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Demonstrating the equivalence between the recent theory of Flambaum and collaborators which is based on
smoothed strength functions, with the much earlier formulation due to French and collaborators which is based
on embedded random matrix ensembles and smoothed transition strength densities, we derive a theory for
matrix elements of one-body transition operators in the quantum chaotic domain of isolated finite interacting
particle systems with a mean-field and a chaos generating two-body interaéjiomhe role of the bivariate
correlation coefficient{) arising out of the noncommutability &f and the transition operatdin the theory
of Flambaumet al, {=0) is tested in numerical embedded ensemble calculations with a one- plus two-body
Hamiltonian generating order-chaos transitions.

PACS numbgs): 05.45.Mt, 05.30-d, 21.10.Pc, 24.60.Lz

In the last few years the study of quantum chaos in iso- The nature of occupancie®f single-particle states
lated finite interacting particle systems has turned from specstrength functions, information entropg('©), inverse par-
tral statistics to properties of eigenfunctions and transitiorficipation ratio(IPR), transition strength sumor example,
strengths. For the former the classical random matrix enGamow-Teller strength sums in nugleimatrix elements
sembles[Gaussian orthogonal ensemHl6OE), Gaussian ({ransition strengths of one-body transition operators,
unitary ensembléGUE), etc] provide the predictions. For interaction-driven thermalization, Fock-space localization,

the latter it has been recently recoanized by a large numb etc., in the chaotic domain of interacting particle systems is
’ y 9 y 9 Fﬁreing studied in several systems in an attempt to characterize

of re§earch groups in atomic, molecular, nuclear, an.d mestuantum chaos in many particle systefhs6,8—14. EGOE
scopic physics[1-6] that embedded random matrix en- roqyits forS"® and IPR are reported if8] and there is a
sembles(EE9 and in particular EGOH), the embedded newly emerging understanding, obtained via the study of oc-
Gaussian orthogonal ensemble of random matricéshafdy  cupancies and strength suri¥11,14, that in the chaotic
interactions, are relevant. domain of isolated finite interacting many-particle systems
EGOE(K) for many (m) fermion systems is generated by smoothed densitieéthey include strength functionglefine
defining the HamiltoniarH, which is, say,k body, to be the statistical description of these systems and yhese dpnsities
GOE ink-particle space and then propagating itgparticle follow from EEs. This paper deals with chaos in relation to
spaces by using the geometry of theparticle space§7]. matrix elements of one-body transition operators. In particu-

Here one assumes that theparticle space is a direct prod- | for systems with a mean-field and a chaos generating
. . . two-body interactiorV, the seemingly different formulations
uct space, of single-particle statesay, N in numbey, for due to French, Kota, Pandey, Tomsovic, and Majumdar

exarr)ple,. as in thg nucleqr shell model. In many situe}tion%FKPTM) [9,15-17 and Flambaum, Gribakina, Gribakin,
Hamiltonians for interacting particle systems contain 8K ozlov, and Ponomare(FGGKP [1,13,1§ are analyzed, in
mean-field producing patbne-body parh) and a two-body  this paper, in order to establish a theory for matrix elements
residual interactior mixing the configurations built out of  of one-body transition operators in the quantum chaotic do-
the distribution of particles in the mean-field single-particlemain of isolated finite interacting particle systems. In addi-
states;h is defined by single-particle energies,i=1—N,  tion numerical EGOEL+2) calculations are presented for
andV is defined by two-particle matrix elements. Then it is testing the theory. Let us begin with a brief discussion of the
more realistic to use EGQE+2), the embedded ensemble FKPTM formulation.

of (1+2)-body Hamiltonians defined by{H}=[h(1)] Given Q_Hamiltoniam and itsmparticle eigenstatg€),
+M{V(2)} where{V} is EGOH2) and[h] is a fixed Hamil- the transition strengths or matrix elements generated by a
tonian or an ensemble with single-particle energies choseffansition operato0 are|(E¢ O|E;)|2. As discussed in detail
random but following some distributiofihi] and{V} are in- 1N [19], in general the state densities™™(E)=((5(H
dependent. In the literature EGQE-2) [or the more general ~ E))) =d(m)p“"(E) for EGOEK) take a Gaussiand
EE(1+2) where the matrix elements ¢¥} in two-particle ~ form. i.e., I"™"(E)—1g"(E), and similarlyp™"(E) which
space may or may not be Gaussian distriblitediiso called IS normalized to unity. Note th4( )) denotes tracel(m) is
TBRIM (two-body random interaction moddP]. It is to be  the dimension of then-particle space, ant}" is defined by
expected that the generic features of the EGBR) ap-  ItS centroid €) and width (o). In addition, it is also known
proach those of EGOB) for sufficiently large values ok [9] that the bivariate strength densitigsatrix elements o)

and significant results emerge asis varied starting from eighted bz.mt_bne state densTes at the initial and final
\=0: the first study with a variation[using EE1+2) in-  €nergies I ., '(E,Er)=((Od(H—-E)OS(H—E;)))™
stead of EGOEL+2)], for observables in rotating nuclei, is = ({0 T0))™p;™ ™ (E; E/) take bivariate Gaussian form
due to Aberg[8]. for EGOE(), i.e., Ipim (B Eq)— 1™ (E; Er), and
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similarly pH o™ (E; ,Es) which is normalized to unity. It

should be pomted out that, for number nonconserving tran

sition operators), the number of particlesy; andmy in the

initial and final states, respectively, will not be same. The

bivariate Gaussian strength dendify™ mf o Is defined by the

centroids €;, ;) and widths ¢, (rf) of |ts two marginals
and the bivariate correlation coefficiefit

o o

Of

From now on some or all the superscripts over the various
densities and traces will be dropped at will when no confu- n

sion arises. The FKPTNO] result for transition matrix ele-
ments starts wittH=h(1)+V(2) and the bivariate strength
densitylgiv;o(xi ,X¢) due toh(1), themean-field producing

part of H. With V(2) generating chaos and thus represented

by EGOH?2), its role is to Gaussian spreddith constant
widthg the spikes at the energies and x; in 1f,..
The spreadings, more importantly, are correlated; i.e.,
Spreadmg funct|0n pbw o, in the convolution form
IHo:o(Ei \Ef) = bw o®priv-ol Ei Ef] is a bivariate Gauss-
ian p\tfw,g;@(yI ¥::0,00;,0%,¢) with ¢ arising out of the
noncommutability ofV and the transition operatdp:

~(OTVOVY{OTOWVV).

Decomposing then-particle space into the subspadesle-
fined by h(1) [m—ZTI" with I' labeling the eigenstates of
h(1)], 1hi:0= 1 Biv:0® Priv—g:0 CaN be rewritten as

15 (EDIG(Ep)

N\|2— 2
(EICIEN =2 T g, [Tl
wa gO(EIiEf € ,€,0i,07%, g), 0
pgl(E )pg (Ef)
(Tolr)P=[d@rdTn]™ > KrplolTa)?,
aelj ,pely

I"(E,)=((S(H—E)))'r=d(T,)p"(E,),

6r:<H>rr! 02:<(H_6r)2>r',

In Eq. (1), d(I',) are dimensions of the subspad&s Given
a one-body transition operat@==,, ze,za%a; wherea!,

creates a particle in the single-particle stateand a; de-

stroys a particle in statg, it is easy to write down the
expression fof(I'(|O|T')|? in terms ofe,z and matrix ele-
ments of number operators. Referent&8,17] give the de-
tails of Eq. (1) for one-body operators with’s chosen not

only to be eigenstates di(1) but also for their various

r=i,j.

groupings. Equatioiil) is applied in nuclear structure prob-

lems with two-body transition operators [i,15], one-body
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plied to one-body transition operators that bring out the re-
lationship between FKPTM and FGGKP.

The FGGKP formulation starts with the transition matrix
elements written in terms of matrix elements in the mean-

field basis statefk;) by using the expansiofE;)= C |k>
E; ~E 2
(ElOE)=| 3, cEcE(kiol)|
iR f

-\ 3, IeErICEPIkolk)
iRf

~Ei E

> cf_'ck.,cfffck,‘<kf|o|ki>
k#k kgekp f

x(ki|O|k!} | =[diag] +[offdiag].  (2)

Assuming that the transitions between different pairs of
Fhean-field basis states are uncorrelated, the “offdiag” term
in Eqg. (2) is neglected. In the “diag” term, for a givek;
and k; only one €,5z in O will contribute and [16]
(el Olk) 2= | €qpl AN 1= 1)) 55(E~ (€~ €5+ €a)): €a
are energies of the single-particle statesand & are the
energies(k;|H|k;) of the mean-field basis statgk;). It is
well verified by EGOEL+2) calulations[2] that (ng(1

—n,))é do not vary much over the basis states that contnb—
ute to the given initial E;) or final (E¢) state in the chaotic
domain. With this, Eq(2) simplifies to

[(E(|O|E) 2= [(Ef| OlE)|Giag

=a2ﬁ |€aplX(ng(1—n,))E

X2 I FIC e P @

The |C|?s in Eq. (3) are nothing but the strength functions
F(E), F(E)=|CE|*D(E), whereD(E) is mean spacing.
With EGOE, the strength functioris,(E) take a Gauss-
ian form characterized by the spectral widiy while the
standard form normally employed in many applications is
the Breit-Wigner (BW) form T\ /[27{(E—&)%+T2/4}]
characterized by a spreading widif,. Usually, given
(N,m,Aq,9 whereAg, is the average single-particle level
spacing, for EGOEL+2) the quantum chaotic regime is de-
fined by a critical interaction strengih, that is necessary for
the emergence of Wigner-Dyson level spacing statigtd¢s
However, as is well demonstrated in a recent EGDR)
calculation[22], when the interacting particle system is cha-
otic, there is yet another border defined by the interaction
strength\ ¢, (calculations show thatg, >\ ) beyond which

the strength functions make a transition from BW to Gauss-
ian form; see alsf10,12,14. Thus the order-chaos transition

transition operators, but using the so-called unitary orbitgmplies BW form to the Gaussian transition for the(E),

(defined by grouping single-particle statem [17,20, and
one- partlcle transfer operators if21]. Although Ib,v o
Ibw 0@ Priv— g0 is more general, it is Eql) when ap-

with the BW form extending beyonal. up to AE, (earlier,

Georgeot and Shepelyansk$] also showed that the BW
form extends to the chaotic domain
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FIG. 1. Transition strengths
[(E{|O|E})|* vs (E;.Ey). (@) Ex-
act EGOE1+2) strengths(b) Eq.
(6) with =0, (c) Eq. (6) with ¢
=1/2, and (d) Eq. (6) with ¢
=2/3. Here EFE;=(E,—e¢)lo
and Ef=E;=(E;—€)/o. Simi-
larly M.E. stands for the strengths
[(E{|O|E;)|?. The EGOE1+2)
system and the one-body transi-
tion operator© are defined in the
text. In all the calculations the
strengths in the window, E,
+A'/2 and E(xA'/2, are
summed and plotted a(, E;);
A’ is chosen to be 0.1. It should
be noted that the total strength is
252. An enhancement in strengths
due to the bivariate correlation co-
efficient ¢ is clearly seen in(c)
and(d) when compared t¢b).
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With the additional assumptions th@t strength functions Consider Eq(1) by taking the subspace labdls and I’
are only a function of E— &,)/s, wheres, is a scale param- to be the configurations defined by distributing the particles
eter 'y for BW and oy for Gaussiah and (ii) the scale in single-particle states. Far=0, the pyi,_g/pgpg Will be
parameters, in the chaotic domain, are constaifior ex-  unity and Eq.(1) will be identical to Eq.(3). Following the
ample,s,—s; for the initial many-particle basis stajeshe  Steps that led to Eq4), i.e., evaluatind(I's|O|T;)|? which
sum overg; in Eq. (3) can be converted into integrals involv- gives the (ny(1—n,))% term, replacing it by (ng(1
ing Fi(E) (note thats ¢ [ 1— [ ]d&; /D(E)). The final resut, —n,))Fi, assuming constant spectral widffi€., o7 in Eq.

in terms of occupancies and the mean spacings, is (1) do not depend ofi', , 07— o7 and o— 7], noting that
I'(E)/I™(E) are nothing bujC|?, and converting the sum
|(Ef|(’)|Ei>|2=2 |EaB|2<n,8(1_na)>Ei—D(Ef) overI';(&) into an integral give, directly,
a,p

A2 2 _ ED(E.)
xfng<Ei)Fgf=greﬁ+ea<Ef>d8i (EAOIEN?= 2 |eagl ns(1~ 1)) “D(Ey)

=3 eud¥np(L-n)SDE)FAS ), Xf poio-go(Ei Eri& &= €
+e€, ,; ,; ,O)dE;
A=E—Ei+es—e,. (4) Lo d)ds
Flambaunet al.[13] advocated use of E¢4) with BW form =2 |easlXng(1—n,))ED(Ef)
for F’s which in turn gives a BW form forF, ap
AT Foawe 1 +7T; © XFA=E{—Ei+ €= €4,01,0¢,Obiv—»
»Lisl f/BW 2 A2+(FI+Ff)2/4, (6)
Whereﬁ andﬁ are the average BW spreading widths for 1
the basis states over the initial and final many-particle states, f(A o, o¢,0),, =
respectively. The FGGKP theory is given by EgB.and(5) ’ \/277(;_2+;2_ 2§;;)
and it was subjected to EGQE+2) tests in[2] and also : f o
using dipole E1) transitions in a Ce atofii3,18. It is seen A2
in the EGOKL1+2) calculations that there is always an en- xXexp — —
hancementsome times it is even by a factor of around 2(0%+ 0% =2 0i0¢)

A=0 in the matrix elements compared to the results given

by Egs.(4) and(5). In other words, the “offdiag” term in  With Gaussian form for the strength functions, FGGKP
Eqg. (2) in fact gives a coherent contribution. It is also seentheory given by Eq(4) will coincide with Eq.(6) for {=0.

that the enhancements grow with number of particlean  Thus, unlike FGGKP, FKPTM equatiof®) includes corre-
estimate for the enhancements is giverj2ih Now we will lated Gaussian spreadings and, as already pointed out, in the
show that Eq(1) cures these problems. chaotic domain(i.e., for )\>)\Fk) Gaussian spreadings are
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more appropriate than BW spreadiri@®]. Second, Eq(6)  the comparision between Figsaland Xb); i.e., it is essen-
gives, forA=0 and {—1, an enhancement in the matrix tial to construct a theory with correlated BW forms. For
elements compared to the digg{0) approximation; for =0.3, the strength functions are close to Gaussian and the
o~ o, the enhancement is\i{1— ¢). The so-called binary bivariate Gaussian form is a good approximation for strength
correlation approximatiof9] for EGOE gives{~1—2/m. densities. Therefore for this case Ef) applies as shown in
Therefore grows withm and hence the enhancements growFig. 1. The comparisons in Fig. 1 clearly emphasize the role
with m. Thus Eq.(6) reproduces all the peculiar results ob- of the bivariate correlation coefficiegt and without/ it is
served in the EGO@ +2) calculations in2]. not possible to get a meaningful description of the transition
For further confirmation that E@6) is a proper theory, in matrix elements. Numerical calculations give=1/2 and
the chaotic domain defined by>\¢ , for matrix elements  shown in the figure is also the plot fg=2/3 as given by the
of one-body transition operators, numerical calculations ardinary correlation approximation. Here the agreement be-
carried out for various\ values using a 25-member tween theory and calculations is even better. This is encour-
EGOH1+2) ensemble {H}=h(1)+\{V(2)} in 924- aging as in practice it is often difficu®,15,17 to calculate
dimensionalN=12, m=6 space;h(1) is defined by the the exact values of.
single-particle energies = (i) +(1/), i = ,12just as In summary, analyzing FKPTM and FGGKP formula-
in [2]. The one- body transition operator employed in the caltions, a theory(6) for the matrix elements of one-body tran-
culations isO=aja. Results fon =0.3 are shown in Fig. 1. sition operators in the chaotic domaiwith A>\g,) of iso-

For the present EGAE+2) system, My =0.2[22]. Thus, lated finite interacting particle systems is derived and tested.

for A=0.1 the strength functions are close to BW form andrurther investigations of Eq6) in real systems are highly
comparing the EGO@+2) numerical results, for matrix el-  §esirable.

ements of the one-body operator, with E¢$. and (5) the . . _
disagreement between the two is found to be quite similar to This work has been partially supported by D8iidia).
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