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Bayesian reconstruction of chaotic dynamical systems
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We present a Bayesian approach to the problem of determining parameters of nonlinear models from time
series of noisy data. Recent approaches to this problem have been statistically flawed. By applying a Markov
chain Monte Carlo algorithm, specifically the Gibbs sampler, we estimate the parameters of chaotic maps. A
complete statistical analysis is presented, the Gibbs sampler method is described in detail, and example
applications are presented.
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I. INTRODUCTION

Many observed time series stemming from physical la
ratory experiments or ‘‘real world’’ systems exhibit a ve
complex and apparently random time behavior that may
explained by an underlying chaotic process. By a cha
process we mean a nonlinear dynamical system@1–4#, i.e., a
discrete time series of unknown~due to noise! system states
xi , i 51, . . . ,N, that are nonlinear functions of previou
statesxi5g(xi 21). Various statistical approaches have be
suggested to reconstruct the underlying nonlinear dynam
from a time series of noisy observations@5–9#. These are
based on estimating the unknown parameters that define
nonlinear function, and comprise maximum-likelihood me
ods, Bayesian techniques, and approaches based on min
ing a certain cost function.

On the one hand, likelihood techniques aim at finding
values of the parameters that maximize the likelihood fu
tion, the joint probability density function~PDF! of the ob-
servations given the unknown parameters. The Bayesian
proach is also based on the likelihood function but treats
parameters as random variables and assumes a joint
distribution that summarizes the available information ab
the parameters before observing the data. In the light of
observations, the information about the unknown parame
is then updated via the Bayes theorem to the posterior di
bution, which is proportional to the product of likelihood an
prior density@10#.

On the other hand, heuristic approaches based on min
zation of a certain cost function make no distributional
sumptions. The most prominent are least squares~LS! meth-
ods @11,12# that minimize the sum of squared one-st
prediction errors, and total least squares~TLS! techniques
@13,14#, and modifications thereof@15#. In a recent paper@5#,
McSharry and Smith give an overview of various cost fun
tions that have been used in reconstructing nonlinear dyn
ics and display their shortcomings in simulation studies. I
well known that LS estimates give systematically wrong
sults due to ignoring the facts that~i! the values of the ‘‘in-
dependent variable’’ are subject to measurement error,
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so-called errors-in-variables bias, and~ii ! there is serial cor-
relation between successive observations, the so-called t
series bias.

To reduce errors-in-variables bias, the errors-in-variab
regression or TLS cost function was first proposed by K
telich @16#. Instead of minimizing the sum of squared vertic
distances, the TLS technique aims at minimizing the sum
squared perpendicular distances between two consec
observations to corresponding pair of points on the hyper
face defined by the nonlinear dynamics. From a statist
point of view, this is justified only if pairs are independen
But this is clearly not the case in a time series.

McSharry and Smith@5# propose a different cost functio
which they somewhat misleadingly call the ‘‘maximum
likelihood ~ML ! cost function.’’ They demonstrate that th
estimator based on minimizing this cost function outp
forms the LS and TLS methods and gives nearly unbia
parameter estimates even for large noise levels. Notw
standing, our main criticism is that the derivation of th
estimator is based on yet anotherad hoc cost function in-
stead of a sound statistical paradigm. Furthermore, we p
out major flaws in its derivation. We suggest a Bayes
approach instead, by integrating the problem into the fram
work of nonlinear state-space modeling@17,18#. This allevi-
ates both problems~i! and ~ii ! by incorporating the known
serial correlation as prior information in a complete probab
ity model for the observations and the unknown states.
even consider the more realistic generalization where the
derlying dynamic evolution is not assumed deterministic
is subject to unpredictable external or environmental effe
so-called dynamic noise. Difficulties with posterior comp
tations are overcome using Markov chain Monte Ca
~MCMC! techniques, in particular the Gibbs sampler in co
junction with the Metropolis-Hastings~MH! algorithm @19#.

The paper is organized as follows. In Sec. II we give
motivation for this Bayesian state-space approach by con
ering the recently proposed approach via maximization o
cost function and its shortcomings. In the third section,
general Bayesian approach to statistical inference for st
space models is presented. After that, we point out simil
ties between McSharry and Smith’s ML cost function a
the posterior density employed in the Bayesian approa
thus offering an explanation for the good performance
McSharry and Smith’s estimator. The use of MCMC sim
3535 ©2000 The American Physical Society
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3536 PRE 62RENATE MEYER AND NELSON CHRISTENSEN
lation techniques, specifically of the Gibbs sampler, is
plained in Sec. IV. In Sec. V, we show the superior perf
mance of this Bayesian technique using the same exam
as in Ref.@5# for comparative purposes. We conclude with
discussion of the flexibility of a Bayesian state-space
proach.

II. A STATE-SPACE APPROACH

Like McSharry and Smith@5#, we consider the situation
where we are given a time series of noisy observationsyi ,
i 51, . . . ,N. These are modeled asconditionally indepen-
dent ~given the underlying unknown true system statesxi)
and normally distributed random variables, i.e.,

yi uxi5xi1v i , v i;
i id

N~0,e2!, i 51, . . . ,N, ~1!

with known error variancee2. The time evolution of the
system states is described by a nonlinear functionxi
5 f (xi 21 ,a),i 51, . . . ,N, wherea is ap-dimensional param-
eter andx0 a starting value. As an example consider t
logistic mapxi512axi 21

2 with one-dimensional paramete
a. The likelihood function, i.e., the joint PDF of all observ
ablesy5(y1 , . . . ,yN) given all unknowns, is thus

L~a,x0uy!5p~yua,x0!5)
i 51

N
1

A2pe

3expS 2
1

2e2
@yi2 f i~x0 ,a!#2D , ~2!

where f i(x0 ,a)5xi is the i-fold composition off. Here and
in the following we usep(•) as a generic symbol for a PDF

McSharry and Smith give the conditional bivariate PD
of a pair of two consecutive observations (yi ,yi 11) as
p(yi ,yi 11ua,xi)5(1/2pe2)exp„2(1/2e2)$(yi2xi)

21@yi 11
2 f (xi ,a)#2%…. This is perfectly correct, since, with indepe
dent noisev i andv i 11 in Eq. ~1!, yi andyi 11 are also inde-
pendent, despite the authors’ statement in@5# that ‘‘ . . . the
weakest link in the derivation of the ML cost function is th
assumption that theyi andyi 11 are independent; while the
may be linearly uncorrelated, they cannot be independ
Attempts to relax this assumption will be presented in la
work . . . .’’ No attempts are needed. However, the auth
then incorrectly assume that the conditionaljoint PDF of a
sequence ofN21 pairs Y5$(yi ,yi 11)% i 51, . . . ,N21, given
parameter a and a sequence of system statesx
5(x1 , . . . ,xN), is p(Yua,x)5) i 51

N21p(yi ,yi 11ua,xi), even
though every consecutive pair (yi ,yi 11) and (yi 11 ,yi 12) is
obviously violating the independence assumption. In cont
to Eq. ~2!, they suggest a ‘‘pseudo’’-likelihood functio
given by

L~auY!5 )
i 51

N21 E
x
p~yi ,yi 11ua,x!dm~x,a! ~3!

obtained by integrating over the system’s invariant meas
m(x,a). They proceed by minimizing what they call the M
cost function,
-
-
les

-

t.
r
s

st

re

CML~a!52 (
i 51

N21

ln E expS 2
1

2e2
$~yi2x!2

1@yi 112 f ~x,a!#2% D dm~x,a!, ~4!

where the integral in practice is replaced by a sum ove
model trajectory.

It should be pointed out that the idea behind integrat
the dependency on thexi ’s out of the pseudo-likelihood
function is very similar to calculating the marginal posteri
PDF of a by integrating the joint posterior PDF over a
unknown statesx0 ,x1 , . . . ,xN . To develop this idea within
a proper statistical paradigm requires treating the sys
states as stochastic instead of deterministic. We there
consider the more realistic case that the system dynamics
subject to random disturbances. This casts the problem
the general framework of a Bayesian state-space mo
@17,18#, one of the most powerful tools for dynamic mode
ing and forecasting. State-space models relate time-serie
servations to unobserved states by a stochastic observ
model. The states are assumed to follow a stochastic tra
tion over time, given by the state equations. The state eq
tions, i.e., theconditionaldistribution of the system state a
time i, given the previous states and unknown paramet
are

xi uxi 21 ,a5 f ~xi 21 ,a!1ui , ui;
i id

N~0,t2!, i 51, . . . ,N
~5!

and the observation equations are given by~1!. This state-
space approach eliminates the errors-in-variables bias
time-series bias mentioned before. It takes the temporal
pendencies of the observations into account through a c
ditional modeling of the observations, given unknown stat
and specification of Markovian transition of states. Via t
Bayesian paradigm, both process and observation errors
explicitly captured and quantified through posterior distrib
tions of the parameters, as described in the next section

III. BAYESIAN INFERENCE FOR STATE-SPACE
MODELS

The starting point of the Bayesian approach to statist
inference is setting up a full probability model that consi
of the joint probability distribution of all observables, de
noted byz5(z1 , . . . ,zn), and unobservable quantities, d
noted byu5(u1 , . . . ,ud). Using the notion of conditiona
probability, this joint PDFp(z,u ) can be decomposed int
the product of the PDF of all unobservables,p(u ), referred
to as theprior PDF of u, and the conditional PDF of the
observables given the unobservables,p(zuu ), referred to as
the sampling distribution orlikelihood, i.e.,

p~z,u !5p~u !p~zuu !.

The prior PDF contains all the information about the uno
servables that is known from substantive knowledge and
pert opinion before observing the data. All the informati
about theu that stems from the experiment is contained
the likelihood. In the light of the data, the Bayesian paradi
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PRE 62 3537BAYESIAN RECONSTRUCTION OF CHAOTIC . . .
then updates the prior knowledge aboutu, p(u ), to thepos-
terior PDF of u, p(u uz). This is done via an application o
Bayes theorem through conditioning on the observations

p~u uz!5
p~u,z!

m~z!
}p~u !p~zuu !,

where m(z)5*p(zuu )p(u )du is the marginal PDF ofz,
which can be regarded as a normalizing constant as
independent ofu.

In the state-space model defined through the observa
equations~1! and the state equations~5! with f (xi 21 ,a)51
2axi 21

2 given by the logistic map, the observables cor
sponding toz are y5(y1 , . . . ,yN) with n5N, and the un-
observables corresponding tou are (x0 ,x1 , . . . ,xN ,a,t2)
with d5N13. To elicit a joint prior distribution for the un-
observables,x0 ,x1 , . . . ,xN ,a,t2, we make use of succes
sive conditioning and the Markovian nature of state tran
tions by writing

p~x0 ,x1 , . . . ,xN ,a,t2!

5p~a,t2!p~x0!)
i 51

N

p~xi uxi 21 ,a,t2!,

where the conditional prior density ofxi uxi 21 ,a,t2 is de-
fined through Eq.~5! with some small but unknown erro
variancet2. We assume a noninformative prior distributio
for x0, i.e., x0; Uniform@21,1#. We assume prior indepen
dence ofa and t2 and use a noninformative prior fora.
Reflecting our prior expectation that there is only small d
namic noise, we assume a vague prior inverse-gammaa
52.01,b50.005 05) distribution fort2 which has mean
0.005 and standard deviation 0.05. By Bayes theorem,
joint posterior density of all unobservables is proportional
prior 3 likelihood:

p~x0 ,x,a,t2uy!

}
1

t2(N11)
expF2

1

2t2 S x0
21(

i 51

N

@xi2 f ~xi 21 ,a!#2D G
3t22(a11)exp~2b/t2!

3expS 2
1

2e2 (
i 51

N

~yi2xi !
2D . ~6!

It is worthwhile to compare the posterior density in Eq.~6!
with McSharry and Smith’s ML cost function in Eq.~4!.
Terms in the exponential of Eq.~6! corresponding to likeli-
hood contributions for (yi ,yi 11) and prior contributions for
(xi 11 ,xi 12),

•••2
1

2e2
@~yi2xi !

21~yi 112xi 11!2#

2
1

2t2
$@xi 112 f ~xi ,a!#21@xi 122 f ~xi 11 ,a!#2%2•••,

have their counterparts in Eq.~4! given by
is

on

-

i-

-
(

e

2
1

2e2
$•••1~yi2xi !

21~yi 112xi 11!21@yi 112 f ~xi ,a!#2

1@yi 112 f ~xi 11 ,a!#21•••%.

It now becomes evident that by considering pairs of obs
vations terms in the ML cost function are artificially blow
up to mimic terms in the posterior PDF. Thus one wou
expect the minimum ofCML to be close to the posterio
mode. These considerations give an explanation for the g
performance of the ML cost function suggested by McSha
and Smith.

IV. BAYESIAN POSTERIOR COMPUTATION VIA MCMC

The main difficulty with the Bayesian approach is hig
dimensional integration. To calculate the normalizing co
stant of the joint posterior PDF, for instance, requir
d-dimensional integration. Having obtained the joint pos
rior PDF of u, the posterior PDF of a single parameteru i of
interest can be obtained by integrating out all the other co
ponents, i.e.,

p~u i uz!5E •••E p~uuz!du1•••du i 21du i 11•••dud .

Calculation of the posterior mean ofu i necessitates a furthe
integration, e.g.,E@u i uz#5*u i p(u i uz)du i .

In the example above, finding the marginal posterior P
of the parametera, for instance, would require integratio
over x0 ,x1 , . . . ,xN ,t2, i.e., the calculation of an
(N12)-dimensional integral. For largeN, numerical integra-
tion becomes unfeasible, so that the only alternative is sim
lating vectors (a,x0 ,x1 , . . . ,xN ,t2) j , j 51, . . . ,J, for some
largeJ from the posterior PDF. The first component of ea
sampled vector (a,x0 ,x1 , . . . ,xN ,t2) j constitutes a sample
from the marginal posterior ofa. Then any characteristic o
the marginal posterior distribution ofa can be approximated
by its sample equivalent, e.g., its mean by the sample m

As the joint posterior is too complex to sample from d
rectly, we propose to use the MCMC technique@19,20#. In
MCMC, a Markov chain is constructed with the joint post
rior as its equilibrium distribution. Thus, after running th
Markov chain for a certain ‘‘burn-in’’ period, one obtain
~correlated! samples from the limiting distribution, provide
that the Markov chain has reached convergence. We use
Gibbs sampler, a specific MCMC method that samples ite
tively from each of the univariate full conditional posterio
distributions

p~u i uz,u1 , . . . ,u i 21 ,u i 11 , . . . ,ud!. ~7!

Given an arbitrary set of starting valuesu1
(0) , . . . ,ud

(0) the
algorithm proceeds as follows:

simulateu1
(1);p~u1uz,u2

(0) , . . . ,ud
(0)!

simulateu2
(1);p~u2uz,u1

(1) ,u3
(0) , . . . ,ud

(0)! ~8!

A

simulateud
(1);p~uduz,u1

(1) , . . . ,ud21
(1) !
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FIG. 1. Trace and kernel den
sity plots of the marginal posterio
distributions for the parametersa
andx0 based on 100 observation
from the logistic map with true
parametersa51.85, x050.3, and
noise level 0.6.
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hm,
and yieldsu (m)5(u1
(m) , . . . ,ud

(m)) after m such cycles. This
defines a Markov chain with transition kernel

k~u (m11),u (m)!5)
i 51

d

p~u i
(m11)uy,

3u1
(m11) , . . . ,u i 21

(m11) ,u i 11
(m) , . . . ,ud

(m)!,

~9!

which converges to the joint posterior as its equilibrium d
tribution @19#. Consequently, if all the full conditional poste
rior distributions are available, all that is required is sa
-

-

pling iteratively from these. Thereby, the problem
sampling from ad-variate PDF is reduced to sampling fro
d univariate PDFs.

In many applications where the prior PDF is conjugate
the likelihood, the full conditionals in fact reduce analy
cally to closed-form PDFs and we can use highly efficie
special purpose Monte Carlo methods for generating fr
these~see, e.g.,@21#!. In general, however, we need a fa
and efficient black-box method to sample from an arbitrar
complex full conditional posterior distribution in each cycl
step of the Gibbs sampler. Such an all-purpose algorit
calledadaptive rejection sampling~ARS!, was developed by
Gilks and Wild@22,23# for the rich class of distributions with
d

s

-

FIG. 2. Posterior means an
95% posterior probability inter-
vals for increasing noise level
based on 100 observations from
the logistic map with true param
etersa51.85 andx050.3.
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FIG. 3. Trace and kernel den
sity plots of the marginal posterio
distributions for the parametersa
andx0 based on 100 observation
from the Moran-Ricker map with
true parametersa53.7, x050.5,
and noise level 0.2.
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log-concavedensities. Due to nonlinearity in the state equ
tions, however, the full conditional densities of thexi anda
are not log-concave. But we can use a recently develo
‘‘Metropolized’’ version of adaptive rejection samplin
~ARMS! for non-log-concave distributions@24,25#. C sub-
routines of ARS and ARMS are available@24# and can thus
be tailored to the full conditional posteriors of a nonline
state-space model.

Significant progress has been made in facilitating the r
tine implementation of the Gibbs sampler with the help
BUGS ~Bayesian inference using Gibbs sampling!, a recently
developed software package@26# by the Medical Research
Council Biostatistics Unit, Institute of Public Health, Cam
bridge, England.1 BUGS samples from the joint posterior dis
tribution by using the Gibbs sampler. For reviews onBUGS

the reader is referred to@27–29#.
BUGS can handle the two main tasks necessary for imp

mentation of the Gibbs sampler. These tasks are~i! to con-
struct and~ii ! to sample from the full conditional posterio
densities.BUGS can perform these tasks for a variety of com
plex models such as random effects, generalized linear,
portional hazards, latent variable, and frailty models.
shown by Meyer and Millar@30,31#, state-space models ar
also amenable to a Bayesian analysis viaBUGS. This has the
major advantage that no one-off program in a low-level p
gramming language such asC or FORTRAN needs to be writ-
ten for every new analysis. Only the prior and sampling d
tributions for unobservables and observables, respectiv
have to be specified in aBUGS program. The tedious task o
constructing the full conditionals is automated byBUGSusing
directed acyclic graphs@32#. Sophisticated routines such a
adaptive rejection sampling to sample from log-concave
conditionals and MH algorithms based on slice sampling
sample from non-log-concave full conditional densities ha

1BUGS is available free of charge from http://www.mrc
bsu.cam.ac.uk/bugs/Welcome.html for the operating systemsUNIX,
LINUX , andWINDOWS, among others. It comes with complete doc
mentation and two example volumes.
-

ed

r

-
f

-

o-
s

-

-
ly,

ll
o
e

been implemented inBUGS and are continuously being re
fined. Furthermore, various methods to assess converge
i.e., methods used for establishing whether a MCMC al
rithm has converged and whether its output can be rega
as samples from the target distribution of the Markov cha
have been developed and implemented inCODA @33#. CODA

is a menu-driven collection ofSPLUSfunctions for analyzing
the output obtained fromBUGS. As well as trace plots and th
usual tests for convergence,CODA calculates statistical sum
maries of the posterior distributions and kernel dens
estimates.2

V. EXAMPLES

A. Logistic map

We simulatedN5100 observations from Eq.~1! and the
underlying system evolution given by the logistic mapxi

512axi 21
2 with starting valuex050.3, parametera51.85,

and noise levelsl 5snoise/ssignal ranging from 0 to 2. To
obtain a sample from the posterior distribution in the logis
map example, we performed 110 000 cycles of the Gib
sampler, used a burn-in period of 10 000 iterations, a
thinned the chain by taking every 20th observation to av
highly correlated values. This yielded a final sample size
5000 and took 10 min on a Pentium III PC. Convergen
diagnostics@33# confirmed that the Markov chain had con
verged toward its equilibrium distribution. Figure 1 shows
exemplary trace and kernel density plot for the parametea
andx0 for an error level of 0.6. Figure 2 displays the pos
rior mean of the parametera together with 95% credibility
intervals for varying degrees of noise levels. A comparis
with Fig. 2 of McSharry and Smith@5# shows an equivalen
performance of the Bayesian estimator compared to the
obtained by minimizing the ML cost function. One shou
note, however, that in order to obtain 95% confidence in

2CODA is maintained and distributed by the same research gr
responsible forBUGS.
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3540 PRE 62RENATE MEYER AND NELSON CHRISTENSEN
vals, the approach via minimization of anad hoccost func-
tion requires rerunning the optimization algorithm som
large number of times, say 1000 times as did McSharry
Smith for the logistic map, and then using the 2.5 and 9
percentiles of the minima as lower and upper limits. In co
trast, 95% credibility intervals as well as other measures
dispersion such as the standard deviation can be extra
from the MCMC output simultaneously with the posteri
mean, for statistical theory ensures that averaging of a fu
tion of interest over realizations from a single run of t
Markov chain provides a consistent estimate of its expe
tion. Thus, the Bayesian approach provides a paramete
timateandan assessment of its uncertainty at the same ti

TheBUGS code for estimating the parameters of the log
tic map can be downloaded from@34#.

B. Moran-Ricker map

The versatility and ease of usage becomes even more
dent when one wants to fit a different nonlinear map or us
different data set. Only one or two lines need to be chan
in the BUGS code. We simulated 100 observations from t
Moran-Ricker mapf (x,a)5x exp@a(12x)# with true values
of a53.7, x050.5, and noise levels ranging from 0 to 0.
We used noninformative priors again to make the Bayes
results comparable to the frequentist estimates. For insta
with a noise level of 0.2, we obtain a posterior mean
3.707, and a 95% credibility interval of@3.634,3.777# which

FIG. 4. Posterior means and 95% posterior probability interv
for increasing noise levels based on 100 observations from
Moran-Ricker map with true parametersa53.7 andx050.5.
d
5
-
f

ted

c-

a-
s-

e.
-

vi-
a
d

n
ce,
f

is basically identical to the one in@5#. Figure 3 shows the
corresponding trace and kernel density plots ofa and x0.
Figure 4 displays the posterior mean of the parametera to-
gether with 95% credibility intervals for varying degrees
noise levels. A comparison with Fig. 3 of McSharry an
Smith @5# shows an equivalent performance of the Bayes
estimator compared to the one obtained by minimizing
ML cost function.

C. Henon map

Similarly, the results for the two-dimensional Henon m
f (xi ,xi 21)512axi

21bxi 21 with true parametersa51.4,
b50.3, and noise level 0.05 based on 500 observatio
compare with those of McSharry and Smith with poster
means and standard deviations of 1.39260.017 26, and
0.29660.016 93 fora and b, respectively. Figure 5 show
the corresponding trace and kernel density plots for the
rametersa andb.

D. Other Applications

MCMC techniques have been applied in numerous are
from science to economics. For higher-level tasks~such as
multivariate state-space models with hundreds to thousa
of parameters@35#!, BUGS reaches its limits, and softwar
specifically designed for the problem in question needs to
written. It should be noted that applications of state-sp
modeling in finance, e.g., stochastic volatility models appl
to time series of daily exchange rates or returns of st
exchange indices, easily have 1000–5000 parameters an
Gibbs sampler shows slow convergence due to high poste
correlations @32,36,37#. Specially tailored MCMC algo-
rithms, like multimove Gibbs samplers or Metropoli
Hastings algorithms, can markedly improve the speed
convergence@38#. We are also continuing our work on th
implementation of a MCMC scheme for identifying the p
rameters from coalescing binary stars@20# as observed from
the continuous data output of the soon to be completed L
Interferometric Gravity Wave Observatory@39#.

ls
e

-
r

s
-

FIG. 5. Trace and kernel den
sity plots of the marginal posterio
distributions for the parametersa
and b based on 500 observation
from the Henon map with true pa
rameters a51.4, b50.3, and
noise level 0.05.
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PRE 62 3541BAYESIAN RECONSTRUCTION OF CHAOTIC . . .
Model comparison is another application of MCM
methods. If we desire to compare two modelsM0 and M1,
then the Bayes factorB015p(zuM1)/p(zuM0) used for
model determination is the ratio of the marginal likelihoo
p(zuMk)5*p(zuuk,Mk)p(ukuMk)duk , for the dataz, param-
etersuk of the modelMk , and prior densityp(ukuMk) @40#.
The multidimensional integrals required to calculate the m
ginal likelihoods are best accomplished via the MCMC te
nique when the number of parameters gets large@41#.

VI. DISCUSSION

When using noninformative prior distributions, the Bay
sian approach to parameter estimation in nonlinear mo
from time series of noisy data gives similar results to tho
obtained by McSharry and Smith via the maximization o
certain cost function. Note, however, that the Bayesian st
space approach provides various advantages. First of all,
based on an unassailable statistical paradigm rather than
timization of anad hoccost function. Due to recent revolu
tionary advances in Bayesian posterior computation
computer-intensive MCMC simulation techniques, difficu
ties with posterior computations can be overcome. A Ba
sian state-space model is readily implemented using stan
Bayesian software such asBUGS. One can therefore avoid
s

-

fu

m-

s

oc

,

r-
-

-
ls
e

e-
is
p-

a

-
rd

writing one-off programs in a low-level language. Any mod
fications, such as different prior distributions, applications
different data sets, or the use of different sampling distrib
tions, require the change of just a single line in the code
addition to the ease of implementation and its flexibilit
state-space modeling inBUGS is far more versatile in that it
does not require the unrealistic assumption ofknownerror
variancee2. The state-space approach allows one to simu
neously estimate both dynamic and measurement noise.
thermore, it is not restricted to the assumption of Gauss
noise. A heavy-tailed observation error distribution such a
Studentt distribution with large degrees of freedom might b
more appropriate to allow for crude measurement errors
ensure that resulting estimates will be robust against add
outliers. Non-Gaussian error distributions are readily inc
porated inBUGS. We therefore strongly advocate the Bay
sian state-space approach via Gibbs sampling in prac
analyses of chaotic time series.
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