

S dw̌1

dju,l
D 2

2w̌1
21 ln~w̌1

2!1const50, ~30!

where const is a constant of integration. The solutions p
sented in Refs.@71# and @72# do not satisfy the above firs
integral. The solution which satisfies Eq.~30! along with the
other requirements is

w̌1~ju,l !5ju,lAlnS 1

ju,l
2 D 2 ln lnS 1

ju,l
2 D . ~31!

This solution leads to changes in the thicknesses of
sublayers of the optimum field and to changes in the up
bounds on the convective heat transport for the cases of
layer with two stress-free and with two rigid boundaries~see
Secs. V and VI!. We shall match Eq.~31! to the solutions of
the upper and lower Ekman layers.

In the Ekman layers we have approximatelyw1u151 and
the corresponding Euler-Lagrange equations can be wri
in the form

d4w1

dz4
2Ta1/2

d f1

dz
50, ~32!

d2f 1

dz2
1Ta1/2

dw1

dz
50. ~33!

For the lower Ekman layer we introduce the coordina
f l5(1/A(2)Ta1/4(1/21z) and the boundary conditions are
w15 f 15dw1 /df l50 when f l50. The solutions of the
Euler-Lagrange equations are

w15clA222cl exp~2f l !cos~f l2p/4!, ~34!

Ta21/4f 152cl22cl exp~2f l !cos~f l !. ~35!
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cl is a constant which will be determined by the matchi
below.

For the upper Ekman layer we introduce the coordin
fu5@1/A(2)#Ta1/4(1/22z). The boundary conditions whe
fu50 arew15d f1 /dz5d2w1 /dz250 and the solutions o
the Euler-Lagrange equations are

w15cu„12exp~2fu!cos~fu!…, ~36!

f 15
1

A2
cu Ta1/4@exp~2fu!„cos~fu!2sin~fu!…12fu#

1k Ta1/2, ~37!

wherek is a constant of integration determined by the bou
ary conditions.

We shall obtain expression forcu andcl by matching the
solutions between the corresponding intermediate and
man layers. The matching of the solutions forw1 and f 1
between the lower intermediate and Ekman layers leads u
the relationships

cl5
1

2 Ta1/4AlnS 2 Ta1/2

a1
2 D 2 ln lnS 2 Ta1/2

a1
2 D , ~38!

j l ,05
a

A2 Ta1/4
, ~39!

where j l ,0 is the coordinate of the matching point. Th
matching of the solutions forw1 and f 1 between the uppe
intermediate and Ekman layers at the pointju,0 leads to the
relationships

cu5
a1

Ta1/2AlnS Ta

a1
4D 2 ln lnS Ta

a1
4D , ~40!

ju,05
a1

2

Ta1/2
. ~41!

In the Euler-Lagrange equations for the upper and low
boundary layers dominant terms are those containing
highest derivatives. Thus we obtain

d4w1

dz4
50, ~42!

1

RF1

d2u1

dz2
1w1~12w1u1!50, ~43!

d2f 1

dz2
50. ~44!

For the lower and upper boundary layers we introduce
coordinates h l5(1/d l)(z11/2) and hu5(1/du)(1/22z).
The solutions forw1 , u1, andf 1 in the boundary layers mus
match the corresponding solution for the Ekman layers. P
forming the matching we obtain the relationships for t
lower boundary layer
e

-

k-

to

r
e

e

r-

w15~cl Ta1/2d l
2h l

2!/A2, ~45!

f 15A2cl Ta1/2d lh l . ~46!

Analogous for the upper boundary layer we obtain

w15cu Ta1/4duhu /A2, ~47!

f 15k Ta1/21
A2

2
cuS Ta1/42

1

2
Ta3/4du

2hu
2D . ~48!

We assume

25RF1cu
2 Ta1/2du

4 , ~49!

25cl
2 TaRF1d l

6 , ~50!

and thus Eq.~43! becomes

d2û1

dh l
2

1h l
2~12h l

2û1!50 ~51!

for the lower boundary layer where

u15A2û1 /~cl Ta1/2d l
2!, ~52!

and

d2û1

dhu
2

1hu~12huû1!50 ~53!

for the upper boundary layer where

u15A2û1 /~cu Ta1/4du!. ~54!

We haveF1 , a1 , du , andd l as unknown quantities an
for them we have Eqs.~49!, ~50!, and

F15
12~1/R!^u¹uu2&

^~12wū2!&
5

N

Z
, ~55!

which must be rewritten in terms of the other unknown qua
tities. For the denominatorZ we obtain

Z5d l I l1duI u , ~56!

where

I l5E
0

`

dh l~12h l
2û1!2'0.9255, ~57!

and

I u5E
0

`

dhu~12huû1!2'0.796 35. ~58!

In order to obtain a relationship for the numeratorN we take
into an account that for the 12a-solution,

^u¹uu2&5^a1
2u1

2&1^~du1 /dz!2&. ~59!
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For the first term of Eq.~59! we assume that the contr
butions from the intermediate, Ekman, and the boundary
ers are small in comparison to the contribution from the
ternal layers which is approximatelya1

4. For the second term
the contributions from the boundary layers are domina
Evaluating them and introducing the integrals

Jl5E
0

`S dû1

dh l
D 2

'0.1851, ~60!

Ju5E
0

`S dû1

dhu
D 2

'0.2635, ~61!

we obtain the following expression forF1:

F15
12a1

4/R

d lDl1duDu
, ~62!

whereDl5I l12Jl and Du5I u12Ju . The approximate so
lution of the system of Eqs.~49!, ~50!, and~62! is

d527/15~Du1Dl !
1/5Ta21/10R21/5

3@ ln~2 Ta1/2!2 ln ln~2 Ta1/2!#21/5, ~63!

where the thicknesses of the upper and lower boundary
ers are of the same order. Fora1 andF1 we obtain

a15221/5~Du1Dl !
1/5Ta2/5R21/5

3@ ln~2 Ta1/2!2 ln ln~2 Ta1/2!#3/10

3@ ln~Ta!2 ln ln~Ta!#21/2, ~64!

F15227/15~Du1Dl !
26/5Ta1/10R1/5

3@ ln~2 Ta1/2!2 ln ln~2 Ta1/2!#1/5. ~65!

V. BOUNDS FOR THE CASE OF A FLUID LAYER
WITH TWO STRESS-FREE BOUNDARIES

Because of the symmetric boundary conditions it is su
cient to consider the layers of the optimum fields from t
midplane of the fluid layer to the lower boundary of the flu
layer. For the case of optimum fields with three-layer str
ture we have in the internal layerw15w̃1 /a1 ;u15a1ũ1.
The coordinate for the intermediate layer isj5a1

3 Ta21/2(z
11/2) and the solution forw1 we need for an analysis of th
boundary layer isw15w̌1 /a1 where

w̌15jAlnS 1

j2D 2 ln lnS 1

j2D . ~66!

For the boundary layer we have the coordinateh
5„Ta1/2/(a1d1)…(z11/2) and rescale the fieldw1 andu1 as
follows: w15Aŵ1 ;u15 û1 /A. A is determined by a match
ing between the solutions of the Euler-Lagrange equati
for w1 in the intermediate and in the boundary layer. T
result is
y-
-

t.

y-

-

-

s

A5
a1

3d1

Ta AlnS Ta2

a1
8d1

2D 2 ln lnS Ta2

a1
8d1

2D . ~67!

In addition ŵ15h which satisfies the boundary laye
equation forw1 and the stress-free boundary conditions. W
assume that the relationship, Eq.~71!, holds and obtain the
following equation forû1:

d2û1

dh2
1ŵ1~12ŵ1û1!50, ~68!

with the boundary conditionsû1(0)50; û1(h→`)51/h.
The solution is

û15
1

2
hE

0

1

dt~12t2!1/4expS 2
1

2
h2t D . ~69!

We obtain the dependencies of the optimum convec
heat transport, thickness of the boundary layers and w
number by means of the system of equations

F15
Ta1/2

2a1d1D S 12
a1

4

R D , ~70!

RF1a1
8d1

4 Ta23F lnS Ta2

a1
8d1

2D 2 ln lnS Ta2

a1
8d1

2D G51, ~71!

]F1

]a1
50, ~72!

where D5I 1J, I 5*0
`dh(12hû1)2, J5*0

`dh(dû1 /dh)2.
From Eqs.~70! and~71! we obtain the solutions for the qua
silinear approximation of the solved problem

d15~2D !1/3a1
27/3Ta5/6~R2a1

4!21/3

3F lnS Ta2

a1
8d1

2D 2 ln lnS Ta2

a1
8d1

2D G21/3

, ~73!

F15~2D !24/3Ta21/3R21~R2a1
4!4/3a1

24/3

3F lnS Ta2

a1
8d1

2D 2 ln lnS Ta2

a1
8d1

2D G 1/3

. ~74!

Using Eq. ~72! the approximate solution of the syste
Eqs.~70!–~72! is

a15S R

5 D 1/4

, ~75!

d15~3D !1/3S R

5 D 211/12

Ta5/6F lnS 5 Ta2

R D G21/3

3S 11
ln$ ln@~5 Ta2/R!1/6#%

3 ln@~5 Ta2/R!1/6#
D 1/3

, ~76!
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F152•321/3
•525/3D24/3R2/3Ta21/3F lnS 5 Ta2

R D G1/3

3S 11
ln$ ln@~5 Ta2/R!1/6#%

3 ln@~5 Ta2/R!1/6#
D 21/3

. ~77!

The last terms in Eqs.~76! and~77! are the corrections to th
thickness of the boundary layers and to the upper bound
the convective heat transport in comparison to the co
sponding quantities obtained in Ref.@71#. Thus the solution,
Eq. ~66!, leads to thicker boundary layers and to low
bounds on the convective heat transport and the corresp
ing bound obtained in Ref.@71# can be treated as uppe
bound on the upper bound on the Nusselt number.

For the case of optimum fields with four-layer structu
we shall discuss again the layers of the optimum fields st
ing from the midplane of the fluid layer in direction of th
lower boundary of the fluid layer. For the internal layer t
solutions of the Euler-Lagrange equations are:w1

5w̃1 /a1 ; u15 ũ1a1 ; w̃15 ũ151. For the intermediate
layer the coordinate is :j5a1 /(A2 Ta1/4)1a1

3 Ta1/2(z11/2).
The approximate solution forw1 when j is small is w1

5w̌1 /a wherew̌1 has the same form as Eq.~66!. The coor-
dinate for the Ekman layer is:f5(Ta1/4/A2)(z11/2) and
the solutions of the Euler-Lagrange equations in this la
are

w15c„12e2f cos~f!…, ~78!

f 15k Ta1/22A2c Ta1/4Ff1
1

2
e2f

„cos~f!2sin~f!…G ,
~79!

where the constant of integrationk can be determined from
the boundary conditions and

c5
a1

Ta1/2AlnS Ta

a1
4D 2 ln lnS Ta

a1
4D . ~80!

The coordinate for the boundary layer ish5(1/d)(z
11/2) and performing a matching of the solutions of t
Euler-Lagrange equations between the Ekman and
boundary layers we obtain

w15
c Ta1/4d

A2
h, ~81!

u15
A2

c Ta1/4d
û1 , ~82!

whereû1 is a solution of the equation

d2û1

dh2
1h~12hû1!50, ~83!

which satisfies the stress-free boundary conditions. Thus
system of equations we have to solve is

F15~2D !21d1
21~12a1

4/R!, ~84!
n
-

r
d-

t-

r

e

he

RF1d1
4

a1
2

Ta1/2F lnS Ta

a1
4D 2 ln lnS Ta

a1
4D G52, ~85!

whereD5I 1J andI ,J have the same form as for the case
the theory based on the three-layer optimum field. The so
tion of the last system of equations is

d15~4D !1/3~R2a1
4!21/3Ta1/6a1

22/3

3F lnS Ta

a1
4D 2 ln lnS Ta

a1
4D G21/3

, ~86!

F15225/3D24/3R1/3~12a1
4/R!4/3Ta21/6a1

2/3

3F lnS Ta

a1
4D 2 ln lnS Ta

a1
4D G 1/3

. ~87!

F1 has a maximum whena1 is made as large as possibl
i.e., whena1}R1/4. Thus the upper boundF* on F1 is

F* }R1/2Ta21/6@ ln~Ta/R!2 ln ln~Ta/R!#1/3. ~88!

VI. BOUND FOR THE CASE OF A FLUID LAYER
WITH TWO RIGID BOUNDARIES

It is sufficient to discuss the sublayers of the optimu
fields from the midplane of the fluid layer in the direction
the lower boundary of the fluid layer. The solutions of t
Euler-Lagrange equations for the internal layer arew1
51/a1 , u15a1. In the intermediate layer the coordinate
j5@a1 /(A2 Ta1/4)#1a1

3 Ta21/2(z11/2). The solution for
w1 in this layer whenj is small is as for the cases discuss
in the previous section.

The coordinate in the Ekman layer isf5(Ta1/4/A2)(z
11/2) and the solutions of the Euler-Lagrange equations
as follows:

w15cA222ce2f cos~f2p/4!, ~89!

f 152c Ta1/4@12e2f cos~f!#, ~90!

where

c5
1

2 Ta1/4AlnS 2 Ta1/2

a1
2 D 2 ln lnS 2 Ta1/2

a1
2 D . ~91!

The coordinate for the boundary layer ish5(1/d)(z11/2)
and the matching of the solutions of the Euler-Lagran
equations between the Ekman and the boundary layers l
us to the solutions

w15
c Ta1/2d2

A2
h2, ~92!

u15
A2

c Ta1/2d2
û1 , ~93!

whereû1 is a solution of the equation
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d2û1

dh2
1h2~12h2û1!50, ~94!

which satisfies the rigid boundary conditions forû1. For the
thickness of the boundary layers and for the convective h
transport we have to solve the equations

F15~2D !21d1
21~12a1

4/R!, ~95!

RF1Ta1/2d1
6F lnS 2 Ta1/2

a1
2 D 2 ln lnS 2 Ta1/2

a1
2 D G58, ~96!

where D5I 1J, I 5*0
`dh(12h2û1)2, and J

5*0
`dh(dû1 /dh)2. The solution is

d1542/5D1/5Ta21/10R21/5~12a1
4/R!21/5

3F lnS 2 Ta1/2

a1
2 D 2 ln lnS 2 Ta1/2

a1
2 D G21/5

, ~97!

F15229/5D26/5Ta1/10R1/5~12a1
4/R!6/5

3F lnS 2 Ta1/2

a1
2 D 2 ln lnS 2 Ta1/2

a1
2 D G 1/5

. ~98!

The last terms in Eqs.~97! and~98! are corrections to the
boundary layer thickness and to the convective heat trans
in comparison to the corresponding quantities obtained
Ref. @72#. Thus the upper bound obtained in Ref.@72# can be
treated as upper bound on the upper bound on the conve
heat transport. Using again the assumptiona1} Ta1/6 we can
obtain an upper bound onF1:

F** }Ta1/10R1/5@ ln~Ta!2 ln ln~Ta!#1/5. ~99!

VII. DISCUSSION

The obtained bounds on the convective heat transport
valid in an interval of Taylor numbers. For the fluid lay
with two-stress boundaries and for the case of three-la
optimum fields this interval is determined by the requirem

a1
4! Ta!a1

6 ~100!

and by the requirement that the thickness of the bound
layers of the optimum fields must be much smaller than
Thus the interval of the Taylor numbers in which the o
tained bounds are valid becomes

O~R!! Ta!O~R11/10!. ~101!

The interval of validity of the bound on the heat transp
obtained on the basis of four-layer optimum fields for t
case of a fluid layer with two stress-free boundaries is

O~R!! Ta!O„R4/3~ ln R!4/3
…. ~102!

In this integral of validity the upper bound on the convecti
heat transport changes its value fromF}R1/3 to values larger
thanR5/18(ln R)1/3. It is interesting that the last bound is clos
to the power lawR2/7 when the Rayleigh numbers are hig
enough.
at

ort
in

ive

re

er
t

ry
.

-

t

The interval of the validity of the bounds obtained for th
case of a fluid layer with two rigid boundaries is determin
by Eq. ~100! and by the requirement thatw1u1'1 in the
Ekman layers. Thus we obtain

O~R!! Ta!O@„R ln~R!…4/3#. ~103!

For the case of a fluid layer with rigid lower boundary a
stress-free upper boundary we have as an additional req
ment, a1

4,R. Thus the application area of the bound wi
respect to the Taylor number is

O~R!! Ta!O~R9/8!. ~104!

The bounds on the Nusselt number obtained in Ref.@73# are

Nu< min@AR/621;11E2R2/21~7E212E!R2#,
~105!

for the case of Dirichlet boundary conditions and

Nu< min@AR/621;11R2E2/2#, ~106!

for the case of periodic and stress-free boundary conditi
where R and E are the Rayleigh and the Ekman numbe
These results are useful because they are valid for the w
region of values of Rayleigh and Ekman numbers where
thermal convection is present. The results obtained in
article are valid for selected regions of Rayleigh and Tay
numbers. The reason is that the assumptions concer
some terms of the Euler-Lagrange equations of the va
tional problem are applicable only for these selected regio
For the other regions of the Rayleigh and Taylor numbers
Euler-Lagrange equations are complex enough and can
solved only numerically.

Within their intervals of validity we can compare the u
per bounds obtained here with the bounds of Constan
Hallstrom, and Putkaradze@73#. Figure 1 shows the ratio

FIG. 1. Ratior between the upper bounds obtained by thre
layer and four-layer optimum fields in this article and the cor
sponding bound of Constantin, Hallstrom, and Putkaradze~case of a
rotating layer with stress-free boundaries!. Solid lines: ratio for the
case of three-layer optimum fields; dashed lines: ratio for the c
of four-layer optimum fields. Lines 1 and 6:R51010.1; lines 2 and
7: R51010.2; lines 3 and 8:R51010.3; lines 4 and 9:R51010.4; lines
5 and 10:R51010.5.
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between the bounds obtained in this article on the convec
heat transport based on three-layer and four-layer fields
the corresponding bound from Ref.@73#. We would like to
note the following:

~1! When the Rayleigh number is fixed the bounds o
tained by the Howard-Busse method are valid in an inter
of Taylor numbers, which is determined by the fixed value
the Rayleigh number. Thus the curves corresponding to
ferent Rayleigh numbers have different length.

~2! We note that the bounds obtained in Ref.@73# are the
first step in the direction of incorporating of the effect of t
rotation in the Doering-Constantin bounds for the convect
heat transport. The properly applied Doering-Constan
method should yield the same bounds as the bounds obta
above by means of the Howard-Busse method and in
case the ratio between the Howard-Busse and Doer
Constantin bounds should be equal to 1.

~3! The upper bound on the convective heat transport
the lower region of the interval of validity of the Howard
Busse bounds is this one obtained by means of the th
layer optimum fields. In the upper region of the interval
the validity of the bounds, the bound obtained by means
the four-layer optimum fields becomes larger than the thr
layer fields bound. Thus the upper bound on the convec
heat transport in this region is this one obtained by mean
the four-layer optimum fields.

For the case of a fluid layer with rigid lower boundary a
stress-free upper boundary we can consider also optim
fields which have an asymmetric structure: three sublay
from the midplane of the fluid layer in the direction of th
upper stress-free boundary and four sublayers from the m
plane of the fluid layer in direction of the lower rigid boun
ary. Such fields lead however to rapidly increasing bound
layer thickness with the Taylor number and thus the assu
tion that the boundary layer thicknesses are small is viola
In a future article we shall discuss this problem numerica
in order to see whether this asymmetric variant of the o
mum field arises as numerical solution of the Euler-Lagra
equations of the variational problem. The numerical disc
sion will clear also the relations between the three-layer
four-layer optimum fields. It could be expected that the n
merical solutions of the Euler-Lagrange equations of
variational problem can describe three-layer fields when
rotation rate is small. These fields could develop Ekman l
ers with increasing Taylor number. It will be also of intere
to study numerically the expansion of the intermediate lay
of the optimum fields in the direction of the internal layer

In this article we have investigated the 12a-solution of
the variational problem for the case of intermediate value
the Taylor number. This solution gives the upper bound
the convective heat transport in a finite range of Rayle
number. In order to obtain the upper bounds for higher v
ues of the Rayleigh number we have to consider the mula
solutions of the variational problem. This as well as the
velopment of the theory for the case of large Taylor numb
will be a subject of future research.

APPENDIX: THE QUASILINEAR APPROXIMATION

The connection between the simplest variational prob
of the optimum theory of turbulence and the quasilinear
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proximation has been pointed out by Chan@8# and exten-
sively used in Ref.@72#. Let us discuss steady solutions
the Navier-Stokes equations and subtract the horizontal
erage of the heat equation from the heat equation. Thus
obtain the relationship

“

2T2u3

dQ̄

dz
5¹•~uT!2

d

dz
u3T. ~A1!

Within the quasilinear~mean-field! approximation we ne-
glect the terms describing the interactions between the fl
tuating quantities. Thus from Eq.~A1! we obtain

¹2T5u3

dQ̄

dz
. ~A2!

From the horizontal average of the heat equation we
tain

d2Q̄

dz2
5

d

dz
u3T. ~A3!

Integrating Eq.~A3! and taking into account the bounda
conditions we obtain the relationship

dQ̄

dz
5u3T2^u3T&21. ~A4!

We rescale the quantities as follows: T

5^u3T&1/2R21/2u, u35^u3T&1/2R1/2w; Q̄5^u3T&Q* . Us-
ing this and the relationship between the convective h
transport and the Nusselt number^u3T&5Nu21 we obtain
from Eq. ~A4!

dQ*

dz
5wu2^wu&2

1

Nu21
. ~A5!

This is one of the equations of the quasilinear approximati
Another equation of this approximation we obtain after s
ting P5` in the Navier-Stokes equation. Then we resc
the result by the above rescaling relationships and take
z-component of the double curl of the resulting equation
well as thez-component of the curl of the resulting equatio
Thus we obtain

¹4w1¹1
2u2

2

E

] f

]z
50, ~A6!

¹2f 1
2

E

]w

]z
50, ~A7!

where f is the rescaled vertical component of the vorticit
The last equation of the quasilinear approximation is the r
caled Eq.~A2!,

1

R~Nu21!
¹2u5wFwu212

1

Nu21G . ~A8!
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