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Structure of motion near saddle points and chaotic transport in Hamiltonian systems
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Generic symmetry and transport properties of near separatrix motio%n-degree-of-freedom Hamiltonian
systems are studied. First the rescaling invariance of motion near saddle points, with respect to the transfor-
matione—\e, y— x+ m of the amplitudee and phasey, of the time-periodic perturbation, is recalled. The
rescaling parametex depends only on the frequency of the perturbation, and the behavior of an unperturbed
Hamiltonian near a saddle point. Additional rescaling symmetry of the motion with respect to transformation
e—\Y2e, y— x=+ /2 is found for some Hamiltonian systems possessing symmetry in the phase space. It is
shown that these rescaling invariance properties of motion lead to strong pdoodjoasiperiodic depen-
dencies of all statistical characteristics of the chaotic motion near the separatrix ;ga \dth the period
log;o\. These properties are examined for different models of chaotic motion by direct numerical integrations
of equations of motion, as by well as using a computationally efficient method of the separatrix mapping.

PACS numbd(s): 05.45.Ac, 05.60.Cd, 52.25.Fi

I. INTRODUCTION zone of chaotically unstable motion near the unperturbed
separatrix(the so-called stochastic layer

Most fundamental models of physics and mechanics are One of the important features of deterministic chaotic sys-
Hamiltonian dynamical systems. One of the essential featems is anomalous transport, i.e., a departure from the nor-
tures of deterministic dynamical systems, particularly Hamil-mal (Gaussiaprandom transport process which has been the
tonian systems, is that they exhibit a chaotically unstablesubject of extensive studies for more than two dec4@es
behavior consisting of an exponential divergency of orbits33]. It occurs in many transport problems in fluid dynamics
with close initial coordinates in the phase space of a systenand physics, for example in mass transport and mixing in
Such a chaotic behavior of dynamical systems has been trgructured hydrodynamic flowd0,11,13,15,1f transport of
subject of numerous studies in the 20th century, startingnagnetic field lines, heat and particles in fusion and space
from pioneering works of Poincafé] (also see Ref§2—-4]).  plasmag23-25, etc. In one dimension it is characterized by

A one-degree-of-freedom Hamiltonian system subjectedh nonlinear time dependence of a mean squared displacement

to time-periodic perturbatiortknown as the } degree-of- ((Ax)?)=2Dt” (y#1), while for normal diffusiony=1,
freedom Hamiltonian systenis the most studied dynamical andD determines a d'ffus'?“ c_oeff|C|ent. The cagel is
system. This generic system has many important applicatiod€’0Wn as enhancetsuperdiffusive transport, and the case
in fluid dynamics and plasma physics. It was first realized by? <1 describes subdiffusive transport processes. It is well
Aref [5,6] that the Lagrangian representation of two- repognlzgd th_at the anomgly of chaotic trgn;port in determm—
dimensional laminar flows is equivalent to a one-dimensionalStic Hamiltonian systems is due to the stickiness of orbits to
Hamiltonian system, with the stream function playing the'®9ions of regular motiorjso-called Kolmogorov-Arnold-
role of the Hamiltonian, and spatial coordinates as canonicdy/0Zer (KAM) stability island$ embedded in a stochastic
variables. This analogy allowed one to apply methods o ayer. The structure of the chaotic domain, i.e., the mutual

dynamical systems to study many problems in fluid dynampositions of KAM stability islands and their sizes, are be-
ics and in geophysical fluid dynamics, particularly mixing of lieved to determine the type and rate of anomalous transport

fluids [7] and transport in structured fluids containing a va-Processes. The transport analysis in such complex systems
riety of vortices, waves, jets, and fror&—16]. has been the subject of many investigations during the last

Three-dimensional magnetic field lines in plasmas are afVe decadesee, e.g., Ref$32-36). .
excellent example of the system described by the In this work we will describe two important properties of

1 I . one-degree-of-freedom Hamiltonian system subjected to
15-degree-of-freedom Hamiltonian systefl7,18. This time-periodic perturbation which show the fundamental con-

analogy has long been used to study a chaotic destruction g tion between the structure of the phase space of system
magnetic surfaces in fusion devickl®], transport magnetic 54 the chaotic transpoif) a rescaling invariance of motion

field lines, and heat and particles in fusion and space plasmag,r the saddle points with respect to transformations of per-
[20-25. . _ . turbation parameters; an@) a quasiperiodical dependence
The onset of stochasticity and chaotic transport inyt gatistical characteristics of chaotic transport in the sto-
13-degree-of-freedom Hamiltonians systems has long beephastic layer on the perturbation strength. The first property
the subject of numerous studif®,26—29. Chaotic motion of the perturbed motion near the saddle points was recently
appears due to the destruction of separatrigdmse-space established in Refd.37-39. It was found that the scaling
curves connecting saddle points in the phase space of theansformation of the perturbation strength-\e and the
system by any small time-periodic perturbation, forming a shift of perturbation phasg— y+ 7 of the time-periodic
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perturbation preserve the topology of the phase space of the (a)
canonical variablesq,p) near the hyperbolic fixed point,
with the rescaling law d, p) — (A *%q,A¥?p). The rescaling p

parametem depends only on the frequency of perturbation 3

and the behavior of the unperturbed system near the saddle

point. We will also show that, in addition to this generic

property of one-degree-of-freedom Hamiltonian systems

subjected to the time-periodic perturbation, there exists an q
inner rescaling invariant property of motion near the saddle

point with regard to transformatione— \Y?¢,

x— x = w/2—which transforms the phase space of the sys-
tem according to q,p)— (A¥4q,\Y%p) if the Hamiltonian )
system has some sort of symmetry in the phase spa@.(

These properties of perturbed motion near the saddle points p

mean that the topology of the stochastic layer near the saddle 3
points, i.e., the mutual positions of KAM islands and their \/

relatives sizes, is periodically changing with varying (g9
with the period logg\ [or (log;p\)/2].

This leads to important universal consequences in a cha-
otic transport in the stochastic layer. Since motion slows
down near the saddle points a particle spends relatively large
time intervals there, thus the transport of particles along the
stochastic layer is mainly determined by the structure of the
stochastic layer near the saddle points. If the conjecture that
similar structures of the stochastic layer gives rise to similar ) ) o
transport propertie€for instance, the exponenig, then one I_:IG. 1. Saddle connectlons_ |r_1 the phase spéaehomoclinic
can expect that the statistical characteristics of chaotic tran&fPits (curve 2, and(b) heteroclinic orbits(curves 2 and 2 con-
port are periodidor quasiperiodigfunctions of logge with ~ "€cting different saddles points.
the period determined by the rescaling paramateri.e.,
logion [or (logiph)/2]. To demonstrate this property is the
second aim of the present work. A short report on this sub- In this section we recall the rescaling invariance of mo-
ject was recently published in R¢#0]. tion near the saddle points, and also describe a new inner

The work consists of seven sections. In Sec. Il the univerrescaling property which occurs due to the symmetry of the
sal rescaling properties of motion near the saddle points andamiltonian system in the phase space. Consider a one-
recalled, and inner rescaling properties of motion owing todegree-of-freedom Hamiltonian system in the phase space of
the symmetry of the system in phase space are described feanonical variables: coordinateand momentunp. Suppose
the three different models containing a single saddle pointthat a small time-periodic perturbation affects the system.
periodic saddle points in one direction of the phase spacefhe perturbed system is described by Hamiltonian equations
and periodic saddle points in two directions of the phase
space, respectively. These models are a particle motion in a dg oH dq dH
double-well potential under external time-periodic perturba- a4t oo’ dt . aa (1)

. o ! p dt aq

tion, a three-wave model describing chaotic transport of par-

ticles in a stochastic layer f_ormed near the separatrix of th%etermined by the Hamiltonian function

main wave due to perturbation by two weak waves propagat-
ing in opposite direction, and the chaotic transport of passive _

tragcers I?rlf]) a two-dimensional periodic vortical ?Iow. Approof H=Ho(d,p)+eH1(q,p,t+1o), @
of the rescaling properties of motion near the saddle points .
found by constructing the separatrix maps, is given in Sec\{\/here Ho(g,p) describes the unperturbed system, and

[l and the Appendix. Statistics of the mean residence timeEHl(q’p’t): eH1(q,p,t+T) is a time-periodic perturbation

and Poincareecurrences in a double-well potential are stud-Of periodT (or frequ_encyv— 277/.T.) .W'th a small amplltud_e
ied in Sec. IV. Chaotic transport along the stochastic layer i <1.1In Eq. (2) we mqlude an initial 'p.hase of perturbation
a three-wave model is investigated in Sec. V. We study ad-%’ the meaning c_’f which will be clarified Iate_r.

vection, second moments of spatial displacement, their expo- 'Suppose th‘."lt n b ab'sence of pgrturbaneﬁ@) there
nents, and probability density functions. In Sec. VI chaoticEXst hyperbolic fixed pomt_sc(s_,ps) n _the @.p) plane.
transport in two-dimensional periodic vortical flows is stud- Near- ea<_:h of the hyperbolic fixed p0|.nts the unperj(urbed
ied. We have calculated periodical dependencies of the segl@miltonianHo(q,p) may be expanded in a power series of
ond moments of spatial displacements, and diffusion coeffild™0s):(P—Ps):
cients on the perturbation amplitude. In particular, regimes ) g2
with strong anomalous transport, which occurs due to lon _ Qs 5_Ps 5
distance flights, are found and analyzed. Conclusions a?g"’(q’p)_HO(qs’pS)i?(q_QS) +?(p—ps) +0(5),
made in Sec. VII. (3)

Il. RESCALING INVARIANCE NEAR SADDLE POINTS
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FIG. 2. Stochastic layer of syste(f) for €,=0.08, y,=—1,
anda,=a_=1.

wherea, and 8, are expansion coefficients, a@(8°) is a

higher order expansion terfd~(q—0as),(p—ps) 1. By lin-
ear transformation,

1
X=;E§§i[a4q_q9+34p_pQL

4
1
y= W[—a@(q—qs)ws(p—ps)],
Hamiltonian(3) may be also presented as
Ho(d,p)=Ho(ds,ps) = ysxy+0O(8°), (5
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FIG. 3. Poincareections of the Hamiltonian system) near the
saddle point §=m,p=0): () €,=0.02, x,=7+1; (b) e,=\e,
=0.08,x,=xa— 7 The rescaling parameters ake=4 and a,
=a_=1.
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FIG. 4. Poincaresections of Hamiltoniar{10) near the saddle
point (@=0,p=0): (&) €,=0.0025y,=7—1; (b) e,=\'2¢,
=0.01,x,= xa— /2. The rescaling parameter is= 16.

where ys= a; is a coefficient determining the exponential
growth (decreasgof coordinates near the saddle poirns:
~exp(Eyd),y~expvt). We further suppose that all hy-
perbolic fixed points have the same incremeptsy;.
Hyperbolic fixed points ¢s,ps) which lie on the same
values of the energy surfadé(qs,ps) =const may be con-
nected. Two examples of such connections are shown in Fig.
1. The saddle connection is called a homoclinic orbit if the
saddle point is connected by its¢Fig. 1(a)], or a hetero-
clinic orbit if it connects the different saddle poinitEig.
1(b)]. The curves connecting saddle points known as separa-
trices separate the regions of the phase space with different
types of motion. However these separatrices are unstable to
any small perturbations. In particular, a small time-periodic
perturbation destroys the separatrices, and motion near the
unperturbed separatrices becomes cha@ied]. However,
the domain of chaotic motiofor the stochastic laygformed
in the small vicinity of the unperturbed separatrices is not
uniform. There are regions inside the stochastic layer with
regular motions(KAM stability islandg. Examples of sto-
chastic zones are shown in Figs. 2—4. The mutual positions
of these islands and their relative sizes determine the topol-
ogy of the stochastic layer. As we will show below, this
plays a crucial role in chaotic transport along the stochastic
layer. Particularly, the structure of the stochastic layer near
the saddle points mainly determines the statistical properties
of chaotic motion because particles spend relatively large
times to passing regions near saddle points.

A. Universal rescaling invariance

The variation of the perturbation amplitudechanges not
only the width of the stochastic layer but also its structure.
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However, as established recently in Ref87-39, this  merical integration of Hamiltonian equations were per-
change is not arbitrary, but has a remarkable property oformed using the symplectic integrator method, with simpli-
periodicity: the variation of the perturbation amplitud@e-  fication due to the fact that Hamiltonidm) is separable. The
riodically changes the topology of the phase space of peramplitudes of the waves are taken to be equal to each other:
turbed motion near the saddle points. That is, the structure af, =a_=1. The structure of the stochastic layer changes
the phase-space of the perturbed motion near the saddle poinith the perturbation amplitude and the phasg. However,
is invariant with respect to the rescaling transformations the phase-space topologies of the stochastic layer near the
. ) hyperbolic saddle pointsq¢,ps) are similar when two dif-
e—~e =\e, x—x =xtm, ferent perturbation amplitudes and phases are related through
6)  (e,x)—(Ne,x+m) with the rescaling parametern
=exp(2rwy/v). This rescaling property is shown in Fig. 3 by
plotting Poincare sections near the saddle poirt
= (mod 1),p=0] for (@ €,=0.02, x,=0 and (b) e,

L . =\e,=0.08, y,=m at the valuex=4. The mutual posi-
unperturbed Hamiltoniahio(x,y) near the saddle poifEq. tiongaof islan(j(sb ofﬂt-ypes 1, 2, and 3 are similar; thepcoordi—

®)]; HereX=tovl27-r_|§ the initial ph_ase of the per_turbatlon. nates of their fixed points are related according to .
To be more specific, as a generic model consider the MPBue to the stickiness of orbits to islands of type 1, particles
tion of a particle trapped by a main wave subjected to dis- ype L, p

L .. may be trapped for a long time, while stickiness to the island
t_urbance; by two We"?lk waves propagating n o.pposne .d'recz (or 3) may lead to long distance flight along the positive
tions. This problem is equivalent to a periodically driven (or negativé direction of theq axis

pendulum. This system is described by the Hamiltonian The described rescaling invariance of motigix. (6)]

X—X =\Y%,  yoy' =AYy,

with the rescaling parametar=exp(27y/v) depending only
on the perturbation frequenay and the coefficienty in the

p2 near the saddle points is universal for one-degree-of-freedom
H= 5 w%cosq— ewé[a+cos(q— vt+x) Hamilf[onian systems s_ubjected toa small time-pgri_odic per-
turbation and possessing equal expansion coefficignt$
+a_cogq+vt—yx)], (7)  the unperturbed Hamiltonidry(x,y) near the saddle points.

This was first observed in R€f37] by numerical integration
wherew, is the frequency of small oscillations, aecandv ~ of the equations of motion. The proof of this property was
represent the amplitude and the frequency of the perturbagiven in Ref.[38] by constructing a so-called shifted separa-
tion, respectively. The quantities, anda_ describe ampli- trix map, and in Ref[39] by an analytical analysis of Hamil-
tudes of waves propagating in positive and negative directonian equations.
tions of the q axis. The unperturbed systeng0) has
elliptic fixed points at (=27n,p=0), and hyperbolic fixed B. Rescaling property due to symmetry of Hamiltonian
points at [gs=2m(s+1/2),ps=0] (n,s=0,£1,£2,...)
[see Fig. 1b)]. The separatricescurve 2 connecting the
saddle pointgys and ps with qs-1 and ps., separates the

If Hamiltonian system(1) has some symmetries in the
phase space of canonical variablesgp), then there exists

: 2 2 an additional rescaling invariance of the system near saddle
trapped orbits £ wp<H <wp) (curve 3 from the untrapped points with respect to the transformation of the perturbation

2 . .
ones (> wj) (curve 3. The period of trapped _orb|2f§(H) amplitude. Consider, for example, a motion of particles in a
has a following asymptotics near the separatix wg: double-well potential under external time-periodic perturba-

5 tion. The system is described by Hamiltonians

1 32wj 5
T(H)—w—omm‘f‘O(H) for H—-w3x0. (8) H=Hy(q,p) +eH(q,p,t),
. : 2 P> o* ¢
The orbits on the separatrices € wg) are Ho(Q,p)= = — —+ — (10)
' 2 2 4
(+) _ ?Xqiwo(t_to)]‘Fl
qs (=4 Ao = wo(t—tg)]— 1" Ha(d,p,t)=eqcog vt+x).
2w ©) The unperturbed systeng£0) has a single hyperbolic fixed
() e —— point at (q=0,p=0) [see Fig. 1a)]. ForH=H(q,p)<0 a
cost wo(t—to)] motion is trapped in potential wellcurves 3, and for H

. >0 a motion is untrappetcurve 3, and the separatrixH{
where the signs{) correspond to the uppécurve 3 and =0) is described by curve 2. The unperturbed pefi@t)

lower branchescurve 2) of the separatrix, respectively, and of the trapped motion is equal to
to is a time instant when the orbit crosses a midpoint be- PP q
tween two sequential saddle points.

Any small perturbation €+ 0) destroys the separatrices, T(H)= 2‘/5 K (k) (11)
and forms a stochastic layer near the unperturbed separatrix. /1+ \/m '

The Poincaresection, i.e., pointgq(kT),p(kT)] of the orbit
[q(t),p(t)] taken at the periodic time instants=KT, is J2(1+4H)Y4
shown in Fig. 2 for perturbation amplitudg,=0.08, phase — ==
xp= 1, and perturbation frequenay=4.5323Gv,. The nu- (1+1+4H)Y?
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whereK (k) is the complete elliptic integral of the first kind
with a modulek. Outside the potential wellsH>0), the
period is

T(H) K(k),

(1+4H)Y

V1+V1+4H

k==
V2(1+4H)M

(12

Near the separatrix{—0), periods(11) and(12) have the
asymptotics

16
T(H)=iIny—7+O(H),

Gl 9

wherei =1 for H<0 andi=2 for H>0. The trajectories on
the unperturbed separatrixiE 0) are

2
(£)(4) = +
s (t)__cosr(t—to)’
(14
o) V)
cost(t—tg)

wheret, is a time instant when the orbit crosses thaxis at
the farthest distance from the saddle point.
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FIG. 5. Phase space of systéf®).

directions area, = —a_. The proof of the rescaling prop-
erty of motion[Eq. (15)] will be given in Sec. Il using the
separatrix map.

C. 2D periodic vortical flow

We study the rescaling invariance of motion described in
Sec. IIB in a two-dimensional2D) periodic vortical flow.
As we will see later, the existence of this property in such a
flow significantly influences the chaotic transport. It is well

The unperturbed Hamiltonian is symmetric with respectknown that the Lagrangian trajectories of fluid elements are

to g——q andp——p, i.e., Ho(—q,—p)=Ho(q,p), and
but the perturbed HamiltoniaH 1(q,p,t) is antisymmetric,

i-e-! Hl(_qa_ pvt): - Hl(qapvt)

given by the solution of the equations of motiox

= — gH/ay,y= dH/ax with the streamfunctioi playing the
role of the Hamiltonian and the spatial coordinatesy] the

The time-periodic perturbation destroys the separatriX;gjes of canonical coordinates in the Hamiltonian dynamics.
and the motion near by becomes chaotic. The perturbed mo- consider a 2D periodic vortical flow subjected to a small

tion near the saddle point beside the universal rescaling ProRime-periodic perturbation. The system is determined by the
erty [Eq. (6)] has an additional rescaling property due to theyzmilionian function 9]

above-mentioned symmetries of Hamiltonid®). By direct

numerical integration of the equations of motion, we have
found that the system near the saddle point is invariant with

respect to the following transformations:
e—e' =\, y—x'=xxwl2,
(15

q_)q/%i}\lmp, p%p/%i)\lmq.

H=Hy(x,y)+ eH(X,y,t),
(16)

Ho(X,y)= %cos{wa)cos{Zwy).

For convenience we have chosen the unperturbed Hamil-

Poincaresections of systeni10) near the saddle point are tonianHg(x,y) in Egs.(16) with the x coordinate shifted by
shown in Fig. 4 for the two values of perturbation amplitudehalf the spatial period in comparison with one given in Refs.

e and phasey: (@) €,=0.0025, y,=7—1 and (b) ¢,
=\"2¢,=0.01, xp,=xa— 7/2. The rescaling parameter
=exp(27/v) is chosen equal to 16. Note that in Figb¥the
coordinateq is along the vertical axis, and the momentpm

[9,14]. Hamiltonian(16) is a good model for many convec-

tive flows, including the axisymmetric Taylor vortex and the

Rossby waves in geophysical fluid dynamjdd].
The phase space of the unperturbed flow is shown in Fig.

is along the horizontal axis. As one can see from Fig. 4, th&. It has elliptic fixed points afx{®=(m—1)/2y{®=(n

g andp axes are rescaled according to ELH).

—1)/2] and hyperbolic fixed points dtx,,=(m—1/2)/2y,

Such a rescaling invariance near the saddle point with=(n—1/2)/2], (n,m=0,£1,=2,...). There are four dif-

respect to(15) occurs only due to a specific symmetry of ferent types of saddle points: x4{,Yn),

(Xm 1yn+l)1

Hamiltonian system. Considered in Sec. Il A, the three-wavex,.1,Y,), and &+ 1,Yn+1). Because the periodicity of the
model also has such a property. Indeed one can show that tisgstem along andy axes is of period 1, all other hyperbolic

motion near the saddles points described by Hamiltofifan
is invariant with respect to the transformatiofib) if the

fixed points &y ok,Yni2p), (K,p=0,£1,=2,...) whose
coordinates are shifted on integer numbers belong to the

amplitudesa.. of perturbation waves propagating in opposite same classification.
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(b)

m=0, n=1

FIG. 6. Poincaresections of
orbits in a perturbed 2D lattice

flow [Egs.(16) and(21)] near the
four different saddle points for the
perturbation amplitudes(a) e,
=0.0208, phasey,=0; (b) e,
=\"%2,=0.0052, phase y,

PRE 62
-0.35
>
-0.15
-0.45 -0.25 -0.05 0.35
X
0.
>
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eter A=exp(47?/v)=16. Other
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=0.5.
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Near the saddle points the unperturbed Hamiltonian=exp(2ry/v)=exp(47?/v) for an arbitrary small time-

Ho(x,y) in Eq. (16) has the following expansion in powers
of (X—Xm),(Y—Yn):

Ho(x,y)=(=1)™" "2 (X=Xm) (Y= ¥n),

i.e., the parametey is equal to 2r [see Eq(5)].

For H=Hq(x,y)=0 the saddle points are connected
along horizontak and verticaly axes. These saddle connec-
tions are described by orbits

7

co§2may(t)]=*=1/lcosh2m(t—ty)], a=Xx,y, (18

wheret, is a time instant when a trajectory passes a midpoint

between two adjacent saddle points.
Inside of each cell the trajectories are closed, and have
period of motionT(H) [w(H)=2#/T(H) is a frequency

T(H) %K(k), k?=1—4m7°H?2. (19

Near the separatricds— 0 there are the following asymp-
totics of T(H):

T(H)= +O(H). (20

el vy

periodic perturbatioid ;(x,y,t).

For some wide class of perturbatioh;(x,y,t), there
may also exist a rescaling invariance with respect to trans-
formations of type(15). Consider, for example, a time-
periodic perturbation of the flojEq. (16)] in the form of the
traveling waves with the same spatial periods as the unper-
turbed flow and the frequency (a periodT=2x/v),

E .
Hi(x,y,t)= %[&YSIH(ZWy_ vi—x)

—a,sin(2mx—vt—x)1, (21
where a, and a, are relative amplitudes of the traveling-
wave perturbations along theandy axes, respectively. The
perturbed Hamiltonian has the following symmetry property
in (X,y) space:
Hi(x+1/2y+1/21)=—H(X,y,t). (22

To integrate the Hamiltonian systeiaqgs.(16) and(21)],
we used a fifth order Bulirsch-Stoer Runge-Kutta method
with an adaptive step size control, and I0accuracy[42].
Poincaresections of orbits near the saddle points are pre-
sented in Fig. 6 for two different amplitudesand phasey

Any time-periodic perturbation destroys the separatricesof the perturbation related to the rescaling parameter

The motion near the unperturbed separatrices becomes cha-exp(4m/v)=16: (a) €,=0.0208, x,=0; (b) €,

— 12
=N ‘€,

otic, forming a stochastic web along unperturbed separa=0.0052, y,= x5+ /2. The relative amplitudes of waves
trices. The structure of the stochastic web near the saddlere chosen aa,=0.5 anda,=1. Figure a) shows Poin-

points is invariant with respect to the universal rescalingcare sections near

transformation (6) with the rescaling parametern

the saddle pointsXy(o,Yn=0)
=(—1/4,-1/4) and Km-0,Yn=1)=(—1/4,1/4). Corre-
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sponding plots near the pointg{-;,Y,-1)=(1/4,1/4) and
(Xm=1:Yn=0)=(1/4,—1/4) are similar to those near
(Xm=0:Yn=0) and &m=0,Yn=1), and they may be obtained
from the latter by rotating plots by 180° around the corre-
sponding points. Figure(B) presents Poincargections near
points(1/4,—1/4) and(—1/4,—1/4) with the inverted coordi-
nates ¢— —x,y——y). In the inverted coordinatesx{y) !  q
they correspond to the points X{_o.Y,—1) and ) Heotw)™ /| '\
(Xm=1,Yn=1)- y‘ g "

As can be seen from Fig. 6, the topology of the phase
space near the saddle points is conserved with respect to the
rescaling transformation:

e—N"Y%e, y—ox+tml2, FIG. 7. Geometry of the shifted separatrix map for the double-
well potential. The solid line describes the perturbed orbit, and the
(X—Xpm)— — )\*1/4(x_ Xm' ) (23 dashed line corresponds to the unperturbed separatrix.
(Y=Yn)— =N Y y—y.). Secs. IV, V, and VI for computations of statistical character-
istics of chaotic motion.
One should note that, unlike rescaling | for the sys- The separatrix map was used in many works to analyze
g Yy

tem with a single saddle point, in this case the structure neahe chaotic motion near the separatrix. In particular, it was
the saddle pointx,,y,) is transformed to the one near the applied to estimate the width of the stochastic lajzn6],
other saddle pointxX, ,y,’). For the even sunm+n, the and to study diffusion through a stochastic wety] and

transformation fn,n)—(m’,n’) is transport in structured fluidsl4,16,1Q. Application of the
shifted separatrix map to analyze the magnetic field lines in
(m,n)—(m,n+1), tokamaks was considered in Reff38,44.
The geometries of the shifted separatrix mappings are pre-
(mn+1)—(m+1n+1), sented in Figs. 7, 9, and 10. We introduce two sectbrsd
(24  X.inthe (q,p) plane. Sectiork, consists of two perpendicu-
(m+1n+1)—(m+1n), lar segments of] and p axes, with the center at the hyper-
bolic fixed point @s,ps). Sections . consist of segments
(m+1,n)—(m,n). perpendicular to the unperturbed separatriapgt) andpg(t)

at the midpoint between two consecutive saddle points. Let
t, andH, be a time instant and an energykatthe crossing
point of the orbit with the sectiort,. We define a map

(tes1,His 1) =Ts(tx . HW). The mapT has general forms

Rescaling transformation®3) and (24) occur only due to
the symmetry of the perturbed Hamiltoni&2R). The analy-
sis of this property will be also given in Sec. Ill.

Ill. SEPARATRIX MAP ANALYSIS Hi 1 =H+AH((t Hy),

For small perturbations the width of the stochastic layer fes 1=tk AL(H) + At(Hy. 1) (25
is sufficiently small, and chaotic orbit are located near the k1™ Tk K k1)
unperturbed separatrices. A powerful method of analysis
such a motion is based on the separatrix mapping first intr
duced by Chiriko\ 2] using the Melnikov methof26]. The
geometrical interpretation of the separatrix mapping given i
Ref.[43] defines it as a return map of tintg and energyH)
to the different sections of the phase spage]. However,
this conventional definition of the separatrix map does not AH(tg ,H ) = eM(t +At(H) + x/v),
describe the rescaling invariance of motion near saddle
points, as shown in Ref§38,44. In order to overcome this

O\f/vhereAH(ti< ,H,) is the change of energy in the one step of
%he map. In the first order of the perturbation amplitucet
is determined by the Melnikov integral (t) [26,4], which
Iﬁhway be found through the generating functiGiity) [45],

shortcoming of the separatrix map, a new definition of the M(ty)= ) , (26)
separatrix map, called a “shifted separatrix map,” was given dto

in Ref.[38,44]. A rigorous method of construction of Poin-

care maps, particularly separatrix maps, was developed in G(t ):_fx Hi[a<(t), ps(t), t]dt.

Ref. [45]. The shifted separatrix map is defined as a map of 0 o TSRS

time (t) and energy(H) variables to the same cross section

located near saddle points. It correctly describes the rescalinghe integral in Eqs(26) is taken along the unperturbed sepa-
invariance of motion near the saddle points. Below, based oratrix [gs(t),ps(t)] connecting the saddle points. The argu-
the method developed in Rg#5] we construct the separa- ment of the generating function in EqR6), tq, is a time

trix maps for Hamiltonian systems considered in the previinstant when the orbit crosses the midpoint between adjacent
ous sections, and using them prove the rescaling invariancgaddle points on the unperturbed separatrix. For a time-
of motion near saddle points. These will be also exploited irperiodic perturbationd,(q,p,t) with frequencyr, the func-
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tion G(t) is a periodic function ot with the period 2r/v. ~ Fig. 7, there exist two independent separatrix mepe de-
Here At(H) is the time necessary to pass along the unperSC”_b'ng the_ gvolutlon of the system along separatrl_ces on
turbed orbit of energyd form section>, to section>,.. Near ~ their  positive, [a{”(t),p{(1)],  and  negative,
the separatrix it has the universal logarithmic asymptotics [aS ’(t),p{ ’(t)], branches. According to Eq¢14) and
(26), the corresponding generating functio@$™)(t,) are
Q equal if the perturbation functiol{(qg,p,t) is symmetric
+O(H). @7 it respect to change of signs af,p, i.e., G()(ty)
=G((ty). In the case of antisymmetric perturbation func-
where the parametey is the expansion coefficient of an tion H,(q,p,t) we haveG(*)(tg)=—G()(t).
unperturbed Hamiltonian near the saddle poiisgs. (5)], Using Eqgs(26) and(14) for the Hamiltonian syster(iL0),
andQ is a constant depending on the systélive suppose we obtain
that at the unperturbed separattix=0).
Divergence of the perioat(H) [Eq. (27)] at H—O0 is + I et _
responsible for the onset of chaotic motion near the separag( ((to)= leqg )(t)cog vt+ y)dt=F K cog vty+ x),
trix for any small perturbation amplitude due to the over- (29
lapping of infinite number of resonances of typao(H)
=nv[m=mg, ...~;n is an integer number, ans(H)  Wwhere
=2m/T(H) is the frequency of the unperturbed periodic mo- .
tion] [2]. The smallest numban, is determined bye. K= \/Ef
First we note that near the separatrix, when the logarith- —
mic asymptoticg27) for At(H) is valid, map(25) is invari- ) _ ) )
ant with respect to the universal rescaling transformation 1he time shiftAt(H) in Eq. (25) is equal to half the unper-
turbed periodT (H) for H<O or one-fourth ofT(H) for H

e—~€e'=\Ne, xy—x' =x—m H—=H'=\H, (29 >0; i.e., according to Eq(13) the asymptotics ofAt(H)
_ _ _ near the separatril—0 has the form of Eq(27), with y
with the rescaling parameter=exp(2my/v). This property =1 and Q=16. Therefore, we have two separatrix maps

corresponds to the universal rescaling property of perturbe t —&*)(H, t.) describing motions near the
motion near the saddle poifEq. (6)]. g;g;rlétlr(i;l) (Hic:t) g

This means that the topology of the stochastic layer near
the saddle point periodically repeats when changing the per- v 16
turbation parametee, i.e., it is a periodic function of le Hk+1=Hk=erK sin( Pkt §|nm+x
with the period In\. It can be expected that the periodical k
change of the stochastic layer topology also leads to periodi- "
cal (or quasiperiodicalchanges in the transport characteris- Ore1= Prt+ > Inmﬂnm ,
tics. This will be studied in subsequent sections. k k+1

From Egs.(25—(27), it also follows that the rescaling where the phase variable= vt is introduced.
invariance[Egs.(28) and (6)] of the motion near the saddle The separatrix mapg(i) [Egs. (31)] introduced in addi-

point is valid when(i) the perturbation amplitude is suffi- : : . . .
ciently small that one can neglect terms of a higher order Opon to_ the universal Tvanance propeftq. (2.8)]’ with the
rescaling parametex=exp(2n/v), also describe the rescal-

e in the change of energgH(t,H), i.e., the effect in the .~~~ . . .
i . . ~ing invariance of motior{Egs. (15)] near the saddle point
first order of the perturbation parameter and (ii) the re due to the symmetry of the perturbed Hamiltonian

scaling parametex has a moderate magnitude, so that the|_| L(0.p.t). Below we give the proof of this property.

asymptotics(27) for the rescaled energi’=AH s stil The rescaling transformationd5 may also be formu-

valid. lated as
One should note that the conventional definition of the

separatrix map given in Ref2] is invariant with respect to e V2,
the transformation

1
At(H)= Tylnm

cog VT)dT_ w2
coshr  coslvm/2)"

(30

31
16 16 (Y

. x—x*m2, H——-\"H. (32

, , , We study the rescaling properties of fixed points of motion
e—~e' =\e, x—x'=x, H—-H'=AH, near the saddle points. Consider the cross sections of orbits

L ) at the branchep=1, 2, 3, and 4 of sectiod shown in Fig.
which is different from Eq.(28); therefore, it does not de- 7. Let ((P(p) H®)
. q

. o : ) , be a (@,s) fixed point at thgdth branch of
scribe the rescaling invariance of motion near the saddI% ie as Has) G.9) P ®
point. The main reason for this is that the time variable in the™’ "~
conventional separatrix map is defined on the sechign (P 4275 HPY=(E )9 o® HP) 33
located far from the saddle poif38,44. (eqst2msHae)=(Fp)(eqs Has), 33

whereq,s=1,2,.... Themapsf:p (p=1,2,3,4) are formed

A. Motion in a double-well potential under external by the consecutive application of the separatrix mﬁ&ﬁ:

time-periodic perturbation
First consider the construction of the separatrix map for Fi=(S8Ma, Fy=(8H)e,
the motion in the perturbed double-well potentiaée Sec. R o R R (34)
Il B). According to the geometry of the mapping shown in Fy=(SMSha  F,=(S)a,
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0.008

0.006

0.004
= 0.002 s
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q

-0.002
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_0.006 L L L ‘ L 1 ‘ 1 L 1 ‘ 1 L 1 | L 1 L 2 (Hk+1,tk+1)

0.0 0.2 0.4 0.6 0.8 1.0 c
@2n  (mod 1)
(b) FIG. 9. Geometry of the separatrix map for a three-wave field
-0.032 S model[Eq. (7)].
—0.024%5 . . ,
clearly see that rescaling transformatiai®2) indeed con-

=0.016 serve the topology of the phase space with the rescaling law
T _0.008 H— —\Y2H.

0.000

B. Separatrix map for a three-wave field model
0.008
Here we construct a separatrix map for the particle motion
0.016 - ) e in the three-wave field considered in Sec. Il A. The geometry
0.024 - : N R S B of the separatrix map is presented in Fig. 9. Calculating the
0.0 0.2 0.4 0.6 0.8 1.0 gener?tirtl)g ;unctior(2t§) évéith tgj]Hamiltoniang) _along the
unperturbed separatricEgqgs.(9)], one can obtain
92t (mod 1) P P q
. v 3
FIG. 8. Poincaresections of orbits at sectiah obtained by the N+ 1=hg+ eKsinl ¢+ 2—an +x/,
wo k

separatrix map for the same parameters as in Fig. 4. 39
38

. aEY . . v 32 32
Although each of the separatrix maf§®) is not invariant Ori1= @t =—— |nm+ln— ,

with respect to transformatio(B2), their combinations of 2wq [Pyl
typesS(F)&*) and &*))2 are transformed as

where = t, h=(H—03)/ w3,

(B2 EHE), FOEH (&2,
p 7A
a,expi— —

2
(35) 4 A
lp| 2

K= —7—
(F)2EHFEH) N (&)2, sinh(7A)

N [< p WA)
a_expg — — —
lp| 2

which can easily be proved by direct calculations. Thereforeand A= v/wo. Note that, in general, the quantiky depends
rescaling transformation@?) transform the mapﬁp as on the direction of the motion, i.e., on the sign of the mo-

mentump.
,31_”34' ,“:2_”33’ ,33_),32, |34_),34 (36) For arbltrary v_aIugs o_f the amphtude&_ of waves, the_
separatrix map is invariant with respect to the rescaling
for y— y+ =/2, and transformations (28) with the rescaling parameten

=exp(2rwy/v). However for the special case,=—a_
F,—F, F,—»F,, Fs—F, F,»F, (37 notedatthe end of Sec. Il B, it also describes the rescaling
invariance of motiofEqgs.(32)] near the saddle points due to
for y— x— /2. One can see that transformatidBg), (36),  the symmetry of the system in the phase space. Indeed, in
and (37) are equivalent to the rescaling invariance of per-this case we have
turbed motion equations near the saddle péigs. (15)] )
found by the numerical integration of equations of motion. K= £|a | 4w A
The rescaling propertjEq. (32)] is demonstrated in Fig. 8 [p| """ cosiwA/2)’
by plotting Poincaresections of orbits at sectioB by the
separatrix map for the same parameters as in Figa)de,  and the separatrix mafEgs. (38)] takes a form similar to
=0.025, x,=7—1; (b) e,=\"2%€,=0.01, yy=xa— /2.  Egs.(31). For the latter we have proven the existence of the
RegionH>0 corresponds to the first branch of sect®bn  rescaling invariancEEqgs.(32)]. Application of the separatrix
andH <0 corresponds to its fourth branch, respectivelge  map(38) to study the chaotic transport in the stochastic layer
Fig. 7). Note that the axi#l in Fig. 8b) is inverted. One can will be given in Sec. V.
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4 1 shift At(H) in Eq. (25) is equal toT(H)/8, whereT(H) is
unperturbed period of motiofEgs. (19) and (20)] in each

n/i2+1/4
<~ (Hy , 1) cell. Therefore, the separatrix maps for the system are
’ 3 2
Zmn+1 8 v 2
He 1 =H+eM®P | ot —In——+ x|,
2 2 k+1 kT € a,axl Pk Agr 7T|Hk| X
S S S C . ) (47
(His 1, ke ) = —IIn ,
T (B, i) Prra= ekt 7o |P7T|Hk| +|pw|Hk+1| '
2 2 2m+1n .. . .
mn c Each of these maps is invariant with respect to transforma-
n/2-1/4 . , , tion (28), with the rescaling parametar=exp(4m/v).
Consider, for example, the generating functions for per-
m/2-1/4 X m/2+1/4 turbation function(21):
FIG. 10. Geometry of the separatrix map for the periodic vorti- ) € (= )
cal flow [Eqg. (16)]. Gfail(to) =— Zf [a,sin(2my(t) —vt—x)
C. Separatrix maps for 2D periodic vortical flow —a,sin2mx(t) — vt— y)]dt. (42)

To construct the separatrix maps for this system, we in- ) )
troduce section& ,, (m,n=0,=1,+2, ...), centered at the Using the unperturbed trajectories along separatri@&s,

hyperbolic fixed points X.,,y,,) shown in Fig. 10. Each of and integrating Eq(42)_, one can obtqin the following ex-
sectionss, ,,, consists of two segments crossing each othePressions for the Melnikov functions in magl):
perpendicularly at the hyperbolic point, at 45° from tke

(n) —=(—1)" () +
axis. There are four branches of each seclign,, denoted Minmz1(to) = (= 1) K codvto+x),

asp=1, 2, 3, and 4. We define maps T/ln/)=§Q(km”), for m+n=2k,
whereQ(km“) is a crossing point of the orbit with the section (43
S mn. We denote them aX{)..; and Y{\.,. The map M. (to) = (—1)Ma K Hcog vtg+ y)

XM ., transforms pointsQy at sectionX,, t0 Q. at
> m=1n @long the horizontal axis at fixedy=y, . Similarly,

\A(ﬂ’“gﬂ connects points at sectiols,, and , ,+ 1 along the  \here

vertical axisy at fixedx=x,,. Because of the periodicity of

for m+n=2k+1,

the system inX,y) space with period 1, we have the follow- )_ Y exp( £ v/4)
ing symmetry properties of the maps: K " 27 sin(v/2)
XD =Xy (k=0,+1,+2, ...). From Eq.(43) it follows that all eight
generating functionﬁ(fgyil(to) are not independent. Be-
Y=y, ., cause of symmetry of perturbati¢@2), we have
(39
S(n S M 1(to) = =M {1 (to),

) _
Xm+2,m+2i1_ xm,mtl!

(m) (m+1) (44
(m) — () Mhn+1(to)=—Mypz15(to).
n+2n+2+1 nn+1-
) ) ) The existence of a rescaling invariance of motion near
Thanks to these symmetry properties, there exist only eigh{aqdie point¢23) and(24), studied in Sec. Il C by numerical
independent mapS which fully determine the dynamics of integration of the equations of motion, is due to these sym-
the system. metries. Using the separatrix mag&l) one can prove this
For small perturbations the map may be replaced by aescaling property. This is shown in the Appendix by con-
separatrix map which describes the evolution of endky structing maps ,‘:ET?% (p=1,2,3,4) for fixed points
and time (t) variables at section&mn, i.€., Hyt1:tcra) (@q,s.Hq,s) Near the saddle points,y,) at each brancip
=S(H,t) (5=X{Phn.1,Y{M.1). This has a general ana- of sections
lytical form [Eq. (25] with the Melnikov functions
M. 1(to) (a,8=m,n), (¢qst2mS,He = (FINU@qs,Hae), (45

mn, 1-€.,

oo

()] - i
Ma,atl(to) (9t0 _le[qS(t)vps(t)it]dt! (40)

similar to those map§p introduced to determine the fixed
points[Egs.(33)] in the model studied in Sec. Il A.

Using separatrix maps, we have plotted Poincaetions
where integration is taken along the unperturbed separatrigf orbits at>,y and 2 y;, shown in Fig. 11 for the same
connecting the saddle pointx{,y,) with (Xn+1,¥n) (@ parameters as in Fig.(®: €,=0.0208 andy,=0. The re-
=m,B=n) or With (Xm,Yn+1) (¢=n,8=m). The time scaling parametek =exp(47/v)=16. Corresponding plots
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m=0,n=0
0.0096 -0.0024
0.0048 -0.0012
m B
0.0000 |; 0.0000
-0.0048[ 0.0012
_00096\||\||\|||||||\\|\\ 0.0024||\\\\\\\\\\|\\|||\
0.0 0.2 0.4 0.6 0.8 1.0 1.0 0.8 0.6 0.4 0.2 0.0
@2n  (mod 1) ¢2n  (mod 1)
= - m=1,n=1
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0.0012
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FIG. 11. Poincarsections of orbits of the periodic vortical flow FIG. 12. The same as in Fig. 11, but at sectiBiggand= o, for

[Egs.(16) and(21)] obtained by separatrix mapping at secting  e,=\“2¢,=0.0052 andy,= y,+ 7/2. Other parameters are the
and 2, for the parameters,=0.0208 andy,=0. The rescaling same as in Fig. 11.

parametei = exp(4n?/v)=16. Other parameters asg=1 anda,

=05. In the case of a stochastic layer formed near the separa-

) _ o, trices, the chaotic transport is mainly determined by its struc-
at sectionsX 1; andX 1, may be obtained from Poincaptots  yre near the saddle points, where particles spend more time
at o and %o by shifting the phase by m, respectively.  than in other parts of the phase space. As shown in previous
Similar plots for the rescaled parametees=\""%c,  sections, the perturbed motion near the saddle points have a
=0.0052 andyy= xa+ w/2 are presented in Fig. 12 at sec- remarkable rescaling invariance with respect to the change of
tionsX; andX ;. Note that the axe¢ andH in Fig. 12 are  the perturbation amplitude and phasey [Egs.(6)] (for the
inverted. These figures confirm the rescaling invariance ofixed perturbation frequency), i.e., the topology of the sto-

motion with regard to transformatiorf23) and (24). chastic layer near the saddle points is a periodic function of
In e with period In\. Therefore, one can expect that by vary-
IV. STATISTICAL PROPERTIES OF CHAOTIC MOTION ing e one can periodically change the transport properties of

chaotic motion in a stochastic layer. Below, we demonstrate

_ In this section and subsequent sections we study the sStghese properties for the models of Hamiltonian systems con-
tistical properties of chaotic motion in a stochastic layer, andjgered in the previous sections.

their dependence on its structure. As noted above, the sto-
chastic layers formed near the separatrix are not uniform.
They consist of KAM stability islands embedded in a so-
called stochastic sea. The structure of the stochastic layer is We first study a particle motion in a double-well potential
determined by the mutual positions and sizes of KAM is-subjected to the time-periodic perturbation described by
lands. The existence of these islands leads to the deviation éfamiltonian (10). This problem has a direct application in
chaotic motion from the normal diffusion processes becausemagnetic field line dynamics in divertor tokamal3s], in

of long-time range correlations due to particles trapped neachemistry, etc. Suppose that in the absence of perturbation a
the islands. This process, known as anomalous transport, dparticle is trapped in one of the wells. A motion of particle
pends on the structure of the stochastic layer. Therefore, onaay be described in they(p) plane by the closed curve 1 in
can vary the transport properties by changing the structure dfig. 1(a), and it is separated from the other well by the sepa-
the stochastic layer. This may be done, for instance, by varyratrix (curve 2. A time-periodic perturbation destroys the
ing of the perturbation parameteror its frequencyw. separatrix, replacing it by a stochastic layer. If the initial

A. Mean residence time
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recurrences. This is related to the correlation function of dy-
namical variable€(7) =(x(t+ 7)x(t)) (see, e.g., Ref31]),

C(7)~ 7Precl 7)/<T>1 (46)

where(7) is the mean recurrence time. The diffusion coef-
ficient (rate) D is directly related to the correlations,

<t>/T

D~wa(T)dT. (47)

0

Asymptotically, probabilityP,..(7) decays exponentially
with 7 in the case of fully developed chap3]. Numerous
log € studies ofP,..(7) show that, for systems with partially cha-
10 otic regions, the recurrence has a power Ry (7)~ 7 P at
FIG. 13. A mean residence time) in the potential well nor- @ large time. The first calculations of the exponprior the
malized to the perturbation peridt versus a perturbation param- Separatrix map and other different maps gpvel.5[31,30.
eter e (curve 1. Curve 2 describes the fitting df) by a linear ~ During the last decade values pf=1-2.5 have been found
function of logee: a—blogyee (a=21.87+2.64p=3.92+0.462).  for different Hamiltonian systemi31,33,48-50 However,
The rescaling parametar= 10. Chirikov presented some arguments that the valuep of
should be equal to B51], which is strongly different from

) . L ) ) p~1.5. Murray maintained that in order to achieve the ex-
orbit of the particle was inside the stochastic layer, it |eave%)onent p=3, one requires larger timeiS2]. Recently a

the potential well during a certain time A residence time-  power-law decayP,..(7)~ 7 P with p=3 was numerically

is a random number, and its statistics depends on the strugbserved at very large times for dynamical chaos in a stan-
ture of the stochastic layer. Below we study the dependencdard map with the critical golden KAM invariant curve, i.e.,
of the mean residence time on the perturbation amplitude m:n=v/w=(/5—1)/2[53].

Let us first estimate the qualitative dependence of the We have studied statistics of first return times to the
mean residence timer) on the perturbation parameter If ~ fourth branch of sectiox (Fig. 7) in the above considered
one does not take into account particles trapped by islangdouble-well potential for different perturbatlo_n parameters
one could expect thatr) is proportional to the period of 'he Other parameters were the same as in Sec. IVA. Al
particle’s orbitT(H,) inside the stochastic layer with an ef- calculations are pgrformed using s_eparatrrl]x niap. g—h?
fective energyH,, L.e., ()~T(Hy). The effective energy mean recurrence timer) as a function of the perturbation

. | : parametere is shown in Fig. 14a). Similar to the mean
Hs is of order of the width of the stochastic layer(e)  residence timésee Fig. 13 this is also a quasiperiodic func-

(supposing that at the separattik=0). Sincews(€)~€,  tion of log,ee with the period logo\. However, the maxima

and taking into account the logarithmic asymptotics of theof the mean residence time correspond to minima of the

period T(Hg) [Eq. (13)], one can obtain the dependence mean recurrence timer), and vice versa.

(7)~a—Dblog,e, wherea andb are independent of con- The probability of recurrenceB(7) is computed up to

stants. Therefore neglecting the particle’s trapping by islandgoderate times= 10°T. This is shown in Fig. 1éb) for two

one expects that the mean residence time linearly decreas@iferent perturbation amplitudes=0.01 (curve 1 and e

with loge. =0.0126(curve 2, corresponding to the local minimum and
Direct calculations of 7) were performed using the sepa- MaXimum values of the mean recurrence time in Fidail4

ratrix map[Egs.(31)], and is presented in Fig. 13. The value respectively. The straight lines correspond to the power-law

. : decayr P. One can see from Fig. U9 that P(7) decays
of the perturbz;\tli)n freg:/eniylg cRosen to have thcej rescal- oscillatingly near the power law™ P, which was also ob-
ing parameten =exp(2/»)=10. Averaging is made OVer go e in Ref[31]. The amplitude of these oscillations var-
N=10° orbits. Curve 1 describes a dependenceé 9non e,

e ; ; ies with the perturbation parameter Estimations of the
and curve 2 corresponds to its fitting with the linear-log IaWexponenIp for different e were performed by a fitting of the

(1)~a—blogee. From the figure one can clearly see thatyopapility of recurrence®(r) with the power lanC P in

the mean residence time does not depend monotonically Ofie time interval 18< 7/T<1C°. The latter is of the order of

€. This shows that there are strong periodic oscillationghe oscillation period ofP(7) around the power lawP.

around the linear-log dependence. These oscillations are dugie dependence of the exponept®n e is shown in Fig.

to a periodical variation of the topology of the phase space 4(c), from which one can recognize a periodic dependence

near the saddle point with the change of the perturbationf p on log,.e with the period logo\ =log;o10. The values

amplitude e. The period of oscillations are determined by of p vary between 1 and 2, and oscillate near the average

setting the rescaling parametey i.e., equal to log\. value p~1.5 which was observed in most previous calcula-
tions mentioned above.

B. Statistics of Poincarerecurrences
V. CHAOTIC TRANSPORT IN A STOCHASTIC LAYER.

One of the important statistical characteristics of the dy- THREE-WAVE FIELD MODEL

namically chaotic system is the statistics of Poinaaeur-
rencesP,..(7). This is defined adl(7)/N, whereN(7) is a In this section we consider a chaotic transport of particles
number of recurrences witt> 7, andN is a full number of in a stochastic layer for the three-wave field moldgd. (7)]
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FIG. 15. Advection velocity vs the logarithm of the perturba-

tion amplitude, logye, as obtained by direct numerical integration.
The rescaling paramet@r=exp(2rwqy/v)=4.

log 10 Prec (T)

formed up to the time instart=2x 10*T for different per-
turbation parameters. Here T=2/v is the period of the
perturbation. A set of initial data d@t=0, consisting ofN
=5x10° trajectories, was taken in a square region centered
at a hyperbolic fixed pointq= m,p=0).

—

A. Advection

An advection in the stochastic layer takes place in the
direction of the perturbation wave with the larger amplitude
Qmax=Mmax(@, ,a_). The maximum advection occurs if
only one perturbation wave is present. We consider this case,
settinga, =1 anda_=0. The mean value of the particle’s
coordinate(q(t)) is calculated by numerical integration of
-3 log_¢ -2 -1 equations of motion for the different perturbation parameter

10 € in the interval[0.002,0.4. This shows that at least up to
t<2Xx 10*T the mean coordinatég(t)) is linear function of

) ) ) o timet, i.e.,{q(t))=wvt, with an advection spead However,
perturbation amplitude logarithm, Igg. (b) Poincarerecurrence the advecti edl t tonic functi f t
P.ec(7) to the fourth branch of sectioB (see Fig. ¥ for the two e_a vection spe _Is_no a monotonic “T‘C lon O. pertur-
perturbation amplitudese=0.01 (curve 3 and e=0.0126 (curve bation paramete¢. Similar to the mean residence time stud-

2). (c) Exponentsp of asymptotics o, ()~ =P as a function of ied in Sec. IV, it varies quasiperiodically with the change of
10gy0e. log € as shown in Fig. 15. Its period is equal to {99

=

FIG. 14. () Average recurrence timér) as a function of the

(see Sec. Il A We will study statistical properties of trans- B. A second moment of spatial displacement

port along the(infinite) g axis, particularly advection and The second moments?(t) of the spatial displacement
diffusion, by calculating the first{q), and the second, are calculated for the, =a_=1. Because of the fact that
a?(t)={((q—(q))?), moments of the spatial displacement, the perturbation in Eq(7) in this case acts symmetrically on
respectively, as well as the probability density functionparticles traveling in both positive and negative directions
(PDP P(q,t) for a particle with positiorg at time instant ~ along theg axis, and gives rise to no advection, i.e., the mean
as a function of the perturbation amplitude value ofq is expected to beq)=0.

Calculations of the statistical moments were performed The dependence @f?(t) on the perturbation amplitude
using direct numerical integrations of motion equations foris shown in Fig. 16 at two different time instants: curve 1
the Hamiltonian(7). Since the numerical integration of the corresponds té=10T,, and curve 2 tad=2x10*T,. The
Hamiltonian system is rather time consuming, we have alsthick curves describe the results obtained from a numerical
exploited the fast numerical algorithm based on the separantegration of the equations of motion, while the thin curves
trix map (38) to calculate statistical moments and the PDF. corresponds to calculations by the separatrix &8 (with

For all calculations a perturbation frequency is chosen aan average ovel=10* orbits). One can see that the sepa-
v=4.5323Gv,. Then the rescaling parameterNs=4. For  ratrix map(38) correctly reproduces the results of direct nu-
simplicity we seta, =1 anda_ =0 for the amplitudes of the merical integrations with a good accuracy up to the value
perturbation waves to consider an advection. On the othex0.1. Figure 16 clearly shows the strong quasiperiodical
hand we sea, =a_=1 to study “pure” diffusion. A nu- dependence of the second mome#(t) on the perturbation
merical integration of the Hamiltonian syste(, was per- parametere. There are local maxima af?(t) at the values
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FIG. 16. Second moment?(t) vs log.e as obtained by direct
numerical integration. Solid curve 1 correspondgal0*T,, and
solid curve 2 tat=2X 10T, (thick lines. The corresponding thin
line curves describe the results obtained by the separatrix BE@p
(38)].

€0 =N €may and €y2,~0.192, and local minima at{),

=\"leminanden,in=0.08 (=1,2,...). Forlarge perturba-
tion amplitudes e>0.1 the quasi-periodical behavior of

o?(t) is less pronounced since the rescaling property o
Hamiltonian system starts to violate for large perturbations

The behavior of the second momert(t) for long times
t>2x10* was studied using separatrix més). Figure 17
shows o2(t) versuse at the different time instants/T,
=10, 2x10% 5x10% 10, and 16, continuously num-

bered 1-5, respectively. With increasing time, the periodic@xis. After crossing the criticalep, ,

dependence of%(t) on e becomes more pronounced.

STRUCTURE OF MOTION NEAR SADDLE POINTS AND ...
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FIG. 18. Exponenty vs the logarithm of the perturbation am-
plitude, logge. It is obtained by fittings?(t) with 2Dt” in the large
time interval 10T,<t<10°T,,.

the last KAM invariant curve between the stochastic layer

and them:n resonance of type (islands of type 1 in Fig. 3

i.e.,, mo(hy)=nv (h,,<0), with the smallest possible
numberm. Just before crossing the invariant curve, more
rbits are trapped by islands of types 2 and 3. The reason is
hat the corresponding critical perturbation amplitueg)

for these resonancepmw(h,,)=nv,h,,>0] is smaller

than for the resonance of type 1, i.el;)<e(.). This asym-

metry is due to the correction ter@(h) in Eq. (8). This

results in an enhancement of the transport rate alongjthe
() the resonance

m:n (h,,<0) joins the stochastic layer, and orbits begin to

The profiles near the maxima become sharper, with shale trapped by that resonance. This leads to the decreasing of

low regions between them. The positions of the maxéfja,
move toward smallee, but the positions of the minime})

the transport rate. The small amplitude oscillationsrfift)
with respect toe are due to the joining ofn:n resonances

become less distinct. The sharp maxima are due to the cros&ith higher numbersn. The long time evolution more pre-

ing the critical perturbation amplitudén’n) for destruction of

11 ;

10{

logmo2 ()

FIG. 17. Same as in Fig. 16, but for the time instants
=10'T, (1), 2X10*T, (2), 5% 10°T, (3), 10°T, (4), and 16T, (5).

cisely reveals the existence of critical perturbation ampli-
tudese!;,) for destruction of KAM invariant curves between
the stochastic layer and thm:n resonance.

For large timeg the asymptotics is(t)~t?. The expo-
nentvy is also a strong quasiperiodic function ofdmvith the
period In\. The dependence on e obtained using the sepa-
ratrix map (38) is shown in Fig. 18. The chaotic transport
along theq axis is superdiffusive > 1) for all perturbation
amplitudes. The exponent takes maximum and minimum
values at the same values aso?(t) does. Regions withy
>2 correspond to the acceleration regimes.

C. Probability density function

Separatrix mag38) is also applied to calculate the PDF
P(q,t). The PDFP(q,t) was calculated at the time instant
t=2Xx10*T, for perturbation parameters in the interval
[0.002,0.1. The number of orbits isN=10°. The PDF is
almost symmetric with respect tp=0, and it is mostly lo-
calized near this point. The widthAZr of P(q,t), defined as
an area— Ao<q<Ao where half the orbits are localized,
i.e., /2%, P(q,t)dg=0.5, also has a strong periodical depen-
dence on Ire similarly to o(t).
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5 @ curve between the stochastic layer and tive resonance

4 On the other hand, foe< eﬁn_n), particles are trapped by
3F resonances of types 2 and 3, and therefore they can travel
2 long distances. In this case, the tail oP(q,t) decays more

1 slowly than|g| ~¢. Overall the results show that the asymp-
of totics of PDFP(q,t) for |g|> Ao depends significantly on

-1 s ‘ the structure of the stochastic layer, and it is mainly deter-
mined by the outermost KAM stability islands at the chaos
border.

VI. CHAOTIC TRANSPORT IN 2D PERIODIC VORTICAL
FLOW

In this section we consider a chaotic transport in a sto-
chastic web of the 2D time-dependent periodic vortical flow
‘ (16). For simplicity we consider a perturbation

-2 .
-2 -1
log, ¢ € .
Hi(xy,t) = 5—[sin(2ary) —sin(2@x) Jcog vt + x),
FIG. 19. Fitting parametera and B for a power exponential (48)
law P(q,t)~|q| ~*exp(—gld)): (@ « versuse; (b) B8 versus logge.
A time instantt=2x 10°T,. which may be considered as combination wave perturbations

sin(2mx—t—x)+sin(mx+vt+y) and  sin(2ry—t—y)

One should note that the second momeA(t) and the  *Sin(2my+t+x) propagating in opposite directions of the
width Ao describe the width of the probability density func- andy axes, respectively. Thanks to symmetry propé#g
tions. However, in the case of anomalo@ron-Gaussian Of perturbation(48), there exists an additional rescaling in-
transport they describe different physical situations of the/ariance propertyEgs.(23) and(24)] of the system. There-
transport process. The widtho describes the PDF near the fore, one expects that all statistical characteristics of the cha-
central part where half of the particles are located. The maiftic transport in such a system are to be quasiperiodical
contribution toAe comes from random particles and par- functions of the perturbation amplitude lgg with the pe-
ticles trapped by islands due to stickiness. On the other han&iod 10g;0A/2. For perturbatior{48), one can expect that the
contributions tor?(t) mainly comes from particles with long chaotic transport along andy directions are equivalent, in
distance flights. In the case of normal Gaussian transpoR@ricular, mean spatial displacemerits)=(y)=0, and
both o(t) and Ao would have the same physical nature. mean squared displacemefis) = (y?). . _

The main feature oP(q,t) is its long tail asymptotics for The statistical characteristics of the chaotic transport in a
|g|>Ao. The latter depends significantly on the perturbationStochastic web were studied using the separatrix map con-
parametee. The comparison, for instance, of the two PDF’s structed in Sec. IlIC. The separatrix map for. perturbation
at e=0.048 and 0.08, for which the second momentt) (489) has the form of Eq(41), with the Melnikov integral
have maximum and minimum values, respectively, shows

(B) —(—1)8
that while the PDF fore=0.048 has a slowly decaying tail, My ex1(to) =(—=1)PK cog vto+ x),

the PDF fore=0.08 decays much more quickly. We have (49
approximatedP(q,t) asymptotically by power exponential K= v 1

law P(q,t)~|q|~*e~#l9l. The fitting exponentsr and B at A7 sinh(v/4)

the time instant=2x 10T, are presented in Fig. 19a)

showsa versuse, while (b) shows versuse. First a strong We have chosen the rescaling parameterexp(4m/v)
quasiperiodic dependence of these parameters qpelagp- = 16. The statistics of transport is studied averaging dver
pears, with the period lgg\ similar to that for the exponent = 10" orbits. In Fig. 20 a second moment of the radial dis-
y in the time asymptotics a#2(t). placemento?(t) = (x(t) +y*(t)) is displayed as a function

There are regions of at the minima ofo?(t), where the  of the perturbation amplitude at the time instant= 10°T.
parametet 8| is relatively small, and the tail of the PDF is It shows a quasiperiodicity ofZ(t) with respect to logye
more closely described by the powerlike ldg| ¢ At  with the period logo\/2=100,,10/2, which is twice as small
growing phases of the quasiperiodical dependence?¢f) as in cases of transport along the 1D stochastic layer studied
on €, the parameteB may take even negative values, which in Sec. V. In Fig. 20 one can see also sharp periodic peaks of
means that the tail of the PDF decays even more slowly thamr®(t) for some values ok. As we will see below they ap-
the powerlike law/g| ~* (see Fig. 15 On the other hand, the pear due to enhance@uperdiffusive transport in the sto-
exponential decreass #l9 of P(q,t) prevails in regions of ~chastic web.

e whereo?(t) is decreasing. The exponential decrease of the The exponenty of asymptoticso?(t)~t” determined by
probability to find particles at largg is due to the trapping calculations up ta<10°T, are shown in Fig. 21. Similarly

of particles by them:n resonance with the smallest possibleto o(t) it is periodically varying with logee. From the
numberm (the island of type 1 in Fig.)3whene crosses the figure one can see that there are large periodic intervals of
critical valueeﬁn’n) for destruction of the last KAM invariant the perturbation parameterwhere the values of are less
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FIG. 20. Second moment of radial displacemefit=(x2+y?)
versus logee. A time instantt=10'T. Rescaling parametex 108108
=exp(4r?/v)=16.

FIG. 22. Diffusion coefficient® determined by the asymptotics
than but close to 1. Minima values of the exponenare D,= a?/2t (curve 1 and by fitting with the radial Gaussian distri-
about 0.9 in small intervals of located neare\’? (e, ~ butionPg(r,t)=r(Dgt) ~*exd—r?2Dt] (curve 2 as functions of
=0.0022=0,+1,+2,...). At values of e the transport log,ge. The parameters of the system are the same as in Fig. 20.
may be considered weakly subdiffusive.

For most values of the exponenty is close 1, and the Spatial radial displacement?(t) in the time interval 16
chaotic transport may be well approximated by the normal<t/T=<10, and curve 2 corresponds to the; obtained by
diffusion (Gaussiahprocess, and one can introduce a diffu- fitting the numerically determined PDP(r,t) at the time
sion coefficientD as Dgzaf(t)/Zt (t—=). The latter can instant t=10°T with the radial Gaussian distribution
be also found from the PDP(r,t), to find a particle with ~ Ps(r,t). Figure 22 also shows a quasiperiodical dependence
radial positionr=xZ+yZ at a time instantt. In this ©f both values oD on log,ee similar to those ones in Figs.
case the diffusion coefficienD is determined by the 20 and 21. For most values efthe diffusion coefficient®
width of the radial Gaussian distributionPg(r,t) ~ andDg are close, buD, systematically exceedSs. The
=r(Dgt) texgd —r%/2Dgt] if the initial distribution of par-  reason for such a behavior was discussed in Sec. V C, and
ticles at the time instant=0 is the & function, i.e., consists of the fact that there exists a difference between the
P(r,0)=2m7r8(r). For the normal diffusion process the Second momentZ(t) and the width of the PDIP(r,t) in a
diffusion coefficientsD, and D determined by these two Ccase of anomalous transport. The coefficiby is mainly
different way should be equal. determined by the central part of the PDF, while rare events

Diffusion coefficients calculated in such a way are pre-with long flights may contribute t®,. Results shown in
sented in Fig. 22 as functions ef Curve 1 describes the Fig. 22 suggest that in large periodic intervals of the pertur-
diffusion coefficientD , determined from the mean squared bation parametee, where differences betwedd, andDg

are small, the transport process may be considered a normal

2.0 5 diffusion process.
1.8 | T Superdiffusive regime
16 i From Fig. 22 it also follows that there are large differ-

ences betweed , andDg in the narrow periodic intervals

of e located near valuese=A"?¢, and e,=0.0031

(k=0,£1,+2,...). They correspond to the peaks a'nﬁ(t)

(see Fig. 2D and to the large exponentsin Fig. 21. For

these values of the Gaussian approximation fails, and cha-

otic transport becomes superdiffusive. Enhanced transport is

connected to the existence of flights of long distanks

Levy flight) at these values of. A single event of flight or

long distance is shown in Fig. 23 in th&,§) plane(a) and

in the (t,H) plane(b) for the specific value 0é=0.0124 for

which such a behavior occurs. These flights are connected

with the stickiness of orbits to the specific KAM stability
FIG. 21. Exponents of the asymptoticer~t” versus logee.  islands. They are shown in Fig. 24 on Poincaeetions of

The parameters of the system are the same as in Fig. 20. orbits on the X,y) plane near the two saddle points) X

- 147]
121

1.0 o




3524 S. S. ABDULLAEV PRE 62

are presented in Fig. 2%) on section y; and(b) on section
24;1. (c) shows a closeup view of the region near the tiny-
sized KAM stability island shown in(b). The island with
H<0 (H>0) in Fig. 25a) corresponds to the firgsecondl
and third (fourth) islands in Fig. 24a), and the island with
H>0 (H<O0) in Fig. 25b) corresponds to the firgsecond
and third (fourth) islands in Fig. 24b), respectively. From
positions &.,Yye) Of elliptic fixed points of islands in the
I (x,y) plane, one can determine the values of endigyfor

— L the fixed points of corresponding islands in thgH) plane.
-60 -40 -20 0 From Fig. 24a), it follows that for the first and third islands
X we haveH =H(X.,Ye,t=kT)~—1.495< 10 4, and for the

(b) second and fourth islands we hadg~1.4245< 10" 4. Simi-

3 larly, from Fig. 24b) we have|H.|=6.4565<10 4. These

r values reproduce with the good accuracy the corresponding
2 values of H determined by the separatrix mapi,
1
0

=+1.48565<10 % at sectionXy, and H.==*6.50418
X 10~ # at section?, ;.
| One should note that although the applied numerical inte-
: gration scheme sufficiently well determines the positions of
- these island on the phase spageyj, it cannot resolve fine
2 details of their structure because of a loss of accuracy. The
X fine structure of these tiny-sized KAM stability islands may
e be seen on Poincamots in the (,H) plane, obtained by the
18800 19200 19600 separatrix magpsee Fig. 2&)].
t/T First we should note the main specific feature of orbits
trapped by islands responsible for flights. We call these flight
FIG. 23. Long distance flight ever(@) orbit in the (x,y) plane;  islands. As one sees from Figs.(B8 24, and 25, the values
(b) orbit in the H,t) plane. Parameters aee=0.0124 andy=0. of the energy variabléi for trapped orbits take successively
, . positive and negative values near the saddle points; i.e., if
=—0.25y,=0.25 and(b) xs=0.25ys=0.25 obtained by di- |y ~ thenH,,,<0 for every step of the separatrix map
rect integration of Hamiltonian equations using the Buhrsch-[Eqs'(M) and (49)]. The elliptic fixed points ¢®,H(®) of

Stoer method mentioned in Sec. Il C. Four types of islandgjjghy islands at any sectiol,, (or at equivalent sections
(seen as dark sticksesponsible for flights of long distances S o nags §P=1,2 ) can beletermined by the fixed
m=2q,n=2p1 Y 1Ey

are continuously labeled by 1-4. Figure(@4shows a clo- _Lpoints of the mapliﬁr?r)] [Eq. (45)], similar to those fixed

seup view of the region near the first island. Islands 1 A X
have different flight directions: the flight direction of the first points [Egs. (33)] of KAM stability islands responsible for

island is 45° with respect to positive direction of thexis, ~ raPPing in cells, but with the requirement thatH{®>0

that for the second island is 315°, that for the third island ighen H{; <0, and vice versa. The mags) are con-

225°, and that for the fourth island is 135°. structed similarly to Egs(Al) and (A2). For example, the
The structure of these tiny-sized KAM stability islands map

may be also shown in the,H) plane by plotting Poincare

plots in the ¢,H) plane using the separatrix map. These plots

10%H

E(2) _y 2 v 1 v 1)y
Fon= YR o X a2 Y X (50)

(a)

0.30 0.30 0.2302
0.28 028 |, I
= = i == |
'8 0.26 - 026 g ko)
<] o L
é \E, £ 0.2297
o 0.24 > 024 - - -
: > A
0.22 0.22 | |
oo b R A 020: S 02092 Lo i L v
030 028 -0.26 -0.24 -022 -0.20 020 022 024 026 028 0.30 0.2549 02550 02551 0.2552

x {mod 1) x (mod 1) x (mod 1)

FIG. 24. Poincaresection near the saddle poinig) x,=—0.25y,=0.25; (b) x,=0.25y,=0.25; four tiny-sized islands of regular
motion responsible for long distance flights are shown by arrows {c}4Closeup view of the region near the first island showrikn
Parameters are the same as in Fig. 23.
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—2 Coop i b Lo e e ey
00 02 04 06 08 1.0
t/T (mod 1) o
4 -
S, 0 e FIG. 26. Construction of the map{Z) for the determination of
~— o : I fixed points of the first island responsible for flights.
4
EA L e (Wihg)=(WH) at Sy, and Speones,
_8 EINN Y DA T SN T o MR LV Rt Lt SR L0
00 02 04 06 08 10 (Wa,hp)=(w,H) at Zpqp,
YT (mod 1) (Wa,ha)=(W,H) at s,
7.0 ©)
: (W4!h4):(W1H) at Em+2,n+l-

I | Fixed points of the first flight island should also satisfy the
"O 65 conditionsh,<0, h,>0, h3<0, andh,>0. From the equa-
— - tions for the angular variables; (i=1, 2, 3, and 4in

i Egs.(51), it follows that
60 i 1 | I 1 ! 4 4
: Q(h))=2mws or hi|=16/(#*\%), (52
0.20 0.25 0.30 2, Q(h)=2w 1L Inl=161="), (52
t/T (mod 1) where\ is the rescaling parameter.

First we consider the cases whep=h; andh,=h,. In

FIG. 25. Poincarelots obtained by the separatrix map in the these cases EqE51) may be reduced to

(H,t) plane at section&) 2 oo and(b) 3 1,. The small-sized islands
(with dark edgegare responsible for long distance flights) Clo-
seup view of one of the islands shown (in). Parameters are the
same as in Fig. 23.

h,=h;+ eK cosw,,

hlth_EK COE{W1+Q(h2)], (53)
transforms the fixed point of the first island at sectibp,
with evenm+n to an equivalent one at secti®, >

(see Fig. 26 Taking into account that; <0, h,>0, we come to the tran-
To be SDECiﬁC, we determine the principal fixed points Ofscendenta| a|gebraic equation WE!

the first island, corresponding tp=1. Using Eqs(41) and

|h1h2| = 4/( 72)\5/2).

(49), the equations for the fixed points®,H(®) may be cosw,; —cogw; + Q[ hy(w;)]}=0, (54)
written
whereh,(w,) is a positive solution of the quadratic equation
h2:h1+EK COSWl, W2:W1+Q(h2),
h3— eK cosw;h,+ 4/(w2\5?)=0. (55)
h3:h2_EK COSWZ, W3:W2+Q(h3), ) . . A
(51) Let us determine the fixed points of the island for the
h,=hs—eK cosws, w,=ws+Q(hy), perturbation parameter near its specific valug=0.0124.
For these values of the numbersis equal to 11. From Egs.
h,=h,+eK cosw,, w;+2ms=w,+Q(h,), (54) and (55 we have numerically found that the fixed

points (®,H(®) exist for 0.012% e<0.031. At section
whereQ(h) = (v/2m)In(2/w|h]), w= e+ Q(h)/2+ x, ands 3, the phasep'® =7 (mod 2r), andH® changes in the
=1,2,.... In Eq.(51) the following notations are intro- interval[ —1.542623 10 4,—7.51870X 10 °], and at3 o,
duced: the phase ¢®=3#/2 (mod 27) and 6.26384%10 *
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FIG. 27. The same as in Fig. @ but for the perturbation
parameterga) e=0.0132 andb) e=0.01322. Other parameters are
the same as in Fig. 23.

<H©®<1.28516x 10 3, respectively. However, the fixed
points are elliptic only for 0.012% €<0.0131, and are hy-
perbolic fore>0.0131. In the first case the eigenvalugs,
of the matrix

dhylohy  dhylowy
Wy /ldhy  dw,/dw,

are complex numbers, i.e\; ,=exp(*ia), and in the second
casehp, are real, i.e. N >IN, <IN hp=1.

A determination of flight islands with fixed points;
#hg or h,#h, is more difficult. We have studied them by
directly plotting Poincaresections in the ¢,H) plane. Such
islands appear foe=0.0132 when the fixed point with;

principal fixed points withgq=1 of the second, third, and
fourth islands. Fixed points with higher numbeys2 can

be studied by a similar approach. However, this is a rather
difficult task.

One can conclude that chaotic transport in a stochastic
web of a 2D time-dependent periodic vortical flow may ex-
hibit three types of stochastic processes: subdiffusive, nor-
mal Gaussian, and superdiffusive. Varying the perturbation
parametefe, one can control the type of chaotic transport.

VII. CONCLUSIONS

We have studied an important relationship between the
structure of a stochastic layer and statistical properties of
chaotic transport in it. It was shown that systems with topo-
logically similar stochastic layers have similar statistical
properties of transport. This property of dynamical systems

was extensively studied in 3tdegree-of-freedom Hamil-
tonian systems. First we discussed the universal rescaling
invariance of motion near the saddle points with respect to a
rescaled transformation of the amplitude of a time-periodic
perturbation with a shift of its phase; we also established an
additional rescaling invariance of motion due to symmetries
of the system. These properties give rise to periodic changes
of the topology of the phase space near the saddle point with
varying perturbation amplitudes. This leads, in turn, to qua-
siperiodical oscillations of statistical characteristics of trans-
port with the change of the perturbation amplitude. The pe-
riod of these oscillations, determining the rescaling
parameter\ =exp(2ry/v), is a universal parameter which
depends only on the expansion coefficienbf the unper-
turbed Hamiltonian near the saddle point, as well as on the
frequency of the external perturbation

This effect is universal for a one-degree-of-freedom
Hamiltonian system subjected to a small time-periodic per-
turbation regardless of the specific features of the system.
One can expect the effect to occur in chaotic transport prob-
lems in structured flows—for instance, in chaotic mass trans-
port in a chain of vortices in a shear layd6]. Similarly, it
may also be observed in models of physical systems which
are described by a stochastic welee, e.g., Ref.33]).

Our study shows that the chaotic transport rate is not a
monotonic function of the perturbation amplitudgin spite
of the fact that the stochastic layer’'s width increases linearly
with e. This suggests, first, that the width of the stochastic
layer, the determination of which was the primary goal of
many works(see, e.g., Ref[54], and references thergjn
does not completely characterize a chaotic motion. The ex-
istence of KAM stability islands embedded in a stochastic
layer is one of its essential features, and particularly the out-

=h; andh,=h, becomes hyperbolic, and generates two el-ermost islands play a crucial role in chaotic transport. This

liptic fixed points. With increasing perturbatio) the sto-

situation is not taken into account by qualitative transport

chastic layer near the separatrix grows. The islands distheories; for instance, quasilinear theory, predicts the mono-
appear fore>0.0133. This process is shown in Fig. 27 by tonic dependence of transport rate on the perturbation ampli-

plotting Poincaresections near these islands at secfib
for two different perturbation paramete(@ ¢=0.0132 and

tude.
The established effect also shows the possible range of

(b) €=0.01322. The sizes of these islands is much smallecontrolling Hamiltonian chao$55], in particular, chaotic

than ones with one elliptic poiritompare with Fig. 2&)].

transport, by varying the perturbation amplitude. The effect

Therefore, flights may occur for perturbation parametersnay be useful in controlling the transport of heat and par-
0.012k€=<0.0132 due to the stickiness of the island with ticles in magnetic fusion devices with stochastic magnetic
elliptic fixed points. Similar results can be obtained for thefield lines[56], in controlling the transport of passive scalars



PRE 62 STRUCTURE OF MOTION NEAR SADDLE POINTS AND ... 3527

in a chain of vortice$16], or in a mixing of fluids[7]. for t——t, H——H.

One should note that oscillations of the normal diffusion
coefficient D as a function of the stochasticity parameter On the other hand, according to E@4) it follows that
K (K>1), with a period 27, were observed in standard products of the map¥(", ., and Y™, are transformed in
(Chirikov—Tayloj mapping[2,57,58. However, this qua- the following ways: T
sioscillatory behavior, related to the existence of accelerator

modes[59], is the exclusive property of standard mapping ?m}{ll)(_x)f(m)mﬂ(_x)

and so is unlike the universal quasioscillations of chaotic o . ' _A

tranlfport in a stochastic layer on lgg considered in this HYg“;)lyn(—X)Xg‘;f}n(—X), (A5)
work.

KEaa (=0 YL 1~ x)
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which are similar to property32) in the case of a system

APPENDIX: RESCALING PROPERTIES NEAR with a single saddle point. Therefore, the entire rescaling
THE SADDLE POINTS transformatior(A3) transform the mapg P! in the following
way. Using Eqs(39), (A1), and(A5), one can show that, for

According to the geometry of the separatrix mapse
Fig. 10, mapsF{*) may be obtained by consecutive applica-

tions of mapsX{7),.., andY{". | ie., F@) —gm, gned) gamebgam

evenm-+n,

=(1) < Y 1) 1) 'S Y 2 (m=—1)3 S
o= Y X Y X 1 SYmKm Gmo gy _p©)
=(2) < $(n-1) 1)< ~ g S(n—1) S
F =Y X i Y X1 . F@ = ¢m, Kn-D) gmengm
Al
£ $ &(n—1) S(m=1)$ $ 3 S(M-1)g(n+1) _ ~(4
Fion= Y 1 X Y X1 =Y X YK =F 1 (AD)
£ $ $ S (m—1)< £(3) _< & (n—1) (m—1)<
F =Y X Y X1 Fon= Y X Y X 1
for the even sunm-+n, and =Y X Y R X D= F b1,
£(1) $ 1) (n+1) < a ¢ S Sm=1)<
Fon= X Y XS 21 Yo 1, B =M, K@n+h) Gum-ngm
£ $ S S(n—-1) < 3 o $ 1) (n+1 & (2
F@) =¥, gumibge-D gm =Y X L YT X P =F
ﬁg)nZ?gllm?mﬁ)kgayl?ﬂfl, (A2) From Egs.(A7) it also follows that
(1) =(3) =E@B
'A:ﬁ?)n:kgllm?mﬁ)kg]ﬁ)ﬂ?mﬂ I:m+1,n-¢—1_’|:m+ 1,n+2_Fm+1,nr
E(2 =(4 — (4
for the odd sunm+ n. FETw)rl,n+1_>F$nJ)rl,n+2=F§w)rl,n'
We study a transformation of magél) and (A2) with - 3) 1) 2 (A8)
respect to the rescaling transformati®8). For maps the Fotinr1i—Fatine2=Fmin,
latter may be formulated as
E(4 =(2 —E(2
\1/2 /2 F$T13—1,n+l_)Fl("n-11,n+2=FEn-a—l,n'
€— €, X7 X~ T4,
(A3) Using Egs.(A2), similarly to Egs.(A7), one can obtain
1/2, . . .
H——-\"H, t—-t the following transformation properties for odaH- n:
jon i ine i - £ R £(2) P4
'Srhgngassttoe(x_?r_e)s(acT> ln the second line in E43) corre an,)rﬁ':ﬁnll,n: ,:gny)n_ﬂzgnll‘n,
p . XY=y, _ _ (A9)
Consider, first, a transformation of the separatrix maps EG) L EQ) E@) L E@)
XM ., and Y., with respect tot——t and H— —H. mnoChmELar mn S meda

According to Eq«(43) this transformation gives a map back- Transformation propertiegA7) and (A9) of the phase space
ward to Eq.(41) with opposite signs oH and the phasg,  near the four saddle points with respect to the rescaling trans-
e, formations(A3) are fully equivalent to the rescaling proper-
~ . ties (23) and (24) found by the numerical integration of
X 1) = X (= x) Hamiltonian systeniEgs. (16) and (21)].
(Ad)
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