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Bayesian reconstruction of chaotic dynamical systems
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We present a Bayesian approach to the problem of determining parameters of nonlinear models from time
series of noisy data. Recent approaches to this problem have been statistically flawed. By applying a Markov
chain Monte Carlo algorithm, specifically the Gibbs sampler, we estimate the parameters of chaotic maps. A
complete statistical analysis is presented, the Gibbs sampler method is described in detail, and example
applications are presented.
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I. INTRODUCTION so-called errors-in-variables bias, afiid there is serial cor-
relation between successive observations, the so-called time-
Many observed time series stemming from physical laboseries bias.
ratory experiments or “real world” systems exhibit a very  To reduce errors-in-variables bias, the errors-in-variables
complex and apparently random time behavior that may beegression or TLS cost function was first proposed by Kos-
explained by an underlying chaotic process. By a chaotigelich[16]. Instead of minimizing the sum of squared vertical
process we mean a nonlinear dynamical sydtesd], i.e., a  distances, the TLS technique aims at minimizing the sum of
discrete time series of unknowdue to noisgsystem states squared perpendicular distances between two consecutive
xi, i=1,... N, that are nonlinear functions of previous observations to corresponding pair of points on the hypersur-
statesx;=g(xj_1). Various statistical approaches have beenface defined by the nonlinear dynamics. From a statistical
suggested to reconstruct the underlying nonlinear dynamigsoint of view, this is justified only if pairs are independent.
from a time series of noisy observatiof5—9]. These are But this is clearly not the case in a time series.
based on estimating the unknown parameters that define the McSharry and Smitti5] propose a different cost function
nonlinear function, and comprise maximum-likelihood meth-which they somewhat misleadingly call the “maximum-
ods, Bayesian techniques, and approaches based on minimlikelihood (ML) cost function.” They demonstrate that the
ing a certain cost function. estimator based on minimizing this cost function outper-
On the one hand, likelihood techniques aim at finding theforms the LS and TLS methods and gives nearly unbiased
values of the parameters that maximize the likelihood funcparameter estimates even for large noise levels. Notwith-
tion, the joint probability density functiofPDF) of the ob-  standing, our main criticism is that the derivation of this
servations given the unknown parameters. The Bayesian apstimator is based on yet anothat hoccost function in-
proach is also based on the likelihood function but treats thgtead of a sound statistical paradigm. Furthermore, we point
parameters as random variables and assumes a joint priout major flaws in its derivation. We suggest a Bayesian
distribution that summarizes the available information aboutipproach instead, by integrating the problem into the frame-
the parameters before observing the data. In the light of thevork of nonlinear state-space modelifi7,18. This allevi-
observations, the information about the unknown parameterstes both problem§) and (i) by incorporating the known
is then updated via the Bayes theorem to the posterior distriserial correlation as prior information in a complete probabil-
bution, which is proportional to the product of likelihood and ity model for the observations and the unknown states. We
prior density[10]. even consider the more realistic generalization where the un-
On the other hand, heuristic approaches based on minimgerlying dynamic evolution is not assumed deterministic but
zation of a certain cost function make no distributional as4s subject to unpredictable external or environmental effects,
sumptions. The most prominent are least squédr8$ meth-  so-called dynamic noise. Difficulties with posterior compu-
ods [11,12 that minimize the sum of squared one-steptations are overcome using Markov chain Monte Carlo
prediction errors, and total least squaf@sS) techniques (MCMC) techniques, in particular the Gibbs sampler in con-
[13,14], and modifications there¢f5]. In a recent papdb],  junction with the Metropolis-Hasting@vH) algorithm[19].
McSharry and Smith give an overview of various cost func- The paper is organized as follows. In Sec. Il we give a
tions that have been used in reconstructing nonlinear dynammotivation for this Bayesian state-space approach by consid-
ics and display their shortcomings in simulation studies. It isering the recently proposed approach via maximization of a
well known that LS estimates give systematically wrong re-cost function and its shortcomings. In the third section, the
sults due to ignoring the facts th@j the values of the “in-  general Bayesian approach to statistical inference for state-
dependent variable” are subject to measurement error, thepace models is presented. After that, we point out similari-
ties between McSharry and Smith’s ML cost function and
the posterior density employed in the Bayesian approach,
*Email address: meyer@stat.auckland.ac.nz thus offering an explanation for the good performance of
"Email address: nchriste@carleton.edu McSharry and Smith’s estimator. The use of MCMC simu-

1063-651X/2000/6@8)/35358)/$15.00 PRE 62 3535 ©2000 The American Physical Society



3536 RENATE MEYER AND NELSON CHRISTENSEN PRE 62

lation techniques, specifically of the Gibbs sampler, is ex- N-1 1

plained in Sec. IV. In Sec. V, we show the superior perfor- CuL(@)=— 2 In f exp( - —2{(yi—x)2
mance of this Bayesian technique using the same examples =1 2e

as in Ref[5] for comparative purposes. We conclude with a

discussion of the flexibility of a Bayesian state-space ap- Y- f(x,a)]2

proach. dp(x.a), @

Il. A STATE-SPACE APPROACH where the_z integral in practice is replaced by a sum over a
model trajectory.
Like McSharry and Smith5], we consider the situation It should be pointed out that the idea behind integrating
where we are given a time series of noisy observatigns the dependency on thg’s out of the pseudo-likelihood

i=1,...N. These are modeled anditionally indepen- function is very similar to calculating the marginal posterior
dent (given the underlying unknown true system statgs PDF of a by integrating the joint posterior PDF over all
and normally distributed random variables, i.e., unknown stateg,,X;, . .. Xy. T0 develop this idea within

a proper statistical paradigm requires treating the system
(1) states as stochastic instead of deterministic. We therefore

consider the more realistic case that the system dynamics are
subject to random disturbances. This casts the problem into
the general framework of a Bayesian state-space model
[17,18, one of the most powerful tools for dynamic model-
ing and forecasting. State-space models relate time-series ob-
servations to unobserved states by a stochastic observation
model. The states are assumed to follow a stochastic transi-
tion over time, given by the state equations. The state equa-
tions, i.e., theconditional distribution of the system state at
time i, given the previous states and unknown parameters,
are

iid
yilxi=xi+vi, vi~N(0,€?), i=1,...N,

with known error variances?. The time evolution of the
system states is described by a nonlinear functign
=f(x;_q1,a),i=1,... N, whereais ap-dimensional param-
eter andxy a starting value. As an example consider the
logistic mapxi=1—axi2_1 with one-dimensional parameter
a. The likelihood function, i.e., the joint PDF of all observ-
ablesy=(yq, ....yn) given all unknowns, is thus

N
1
L(a,x = a,Xg)= —_—
(a,%oly) = p(yla,Xo) aﬂlﬂe b
Xi|x_1,a=f(xi_1,a)+u;, u~N(0,7%), i=1,... N

(5

and the observation equations are given(by This state-
i . , . space approach eliminates the errors-in-variables bias and
wheref'(xo,a) =x; is thei-fold composition off. Here and  (ime_series bias mentioned before. It takes the temporal de-
in the following we usep(-) as a generic symbol for a PDF. endencies of the observations into account through a con-
McSharry and Smith give the conditional bivariate PDF gitional modeling of the observations, given unknown states,
of a pair of two consecutive obsgrvatlonsi (2yi+1) as  and specification of Markovian transition of states. Via the
p(Yi ,Yi+1|g,xi):_(1_/2775 )exp(—(12€){(yi—x)"+[Vi+1  Bayesian paradigm, both process and observation errors are
—f(x;,a)]%}). This is perfectly correct, since, with indepen- expiicitly captured and quantified through posterior distribu-

dent noisev; andv;. in Eq. (1), y; andy;, are also inde-  tjons of the parameters, as described in the next section.
pendent, despite the authors’ statemertihthat “. .. the

weakest link in the derivation of the ML cost function is the
assumption that thg, andy; ., are independent; while they
may be linearly uncorrelated, they cannot be independent.
Attempts to relax this assumption will be presented in later The starting point of the Bayesian approach to statistical

1 i 2
X ex _Z_eZ[yi_f(XO'a)] : (2

Ill. BAYESIAN INFERENCE FOR STATE-SPACE
MODELS

work ... .” No attempts are needed. However, the authorsnference is setting up a full probability model that consists
then incorrectly assume that the conditioj@ht PDF of a  of the joint probability distribution of all observables, de-
sequence oN—1 pairs Y={(y;,Yi+1)}i=1,...n—-1, Qiven  noted byz=(zy, ...,z,), and unobservable quantities, de-
parameter a and a sequence of system states noted by#=(6,, ...,04). Using the notion of conditional

=(X1, ... Xy), IS p(Y|a,x)=HiN=’11p(yi ,Yi+1la,x;), even  probability, this joint PDFp(z,#) can be decomposed into
though every consecutive paiy;(yi.;) and /;+1,Yi+») is  the product of the PDF of all unobservableg#), referred
obviously violating the independence assumption. In contragp as theprior PDF of 8, and the conditional PDF of the
to Eq. (2), they suggest a “pseudo’-likelihood function observables given the unobservableg&| @), referred to as
given by the sampling distribution dliikelihood i.e.,

P(z,0)=p(0)p(z]0).

The prior PDF contains all the information about the unob-
servables that is known from substantive knowledge and ex-
obtained by integrating over the system’s invariant measureert opinion before observing the data. All the information
n(x,a). They proceed by minimizing what they call the ML about the@ that stems from the experiment is contained in
cost function, the likelihood. In the light of the data, the Bayesian paradigm

N—-1
L(alY)= iljl Lp(yi Yisilax)du(x,a) 3
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then updates the prior knowledge ab@tp( @), to thepos- 1
terior PDF of 6, p(8|2). This is done via an application of — = {- -+ (¥i=X)?+ (Yis 1= %+ 1) >+ [yi+ 1~ F(x,2)]
Bayes theorem through conditioning on the observations

p(6.2)

m(z)

+[Yi+1_f(xi+11a)]2+ ce

It now becomes evident that by considering pairs of obser-

vations terms in the ML cost function are artificially blown

where m(z) = [p(z|0)p(0)d @ is the marginal PDF of, up to mimic terms in the posterior PDF. Thus one would

which can be regarded as a normalizing constant as it isxpect the minimum ofC,, to be close to the posterior

independent o). mode. These considerations give an explanation for the good
In the state-space model defined through the observatioperformance of the ML cost function suggested by McSharry

equationg1) and the state equatiori§) with f(x;_,,2)=1  and Smith.

—axiz,1 given by the logistic map, the observables corre-

sponding toz arey=(y,, ...,yn) With n=N, and the un- Iv. BAYESIAN POSTERIOR COMPUTATION VIA MCMC

p(0|2)= *p(0)p(z9),

observables corresponding ® are (Xg,Xy, . .. Xy,a,7) e . . L
with d=N+3. To elicit a joint prior distribution for the un- di The _ma|r|1 _dl:‘flcultty W'tr_;_ the Fa¥is'§[2 approaclh 1S high-
observablesxg, X, , . . . Xy,a,7%, we make use of succes- imensional integration. To calculate the normalizing con-

sive conditioning and the Markovian nature of state transiStaNt of _the joint posterior PDF’ for_ Instance, requires
tions by writing d-dimensional integration. Having obtained the joint poste-
rior PDF of @, the posterior PDF of a single parametgrof
P(Xg X1, - - - XN, &, T2) interest can be obtained by integrating out all the other com-
N ponents, i.e.,

_ 2 . 2
=p@ el poclxi-1.a,7), p(0i|z>=f f p(02)d0;- - -d6,_1d6y.,---dbg.

where the conditional prior density of|x;_1,a,7* is de-  cajculation of the posterior mean 6f necessitates a further
fined through Eq(5) with some small but unknown error integration, e.q.E[ 6;]z]= f 6;p(6;|2)dé; .

variancer?. We assume a noninformative prior distribution In the example above, finding the marginal posterior PDF
for Xo, i.e.,Xo~ Uniform —1,1]. We assume prior indepen- of the parametes, for instance, would require integration
dence ofa and 7> and use a noninformative prior fax OVer Xo,Xi,...Xy,7, i.e., the calculation of an
Reflgctlng our prior expectation that th_ere_ is only small dy'(N+2)-dimensionaI integral. For largé, numerical integra-
namic noise, we assume a vague prior inverse-gamma (tion becomes unfeasible, so that the only alternative is simu-
=2.018=0.00505) distribution forr> which has mean lating vectors &,Xg,X1, . . . Xn 'Tz)i' j=1,...,J, for some

0.005 and standard deviation 0.05. By Bayes theorem, thgrgeJ from the posterior PDF. The first component of each

joint posterior density of all unobservables is proportional togampled vectord,x,,X;, . . . Xy, ) constitutes a sample

prior X likelihood: from the marginal posterior ad. Then any characteristic of

5 the marginal posterior distribution af can be approximated
P(Xo.x.8,7°[y) by its sample equivalent, e.g., its mean by the sample mean.

As the joint posterior is too complex to sample from di-
rectly, we propose to use the MCMC technidu®,2(Q. In
MCMC, a Markov chain is constructed with the joint poste-
rior as its equilibrium distribution. Thus, after running the
Markov chain for a certain “burn-in” period, one obtains

1 N (correlatedl samples from the limiting distribution, provided
><exp< - (Yi—Xi)Z) ) (6)  that the Markov chain has reached convergence. We use the
262 =1 Gibbs sampler, a specific MCMC method that samples itera-

. _ _ o tively from each of the univariate full conditional posterior
It is worthwhile to compare the posterior density in E6)  distributions

with McSharry and Smith’s ML cost function in Ed4).

1 1 N

_ R 2
o ex% X5+ xi—f(Xi_1,a

F2(N+1) 52|70 ;l[ i—f(xi—1,a)] )

X 72 Dexp — g 72)

Terms in the exponential of E¢6) corresponding to likeli- p(6i|z,01, ....0_1,6i:1, ...,0q). (7
hood contributions fory;,y; 1) and prior contributions for ) ) ) 0
(Xi41,Xi12), Given an arbitrary set of starting value%)), Ce ,0& ) the
algorithm proceeds as follows:
1 i (1) (0) (0)
e E[(yi_xi)u(yiﬂ_xi“y] simulatedi”~p(6,|z,65", ....,04")
simulated$t ~p( 6,|z, 62,69, ... ,0) 8)

1 2 2
- 2_7_2{[Xi+1_f(xi ) ] [ X o= f(Xi @)% — - -,

have their counterparts in E¢) given by simulated§”~p(6q/z, 68", ... ,60%,)
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Trace of a Kernel density for a
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o
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~
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10000 12000 14000 16 17 18 1.9 2 _ FIG. 1. Trace and kernel den-
sity plots of the marginal posterior
iteration a distributions for the parametees
andx, based on 100 observations
Trace of x0 Kernel density for x0 from the logistic map with true
(5000 values per trace) (5000 values) pa_rameteraz 1.85,%,=0.3, and
P < noise level 0.6.

x0

10000 12000 14000 -05 0 05
iteration x0
and yields@™=(6{™, ... 6{™) afterm such cycles. This pling iteratively from these. Thereby, the problem of
defines a Markov chain with transition kernel sampling from ad-variate PDF is reduced to sampling from
d univariate PDFs.
d In many applications where the prior PDF is conjugate to
k(g(mﬂ)lg(m))zn p(gi(m+1>|y, the likelihood, the full conditionals in fact reduce analyti-
i=1 cally to closed-form PDFs and we can use highly efficient
v 0g-m+1), o :9@11):95@1: N ,0&’“)), special purpose Monte Carlo methods for generating from

these(see, e.g.[21]). In general, however, we need a fast
9 and efficient black-box method to sample from an arbitrarily
complex full conditional posterior distribution in each cyclic
which converges to the joint posterior as its equilibrium dis-step of the Gibbs sampler. Such an all-purpose algorithm,
tribution[19]. Consequently, if all the full conditional poste- calledadaptive rejection samplinGARS), was developed by
rior distributions are available, all that is required is sam-Gilks and Wild[22,23] for the rich class of distributions with

® | - - TT _
- ol . ! FIG. 2. Posterior means and
© i ! 95% posterior probability inter-
1 . vals for increasing noise levels
- 1 L T 1 based on 100 observations from
~ | -1 the logistic map with true param-
- 1 4+ 1 etersa=1.85 andx,=0.3.
«© | 1 4L

T
0.0 0.5 1.0 1.5 2.0
noise level
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10000 12000 14000 36 37 38 ~ FIG. 3. Trace and kernel den-
sity plots of the marginal posterior
iteration a distributions for the parametees
andx, based on 100 observations
Trace of X0 Kernel density for x0 from the Moran-Ricker map with
(5000 values per trace) (5000 values) true parametera=3.7, xg=0.5,
- - and noise level 0.2.
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log-concavedensities. Due to nonlinearity in the state equa-been implemented iBUGS and are continuously being re-
tions, however, the full conditional densities of theanda  fined. Furthermore, various methods to assess convergence,
are not log-concave. But we can use a recently developeide., methods used for establishing whether a MCMC algo-
“Metropolized” version of adaptive rejection sampling rithm has converged and whether its output can be regarded
(ARMS) for non-log-concave distributiong24,25. ¢ sub- as samples from the target distribution of the Markov chain,
routines of ARS and ARMS are availall24] and can thus have been developed and implementec@pA [33]. CODA

be tailored to the full conditional posteriors of a nonlinearis a menu-driven collection afpLusfunctions for analyzing
state-space model. the output obtained froreuGs. As well as trace plots and the

Significant progress has been made in facilitating the rouusual tests for convergencepbDA calculates statistical sum-
tine implementation of the Gibbs sampler with the help ofmaries of the posterior distributions and kernel density
BUGS (Bayesian inference using Gibbs sampjing recently — estimateg.
developed software packagg6] by the Medical Research
Council Biostatistics Unit, Institute of Public Health, Cam-
bridge, England.Bucs samples from the joint posterior dis- V. EXAMPLES
tribution by_ using the Gibbs sampler. For reviews BWGS A. Logistic map
the reader is referred {@7-29. . .

BUGS can handle the two main tasks necessary for imple- We simulatedN= 100 observations from Eq1) and the
mentation of the Gibbs sampler. These tasks(Bréo con- underlymg system evolution given by the logistic map
struct and(ii) to sample from the full conditional posterior =1— ax’_; with starting valuex,= 0.3, parametea=1.85,
densitiesBUGS can perform these tasks for a variety of com-and noise level$ = oy,4ise/ 0signal ranging from 0 to 2. To
plex models such as random effects, generalized linear, pr@btain a sample from the posterior distribution in the logistic
portional hazards, latent variable, and frailty models. Asmap example, we performed 110000 cycles of the Gibbs
shown by Meyer and Millaf30,31], state-space models are sampler, used a burn-in period of 10000 iterations, and
also amenable to a Bayesian analysisaigs. This has the thinned the chain by taking every 20th observation to avoid
major advantage that no one-off program in a low-level prohigh|y correlated values. This yielded a final sample size of
gramming language such asor FORTRAN needs to be writ- 5000 and took 10 min on a Pentium Il PC. Convergence
ten for every new analysis. Only the prior and sampling dis-diagnosticg33] confirmed that the Markov chain had con-
tributions for unobservables and observables, respectivelyerged toward its equilibrium distribution. Figure 1 shows an
have to be specified in BUGS program. The tedious task of exemplary trace and kernel density plot for the parameters
constructing the full conditionals is automateddycsusing ~ andx, for an error level of 0.6. Figure 2 displays the poste-
directed acyclic graphg32]. Sophisticated routines such as rior mean of the parameter together with 95% credibility
adaptive rejection sampling to sample from log-concave fulintervals for varying degrees of noise levels. A comparison
conditionals and MH algorithms based on slice sampling tgvith Fig. 2 of McSharry and Smitf5] shows an equivalent
sample from non-log-concave full conditional densities haveperformance of the Bayesian estimator compared to the one

obtained by minimizing the ML cost function. One should
note, however, that in order to obtain 95% confidence inter-

'gucs is available free of charge from http://www.mrc-
bsu.cam.ac.uk/bugs/Welcome.html for the operating systems
LINUX, andwINDOWS, among others. It comes with complete docu- 2copa is maintained and distributed by the same research group
mentation and two example volumes. responsible foBUGS.
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is basically identical to the one if5]. Figure 3 shows the

3.8 . 1. 1] corresponding trace and kernel density plotsacnd X,.

3.6l Il i t { I * | Figure 4 displays the posterior mean of the paramater-
o 3.2 gether with 95% credibility intervals for varying degrees of
3.2 noise levels. A comparison with Fig. 3 of McSharry and
Smith[5] shows an equivalent performance of the Bayesian
0.1 0.2 0.3 0.4 0.5 estimator compared to the one obtained by minimizing the

Noise Level ML cost function.

FIG. 4. Posterior means and 95% posterior probability intervals
for increasing noise levels based on 100 observations from the

Moran-Ricker map with true parameteas=3.7 andx,=0.5. Similarly, the results for the two-dimensional Henon map
f(xi,xi_1)=1—ax’+bx_, with true parametersa=1.4,

C. Henon map

v_als, the gpproach via m|n|m|zat|_on_ of aml hOCCO.St func- b=0.3, and noise level 0.05 based on 500 observations,
tion requires rerunning the optimization algorithm some

large number of times, say 1000 times as did McSharry ang°mpare with those of McSharry and Smith with posterior

Smith for the logistic map, and then using the 2.5 and g7.gneans and standard deviations of 1.34P01726, and

percentiles of the minima as lower and upper limits. In con-0-296=0.016 93 fora and b, respectively. Figure 5 shows

trast, 95% credibility intervals as well as other measures of’® corresponding trace and kernel density plots for the pa-
dispersion such as the standard deviation can be extractégmetersa andb.

from the MCMC output simultaneously with the posterior

mean, for statistical theory ensures that averaging of a func- D. Other Applications

tion of interest over realizations from a single run of the \icmc techniques have been applied in numerous areas
Markov chain provides a consistent estimate of its expectag,m science to economics. For higher-level tagksch as '

tion. Thus, the Bayesian approach pr0y|des a parameter ey, ariate state-space models with hundreds to thousands
timateand an assessment of its uncertainty at the same time

The BUGS code for estimating the parameters of the Iogis—Of pa}r_ameteria_‘s]), BUGS reaches |ts_I|m|ts, r_:md software

tic map can be downloaded frof84] specifically designed for the problem in question needs to be
' written. It should be noted that applications of state-space

modeling in finance, e.g., stochastic volatility models applied
to time series of daily exchange rates or returns of stock

The versatility and ease of usage becomes even more ewxchange indices, easily have 1000—-5000 parameters and the
dent when one wants to fit a different nonlinear map or use &ibbs sampler shows slow convergence due to high posterior
different data set. Only one or two lines need to be changedorrelations [32,36,37. Specially tailored MCMC algo-
in the BUGs code. We simulated 100 observations from therithms, like multimove Gibbs samplers or Metropolis-
Moran-Ricker mapf(x,a) =x exga(1—x)] with true values Hastings algorithms, can markedly improve the speed of
of a=3.7, Xo=0.5, and noise levels ranging from 0 to 0.5. convergencg38]. We are also continuing our work on the
We used noninformative priors again to make the Bayesiammplementation of a MCMC scheme for identifying the pa-
results comparable to the frequentist estimates. For instanceameters from coalescing binary st§28] as observed from
with a noise level of 0.2, we obtain a posterior mean ofthe continuous data output of the soon to be completed Laser
3.707, and a 95% credibility interval §8.634,3.77Twhich  Interferometric Gravity Wave Observatof$9].

B. Moran-Ricker map

Trace of a Kernel density for a
© (5000 values per trace) (5000 values)
2 (=]
-~ Y]
s X =
(2] o
10000 12000 14000 13 135 14 145 ~ FIG. 5. Trace and kernel den-
sity plots of the marginal posterior
iteration a distributions for the parametees
and b based on 500 observations
Trace of b Kernel density for b from the Henon map with true pa-
< (5000 values per trace) (5000 values) rameters a=1.4, b=0.3, and
S b noise level 0.05.
w
]
o
w
<\!
o
o (=]
10000 12000 14000 0.25 0.3 0.35

iteration b
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Model comparison is another application of MCMC writing one-off programs in a low-level language. Any modi-
methods. If we desire to compare two modklg andM,,  fications, such as different prior distributions, applications to
then the Bayes factoBgy,=p(z]M,)/p(zZlMy) used for different data sets, or the use of different sampling distribu-
model determination is the ratio of the marginal likelihoodstions, require the change of just a single line in the code. In
p(zIM) = fp(z| 6,M,)p(6/M)d 8, for the data, param-  addition to the ease of implementation and its flexibility,
eters @, of the modelM,, and prior densityp(6|M,) [40].  state-space modeling BUGS is far more versatile in that it
The multidimensional integrals required to calculate the mardoes not require the unrealistic assumptionkobwn error
ginal likelihoods are best accomplished via the MCMC tech-variancee?. The state-space approach allows one to simulta-

nique when the number of parameters gets l&djs. neously estimate both dynamic and measurement noise. Fur-
thermore, it is not restricted to the assumption of Gaussian
VI. DISCUSSION noise. A heavy-tailed observation error distribution such as a

Studentt distribution with large degrees of freedom might be
When using noninformative prior distributions, the Baye- more appropriate to allow for crude measurement errors and
sian approach to parameter estimation in nonlinear modelgnsure that resulting estimates will be robust against additive
from time series of noisy data gives similar results to thoseyytliers. Non-Gaussian error distributions are readily incor-
Obtained by MCShaI’I’y and Sm|th Via the maximization Of aporated inBUGS. We therefore Strong|y advocate the Baye_

certain cost function. _NOte, hQWeVer, that the Bayesian Stat%]an State_space approach via Gibbs Samp”ng in practica'
space approach provides various advantages. First of all, it ignalyses of chaotic time series.

based on an unassailable statistical paradigm rather than op-
timization of anad hoccost function. Due to recent revolu-
tionary advances in Bayesian posterior computation via
computer-intensive MCMC simulation techniques, difficul-
ties with posterior computations can be overcome. A Baye- This work was supported by the Royal Society of New
sian state-space model is readily implemented using standaraland Marsden Fund, the University of Auckland Re-
Bayesian software such &cs. One can therefore avoid search Committee, and Carleton College.
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