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Upper bounds on convective heat transport in a rotating fluid layer of infinite Prandtl number:
Case of intermediate Taylor numbers
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By means of the Howard-Busse method of the optimum theory of turbulence we obtain upper bounds on the
convective heat transport in a heated from below layer of fluid of infinite Prandtl number rotating with a
constant angular velocity about the vertical axis. We consider the region of intermediate Taylor numbers:
ai<Ta<a$ whereq; is the wave number connected to the &-solution of the variational problem. The
studied optimum fields possess a three-layer or four-layer structure: in addition to the internal, intermediate,
and boundary layers, Ekman layers could arise between the intermediate and boundary ones. For the discussed
interval of Taylor numbers the intermediate layers do not expand in the direction of the internal layers. We
present an asymptotic theory for the case of the fluid layer with rigid lower boundary and stress-free upper
boundary. We use an improved solution of the Euler-Lagrange equations of the variational problem for the
intermediate sublayer of the optimum field. This solution leads also to correction of the thicknesses of the
boundary layers and to lowering of the upper bounds on the convective heat transport for the cases of fluid
layer with stress-free or with rigid boundaries. Thus the known upper bounds for these cases can be treated as
upper bounds on the upper bounds on the convective heat transport. For the case of the fluid layer with
stress-free boundaries the four-layer optimum fields leads to bounds on the convective heat transport which
change fromRY? at the lower boundary of their interval of validity to values slightly large tR&f near the
upper boundary of the interval of validity. Finally we discuss the area of application of the obtained bounds
with respect to the Taylor number Ta and Rayleigh nunider

PACS numbes): 47.27.Te, 47.27.Cn

[. INTRODUCTION and we obtain a sequence of problems whose solutions con-
verge to the solution of the problem with full Navier-Stokes
The methods of the optimum theory of turbulence areequations as constraints.

among the few tools for obtaining rigorous estimates of the In the simplest problems of the optimum theory of turbu-
turbulent quantities directly from the Navier-Stokes equa-lence we use the lowest possible number of integral con-
tions. Because of the lack of knowledge of the turbulentstraints, normally the first two in the case of thermal convec-
solutions of the Navier-Stokes equations and because the fuibn. The use of more integral constraints complicates the
numerical simulations of the turbulence flows with very variational problem in such a way that in most cases it can be
large Rayleigh or Reynolds numbers which are out of reaclsolved only numerically. The simplest variational problems
today, we use the methods of the turbulence theory in ordeallow us to obtain asymptotic analytical upper bounds for the
to obtain expressions for the mean properties of the turbulentirbulent quantities when the control paramet@ayleigh
flows. The Navier-Stokes equations are nonlinear and thus mumber, Reynolds number, Taylor number, etave large
sequence of coupled equations arise because of the fact thatlues. The corresponding variational functionals lead to
the equation for thath statistical moment of the flow quan- Euler-Lagrange equations which contain as a particular case
tities depends on then{1)th moment. One way to deal the onset of the thermal convection for the studied system
with this situation is to use closure schemes which replacand whose solutions allow us to obtain power ldegentu-
the above-mentioned infinite system with a finite one in suchally with logarithmic correctionsfor the case of large values
a way that the solution of the finite system of equationsof the control parameters. It must be expected that the ex-
becomes close to the real flow. Despite this closeness it igerimental data are well below these upper bounds obtained
not definite that the solution obtained in such a way is aby using only several of the infinite number of integral con-
solution of the Navier-Stokes equations. The optimum theongtraints. In some cases however, for example, for the case of
of turbulence is based on another approach. By means of it thermal convection in a porous mediliin2] the obtained
methods we derive upper bounds on the turbulent quantitiesumerical bounds are surprisingly close to the experimental
using integral constraints which are a part of an infinite sysvalues of the corresponding quantities. And in principle add-
tem of moment equations. Using a finite number of theséng more constraints to the corresponding variational prob-
integral constraints we enlarge the class of fields amond¢em could lead to improved bounds.
which the upper-bound solution of the corresponding varia- There exist two methods of the optimum theory of turbu-
tional problem is sought. Thus it is ensured that all solutiondence. Malkus[3,4] suggested that the convecting fluid
of the Navier-Stokes equations are contained in the obtaineshould transport a maximum amount of heat. This hypothesis
manifold of fields, and moreover the energy balance of thés not valid in general but the ideas of Malkus stimulated
real flow is retained. We can further restrict the class ofHoward[5] to obtain upper bounds on the heat flux through
admissible fields by taking into an account additional inte-a horizontally infinite layer of fluid by means of a variational
gral constraints. Thus the obtained bounds could be lowereproblem subject to some constraints. Bu§gg introduced
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the multiw-solutions of the variational problem. The optimum fields. The last section is devoted to a discussion of

Howard-Busse method was further developed by Cfgin obtained results and their application area. In the appendix

and applied to many cases of fluid flows and thermal conwe present the equations of the quasilinear approximation

vection[9-19]. which is connected with the simplest variational problems of
Doering and Constantif20] proposed another method for the optimum theory of turbulence.

obtaining bounds on the quantities connected to the fluid

flow, based on the idea for a decomposition of the velocity Il. MATHEMATICAL FORMULATION OF THE

fields into a steady background field which carries the inho- PROBLEM

mogeneous boundary conditions, and a homogeneous fluc- Let us consider a horizontal layer of fluid, heated from

tuations field. If an appropriate background field is con-pq . which rotates about the vertical axis with a constant

strupted(lt .has to satisfy certain spectral constra)ndme angular velocityQ). We shall discuss the idealized situation
easily obtains an upper bound on the corresponding turbulenf - infinite layer and as a model we consider the Bouss-

qguantity. The Doering-Constantin method and its modifica—mes gy ; ;
! . g approximation to the equations of the fluid flg8y.
tion, proposed by Nicodemus, Grossmann, and Holthaiis We denote the layer thickness dsthe thermometric con-

h;;/egfou_rljﬁ malny_ apghce;)tmns in tr?e |_I|ast s&evéaral year(zuctivity and kinematic viscosity of the fluid asandv, the
[22-31. The relationship between the Howard-Busse an cceleration of the gravity ag, the temperature difference

Doering-Constantin methods as well as formulation of Variabetween the upper and lower fluid boundaryAd, and the
tional p_roblems for the Nawer-Stokes equations are dlsEjensity of the fluid ag. Takingd as a unit for lengthi«/d as
cussed in Ref432-39. The optimum theory of turbulence "o velocity, d?/ k as unit for time, anchvk/d? as unit

was applied also in plasma physics fgr obtaining UPPELy, pressure, we obtain the dimensionless form of the Bouss-
bounds on the heat transport due to the ion-temperature grﬁiesq equations

dient, on the energy dissipation in a turbulent pinch, etc.
[36-42.

The turbulent thermal convection under the action of ro- P
tation is important for the studying of the earth’s atmosphere
and oceans as well as for the dynamics of solar and planetary

M Vu]=— IVt VAU RTK 2uxk, (1
EJFU' ul=-¢ p+Vau+ +Eu><, 1)

atmospheres. Thus it is the subject of extensive theoretical @+U.V@ZV2, )
and experimental investigatiod3—-70. In this article we ot

shall derive upper bounds on the convective heat transport in

the horizontal layer, rotating about a vertical axis, of fluid for V.u=0, ()]

the case of moderate rotation rates, i.e., for such values ofthe, .

Taylor number for which the rotation does not influence theith rigid boundary conditions az=—1/2: uz=dus/dz
internal layers of the fields which are solutions of the Euler-— T2=0, agd stress-free boundary conditionszat1/2: ug
Lagrange equations of the corresponding variational prob=? u3/522 =T=0. P=v/x is the Prandgl number E
lem. The problem for obtaining an upper bound on the heat- ¥/(2d?) is the Ekman numbeR=(ygATd")/(«xv) is the
transport in a fluid layer, heated from below, rotating about dRayleigh numbery is the coefficient of thermal expansiqm,
vertical axis has been discussed from the point of view of thdS the pressure, anklis the unit vector in the direction op-
Howard-Busse method in RéfZ1] for the case of stress-free POsite to the gravity. The quantiy in Eq. (2) is the total
boundaries and in Ref72] for the case of rigid boundaries. temperature field and is the deviation of the temperature
The first discussion of the problem from the point of view of field from its horizontal mean,

the Doering-Constantin method is presented in Re8]. _

The structure of the article is as follows. In Sec. Il we for- 0=0+T. (4)
mulate the variational problem using tho two integral con-

straints, obtained from Boussinesq equations, continuity Below we shall use also the Taylor number,~T/E)?,
equation, and the assumption of infinite Prandtl numberand averages of the quantities over the plarresonst(de-
Then we derive the corresponding Euler-Lagrange equationsioted asy) and over the fluid layefdenoted agq)). Denot-
The solutions of these equations are referred further as opting the horizontal size of the fluid layer &sand the limes
mum fields. In Sec. Il we discuss the possible structures ofvhenL—o0 as lim we define

the optimum fields and select the range of rotation rates we

shall investigate. In Sec. IV we derive the upper bound on — 1 (oL

the convective heat transport for the case of a fluid layer with q=lim L2 fq fﬁde dy dx,y,zt), ®)
rigid lower boundary and stress-free upper boundary. In Sec.

V we obtain upper bounds on the convective heat transport 1oL rue

ina rotatmg layer with stress-free boundarles. We use mo_dl- (q)=lim — f f f dx dy dz 4x,y,zt). (6)
fied solutions of the Euler-Lagrange equations of the varia- aL2 J-LJ-LJ-1e

tional problem for the intermediate layers of the optimum

fields and consider the cases of three-layer and four-layer We shall formulate a variational problem using two mo-
optimum fields. In Sec. VI we use again the above meniment equations obtained on the basis of the Boussinesq equa-
tioned improved solution of the Euler-Lagrange equationdions. We shall assume that all necessary horizontal averages
and obtain upper bound on the convective heat transport in @f the functions describing the flow exist, that the horizontal
rotating layer with rigid boundaries on the basis of four-layeraverages of the fluctuation quantities vanish, and that the
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flow is statistically steady in time and homogeneous in thevheref=—V 4 is the vertical component of the vorticity.
horizontal averages. Our goal is to obtain an upper bound oAfter the rescaling the power integral E@) becomes

the convective heat transport through the fluid layer, i.e., on
he N It number

the Nusselt numbe (WT)— (LR)(|V 6]?)

((wé)—w6)%)

(usT)= (14)

Nu=1+(usT). (7

We introduce Eq(4) in the Boussinesq equations, multi-
ply Eqg. (1) by the velocityu and the average over the fluid
layer. Thus we obtain the relationshignown also as a
power integral in the optimum theory of turbulence

We impose the conditionfw#)=1 and write the varia-
tional problem as follows:
Find the maximunt (R, Ta) of the variational functional

(IVu[?)=R(usT). (8) 1—(1R)(|V 0|2
]:(W,B,f,R,Ta)= ——2+2)\*<W0_ 1>
Another power integral can be obtained by a multiplica- ((1-wo7)
tion of Eq.(2) by T and by averaging the result over the fluid 2 aw
layer. The obtained relationship contains the term +2< p*(v2f+E &—>>

(uzT(90O/dz)). We transform this term by a horizontal av-
eraging of the heat equation and integrating the obtained ol oa , 2
result with respect ta. Thus we obtain the relationship +2{ 97| Viw+ V30— E ozl |’ (15

2\ 2 2

(VTI5={uaT) = CusT) +(uaT). © among all fieldsw, 6, subject to the boundary conditions:

The assumption that the Prandtl number is infinite allowsV=0=0w/dz=f=0 at* z= _*1/2* and w= 6= ‘92"‘{/‘9,22
us to include additional restrictions on the manifold of fields = ¢f/9z=0 atz=1/2. p*,q* ,\* are Lagrange multipliers.
from which we shall extract the upper bounds on the convec!n€ functional, Eq.(15), is obtained on the basis of the
tive heat transport. The above assumption simplifies th@0Wer integral, Eq(9). It can be easily checked that onee
mathematical analysis and has been used in Réts.73. and ¢ are determined from the corresponding Euler-
The problem for the dependence of the upper bounds on tHeAdrange equations then the other power integral, (& is
convective heat transport on the Prandtl number is quite indutomatically satisfied. o
teresting. Our investigatiorf@4] show that the upper bound _ After the elimination of the Lagrange multipliers the
on the convective heat transport in the case of a horizontdfuler-Lagrange equations for the above variational problem
fluid layer, heated from below and rotating about a vertical?®come
axis, depends weakly on the Prandtl number when the

Prandtl number is about 7 and larger. This defines the region 1 92 92 A
of Prandtl numbers for which the approximation of the infi- ﬁvz Vot+Ta—|6+| Vo+Ta—; W( 1-wh— F—H
nite Prandtl number, used here, is valid. 9z gz 1

When the Prandtl number is infinite, the Navier-Stokes A
equation becomes linear and we can include it as a constraint - V{VZ[ 0( 1—w6+—) } =0, (16)
in the variational problem. We shall take into account the F1
equation of continuity by the general representation of a so-
lenoidal fieldu in terms of a poloidal and a toroidal compo- in addition to Eqs(12) and(13). We can exclude the vortic-

nent ity in one of the Eqs(12) and(13) and thus obtain
U=V X(VXkep)+VxXk. (10 52
6.y L y2y2g—
We introduce Eq.(10) into the Navier-Stokes equation v Tag)w Vivee=o, (7
(P=0) and perform the rescalings
_ 121/ _ 12n—1/2 2 ow
u=(usT)" R4, T=(usT)""R™ 2. (11 vere = 7 =0, 18

Let us denote the-component of the rescaled velocity
field v asw. Taking thez-component of the horizontal curl
and z-component of the double curl of the result we obtain
the relationships

In the cases discussed below, we shall use this one of the
equivalent systems of equatiori$2), (13), (16), or (16),
(17), (18) which is more convenient for description of the
corresponding case.
V2f+ — —=0, (12) The kind of the nonlinearity present in the obtained Euler-

z Lagrange equations allows solutions in which the horizontal
dependence is separated from the vertical dependence. Thus
VAw+ V29— E ﬂzo (13) in general we can write the solutions of the Euler-Lagrange
1 ' equations as Fourier seriésulti-a-solutions of Buss¢7])
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N N equations of the variational problem become more compli-
w= 2 W (2) dn(X,Y), 022 0.(2) pn(X,y), (19 cated than the equations of the quasilinear approximation.
i=1 =1

N IIl. STRUCTURE OF THE OPTIMUM FIELDS AND
f=i21 fa(2) pn(X,y), INTERVALS OF TAYLOR NUMBERS

- ) The presence of rotation complicates the problem for the
whereN=1,23 ..., ¢ndm=0nm, Onm is the Kronecker construction of the optimum fields. First of all, the flow
delta-symbol, andV,¢,=—an¢,. The equations corre- fie|ds which are solutions of the Navier-Stokes equations can
sponding to the % a-solution of the variational problem develop Ekman layers, and second, when the Rayleigh num-
[N=1 in Eq.(19)] are ber is fixed and the Taylor number increases, the thicknesses

of the layers of the flow fields can change. We shall incor-
porate these two points in the process of construction of the
fields which satisfy the Euler-Lagrange equations obtained in
(200  the previous section. In the case without rotation the opti-
mum fields have three-layer structure from the middle plane
of the fluid layer to one of its boundaries. The optimum
0, fields have an internal layer which fills almost the entire fluid
layer, except the small regions near the boundaries, where an
intermediate layer ensures the transition between the internal
layer and the boundary layer in which the optimum fields
have appropriate behavior in order to satisfy the correspond-
ing boundary conditions. In the internal and intermediate lay-
ers we have the relationship, 6, =1 which is broken in the
boundary layer. The terms containing derivatives are negli-
gible in the internal layers and dominant in the boundary
d2 >d layers. The presence of the rotation leads to the possibility of
( 2) £ Wi _ isi f additional Ekman layers between the intermediate
fi+ 0, (22)  arising of additiona an layers
E dz and boundary layers. Here we have again two possibilities.
The first one is that the internal layers are not influenced by
where the rotation which is the case for some intermediate interval
of Taylor numbers. When the Taylor number increases fur-
<1 (23) ther even the internal layers of the optimum fields begin to
feel the rotation and the intermediate layers expand in the
direction of the internal layers. Thus the four-layer optimum
fields tend again to three-layer ones and the rotation leads to
decreasing of the bound on the Nusselt number. The studied
system possesses three parameters which can be changed: the
Rayleigh number, the Taylor number, and the wave number

d? d?
+|:<——ai) +Tad—22

A
|:W1( 1_W101+ E

A
01(1_W101+_ :|:0, (21)
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In order to obtain the quasilinear approximati@ee the
appendix from the Euler equations of the variational prob-
lem we shall rearrange E¢16) as follows:

2 2

Vo Ta— || — + 1_W9+l w} connected with the optimum field corresponding to the 1
0z?| L RF Fi — a-solution of the variational problem. Let us fix the Ray-
\ leigh number at some large enough value. In this region
—y2y?2 1_—+_) _ 24 <F, gr!d assuming tha}t in the intermediate layers the terms
1 0( wo Fiq 24 containing derivatives in Eq20) are small compared with

) ) the other terms, we obtain the equation
When the Rayleigh number is large enough the terms of the

right-hand side of Eq(24) can be neglected. Thus we obtain

Eq. (A8) taking into account tha = Nu— 1. Introducing the d?w,
i i i —adw;+Ta——-+a10=0 (26)
multi-a-solutions we obtain from Eq24) for the caseN 11 d2 1 '
=1
1 d? ) N in which we keep the term containing the Taylor number in
R(NuU-1)\ g2 ay|01= Wi —1- Nu—1| V1 order to investigate the influence of the rotation. This term is

(25) zero without rotation. The increasing of the Taylor number

leads to an increase of the influence of the rotation and when

We note that the close relation between the Euk—;‘r.Taoco/l1 the term is considerably large and must be taken into

Lagrange equations of the optimum theory of turbulence an@n account. From this value of the Taylor number the rota-

the equations of the quasilinear approximation exists for théion begins to influence the intermediate layers of the opti-
relative simple variational functionals based only on the firstnum fields. The term containing rotation in E(6) be-
power integrals of the equations of the fluid motion. If we comes dominant and this is the case when<&g and the

take into account more power integrals the Euler-Lagrangeotation begins to also influence the internal layers of the
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optimum field. Thus we have the following possibilities with ) n
respect to the Taylor number and the wave number of the alfl:TaﬂZE- (27
optimum field:

(1) Ta=0: no rotation. The optimum fields have three-
layer structure which is symmetric for the case of a fluid
layer with two rigid boundarief8] and for the case of a fluid . .
layer with two stress-free boundari¢$6]. The optimum Let wy;=w;/a;, 6=a;6;, and the coordinates for the
fields become asymmetric for the case of a fluid layer withupper and lower intermediate layers be as follos: £o
rigid lower boundary and stress-free upper boundagy19.  =aiTa *(z+1/2); &,—é=a®Ta Y(1/2-2). Here

(2) Ta<aj: The rotation is weak enough and the layer éi0,éu 0 are parameters which can be determined by a match-
structure of the optimum fields is the same as in the cas#g to the corresponding Ekman layers. Thus we have to

without rotation. solve the equation
(©)] TaocO(a‘ll): All layers of the optimum fields except
the internal ones feel the rotation. This region is quite inter- [ d? .
esting because here the optimum fields could have different Wy a2, 1|w;+1=0. (29)
u,l

structure, i.e., we can consider three-layer optimum fields or
we can impose an additional requirement that the optimum
fields must possess an Ekman layer in addition to internal, For our purposes we need only an approximate solution of
intermediate, and boundary ones. Eqg. (29) when §U’|—>O. This solution must satisfy the re-
(4) at<Ta<a®: For the case of a fluid layer with two quirementw,—0, Eq.(29), and the first integral of Eq29)
stress-free boundaries we shall obtain bounds on the convec-
tive heat transport on the basis of three-layer and four-layer ( d\7v1
optimum fields. For the case of a fluid layer with two rigid —
boundaries we discuss the four-layer structure of the opti- déu,
mum fields. We note here that the Euler-Lagrange equations
of the variational problem considered in this article do notwhere const is a constant of integration. The solutions pre-
allow solutions describing three-layer optimum fields for thesented in Refs[71] and[72] do not satisfy the above first
discussed interval of Taylor numbers in the case of rigidntegral. The solution which satisfies HO) along with the
boundary conditions. For the case of a fluid layer with rigidother requirements is
lower boundary and stress-free upper boundary we shall in-

vestigate optimum fields with four layers. . 1 1
(5) TaxO(a?): The intermediate layers begin their ex- W1(&y,1) = &u,l \/'”(T) —In |n(7)- (31)
pansion in the direction of the internal layers. &ul &ul
(6) Ta>a®: The intermediate layers expand in direction
of the internal layers. The increasing of the Taylor number This solution leads to changes in the thicknesses of the
leads to decreasing of the Nusselt number. As the Nussefublayers of the optimum field and to changes in the upper
number is connected with the thickness of the boundary layPounds on the convective heat transport for the cases of fluid
ers, a process of a thickening of the boundary layers begin@yer with two stress-free and with two rigid boundarisse
and the Ekman layers become the thinnest ones for the optBecs. V and VI We shall match Eq31) to the solutions of
mum fields. The further increasing of the Taylor numberthe upper and lower Ekman layers.
leads to N1, i.e., the heat is transported only by thermal In the Ekman layers we have approximatelyt; =1 and
conduction. the corresponding Euler-Lagrange equations can be written
In this article we shall present a theory for the cage N the form
< Ta<a® . We shall refer to these Taylor numbers as inter-

2
) —w2+In(w?) + const=0, (30)

mediate ones. We shall treat these as large Taylor numbers dw, 1pdf1
for which the rotation influences the internal layers of the 47 —Ta* =0, (32
optimum fields(i.e., Ta>«5).
d?f dw.
— +Tal2—— =0. (33
IV. THE CASE OF FLUID LAYER WITH RIGID LOWER dz? dz
BOUNDARY AND STRESS-FREE UPPER BOUNDARY
In the intervala?< Ta<a® the coordinate remairsfor For the lower Ekman layer we introduce the coordinate

the upper and lower internal sublayers of the optimum field#1=(1/7(2) Ta*(1/2+z) and the boundary conditions are:

Moreover we havav,6;=1 andf;=0. We remember that W1=f;=dw;/d# =0 when ¢ =0. The solutions of the

MF,<1 and assuming als&§26/(RF;)<1 we obtain the Euler-Lagrange equations are

solutions of the Euler-Lagrange equatioms;=w;/a; 6,

— Dy Wy=By=1. Wy =02 20 exp(— d)cod y—wld),  (34)
The Euler-Lagrange equations for the lower and upper

intermediate layers are E(R6) and Ta Y4 ,=2c,—2c, exp(— ¢,)cod ¢). (35
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¢, is a constant which will be determined by the matching w,=(c, Ta'2529?)1/2, (45)
below.
For the upper Ekman layer we introduce the coordinate fi= \/§C| Tas,7, . (46)

du=[1//(2)]Ta"(1/2—z). The boundary conditions when
¢,=0 arew,;=df,;/dz=d?w,/dz2=0 and the solutions of Analogous for the upper boundary layer we obtain
the Euler-Lagrange equations are

wy=c, Ta*s,5,/2, (47)
wy=c,(1—exp(— ¢,)cog ¢,)), (36)
1 fi=kTa’>+ \/—Ecu Tall— ETa3’45§7,3 . (49
fi= gt Ta{ exp( — $,,) (COL b)) —SiN(,)) +2¢h,] 2 2
We assume
+kTa2 (37)
2=RF,c2Ta'?s!, (49)

wherek is a constant of integration determined by the bound-

ary conditions. 2=c2TaRF. & 50
We shall obtain expression fay, andc, by matching the ! e 0

solutions between the corresponding intermediate and Ekgng thus Eq(43) becomes

man layers. The matching of the solutions fe§ and f;

between the lower intermediate and Ekman layers leads us to d29, R
the relationships s +73(1—5?0,)=0 (51)
7
1 2Ta” Tal’
c = \/m —Inln , (38) for the lower boundary layer where
2 Ta* a% ai
0,=20,/(c Ta2s7), (52)
o
= 39
0s
where & o is the coordinate of the matching point. The d ‘91+7] (1-7 9,)=0 (53)
matching of the solutions fow, and f,; between the upper dy]ﬁ . urL
intermediate and Ekman layers at the pdpp leads to the
relationships for the upper boundary layer where
@y Ta Ta 0,=20,/(c,Ta"s,). (54)
Ch=—1p In{ — | =Inin| —1, (40
Ta 1 1 We haveF,, a1, §,, and 8, as unknown quantities and
) for them we have Eq€49), (50), and
@,
fu0™ T @ 1RV N

1= — > - zy (55)
. ((1—=w67))
In the Euler-Lagrange equations for the upper and lower

boundary layers dominant terms are those containing th@hich must be rewritten in terms of the other unknown quan-
highest derivatives. Thus we obtain tities. For the denominatdf we obtain

d*w =
o “ Z=81,+8,1,, (56)
dz!
where
1 d261 _ * ~
R_FlﬁJrWl(l_Wlal)_o’ (43 |,:fo d#(1— 5{6,)?~0.9255, (57)
L ay
CE .
| =f d7y(1— 7,0,)2~0.796 35. 58
For the lower and upper boundary layers we introduce the “ o Lm0 9

coordinates n,=(1/6))(z+1/2) and »,=(1/56,)(1/2—2). _ . _
The solutions fow;, 6;, andf, in the boundary layers must !n order to obtain a relationship for the numeratbwe take
match the corresponding solution for the Ekman layers. Perinto an account that for the-1a-solution,

forming the matching we obtain the relationships for the 5 - 5
lower boundary layer (IV]*)=(a167)+((d61/d2)%). (59
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For the first term of Eq(59) we assume that the contri-
butions from the intermediate, Ekman, and the boundary lay- A=
ers are small in comparison to the contribution from the in-

ternal layers which is approximatety‘{. For the second term
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T
o o7

—Inin

Ta : 8 52

@101

) . (67)

the contributions from the boundary layers are dominant. In addition w;=7 which satisfies the boundary layer

Evaluating them and introducing the integrals

= dp,|?

J.=f (—1> ~0.1851, (60)
o \dmp
= do,\?

Ju=f ( 1) ~0.2635, (61)
0 d77u

we obtain the following expression fér:

1-af/R

TN 2

whereD,=1,+2J, andD,=1,+2J,. The approximate so-

lution of the system of Eqg49), (50), and(62) is

5= 27/15( Du+ Dl)l/STa* l/lOR* 1/5
X[In(2 Ta’?) —InIn(2 Ta/?) 15, (63)

where the thicknesses of the upper and lower boundary lay-

ers are of the same order. Fe@f andF; we obtain
;= 2—1/5(Du+ DI)IISTaZISR—lIS
X[In(2 Ta’?) —InIn(2 Ta"/?)]%1°
X[In(Ta)—InIn(Ta)]~ Y2, (64)
Fl:277/15(Du+ D|)76/5Tal/lORl/5
X[In(2 Ta’?) —InIn(2 Ta"? 5. (65)

V. BOUNDS FOR THE CASE OF A FLUID LAYER

equation forw; and the stress-free boundary conditions. We
assume that the relationship, E@1), holds and obtain the

following equation foré;:

d?e, . ..
—— Twi(l-w;6,)=0, (68)

dn
with the boundary condition®;(0)=0; 8,(7—)=1/7.
The solution is

y: _1 ! 2\1/4 1 2
91—57] Odt(l—t) ex —Ent . (69)

We obtain the dependencies of the optimum convective
heat transport, thickness of the boundary layers and wave
number by means of the system of equations

Tal’? af
P 2050 1‘3)' 7o
Ta Ta
RFa}s]Ta 3 In( . 2)—Inln<ﬁ> =1, (71
;8] a;dy
JIF,
lez (72)

whereD=1+J, |1=[5dn(1—76,)% J=[5d5(dd,/dn)>.
From Eqgs.(70) and(71) we obtain the solutions for the qua-
silinear approximation of the solved problem

512 (2D)1/3CKI7/3Ta5/6( R— ai)*l/3

WITH TWO STRESS-FREE BOUNDARIES

Because of the symmetric boundary conditions it is suffi-
cient to consider the layers of the optimum fields from the
midplane of the fluid layer to the lower boundary of the fluid
layer. For the case of optimum fields with three-layer struc-
ture we have in the internal layav,=w,/a;;6;=a,6;.
The coordinate for the intermediate layerés o3 Ta Y4z
+1/2) and the solution fow; we need for an analysis of the

boundary layer isv,=w; /a; where

. \/ 1 1
wi=£&1/In ? —Inin ? . (66)

For the boundary layer we have the coordinaige
=(Ta"? (ay6,))(z+1/2) and rescale the fielt; and 6, as

follows: w,=Aw; ; 6;= 60, /A. Ais determined by a match-

ing between the solutions of the Euler-Lagrange equations

for w; in the intermediate and in the boundary layer. The
result is

51=(3D)1’3<g

X1 T Inl T - (73
n——=|—Ininl /= s
a1t i ot
F1:(2D)74/3Ta71/3R71(R_ a;-l)4/3a54/3
X1 Te Inl T " (79
n —Inin
o8] a8t

Using Eq.(72) the approximate solution of the system
Egs.(70—(72) is

R 1/4
alz(g) ; (75
5T |
'”(T”

13
: (76)

—-11/12
) Ta5/6

In{In[ (5 T&/R)6]}
31In[(5 T&/R)Y
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5T\ |Y3 2 T T
F,=2.3" 113, 5~ 5/3p) ~ 413Q2/3 T —1/3["1( ” RE. 5 a; In 1a Inln ‘a
R ! 1Ta1’2 a‘l1 a‘ll

=2, (85

In{In[ (5 T&&/R)¥6]}| ~*°
31n[(5 T&/R)Y

(77)  WhereD=1+J andl,J have the same form as for the case of
the theory based on the three-layer optimum field. The solu-
tion of the last system of equations is

-1/3

—Inin , (86)

X11In

(87)

The last terms in Eq€76) and(77) are the corrections to the

thickness of the boundary layers and to the upper bound on 8,=(4D)}(R— o)~ Talfn; #°

the convective heat transport in comparison to the corre-

sponding quantities obtained in RET.1]. Thus the solution, Ta Ta

Eq. (66), leads to thicker boundary layers and to lower x| Inl — 2

bounds on the convective heat transport and the correspond- 1 @1

ing bound obtained in Ref.71] can be treated as upper B

bound on the upper bound on the Nusselt number. Fi1=2"9D " "R¥(1-al/R)**Ta 2/3
For the case of optimum fields with four-layer structure 13

we shall discuss again the layers of the optimum fields start- E —Inin E

ing from the midplane of the fluid layer in direction of the a‘l‘ a‘l‘

lower boundary of the fluid layer. For the internal layer the

solutions of the Euler- Lagrange equations arer; F, has a maximum whes, is made as large as possible,

=W, /ay; 6,=0ia;; W,=0,=1. For the intermediate i-€., whena,R". Thus the upper bounB* onF, is

layer the coordinate ist= a; /(V2 Ta) + o Ta/%(z+ 1/2).

The approximate solution fow; when ¢ is small isw;

=w, /a wherew; has the same form as E@6). The coor-

F*«RYTa YqIn(Ta/R)—InIn(Ta/R)]*3.  (89)

dinate for the Ekman layer isp=(Ta"¥/\2)(z+1/2) and V1. BOUND FOR THE CASE OF A FLUID LAYER
the solutions of the Euler-Lagrange equations in this layer WITH TWO RIGID BOUNDARIES
are

It is sufficient to discuss the sublayers of the optimum
- fields from the midplane of the fluid layer in the direction of
wy=c(l-e"?cog4)), 78 the lower boundars of the fluid Iayer.)/The solutions of the
1 Euler-Lagrange equations for the internal layer ave
f,=k Tat?>—\2c Tal"‘[ ¢+ e ?(cog ¢) —sin( ¢))}, =1la;, ;=ay. In the3 intermediate layer the coordinate is
(79 §=_[a1/_(\/§Ta1’4)]+a1_ Ta l’2(z_+ 1/2). The solution for
w; in this layer wher¢ is small is as for the cases discussed
where the constant of integratidncan be determined from in the previous section.

the boundary conditions and The coordinate in the Ekman layer is=(Ta"¥/\2)(z
+1/2) and the solutions of the Euler-Lagrange equations are
ay Ta Ta as follows:
C=—75 In — —Inin| — (80
Ta ay ay Wy =c\2—2ce ¢ cod ¢— ml4), (89)
The coordinate for the boundary layer = (1/5)(z 1 —¢
+1/2) and performing a matching of the solutions of the fi=2cTa'{1-e ’cod )], (90
Euler-Lagrange equations between the Ekman and th\?/h
ere
boundary layers we obtain
12 a‘1/2
cTals ! \/ 2 Ta 27T
c= In —Inln : 91
W1= 2 7 (81 2 Tal/4 o? a? (91)
N The coordinate for the boundary layer is= (1/6)(z+ 1/2)
6,= (82 and the matching of the solutions of the Euler-Lagrange
cTal"‘b‘ equations between the Ekman and the boundary layers leads

. us to the solutions
where 0, is a solution of the equation

c Ta'%5?
d?6; Wy =——"7=—177, (92
Pt 761)=0, (83 V2
which satisfies the stress-free boundary conditions. Thus the =————0,, (93
system of equations we have to solve is c Ta’?5?

F1=(2D) 16, H(1-ai/R), (84 whered, is a solution of the equation
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2%

d<6, ’ 2 0.055 : :
SO 1 =0, (o) |
dn
which satisfies the rigid boundary conditions . For the 0.045 |
thickness of the boundary layers and for the convective heat
transport we have to solve the equations
F,=(2D) 16, (1-a}/R), (95) r 0,035
2Ta"? 2Ta"”
RF,Ta"%59| In| ——| —Inln| ——||=8, (96)
ag a;g 0.025 |
where D=1+, |=[5dn(1—5?0,)%, and J ¢ 7 3 ’é /1'0
=[odn(do,/d 7)2. The solution is 0.018 5o 5
1 1
51: 42/5D1/5Ta— 1/10R—1/5(1_ a;-l/R)—l/S Ta
2 Tall2 R AN FIG. 1. Ratior between the upper bounds obtained by three-
X11In >—|—Inin > , (97) layer and four-layer optimum fields in this article and the corre-
@y Ay sponding bound of Constantin, Hallstrom, and Putkarddase of a
_ _ rotating layer with stress-free boundajieSolid lines: ratio for the
_ 9= 9/5M — 6/5T ;1/101/5 4/5\6/5
Fi=2"""D Ta''R (1-a31/R) case of three-layer optimum fields; dashed lines: ratio for the case
A7 /2| 15 of four-layer optimum fields. Lines 1 and &= 10 lines 2 and
«|In 2T Inin 2T (98) 7: R=10'2 lines 3 and 8R=10'"2 lines 4 and 9R=10'"* lines
a? a? 5 and 10:R=10'"°

The last terms in Eq$97) and(98) are corrections to the The interval of the validity of the bounds obtained for the
boundary layer thickness and to the convective heat transpogaise of a fluid layer with two rigid boundaries is determined
in comparison to the corresponding quantities obtained iy Eq. (100 and by the requirement that,6,~1 in the
Ref.[72]. Thus the upper bound obtained in Rgf2] can be  Ekman layers. Thus we obtain

treated as upper bound on the upper bound on the convective O(R)< Ta<O[(RIn(R))*?] (103

heat transport. Using again the assumptigr Ta’® we can '

obtain an upper bound df;: For the case of a fluid layer with rigid lower boundary and
F** o TaVS0RYS In(Ta) — In In(Ta) 5. (99) stress-free upper boundary we have as an additional require-

ment, a‘1‘< R. Thus the application area of the bound with
respect to the Taylor number is

VII. DISCUSSION
O(R)< Ta<O(R%). (104
The obtained bounds on the convective heat transport are
valid in an interval of Taylor numbers. For the fluid layer The bounds on the Nusselt number obtained in R&] are
with two-stress boundaries and for the case of three-layer . . 202 2 2
optimum fields this interval is determined by the requirement Nu-< minf R/6—1;1+ E*R¥/2+ (TE+ 2E)R ]’(105)
4 6
ap<Ta<aj (100 for the case of Dirichlet boundary conditions and
and by the requirement that the thickness of the boundary Nu < min[ VR/6—1;1+ R?E?/2], (106)
layers of the optimum fields must be much smaller than 1.
Thus the interval of the Taylor numbers in which the ob-for the case of periodic and stress-free boundary conditions
tained bounds are valid becomes whereR and E are the Rayleigh and the Ekman numbers.
These results are useful because they are valid for the whole
O(R)< Ta<O(R™™). (109) region of values of Rayleigh and Ekman numbers where the
thermal convection is present. The results obtained in this
article are valid for selected regions of Rayleigh and Taylor
numbers. The reason is that the assumptions concerning
some terms of the Euler-Lagrange equations of the varia-
O(R)< Ta<O(R*3(In R)*3). (102  tional problem are applicable only for these selected regions.
For the other regions of the Rayleigh and Taylor numbers the
In this integral of validity the upper bound on the convectiveEuler-Lagrange equations are complex enough and can be
heat transport changes its value frém R to values larger  solved only numerically.
thanR>*¥(In R)3, It is interesting that the last bound is close  Within their intervals of validity we can compare the up-
to the power lawR?” when the Rayleigh numbers are high per bounds obtained here with the bounds of Constantin,
enough. Hallstrom, and Putkaradzgr3]. Figure 1 shows the ratio

The interval of validity of the bound on the heat transport
obtained on the basis of four-layer optimum fields for the
case of a fluid layer with two stress-free boundaries is
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between the bounds obtained in this article on the convectivproximation has been pointed out by Chig@] and exten-
heat transport based on three-layer and four-layer fields arglvely used in Ref[72]. Let us discuss steady solutions of
the corresponding bound from R¢#3]. We would like to  the Navier-Stokes equations and subtract the horizontal av-
note the following: erage of the heat equation from the heat equation. Thus we

(1) When the Rayleigh number is fixed the bounds ob-obtain the relationship
tained by the Howard-Busse method are valid in an interval
of Taylor numbers, which is determined by the fixed value of P
the Rayleigh number. Thus the curves corresponding to dif- V2T —u @—V (uT)— i u-T

. - : s g, =V (UT) = UaT. (A1)

ferent Rayleigh numbers have different length. dz dz

(2) We note that the bounds obtained in R3] are the

first step in the direction of incorporating of the effect of theWithin the quasilinear(mean-field approximation we ne-

rotation in the Doering-Constantin bounds for the cONVectiVeyjact the terms describing the interactions between the fluc-
heat transport. The properly applied Doer|ng—Constant|quating quantities. Thus from E¢A1) we obtain
method should yield the same bounds as the bounds obtained

above by means of the Howard-Busse method and in this _
case the ratio between the Howard-Busse and Doering- ) de
Constantin bounds should be equal to 1. v TZUSE- (A2)
(3) The upper bound on the convective heat transport for
the lower region of the interval of validity of the Howard- ~ From the horizontal average of the heat equation we ob-
Busse bounds is this one obtained by means of the threéain

layer optimum fields. In the upper region of the interval of d2e d —
the validity of the bounds, the bound obtained by means of T4 usT. (A3)
the four-layer optimum fields becomes larger than the three- dz* z

layer fields bound. Thus the upper bound on the convective Integrating Eq(A3) and taking into account the boundary
heat transport in this region is this one obtained by means qfygitions we obtain the relationship

the four-layer optimum fields. —

For the case of a fluid layer with rigid lower boundary and o —

. ; ——=U3T—(usT)—1. (A4)
stress-free upper boundary we can consider also optimum dz
fields which have an asymmetric structure: three sublayers
from the midplane of the fluid layer in the direction of the .
upper stress-free boundary and four sublayers from the mid- We  rescale the quanties as follows:T
plane of the fluid layer in direction of the lower rigid bound- =(usT)¥R™Y29, uz=(usT)YRYaw; @ =(usT)®*. Us-
ary. Such fields lead however to rapidly increasing boundaryng this and the relationship between the convective heat
layer thickness with the Taylor number and thus the assumgransport and the Nusselt numb@r;T)=Nu—1 we obtain
tion that the boundary layer thicknesses are small is violatedrom Eq. (A4)
In a future article we shall discuss this problem numerically
in order to see whether this asymmetric variant of the opti- Jdeo*
mum field arises as numerical solution of the Euler-Lagrange d =wWO— (W) — ——. (A5)
. o . . z Nu—1

equations of the variational problem. The numerical discus-
sion will clear also the relations between the three-layer and
four-layer optimum fields. It could be expected that the nu-This is one of the equations of the quasilinear approximation.
merical solutions of the Euler-Lagrange equations of theanother equation of this approximation we obtain after set-
variational problem can describe three-layer fields when théing P=< in the Navier-Stokes equation. Then we rescale
rotation rate is small. These fields could develop Ekman laythe result by the above rescaling relationships and take the
ers with increasing Taylor number. It will be also of interest zcomponent of the double curl of the resulting equation as
to study numerically the expansion of the intermediate layersvell as thez-component of the curl of the resulting equation.
of the optimum fields in the direction of the internal layers. Thus we obtain

In this article we have investigated the-Iv-solution of
the variational problem for the case of intermediate values of 2 of

2
the Taylor number. This solution gives the upper bound on Viw+Vio- Eaz O (AB)
the convective heat transport in a finite range of Rayleigh
number. In order to obtain the upper bounds for higher val- 2 9w
ues of the Rayleigh number we have to consider the naulti- V2 + E 7 =0, (A7)

solutions of the variational problem. This as well as the de-

velopment of the theory for the case of large Taylor numbers ) . .
will be a subject of future research. wheref is the rescaled vertical component of the vorticity.

The last equation of the quasilinear approximation is the res-
caled Eq.(A2),

APPENDIX: THE QUASILINEAR APPROXIMATION

The copnection between the simplest variationa}l_ problem ;Vzgzw[w_e_ 1_L}. (A8)
of the optimum theory of turbulence and the quasilinear ap- R(Nu-1) Nu—-1



PRE 62

[1] V. P. Gupta and D. D. Joseph, J. Fluid Me&f, 491 (1973.

[2] N. K. Vitanov, Physica D136, 322 (2000.

[8] W. V. R. Malkus, Proc. R. Soc. London, Ser. 225 185
(1954).

[4] W. V. R. Malkus, Proc. R. Soc. London, Ser. 225 196
(1954.

[5] L. N. Howard, J. Fluid Mechl7, 405(1963.

[6] S. Chandrasekhalydrodynamic and Hydromagnetic Stability
(Dover, New York, 1981

[7] F. H. Busse, J. Fluid Mecl87, 457 (1969.

[8] S. -K. Chan, Stud. Appl. Mattb0, 13 (1972.

[9] L. N. Howard, Annu. Rev. Fluid Mech, 473 (1972.

[10] F. H. Busse, Adv. Appl. Mechl8, 77 (1978.

[11] F. H. Busse, irEnergy Stability and Convectipedited by G.
P. Galdi and B. Straugha(itman, Boston, 1988

[12] F. H. Busse, ifNonlinear Physics of Complex Systeredited
by J. Parisi, S. C. Miler, and W. Zimmermamn{Springer,
Berlin, 1996.

[13] R. R. Kerswell and A. M. Soward, J. Fluid MecB28 161
(1996.

[14] R. R. Kerswell, J. Fluid Mech321, 335(1996.

[15] N. K. Vitanov and F. H. Busse, ZAMRS, 310(1997.

[16] N. K. Vitanov, Phys. Lett. A248 338(1998.

[17] N. K. Vitanov and F. H. Busse, ZAMP8, S788(1998.

[18] N. K. Vitanov, Phys. Rev. B1, 956 (2000.

[19] N. K. Vitanov, Eur. Phys. J. B5, 349(2000.

[20] C. R. Doering and P. Constantin, Phys. Rev. Léf, 1648
(1992.

K.
K.
K.
K.

[21] R. Nicodemus, S. Grossmann, and M. Holthaus, Physica D

101, 178(1997).

[22] C. R. Doering and P. Constantin, Phys. Rev.4g 4087
(19949.

[23] P. Constantin and C. R. Doering, Phys. Rev.5E 3192
(1995.

[24] C. R. Doering and P. Constantin, Phys. Rev.58 5957
(1996.

[25] C. R. Doering and J. M. Hyman,
(1997.

[26] C. R. Doering and P. Constantin, J. Fluid Me@&v.6, 263
(1998.

Phys. Rev. 35, 7775

[27] R. Nicodemus, S. Grossmann, and M. Holthaus, Phys. Rev.

Lett. 79, 4170(1997).

[28] R. Nicodemus, S. Grossmann, and M. Holthaus, J. Fluid Mech.

363 281(1998.

[29] R. Nicodemus, S. Grossmann, and M. Holthaus, Eur. Phys. J.

B 10, 385(1999.

UPPER BOUNDS ON CONVECTIVE HEAT TRANSPOR . .

35901

[37] C. B. Kim and J. A. Krommes, J. Stat. Ph8, 1103(1988.

[38] C. B. Kim and J. A. Krommes, Phys. Rev.4%, 7487(1990.

[39] C. Y. Wang, A. Bhattacharjee, and E. Hameiri, Phys. Fluids B
3, 715(199).

[40] C. Y. Wang and A. Bhattacharjee, Phys. Fluids3B3462
(1991.

[41] C. B. Kim, Phys. Rev. 55, 2048(1997.

[42] J. A. Krommes, Phys. Re[283 5 (1997.

[43] S. Chandrasekhar, Proc. R. Soc. London, Ser21&, 306
(1953.

[44] Y. Nakagava and P. Frenzen, Tellisl (1955.

[45] G. Veronis, J. Fluid Mechs, 401 (1959.

[46] G. Veronis, J. Fluid Mech31, 113(1968.

[47] G. Kuppers and D. Lortz, J. Fluid MecB85, 609 (1969.

[48] H. T. Rossby, J. Fluid MecI86, 309 (1969.

[49] G. Kuppers, Phys. Lett. 82, 7 (1970.

[50] R. C. F. Somerville, Geophys. Fluid Dy8, 247 (1971).

[51] R. C. F. Somerville and F. B. Lipps, J. Atmos. S80, 590
(1973.

[52] F. H. Busse, Rep. Prog. Phy&l, 1929(1978.

[53] R. M. Clever and F. H. Busse, J. Fluid Med@¥, 609(1979.

[54] G. S. Golitsyn, J. Fluid MeclB5, 567 (1979.

[55] F. H. Busse and K. E. Heikes, Scien2@8 173(1980.

[56] J. Bardina, J. H. Ferziger, and R. S. Rogallo, J. Fluid Mech.
154, 321(1985.

[57] B. M. Boubnov and G. S. Golitsyn, J. Fluid Mech67, 503
(1986.

[58] R. Chen, H. J. S. Fernando, and D. L. Boyer, J. Geophys. Res.

94, 18 445(1989.

[59] H. J. S. Fernando, D. L. Boyer, and R. Chen, Dyn. Atmos.
Oceansl3, 95 (1989.

[60] B. M. Boubnov and G. S. Golitsyn, J. Fluid Meck19, 215
(1990.

[61] H. J. S. Fernando, R. Chen, and D. L. Boyer, J. Fluid Mech.
228 513(199)).

[62] F. Zhong, R. E. Ecke, and V. Steinberg, Phys. Rev. L&#t.
2473(199).

[63] R. E. Ecke, F. Zhong, and E. Knobloch, Europhys. L&,
177 (1992.

[64] F. Zhong, R. E. Ecke, and V. E. Steinberg, J. Fluid M9,

135(1993.

[65] K. Julien, S. Legg, J. McWilliams, and J. Werne, J. Fluid

Mech. 322 243(1996.

[66] K. Julien, S. Legg, J. McWilliams, and J. Werne, Phys. Rev. E

53, R5557(1996.

[67] Y. Liu and R. E. Ecke, Phys. Rev. Left9, 2257(1997.

[30] R. Nicodemus, S. Grossmann, and M. Holthaus, J. Fluid Mech[68] V. M. Canuto and M. S. Dubovikov, Phys. Rev. Lel8, 666

363 301(1998.

[31] N. Hoffmann and N. K. Vitanov, Phys. Lett. 855 277
(1999.

[32] R. R. Kerswell, Physica 100, 355(1997.

[33] R. R. Kerswell, Physica 121, 175(1998.

[34] R. R. Kerswell, Phys. Rev. B9, 5482(1999.

[35] P. Constantin and C. R. Doering, J. Stat. Pi®%.159(1999.

[36] J. A. Krommes and R. A. Smith, Ann. Phy@\.Y.) 177, 246
(1987.

(1997).

[69] Y. T.Ker, Y. H.Li,and T. F. Lin, Int. J. Heat Mass Trandfl,
1445(1998.

[70] P. Vorobieff and R. E. Ecke, Physica I23 153 (1998.

[71] S.-K. Chan, J. Fluid Mect64, 477 (1974.

[72] C. Hunter and N. Riahi, J. Fluid Mecfi2, 433(1975.

[73] P. Constantin, C. Hallstrom, and V. Putkaradze, Physica D
125, 275(1999.

[74] N. K. Vitanov and F. H. Busséunpublishegl



