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Structure of motion near saddle points and chaotic transport in Hamiltonian systems
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D-52425 Ju¨lich, Germany
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Generic symmetry and transport properties of near separatrix motion in 11
2 -degree-of-freedom Hamiltonian

systems are studied. First the rescaling invariance of motion near saddle points, with respect to the transfor-
matione→le, x→x1p of the amplitudee and phasex, of the time-periodic perturbation, is recalled. The
rescaling parameterl depends only on the frequency of the perturbation, and the behavior of an unperturbed
Hamiltonian near a saddle point. Additional rescaling symmetry of the motion with respect to transformation
e→l1/2e, x→x6p/2 is found for some Hamiltonian systems possessing symmetry in the phase space. It is
shown that these rescaling invariance properties of motion lead to strong periodic~or quasiperiodic! depen-
dencies of all statistical characteristics of the chaotic motion near the separatrix on log10e with the period
log10l. These properties are examined for different models of chaotic motion by direct numerical integrations
of equations of motion, as by well as using a computationally efficient method of the separatrix mapping.

PACS number~s!: 05.45.Ac, 05.60.Cd, 52.25.Fi
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I. INTRODUCTION

Most fundamental models of physics and mechanics
Hamiltonian dynamical systems. One of the essential f
tures of deterministic dynamical systems, particularly Ham
tonian systems, is that they exhibit a chaotically unsta
behavior consisting of an exponential divergency of orb
with close initial coordinates in the phase space of a syst
Such a chaotic behavior of dynamical systems has been
subject of numerous studies in the 20th century, star
from pioneering works of Poincare´ @1# ~also see Refs.@2–4#!.

A one-degree-of-freedom Hamiltonian system subjec

to time-periodic perturbation~known as the 112 degree-of-
freedom Hamiltonian system! is the most studied dynamica
system. This generic system has many important applicat
in fluid dynamics and plasma physics. It was first realized
Aref @5,6# that the Lagrangian representation of tw
dimensional laminar flows is equivalent to a one-dimensio
Hamiltonian system, with the stream function playing t
role of the Hamiltonian, and spatial coordinates as canon
variables. This analogy allowed one to apply methods
dynamical systems to study many problems in fluid dyna
ics and in geophysical fluid dynamics, particularly mixing
fluids @7# and transport in structured fluids containing a v
riety of vortices, waves, jets, and fronts@8–16#.

Three-dimensional magnetic field lines in plasmas are
excellent example of the system described by

1 1
2 -degree-of-freedom Hamiltonian system@17,18#. This

analogy has long been used to study a chaotic destructio
magnetic surfaces in fusion devices@19#, transport magnetic
field lines, and heat and particles in fusion and space plas
@20–25#.

The onset of stochasticity and chaotic transport

1 1
2 -degree-of-freedom Hamiltonians systems has long b

the subject of numerous studies@2,26–29#. Chaotic motion
appears due to the destruction of separatrices~phase-space
curves connecting saddle points in the phase space o
system! by any small time-periodic perturbation, forming
PRE 621063-651X/2000/62~3!/3508~21!/$15.00
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zone of chaotically unstable motion near the unperturb
separatrix~the so-called stochastic layer!.

One of the important features of deterministic chaotic s
tems is anomalous transport, i.e., a departure from the
mal ~Gaussian! random transport process which has been
subject of extensive studies for more than two decades@30–
33#. It occurs in many transport problems in fluid dynami
and physics, for example in mass transport and mixing
structured hydrodynamic flows@10,11,13,15,16#, transport of
magnetic field lines, heat and particles in fusion and sp
plasmas@23–25#, etc. In one dimension it is characterized b
a nonlinear time dependence of a mean squared displace
^(Dx)2&52Dtg (gÞ1), while for normal diffusiong51,
and D determines a diffusion coefficient. The caseg.1 is
known as enhanced~superdiffusive! transport, and the cas
g,1 describes subdiffusive transport processes. It is w
recognized that the anomaly of chaotic transport in determ
istic Hamiltonian systems is due to the stickiness of orbits
regions of regular motion@so-called Kolmogorov-Arnold-
Mozer ~KAM ! stability islands# embedded in a stochasti
layer. The structure of the chaotic domain, i.e., the mut
positions of KAM stability islands and their sizes, are b
lieved to determine the type and rate of anomalous trans
processes. The transport analysis in such complex sys
has been the subject of many investigations during the
two decade~see, e.g., Refs.@32–36#!.

In this work we will describe two important properties o
one-degree-of-freedom Hamiltonian system subjected
time-periodic perturbation which show the fundamental co
nection between the structure of the phase space of sy
and the chaotic transport:~i! a rescaling invariance of motion
near the saddle points with respect to transformations of
turbation parameters; and~ii ! a quasiperiodical dependenc
of statistical characteristics of chaotic transport in the s
chastic layer on the perturbation strength. The first prope
of the perturbed motion near the saddle points was rece
established in Refs.@37–39#. It was found that the scaling
transformation of the perturbation strengthe→le and the
shift of perturbation phasex→x1p of the time-periodic
3508 ©2000 The American Physical Society
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PRE 62 3509STRUCTURE OF MOTION NEAR SADDLE POINTS AND . . .
perturbation preserve the topology of the phase space o
canonical variables (q,p) near the hyperbolic fixed point
with the rescaling law (q,p)→(l1/2q,l1/2p). The rescaling
parameterl depends only on the frequency of perturbati
and the behavior of the unperturbed system near the sa
point. We will also show that, in addition to this gener
property of one-degree-of-freedom Hamiltonian syste
subjected to the time-periodic perturbation, there exists
inner rescaling invariant property of motion near the sad
point with regard to transformation—e→l1/2e,
x→x6p/2—which transforms the phase space of the s
tem according to (q,p)→(l1/4q,l1/4p) if the Hamiltonian
system has some sort of symmetry in the phase space (q,p).
These properties of perturbed motion near the saddle po
mean that the topology of the stochastic layer near the sa
points, i.e., the mutual positions of KAM islands and th
relatives sizes, is periodically changing with varying log10e
with the period log10l @or (log10l)/2].

This leads to important universal consequences in a c
otic transport in the stochastic layer. Since motion slo
down near the saddle points a particle spends relatively la
time intervals there, thus the transport of particles along
stochastic layer is mainly determined by the structure of
stochastic layer near the saddle points. If the conjecture
similar structures of the stochastic layer gives rise to sim
transport properties~for instance, the exponentsg), then one
can expect that the statistical characteristics of chaotic tr
port are periodic~or quasiperiodic! functions of log10e with
the period determined by the rescaling parameterl, i.e.,
log10l @or (log10l)/2]. To demonstrate this property is th
second aim of the present work. A short report on this s
ject was recently published in Ref.@40#.

The work consists of seven sections. In Sec. II the univ
sal rescaling properties of motion near the saddle points
recalled, and inner rescaling properties of motion owing
the symmetry of the system in phase space are describe
the three different models containing a single saddle po
periodic saddle points in one direction of the phase spa
and periodic saddle points in two directions of the pha
space, respectively. These models are a particle motion
double-well potential under external time-periodic perturb
tion, a three-wave model describing chaotic transport of p
ticles in a stochastic layer formed near the separatrix of
main wave due to perturbation by two weak waves propa
ing in opposite direction, and the chaotic transport of pass
tracers in a two-dimensional periodic vortical flow. A pro
of the rescaling properties of motion near the saddle poi
found by constructing the separatrix maps, is given in S
III and the Appendix. Statistics of the mean residence ti
and Poincare´ recurrences in a double-well potential are stu
ied in Sec. IV. Chaotic transport along the stochastic laye
a three-wave model is investigated in Sec. V. We study
vection, second moments of spatial displacement, their ex
nents, and probability density functions. In Sec. VI chao
transport in two-dimensional periodic vortical flows is stu
ied. We have calculated periodical dependencies of the
ond moments of spatial displacements, and diffusion coe
cients on the perturbation amplitude. In particular, regim
with strong anomalous transport, which occurs due to lo
distance flights, are found and analyzed. Conclusions
made in Sec. VII.
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II. RESCALING INVARIANCE NEAR SADDLE POINTS

In this section we recall the rescaling invariance of m
tion near the saddle points, and also describe a new in
rescaling property which occurs due to the symmetry of
Hamiltonian system in the phase space. Consider a o
degree-of-freedom Hamiltonian system in the phase spac
canonical variables: coordinateq and momentump. Suppose
that a small time-periodic perturbation affects the syste
The perturbed system is described by Hamiltonian equat

dq

dt
5

]H

]p
,

dq

dt
52

]H

]q
~1!

determined by the Hamiltonian function

H5H0~q,p!1eH1~q,p,t1t0!, ~2!

where H0(q,p) describes the unperturbed system, a
eH1(q,p,t)5eH1(q,p,t1T) is a time-periodic perturbation
of periodT ~or frequencyn52p/T) with a small amplitude
e!1. In Eq. ~2! we include an initial phase of perturbatio
t0, the meaning of which will be clarified later.

Suppose that in the absence of perturbation (e[0) there
exist hyperbolic fixed points (qs ,ps) in the (q,p) plane.
Near each of the hyperbolic fixed points the unperturb
HamiltonianH0(q,p) may be expanded in a power series
(q2qs),(p2ps):

H0~q,p!5H0~qs ,ps!6
as

2

2
~q2qs!

27
bs

2

2
~p2ps!

21O~d3!,

~3!

FIG. 1. Saddle connections in the phase space:~a! homoclinic
orbits ~curve 2!, and~b! heteroclinic orbits~curves 2 and 28) con-
necting different saddles points.
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3510 PRE 62S. S. ABDULLAEV
whereas andbs are expansion coefficients, andO(d3) is a
higher order expansion term@d;(q2qs),(p2ps)#. By lin-
ear transformation,

x5
1

A2asbs

@as~q2qs!1bs~p2ps!#,

~4!

y5
1

A2asbs

@2as2~q2qs!1bs~p2ps!#,

Hamiltonian~3! may be also presented as

H0~q,p!5H0~qs ,ps!6gsxy1O~d3!, ~5!

FIG. 2. Stochastic layer of system~7! for ea50.08, xa521,
anda15a251.

FIG. 3. Poincare´ sections of the Hamiltonian system~7! near the
saddle point (q5p,p50): ~a! ea50.02, xa5p11; ~b! eb5lea

50.08,xb5xa2p. The rescaling parameters arel54 and a1

5a251.
wheregs5asbs is a coefficient determining the exponenti
growth ~decrease! of coordinates near the saddle points:x
;exp(6gst),y;exp(7gst). We further suppose that all hy
perbolic fixed points have the same incrementsg[gs .

Hyperbolic fixed points (qs ,ps) which lie on the same
values of the energy surfaceH(qs ,ps)5const may be con-
nected. Two examples of such connections are shown in
1. The saddle connection is called a homoclinic orbit if t
saddle point is connected by itself@Fig. 1~a!#, or a hetero-
clinic orbit if it connects the different saddle points@Fig.
1~b!#. The curves connecting saddle points known as sep
trices separate the regions of the phase space with diffe
types of motion. However these separatrices are unstab
any small perturbations. In particular, a small time-perio
perturbation destroys the separatrices, and motion near
unperturbed separatrices becomes chaotic@2–4#. However,
the domain of chaotic motion~or the stochastic layer! formed
in the small vicinity of the unperturbed separatrices is n
uniform. There are regions inside the stochastic layer w
regular motions~KAM stability islands!. Examples of sto-
chastic zones are shown in Figs. 2–4. The mutual positi
of these islands and their relative sizes determine the to
ogy of the stochastic layer. As we will show below, th
plays a crucial role in chaotic transport along the stocha
layer. Particularly, the structure of the stochastic layer n
the saddle points mainly determines the statistical proper
of chaotic motion because particles spend relatively la
times to passing regions near saddle points.

A. Universal rescaling invariance

The variation of the perturbation amplitudee changes not
only the width of the stochastic layer but also its structu

FIG. 4. Poincare´ sections of Hamiltonian~10! near the saddle
point (q50,p50): ~a! ea50.0025,xa5p21; ~b! eb5l1/2ea

50.01,xb5xa2p/2. The rescaling parameter isl516.
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PRE 62 3511STRUCTURE OF MOTION NEAR SADDLE POINTS AND . . .
However, as established recently in Refs.@37–39#, this
change is not arbitrary, but has a remarkable property
periodicity: the variation of the perturbation amplitudee pe-
riodically changes the topology of the phase space of p
turbed motion near the saddle points. That is, the structur
the phase-space of the perturbed motion near the saddle
is invariant with respect to the rescaling transformations

e→e85le, x→x85x1p,
~6!

x→x8'l1/2x, y→y8'l1/2y,

with the rescaling parameterl5exp(2pg/n) depending only
on the perturbation frequencyn and the coefficientg in the
unperturbed HamiltonianH0(x,y) near the saddle point@Eq.
~5!#. Herex5t0n/2p is the initial phase of the perturbation

To be more specific, as a generic model consider the
tion of a particle trapped by a main wave subjected to d
turbances by two weak waves propagating in opposite di
tions. This problem is equivalent to a periodically drive
pendulum. This system is described by the Hamiltonian

H5
p2

2
2v0

2cosq2ev0
2@a1cos~q2nt1x!

1a2cos~q1nt2x!#, ~7!

wherev0 is the frequency of small oscillations, ande andn
represent the amplitude and the frequency of the pertu
tion, respectively. The quantitiesa1 anda2 describe ampli-
tudes of waves propagating in positive and negative dir
tions of the q axis. The unperturbed system (e50) has
elliptic fixed points at (q52pn,p50), and hyperbolic fixed
points at @qs52p(s11/2),ps50# (n,s50,61,62, . . . )
@see Fig. 1~b!#. The separatrices~curve 2! connecting the
saddle pointsqs and ps with qs61 and ps61 separates the
trapped orbits (2v0

2,H,v0
2) ~curve 1! from the untrapped

ones (H.v0
2) ~curve 3!. The period of trapped orbitsT(H)

has a following asymptotics near the separatrixH5v0
2:

T~H !5
1

v0
ln

32v0
2

uH2v0
2u

1O~H ! for H→v0
260. ~8!

The orbits on the separatrices (H5v0
2) are

qs
(6)~ t !54 arccot

exp@6v0~ t2t0!#11

exp@6v0~ t2t0!#21
,

~9!

ps
(6)~ t !56

2v0

cosh@v0~ t2t0!#
,

where the signs (6) correspond to the upper~curve 2! and
lower branches~curve 28) of the separatrix, respectively, an
t0 is a time instant when the orbit crosses a midpoint
tween two sequential saddle points.

Any small perturbation (eÞ0) destroys the separatrice
and forms a stochastic layer near the unperturbed separa
The Poincare´ section, i.e., points@q(kT),p(kT)# of the orbit
@q(t),p(t)# taken at the periodic time instantst5kT, is
shown in Fig. 2 for perturbation amplitudeeb50.08, phase
xb5p, and perturbation frequencyn54.53236v0. The nu-
of
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merical integration of Hamiltonian equations were pe
formed using the symplectic integrator method, with simp
fication due to the fact that Hamiltonian~7! is separable. The
amplitudes of the waves are taken to be equal to each o
a15a251. The structure of the stochastic layer chang
with the perturbation amplitudee and the phasex. However,
the phase-space topologies of the stochastic layer nea
hyperbolic saddle points (qs ,ps) are similar when two dif-
ferent perturbation amplitudes and phases are related thro
(e,x)→(le,x1p) with the rescaling parameterl
5exp(2pv0 /n). This rescaling property is shown in Fig. 3 b
plotting Poincare´ sections near the saddle point@q
5p ~mod 1!,p50# for ~a! ea50.02, xa50 and ~b! eb
5lea50.08, xb5p at the valuel54. The mutual posi-
tions of islands of types 1, 2, and 3 are similar; the coor
nates of their fixed points are related according to Eq.~6!.
Due to the stickiness of orbits to islands of type 1, partic
may be trapped for a long time, while stickiness to the isla
2 ~or 3! may lead to long distance flight along the positi
~or negative! direction of theq axis.

The described rescaling invariance of motion@Eq. ~6!#
near the saddle points is universal for one-degree-of-freed
Hamiltonian systems subjected to a small time-periodic p
turbation and possessing equal expansion coefficientsg of
the unperturbed HamiltonianH0(x,y) near the saddle points
This was first observed in Ref.@37# by numerical integration
of the equations of motion. The proof of this property w
given in Ref.@38# by constructing a so-called shifted separ
trix map, and in Ref.@39# by an analytical analysis of Hamil
tonian equations.

B. Rescaling property due to symmetry of Hamiltonian

If Hamiltonian system~1! has some symmetries in th
phase space of canonical variables (q,p), then there exists
an additional rescaling invariance of the system near sa
points with respect to the transformation of the perturbat
amplitude. Consider, for example, a motion of particles in
double-well potential under external time-periodic perturb
tion. The system is described by Hamiltonians

H5H0~q,p!1eH1~q,p,t !,

H0~q,p!5
p2

2
2

q2

2
1

q4

4
, ~10!

H1~q,p,t !5eq cos~nt1x!.

The unperturbed system (e[0) has a single hyperbolic fixed
point at (q50,p50) @see Fig. 1~a!#. For H5H0(q,p),0 a
motion is trapped in potential wells~curves 1!, and for H
.0 a motion is untrapped~curve 3!, and the separatrix (H
50) is described by curve 2. The unperturbed periodT(H)
of the trapped motion is equal to

T~H !5
2A2

A11A114H
K~k!, ~11!

k5
A2~114H !1/4

~11A114H !1/2
,
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whereK(k) is the complete elliptic integral of the first kin
with a modulek. Outside the potential wells (H.0), the
period is

T~H !5
4

~114H !1/4
K~k!,

~12!

k5
A11A114H

A2~114H !1/4
.

Near the separatrix (H→0), periods~11! and ~12! have the
asymptotics

T~H !5 i ln
16

uHu
1O~H !, ~13!

wherei 51 for H,0 andi 52 for H.0. The trajectories on
the unperturbed separatrix (H50) are

qs
(6)~ t !56

A2

cosh~ t2t0!
,

~14!

ps
(6)~ t !57

A2sinh~ t2t0!

cosh2~ t2t0!
,

wheret0 is a time instant when the orbit crosses theq axis at
the farthest distance from the saddle point.

The unperturbed Hamiltonian is symmetric with resp
to q→2q and p→2p, i.e., H0(2q,2p)5H0(q,p), and
but the perturbed HamiltonianH1(q,p,t) is antisymmetric,
i.e., H1(2q,2p,t)52H1(q,p,t).

The time-periodic perturbation destroys the separat
and the motion near by becomes chaotic. The perturbed
tion near the saddle point beside the universal rescaling p
erty @Eq. ~6!# has an additional rescaling property due to t
above-mentioned symmetries of Hamiltonian~10!. By direct
numerical integration of the equations of motion, we ha
found that the system near the saddle point is invariant w
respect to the following transformations:

e→e85l1/2e, x→x85x6p/2,
~15!

q→q8'6l1/4p, p→p8'6l1/4q.

Poincare´ sections of system~10! near the saddle point ar
shown in Fig. 4 for the two values of perturbation amplitu
e and phasex: ~a! ea50.0025, xa5p21 and ~b! eb
5l1/2ea50.01, xb5xa2p/2. The rescaling parameterl
5exp(2p/n) is chosen equal to 16. Note that in Fig. 4~b! the
coordinateq is along the vertical axis, and the momentump
is along the horizontal axis. As one can see from Fig. 4,
q andp axes are rescaled according to Eq.~15!.

Such a rescaling invariance near the saddle point w
respect to~15! occurs only due to a specific symmetry
Hamiltonian system. Considered in Sec. II A, the three-wa
model also has such a property. Indeed one can show tha
motion near the saddles points described by Hamiltonian~7!
is invariant with respect to the transformations~15! if the
amplitudesa6 of perturbation waves propagating in oppos
t

,
o-
p-

e
h

e

h

e
the

directions area152a2 . The proof of the rescaling prop
erty of motion@Eq. ~15!# will be given in Sec. III using the
separatrix map.

C. 2D periodic vortical flow

We study the rescaling invariance of motion described
Sec. II B in a two-dimensional~2D! periodic vortical flow.
As we will see later, the existence of this property in suc
flow significantly influences the chaotic transport. It is we
known that the Lagrangian trajectories of fluid elements
given by the solution of the equations of motionẋ
52]H/]y,ẏ5]H/]x with the streamfunctionH playing the
role of the Hamiltonian and the spatial coordinates (x,y) the
roles of canonical coordinates in the Hamiltonian dynami

Consider a 2D periodic vortical flow subjected to a sm
time-periodic perturbation. The system is determined by
Hamiltonian function@9#

H5H0~x,y!1eH1~x,y,t !,
~16!

H0~x,y!5
1

2p
cos~2px!cos~2py!.

For convenience we have chosen the unperturbed Ha
tonianH0(x,y) in Eqs.~16! with the x coordinate shifted by
half the spatial period in comparison with one given in Re
@9,14#. Hamiltonian~16! is a good model for many convec
tive flows, including the axisymmetric Taylor vortex and th
Rossby waves in geophysical fluid dynamics@41#.

The phase space of the unperturbed flow is shown in F
5. It has elliptic fixed points at@xm

(e)5(m21)/2,yn
(e)5(n

21)/2# and hyperbolic fixed points at@xm5(m21/2)/2,yn
5(n21/2)/2#, (n,m50,61,62, . . . ). There are four dif-
ferent types of saddle points: (xm ,yn), (xm ,yn11),
(xm11 ,yn), and (xm11 ,yn11). Because the periodicity of the
system alongx andy axes is of period 1, all other hyperboli
fixed points (xm12k ,yn12p), (k,p50,61,62, . . . ) whose
coordinates are shifted on integer numbers belong to
same classification.

FIG. 5. Phase space of system~16!.
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FIG. 6. Poincare´ sections of
orbits in a perturbed 2D lattice
flow @Eqs.~16! and ~21!# near the
four different saddle points for the
perturbation amplitudes:~a! ea

50.0208, phasexa50; ~b! eb

5l21/2ea50.0052, phase xb

5xa1p/2. The rescaling param
eter l5exp(4p2/n)516. Other
parameters areax51 and ay
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Near the saddle points the unperturbed Hamilton
H0(x,y) in Eq. ~16! has the following expansion in power
of (x2xm),(y2yn):

H0~x,y!5~21!m1n2p~x2xm!~y2yn!, ~17!

i.e., the parameterg is equal to 2p @see Eq.~5!#.
For H5H0(x,y)50 the saddle points are connect

along horizontalx and verticaly axes. These saddle conne
tions are described by orbits

cos@2pas~ t !#561/cosh@2p~ t2t0!#, a5x,y, ~18!

wheret0 is a time instant when a trajectory passes a midpo
between two adjacent saddle points.

Inside of each cell the trajectories are closed, and hav
period of motionT(H) @v(H)52p/T(H) is a frequency#

T~H !5
2

p
K~k!, k25124p2H2. ~19!

Near the separatricesH→0 there are the following asymp
totics of T(H):

T~H !5
2

p
ln

2

puHu
1O~H !. ~20!

Any time-periodic perturbation destroys the separatric
The motion near the unperturbed separatrices becomes
otic, forming a stochastic web along unperturbed sepa
trices. The structure of the stochastic web near the sa
points is invariant with respect to the universal rescal
transformation ~6! with the rescaling parameterl
n

t

a

s.
ha-
a-
le

g

5exp(2pg/n)5exp(4p2/n) for an arbitrary small time-
periodic perturbationH1(x,y,t).

For some wide class of perturbationsH1(x,y,t), there
may also exist a rescaling invariance with respect to tra
formations of type~15!. Consider, for example, a time
periodic perturbation of the flow@Eq. ~16!# in the form of the
traveling waves with the same spatial periods as the un
turbed flow and the frequencyn ~a periodT52p/n),

H1~x,y,t !5
e

2p
@aysin~2py2nt2x!

2axsin~2px2nt2x!#, ~21!

where ax and ay are relative amplitudes of the traveling
wave perturbations along thex andy axes, respectively. The
perturbed Hamiltonian has the following symmetry prope
in (x,y) space:

H1~x11/2,y11/2,t !52H1~x,y,t !. ~22!

To integrate the Hamiltonian system@Eqs.~16! and~21!#,
we used a fifth order Bulirsch-Stoer Runge-Kutta meth
with an adaptive step size control, and 1027 accuracy@42#.
Poincare´ sections of orbits near the saddle points are p
sented in Fig. 6 for two different amplitudese and phasesx
of the perturbation related to the rescaling parametel
5exp(4p2/n)516: ~a! ea50.0208, xa50; ~b! eb5l21/2ea
50.0052, xb5xa1p/2. The relative amplitudes of wave
are chosen asax50.5 anday51. Figure 6~a! shows Poin-
caré sections near the saddle points (xm50 ,yn50)
5(21/4,21/4) and (xm50 ,yn51)5(21/4,1/4). Corre-
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sponding plots near the points (xm51 ,yn51)5(1/4,1/4) and
(xm51 ,yn50)5(1/4,21/4) are similar to those nea
(xm50 ,yn50) and (xm50 ,yn51), and they may be obtaine
from the latter by rotating plots by 180° around the cor
sponding points. Figure 6~b! presents Poincare´ sections near
points~1/4,21/4! and~21/4,21/4! with the inverted coordi-
nates (x→2x,y→2y). In the inverted coordinates (x,y)
they correspond to the points (xm50 ,yn51) and
(xm51 ,yn51).

As can be seen from Fig. 6, the topology of the pha
space near the saddle points is conserved with respect t
rescaling transformation:

e→l21/2e, x→x1p/2,

~x2xm!→2l21/4~x2xm8!, ~23!

~y2yn!→2l21/4~y2yn8!.

One should note that, unlike rescaling law~15! for the sys-
tem with a single saddle point, in this case the structure n
the saddle point (xm ,yn) is transformed to the one near th
other saddle point (xm8 ,yn8). For the even summ1n, the
transformation (m,n)→(m8,n8) is

~m,n!→~m,n11!,

~m,n11!→~m11,n11!,
~24!

~m11,n11!→~m11,n!,

~m11,n!→~m,n!.

Rescaling transformations~23! and ~24! occur only due to
the symmetry of the perturbed Hamiltonian~22!. The analy-
sis of this property will be also given in Sec. III.

III. SEPARATRIX MAP ANALYSIS

For small perturbationse the width of the stochastic laye
is sufficiently small, and chaotic orbit are located near
unperturbed separatrices. A powerful method of analysis
such a motion is based on the separatrix mapping first in
duced by Chirikov@2# using the Melnikov method@26#. The
geometrical interpretation of the separatrix mapping given
Ref. @43# defines it as a return map of time~t! and energy~H!
to the different sections of the phase space (q,p). However,
this conventional definition of the separatrix map does
describe the rescaling invariance of motion near sad
points, as shown in Refs.@38,44#. In order to overcome this
shortcoming of the separatrix map, a new definition of
separatrix map, called a ‘‘shifted separatrix map,’’ was giv
in Ref. @38,44#. A rigorous method of construction of Poin
caré maps, particularly separatrix maps, was developed
Ref. @45#. The shifted separatrix map is defined as a map
time ~t! and energy~H! variables to the same cross secti
located near saddle points. It correctly describes the resca
invariance of motion near the saddle points. Below, based
the method developed in Ref.@45# we construct the separa
trix maps for Hamiltonian systems considered in the pre
ous sections, and using them prove the rescaling invaria
of motion near saddle points. These will be also exploited
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Secs. IV, V, and VI for computations of statistical charact
istics of chaotic motion.

The separatrix map was used in many works to anal
the chaotic motion near the separatrix. In particular, it w
applied to estimate the width of the stochastic layer@2,46#,
and to study diffusion through a stochastic web@47# and
transport in structured fluids@14,16,10#. Application of the
shifted separatrix map to analyze the magnetic field lines
tokamaks was considered in Refs.@38,44#.

The geometries of the shifted separatrix mappings are
sented in Figs. 7, 9, and 10. We introduce two sectionsS and
Sc in the (q,p) plane. SectionS consists of two perpendicu
lar segments ofq and p axes, with the center at the hype
bolic fixed point (qs ,ps). SectionsSc consist of segments
perpendicular to the unperturbed separatricesqs(t) andps(t)
at the midpoint between two consecutive saddle points.
tk andHk be a time instant and an energy atk—the crossing
point of the orbit with the sectionS. We define a map
(tk11 ,Hk11)5T̂s(tk ,Hk). The mapT̂s has general forms

Hk115Hk1DH~ tk ,Hk!,
~25!

tk115tk1Dt~Hk!1Dt~Hk11!,

whereDH(tk ,Hk) is the change of energy in the one step
the map. In the first order of the perturbation amplitudee, it
is determined by the Melnikov integralM (t) @26,4#, which
may be found through the generating functionG(t0) @45#,
i.e.,

DH~ tk ,Hk!5eM ~ tk1Dt~Hk!1x/n!,

M ~ t0!5
]G~ t0!

]t0
, ~26!

G~ t0!52E
2`

`

H1@qs~ t !,ps~ t !,t#dt.

The integral in Eqs.~26! is taken along the unperturbed sep
ratrix @qs(t),ps(t)# connecting the saddle points. The arg
ment of the generating function in Eqs.~26!, t0, is a time
instant when the orbit crosses the midpoint between adja
saddle points on the unperturbed separatrix. For a tim
periodic perturbationH1(q,p,t) with frequencyn, the func-

FIG. 7. Geometry of the shifted separatrix map for the doub
well potential. The solid line describes the perturbed orbit, and
dashed line corresponds to the unperturbed separatrix.
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tion G(t) is a periodic function oft with the period 2p/n.
Here Dt(H) is the time necessary to pass along the unp
turbed orbit of energyH form sectionS to sectionSc . Near
the separatrix it has the universal logarithmic asymptotic

Dt~H !5
1

2g
ln

Q

uHu
1O~H !, ~27!

where the parameterg is the expansion coefficient of a
unperturbed Hamiltonian near the saddle points@Eqs. ~5!#,
andQ is a constant depending on the system.~We suppose
that at the unperturbed separatrix,H50).

Divergence of the periodDt(H) @Eq. ~27!# at H→0 is
responsible for the onset of chaotic motion near the sep
trix for any small perturbation amplitudee due to the over-
lapping of infinite number of resonances of typemv(H)
5nn @m5m0 , . . . ,̀ ;n is an integer number, andv(H)
52p/T(H) is the frequency of the unperturbed periodic m
tion# @2#. The smallest numberm0 is determined bye.

First we note that near the separatrix, when the logar
mic asymptotics~27! for Dt(H) is valid, map~25! is invari-
ant with respect to the universal rescaling transformation

e→e85le, x→x85x2p, H→H85lH, ~28!

with the rescaling parameterl5exp(2pg/n). This property
corresponds to the universal rescaling property of pertur
motion near the saddle point@Eq. ~6!#.

This means that the topology of the stochastic layer n
the saddle point periodically repeats when changing the
turbation parametere, i.e., it is a periodic function of lne
with the period lnl. It can be expected that the periodic
change of the stochastic layer topology also leads to peri
cal ~or quasiperiodical! changes in the transport character
tics. This will be studied in subsequent sections.

From Eqs.~25!–~27!, it also follows that the rescaling
invariance@Eqs.~28! and ~6!# of the motion near the saddl
point is valid when~i! the perturbation amplitudee is suffi-
ciently small that one can neglect terms of a higher orde
e in the change of energyDH(t,H), i.e., the effect in the
first order of the perturbation parametere; and ~ii ! the re-
scaling parameterl has a moderate magnitude, so that t
asymptotics~27! for the rescaled energyH85lH is still
valid.

One should note that the conventional definition of t
separatrix map given in Ref.@2# is invariant with respect to
the transformation

e→e85le, x→x85x, H→H85lH,

which is different from Eq.~28!; therefore, it does not de
scribe the rescaling invariance of motion near the sad
point. The main reason for this is that the time variable in
conventional separatrix map is defined on the sectionSc
located far from the saddle point@38,44#.

A. Motion in a double-well potential under external
time-periodic perturbation

First consider the construction of the separatrix map
the motion in the perturbed double-well potential~see Sec.
II B !. According to the geometry of the mapping shown
r-
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Fig. 7, there exist two independent separatrix mapsT(6) de-
scribing the evolution of the system along separatrices
their positive, @qs

(1)(t),ps
(1)(t)#, and negative,

@qs
(2)(t),ps

(2)(t)#, branches. According to Eqs.~14! and
~26!, the corresponding generating functionsG(6)(t0) are
equal if the perturbation functionH1(q,p,t) is symmetric
with respect to change of signs ofq,p, i.e., G(1)(t0)
5G(2)(t0). In the case of antisymmetric perturbation fun
tion H1(q,p,t) we haveG(1)(t0)52G(2)(t0).

Using Eqs.~26! and~14! for the Hamiltonian system~10!,
we obtain

G(6)~ t0!52E
2`

`

qs
(6)~ t !cos~nt1x!dt57K cos~nt01x!,

~29!

where

K5A2E
2`

` cos~nt!dt

cosht
5

pA2

cosh~np/2!
. ~30!

The time shiftDt(H) in Eq. ~25! is equal to half the unper
turbed periodT(H) for H,0 or one-fourth ofT(H) for H
.0; i.e., according to Eq.~13! the asymptotics ofDt(H)
near the separatrixH→0 has the form of Eq.~27!, with g
51 and Q516. Therefore, we have two separatrix ma
(Hk11 ,tk11)5Ŝ(6)(Hk ,tk) describing motions near th
separatrix,

Hk115Hk6enK sinS wk1
n

2
ln

16

uHku
1x D ,

~31!

wk115wk1
n

2 F ln
16

uHku
1 ln

16

uHk11uG ,
where the phase variablew5nt is introduced.

The separatrix mapsŜ(6) @Eqs.~31!# introduced in addi-
tion to the universal invariance property@Eq. ~28!#, with the
rescaling parameterl5exp(2p/n), also describe the resca
ing invariance of motion@Eqs. ~15!# near the saddle poin
due to the symmetry of the perturbed Hamiltoni
H1(q,p,t). Below we give the proof of this property.

The rescaling transformations~15! may also be formu-
lated as

e→l1/2e, x→x6p/2, H→2l1/2H. ~32!

We study the rescaling properties of fixed points of moti
near the saddle points. Consider the cross sections of o
at the branchesp51, 2, 3, and 4 of sectionS shown in Fig.
7. Let (wq,s

(p) ,Hq,s
(p)) be a (q,s) fixed point at thepth branch of

S, i.e.,

~wq,s
(p)12ps,Hq,s

(p)!5~ F̂p!q~wq,s
(p) ,Hq,s

(p)!, ~33!

whereq,s51,2, . . . . ThemapsF̂p (p51,2,3,4) are formed
by the consecutive application of the separatrix mapsŜ(6):

F̂15~Ŝ(2)Ŝ(1)!q, F̂25~Ŝ(1)!q,
~34!

F̂35~Ŝ(1)Ŝ(2)!q, F̂45~Ŝ(2)!q.
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Although each of the separatrix mapsŜ(6) is not invariant
with respect to transformation~32!, their combinations of
typesŜ(7)Ŝ(6) and (Ŝ(6))2 are transformed as

~Ŝ(1)!2→Ŝ(6)Ŝ(7), Ŝ(2)Ŝ(1)→~Ŝ(7)!2,
~35!

~Ŝ(2)!2→Ŝ(7)Ŝ(6), Ŝ(1)Ŝ(2)→~Ŝ(6)!2,

which can easily be proved by direct calculations. Therefo
rescaling transformations~32! transform the mapsF̂p as

F̂1→F̂4 , F̂2→F̂3 , F̂3→F̂2 , F̂4→F̂4 ~36!

for x→x1p/2, and

F̂1→F̂2 , F̂2→F̂1 , F̂3→F̂4 , F̂4→F̂3 ~37!

for x→x2p/2. One can see that transformations~32!, ~36!,
and ~37! are equivalent to the rescaling invariance of p
turbed motion equations near the saddle point@Eqs. ~15!#
found by the numerical integration of equations of motio
The rescaling property@Eq. ~32!# is demonstrated in Fig. 8
by plotting Poincare´ sections of orbits at sectionS by the
separatrix map for the same parameters as in Fig. 4:~a! ea
50.025, xa5p21; ~b! eb5l1/2ea50.01, xb5xa2p/2.
RegionH.0 corresponds to the first branch of sectionS,
andH,0 corresponds to its fourth branch, respectively~see
Fig. 7!. Note that the axisH in Fig. 8~b! is inverted. One can

FIG. 8. Poincare´ sections of orbits at sectionS obtained by the
separatrix map for the same parameters as in Fig. 4.
,

-

.

clearly see that rescaling transformations~32! indeed con-
serve the topology of the phase space with the rescaling
H→2l1/2H.

B. Separatrix map for a three-wave field model

Here we construct a separatrix map for the particle mot
in the three-wave field considered in Sec. II A. The geome
of the separatrix map is presented in Fig. 9. Calculating
generating function~26! with the Hamiltonian~7! along the
unperturbed separatrices@Eqs.~9!#, one can obtain

hk115hk1eK sinS wk1
n

2v0
ln

32

uhku
1x D ,

~38!

wk115wk1
n

2v0
F ln

32

uhku
1 ln

32

uhk11uG ,
wherew5nt, h5(H2v0

2)/v0
2,

K5
4pL2

sinh~pL! Fa1expS p

upu
pL

2 D1a2expS 2
p

upu
pL

2 D G ,
andL5n/v0. Note that, in general, the quantityK depends
on the direction of the motion, i.e., on the sign of the m
mentump.

For arbitrary values of the amplitudesa6 of waves, the
separatrix map is invariant with respect to the rescal
transformations ~28! with the rescaling parameterl
5exp(2pv0 /n). However for the special casea152a2

noted at the end of Sec. II B, it also describes the resca
invariance of motion@Eqs.~32!# near the saddle points due t
the symmetry of the system in the phase space. Indeed
this case we have

K5
p

upu
ua1u

4pL2

cosh~pL/2!
,

and the separatrix map@Eqs. ~38!# takes a form similar to
Eqs.~31!. For the latter we have proven the existence of
rescaling invariance@Eqs.~32!#. Application of the separatrix
map~38! to study the chaotic transport in the stochastic la
will be given in Sec. V.

FIG. 9. Geometry of the separatrix map for a three-wave fi
model @Eq. ~7!#.
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C. Separatrix maps for 2D periodic vortical flow

To construct the separatrix maps for this system, we
troduce sectionsSmn (m,n50,61,62, . . . ), centered at the
hyperbolic fixed points (xm ,yn) shown in Fig. 10. Each o
sectionsSmn consists of two segments crossing each ot
perpendicularly at the hyperbolic point, at 45° from thex
axis. There are four branches of each sectionSmn , denoted

as p51, 2, 3, and 4. We define maps asQk11
(m8n8)5ŜQk

(mn) ,
whereQk

(mn) is a crossing point of the orbit with the sectio

Smn . We denote them asX̂m,m61
(n) and Ŷn,n61

(m) . The map

X̂m,m61
(n) transforms pointsQk at sectionSmn to Qk11 at

Sm61,n along the horizontal axisx at fixedy5yn . Similarly,
Ŷn,n61

(m) connects points at sectionsSmn andSm,n61 along the
vertical axisy at fixedx5xm . Because of the periodicity o
the system in (x,y) space with period 1, we have the follow
ing symmetry properties of the maps:

X̂m,m61
(n12) 5X̂m,m61

(n) ,

Ŷn,n61
(m12)5Ŷn,n61

(m) ,
~39!

X̂m12,m1261
(n) 5X̂m,m61

(n) ,

Ŷn12,n1261
(m) 5Ŷn,n61

(m) ,

Thanks to these symmetry properties, there exist only e
independent mapsŜ which fully determine the dynamics o
the system.

For small perturbations the map may be replaced b
separatrix map which describes the evolution of energy~H!
and time ~t! variables at sectionsSmn , i.e., (Hk11 ,tk11)
5Ŝ(Hk ,tk) (Ŝ5X̂m,m61

(n) ,Ŷn,n61
(m) ). This has a general ana

lytical form @Eq. ~25!# with the Melnikov functions
Ma,a61

(b) (t0) (a,b5m,n),

Ma,a61
(b) ~ t0!52

]

]t0
E

2`

`

H1@qs~ t !,ps~ t !,t#dt, ~40!

where integration is taken along the unperturbed separa
connecting the saddle point (xm ,yn) with (xm61 ,yn) (a
5m,b5n) or with (xm ,yn61) (a5n,b5m). The time

FIG. 10. Geometry of the separatrix map for the periodic vo
cal flow @Eq. ~16!#.
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shift Dt(H) in Eq. ~25! is equal toT(H)/8, whereT(H) is
unperturbed period of motion@Eqs. ~19! and ~20!# in each
cell. Therefore, the separatrix maps for the system are

Hk115Hk1eMa,a61
(b) S wk1

n

4p
ln

2

puHku
1x D ,

~41!

wk115wk1
n

4p F ln
2

puHku
1 ln

2

puHk11uG .
Each of these maps is invariant with respect to transform
tion ~28!, with the rescaling parameterl5exp(4p2/n).

Consider, for example, the generating functions for p
turbation function~21!:

Ga,a61
(b) ~ t0!52

e

2pE2`

`

@aysin„2py~ t !2nt2x…

2axsin„2px~ t !2nt2x…#dt. ~42!

Using the unperturbed trajectories along separatrices~18!,
and integrating Eq.~42!, one can obtain the following ex
pressions for the Melnikov functions in map~41!:

Mm,m61
(n) ~ t0!5~21!naxK

(6)cos~nt01x!,

for m1n52k,
~43!

Mn,n61
(m) ~ t0!5~21!mayK

(6)cos~nt01x!

for m1n52k11,

where

K (6)5
n

2p

exp~6n/4!

sinh~n/2!

(k50,61,62, . . . ). From Eq.~43! it follows that all eight
generating functionsGa,a61

(b) (t0) are not independent. Be
cause of symmetry of perturbation~22!, we have

Mm,m61
(n) ~ t0!52Mm71,m

(n11) ~ t0!,
~44!

Mn,n61
(m) ~ t0!52Mn71,n

(m11)~ t0!.

The existence of a rescaling invariance of motion n
saddle points~23! and~24!, studied in Sec. II C by numerica
integration of the equations of motion, is due to these sy
metries. Using the separatrix maps~41! one can prove this
rescaling property. This is shown in the Appendix by co
structing maps F̂mn

(p) (p51,2,3,4) for fixed points
(wq,s ,Hq,s) near the saddle points (xm ,yn) at each branchp
of sectionSmn , i.e.,

~wq,s12ps,Hq,s!5~ F̂mn
(p)!q~wq,s ,Hq,s!, ~45!

similar to those mapsF̂p introduced to determine the fixe
points @Eqs.~33!# in the model studied in Sec. III A.

Using separatrix maps, we have plotted Poincare´ sections
of orbits at S00 and S01, shown in Fig. 11 for the same
parameters as in Fig. 6~a!: ea50.0208 andxa50. The re-
scaling parameterl5exp(4p2/n)516. Corresponding plots

-
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3518 PRE 62S. S. ABDULLAEV
at sectionsS11 andS10 may be obtained from Poincare´ plots
at S00 and S10 by shifting the phasew by p, respectively.
Similar plots for the rescaled parameterseb5l21/2ea
50.0052 andxb5xa1p/2 are presented in Fig. 12 at se
tionsS01 andS11. Note that the axesw andH in Fig. 12 are
inverted. These figures confirm the rescaling invariance
motion with regard to transformations~23! and ~24!.

IV. STATISTICAL PROPERTIES OF CHAOTIC MOTION

In this section and subsequent sections we study the
tistical properties of chaotic motion in a stochastic layer, a
their dependence on its structure. As noted above, the
chastic layers formed near the separatrix are not unifo
They consist of KAM stability islands embedded in a s
called stochastic sea. The structure of the stochastic lay
determined by the mutual positions and sizes of KAM
lands. The existence of these islands leads to the deviatio
chaotic motion from the normal diffusion processes beca
of long-time range correlations due to particles trapped n
the islands. This process, known as anomalous transport
pends on the structure of the stochastic layer. Therefore,
can vary the transport properties by changing the structur
the stochastic layer. This may be done, for instance, by v
ing of the perturbation parametere or its frequencyn.

FIG. 11. Poincare´ sections of orbits of the periodic vortical flow
@Eqs.~16! and~21!# obtained by separatrix mapping at sectionsS00

and S10 for the parametersea50.0208 andxa50. The rescaling
parameterl5exp(4p2/n)516. Other parameters areax51 anday

50.5.
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In the case of a stochastic layer formed near the sep
trices, the chaotic transport is mainly determined by its str
ture near the saddle points, where particles spend more
than in other parts of the phase space. As shown in prev
sections, the perturbed motion near the saddle points ha
remarkable rescaling invariance with respect to the chang
the perturbation amplitudee and phasex @Eqs.~6!# ~for the
fixed perturbation frequencyn), i.e., the topology of the sto
chastic layer near the saddle points is a periodic function
ln e with period lnl. Therefore, one can expect that by var
ing e one can periodically change the transport properties
chaotic motion in a stochastic layer. Below, we demonstr
these properties for the models of Hamiltonian systems c
sidered in the previous sections.

A. Mean residence time

We first study a particle motion in a double-well potent
subjected to the time-periodic perturbation described
Hamiltonian ~10!. This problem has a direct application i
magnetic field line dynamics in divertor tokamaks@38#, in
chemistry, etc. Suppose that in the absence of perturbati
particle is trapped in one of the wells. A motion of partic
may be described in the (q,p) plane by the closed curve 1 i
Fig. 1~a!, and it is separated from the other well by the sep
ratrix ~curve 2!. A time-periodic perturbation destroys th
separatrix, replacing it by a stochastic layer. If the init

FIG. 12. The same as in Fig. 11, but at sectionsS01 andS00 for
eb5l21/2ea50.0052 andxb5xa1p/2. Other parameters are th
same as in Fig. 11.
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orbit of the particle was inside the stochastic layer, it lea
the potential well during a certain timet. A residence timet
is a random number, and its statistics depends on the s
ture of the stochastic layer. Below we study the depende
of the mean residence time on the perturbation amplitude.

Let us first estimate the qualitative dependence of
mean residence timêt& on the perturbation parametere. If
one does not take into account particles trapped by isla
one could expect that̂t& is proportional to the period o
particle’s orbitT(Hs) inside the stochastic layer with an e
fective energyHs , i.e., ^t&;T(Hs). The effective energy
Hs is of order of the width of the stochastic layerws(e)
~supposing that at the separatrixH50). Sincews(e);e,
and taking into account the logarithmic asymptotics of
period T(Hs) @Eq. ~13!#, one can obtain the dependen
^t&;a2b log10e, wherea andb are independent ofe con-
stants. Therefore neglecting the particle’s trapping by isla
one expects that the mean residence time linearly decre
with loge.

Direct calculations of̂ t& were performed using the sep
ratrix map@Eqs.~31!#, and is presented in Fig. 13. The valu
of the perturbation frequencyn is chosen to have the resca
ing parameterl5exp(2p/n)510. Averaging is made ove
N5106 orbits. Curve 1 describes a dependence on^t& on e,
and curve 2 corresponds to its fitting with the linear-log la
^t&;a2b log10e. From the figure one can clearly see th
the mean residence time does not depend monotonicall
e. This shows that there are strong periodic oscillatio
around the linear-log dependence. These oscillations are
to a periodical variation of the topology of the phase sp
near the saddle point with the change of the perturba
amplitudee. The period of oscillations are determined b
setting the rescaling parameterl, i.e., equal to log10l.

B. Statistics of Poincarérecurrences

One of the important statistical characteristics of the
namically chaotic system is the statistics of Poincare´ recur-
rencesPrec(t). This is defined asN(t)/N, whereN(t) is a
number of recurrences witht.t, andN is a full number of

FIG. 13. A mean residence timêt& in the potential well nor-
malized to the perturbation periodT0 versus a perturbation param
eter e ~curve 1!. Curve 2 describes the fitting of^t& by a linear
function of log10e: a2blog10e (a521.8762.64,b53.9260.462).
The rescaling parameterl510.
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recurrences. This is related to the correlation function of
namical variablesC(t)5^ẋ(t1t) ẋ(t)& ~see, e.g., Ref.@31#!,

C~t!;tPrec~t!/^t&, ~46!

where^t& is the mean recurrence time. The diffusion coe
ficient ~rate! D is directly related to the correlations,

D;E
0

`

C~t!dt. ~47!

Asymptotically, probabilityPrec(t) decays exponentially
with t in the case of fully developed chaos@3#. Numerous
studies ofPrec(t) show that, for systems with partially cha
otic regions, the recurrence has a power lawPrec(t);t2p at
a large time. The first calculations of the exponentp for the
separatrix map and other different maps gavep'1.5 @31,30#.
During the last decade values ofp'1 –2.5 have been found
for different Hamiltonian systems@31,33,48–50#. However,
Chirikov presented some arguments that the value op
should be equal to 3@51#, which is strongly different from
p'1.5. Murray maintained that in order to achieve the e
ponent p53, one requires larger times@52#. Recently a
power-law decayPrec(t);t2p with p53 was numerically
observed at very large times for dynamical chaos in a s
dard map with the critical golden KAM invariant curve, i.e
m:n5n/v5(A521)/2 @53#.

We have studied statistics of first return times to t
fourth branch of sectionS ~Fig. 7! in the above considered
double-well potential for different perturbation parameterse.
The other parameters were the same as in Sec. IV A.
calculations are performed using separatrix map~31!. The
mean recurrence timêt& as a function of the perturbatio
parametere is shown in Fig. 14~a!. Similar to the mean
residence time~see Fig. 13!, this is also a quasiperiodic func
tion of log10e with the period log10l. However, the maxima
of the mean residence time correspond to minima of
mean recurrence timêt&, and vice versa.

The probability of recurrencesP(t) is computed up to
moderate timest<105T. This is shown in Fig. 14~b! for two
different perturbation amplitudese50.01 ~curve 1! and e
50.0126~curve 2!, corresponding to the local minimum an
maximum values of the mean recurrence time in Fig. 14~a!,
respectively. The straight lines correspond to the power-
decayt2p. One can see from Fig. 14~b! that P(t) decays
oscillatingly near the power lawt2p, which was also ob-
served in Ref.@31#. The amplitude of these oscillations va
ies with the perturbation parametere. Estimations of the
exponentp for differente were performed by a fitting of the
probability of recurrencesP(t) with the power lawCt2p in
the time interval 102<t/T<105. The latter is of the order of
the oscillation period ofP(t) around the power lawt2p.
The dependence of the exponentsp on e is shown in Fig.
14~c!, from which one can recognize a periodic depende
of p on log10e with the period log10l5 log1010. The values
of p vary between 1 and 2, and oscillate near the aver
valuep'1.5 which was observed in most previous calcu
tions mentioned above.

V. CHAOTIC TRANSPORT IN A STOCHASTIC LAYER.
THREE-WAVE FIELD MODEL

In this section we consider a chaotic transport of partic
in a stochastic layer for the three-wave field model@Eq. ~7!#
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~see Sec. II A!. We will study statistical properties of trans
port along the~infinite! q axis, particularly advection and
diffusion, by calculating the first,̂ q&, and the second
s2(t)5^(q2^q&)2&, moments of the spatial displacemen
respectively, as well as the probability density functi
~PDF! P(q,t) for a particle with positionq at time instantt
as a function of the perturbation amplitudee.

Calculations of the statistical moments were perform
using direct numerical integrations of motion equations
the Hamiltonian~7!. Since the numerical integration of th
Hamiltonian system is rather time consuming, we have a
exploited the fast numerical algorithm based on the sep
trix map ~38! to calculate statistical moments and the PD

For all calculations a perturbation frequency is chosen
n54.53236v0. Then the rescaling parameter isl54. For
simplicity we seta151 anda250 for the amplitudes of the
perturbation waves to consider an advection. On the o
hand we seta15a251 to study ‘‘pure’’ diffusion. A nu-
merical integration of the Hamiltonian system~7!, was per-

FIG. 14. ~a! Average recurrence timêt& as a function of the
perturbation amplitude logarithm, log10e. ~b! Poincare´ recurrence
Prec(t) to the fourth branch of sectionS ~see Fig. 7! for the two
perturbation amplitudes:e50.01 ~curve 1! and e50.0126 ~curve
2!. ~c! Exponentsp of asymptotics ofPrec(t);t2p as a function of
log10e.
d
r

o
a-

s

er

formed up to the time instantt523104T for different per-
turbation parameterse. HereT52p/n is the period of the
perturbation. A set of initial data att50, consisting ofN
553103 trajectories, was taken in a square region cente
at a hyperbolic fixed point (q5p,p50).

A. Advection

An advection in the stochastic layer takes place in
direction of the perturbation wave with the larger amplitu
amax5max(a1 ,a2). The maximum advection occurs
only one perturbation wave is present. We consider this c
settinga151 anda250. The mean value of the particle’
coordinate^q(t)& is calculated by numerical integration o
equations of motion for the different perturbation parame
e in the interval@0.002,0.4#. This shows that at least up t
t<23104T the mean coordinatêq(t)& is linear function of
time t, i.e.,^q(t)&5vt, with an advection speedv. However,
the advection speedv is not a monotonic function of pertur
bation parametere. Similar to the mean residence time stu
ied in Sec. IV, it varies quasiperiodically with the change
loge as shown in Fig. 15. Its period is equal to log10l.

B. A second moment of spatial displacement

The second momentss2(t) of the spatial displacemen
are calculated for thea15a251. Because of the fact tha
the perturbation in Eq.~7! in this case acts symmetrically o
particles traveling in both positive and negative directio
along theq axis, and gives rise to no advection, i.e., the me
value ofq is expected to bêq&50.

The dependence ofs2(t) on the perturbation amplitudee
is shown in Fig. 16 at two different time instants: curve
corresponds tot5104T0, and curve 2 tot523104T0. The
thick curves describe the results obtained from a numer
integration of the equations of motion, while the thin curv
corresponds to calculations by the separatrix map~38! ~with
an average overN5104 orbits!. One can see that the sep
ratrix map~38! correctly reproduces the results of direct n
merical integrations with a good accuracy up to the value
50.1. Figure 16 clearly shows the strong quasiperiodi
dependence of the second moments2(t) on the perturbation
parametere. There are local maxima ofs2(t) at the values

FIG. 15. Advection velocityv vs the logarithm of the perturba
tion amplitude, log10e, as obtained by direct numerical integratio
The rescaling parameterl5exp(2pv0 /n)54.
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emax
( j ) 5l2 jemax and emax'0.192, and local minima atemin

( j )

5l2 jemin andemin'0.08 (j 51,2, . . . ). Forlarge perturba-
tion amplitudes e.0.1 the quasi-periodical behavior o
s2(t) is less pronounced since the rescaling property
Hamiltonian system starts to violate for large perturbatio

The behavior of the second moments2(t) for long times
t.23104 was studied using separatrix map~38!. Figure 17
shows s2(t) versus e at the different time instantst/T0
5104, 23104, 53104, 105, and 106, continuously num-
bered 1–5, respectively. With increasing time, the perio
dependence ofs2(t) on e becomes more pronounced.

The profiles near the maxima become sharper, with s
low regions between them. The positions of the maximaemax

( j )

move toward smallere, but the positions of the minimaemin
( j )

become less distinct. The sharp maxima are due to the cr
ing the critical perturbation amplitudeemn

(2) for destruction of

FIG. 16. Second moments2(t) vs log10e as obtained by direc
numerical integration. Solid curve 1 corresponds tot5104T0, and
solid curve 2 tot523104T0 ~thick lines!. The corresponding thin
line curves describe the results obtained by the separatrix map@Eq.
~38!#.

FIG. 17. Same as in Fig. 16, but for the time instantst
5104T0 ~1!, 23104T0 ~2!, 53104T0 ~3!, 105T0 ~4!, and 106T0 ~5!.
f
.

c

l-

ss-

the last KAM invariant curve between the stochastic lay
and them:n resonance of type 1~islands of type 1 in Fig. 3!,
i.e., mv(hmn)5nn (hmn,0), with the smallest possible
number m. Just before crossing the invariant curve, mo
orbits are trapped by islands of types 2 and 3. The reaso
that the corresponding critical perturbation amplitudeemn

(1)

for these resonances@mv(hmn)5nn,hmn.0# is smaller
than for the resonance of type 1, i.e.,emn

(1),emn
(2) . This asym-

metry is due to the correction termO(h) in Eq. ~8!. This
results in an enhancement of the transport rate along thq
axis. After crossing the criticalemn

(2) , the resonance
m:n (hmn,0) joins the stochastic layer, and orbits begin
be trapped by that resonance. This leads to the decreasin
the transport rate. The small amplitude oscillations ins2(t)
with respect toe are due to the joining ofm:n resonances
with higher numbersm. The long time evolution more pre
cisely reveals the existence of critical perturbation amp
tudesemn

(6) for destruction of KAM invariant curves betwee
the stochastic layer and them:n resonance.

For large timest the asymptotics iss2(t);tg. The expo-
nentg is also a strong quasiperiodic function of lne with the
period lnl. The dependenceg on e obtained using the sepa
ratrix map ~38! is shown in Fig. 18. The chaotic transpo
along theq axis is superdiffusive (g.1) for all perturbation
amplitudes. The exponentg takes maximum and minimum
values at the samee values ass2(t) does. Regions withg
.2 correspond to the acceleration regimes.

C. Probability density function

Separatrix map~38! is also applied to calculate the PD
P(q,t). The PDFP(q,t) was calculated at the time instan
t523104T0 for perturbation parameterse in the interval
@0.002,0.1#. The number of orbits isN5105. The PDF is
almost symmetric with respect toq50, and it is mostly lo-
calized near this point. The width 2Ds of P(q,t), defined as
an area2Ds,q,Ds where half the orbits are localized
i.e.,*2Ds

Ds P(q,t)dq50.5, also has a strong periodical depe
dence on lne similarly to s2(t).

FIG. 18. Exponentg vs the logarithm of the perturbation am
plitude, log10e. It is obtained by fittings2(t) with 2Dtg in the large
time interval 104T0<t<105T0.
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One should note that the second moments2(t) and the
width Ds describe the width of the probability density fun
tions. However, in the case of anomalous~non-Gaussian!
transport they describe different physical situations of
transport process. The widthDs describes the PDF near th
central part where half of the particles are located. The m
contribution toDs comes from random particles and pa
ticles trapped by islands due to stickiness. On the other h
contributions tos2(t) mainly comes from particles with long
distance flights. In the case of normal Gaussian trans
both s2(t) andDs would have the same physical nature.

The main feature ofP(q,t) is its long tail asymptotics for
uqu@Ds. The latter depends significantly on the perturbat
parametere. The comparison, for instance, of the two PDF
at e50.048 and 0.08, for which the second momentss2(t)
have maximum and minimum values, respectively, sho
that while the PDF fore50.048 has a slowly decaying tai
the PDF fore50.08 decays much more quickly. We ha
approximatedP(q,t) asymptotically by power exponentia
law P(q,t);uqu2ae2buqu. The fitting exponentsa andb at
the time instantt523104 T0 are presented in Fig. 19:~a!
showsa versuse, while ~b! showsb versuse. First a strong
quasiperiodic dependence of these parameters on log10e ap-
pears, with the period log10l similar to that for the exponen
g in the time asymptotics ofs2(t).

There are regions ofe at the minima ofs2(t), where the
parameterubu is relatively small, and the tail of the PDF i
more closely described by the powerlike lawuqu2a. At
growing phases of the quasiperiodical dependence ofs2(t)
on e, the parameterb may take even negative values, whic
means that the tail of the PDF decays even more slowly t
the powerlike lawuqu2a ~see Fig. 16!. On the other hand, the
exponential decreasee2buqu of P(q,t) prevails in regions of
e wheres2(t) is decreasing. The exponential decrease of
probability to find particles at largeq is due to the trapping
of particles by them:n resonance with the smallest possib
numberm ~the island of type 1 in Fig. 3! ~whene crosses the
critical valueemn

(2) for destruction of the last KAM invarian

FIG. 19. Fitting parametersa and b for a power exponentia
law P(q,t);uqu2aexp(2buqu): ~a! a versuse; ~b! b versus log10e.
A time instantt523104T0.
e

in

d,

rt

n

s

n

e

curve between the stochastic layer and them:n resonance!.
On the other hand, fore,emn

(2) , particles are trapped by
resonances of types 2 and 3, and therefore they can tr
long distancesq. In this case, the tail ofP(q,t) decays more
slowly thanuqu2a. Overall the results show that the asym
totics of PDFP(q,t) for uqu@Ds depends significantly on
the structure of the stochastic layer, and it is mainly det
mined by the outermost KAM stability islands at the cha
border.

VI. CHAOTIC TRANSPORT IN 2D PERIODIC VORTICAL
FLOW

In this section we consider a chaotic transport in a s
chastic web of the 2D time-dependent periodic vortical flo
~16!. For simplicity we consider a perturbation

H1~x,y,t !5
e

2p
@sin~2py!2sin~2px!#cos~nt1x!,

~48!

which may be considered as combination wave perturbat
sin(2px2nt2x)1sin(2px1nt1x) and sin(2py2nt2x)
1sin(2py1nt1x) propagating in opposite directions of thex
andy axes, respectively. Thanks to symmetry property~22!
of perturbation~48!, there exists an additional rescaling in
variance property@Eqs.~23! and~24!# of the system. There-
fore, one expects that all statistical characteristics of the c
otic transport in such a system are to be quasiperiod
functions of the perturbation amplitude log10e with the pe-
riod log10l/2. For perturbation~48!, one can expect that th
chaotic transport alongx andy directions are equivalent, in
particular, mean spatial displacements^x&5^y&50, and
mean squared displacements^x2&5^y2&.

The statistical characteristics of the chaotic transport i
stochastic web were studied using the separatrix map c
structed in Sec. III C. The separatrix map for perturbat
~48! has the form of Eq.~41!, with the Melnikov integral

Ma,a61
(b) ~ t0!5~21!bK cos~nt01x!,

~49!

K5
n

4p

1

sinh~n/4!
.

We have chosen the rescaling parameterl5exp(4p2/n)
516. The statistics of transport is studied averaging oveN
5104 orbits. In Fig. 20 a second moment of the radial d
placements r

2(t)5^x2(t)1y2(t)& is displayed as a function
of the perturbation amplitudee at the time instantt5104T.
It shows a quasiperiodicity ofs r

2(t) with respect to log10e
with the period log10l/25 log1010/2, which is twice as smal
as in cases of transport along the 1D stochastic layer stu
in Sec. V. In Fig. 20 one can see also sharp periodic peak
s2(t) for some values ofe. As we will see below they ap-
pear due to enhanced~superdiffusive! transport in the sto-
chastic web.

The exponentg of asymptoticss r
2(t);tg determined by

calculations up tot<105T, are shown in Fig. 21. Similarly
to s r

2(t) it is periodically varying with log10e. From the
figure one can see that there are large periodic interval
the perturbation parametere where the values ofg are less
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than but close to 1. Minima values of the exponentg are
about 0.9 in small intervals ofe located neare0l i /2 (e0
50.0022,i 50,61,62, . . . ). At values of e the transport
may be considered weakly subdiffusive.

For most values ofe the exponentg is close 1, and the
chaotic transport may be well approximated by the norm
diffusion ~Gaussian! process, and one can introduce a diff
sion coefficientD as Ds5s r

2(t)/2t (t→`). The latter can
be also found from the PDFP(r ,t), to find a particle with
radial position r 5Ax21y2 at a time instantt. In this
case the diffusion coefficientD is determined by the
width of the radial Gaussian distributionPG(r ,t)
5r (DGt)21exp@2r2/2DGt# if the initial distribution of par-
ticles at the time instantt50 is the d function, i.e.,
PG(r ,0)52prd(r ). For the normal diffusion process th
diffusion coefficientsDs and DG determined by these two
different way should be equal.

Diffusion coefficients calculated in such a way are p
sented in Fig. 22 as functions ofe. Curve 1 describes the
diffusion coefficientDs determined from the mean square

FIG. 20. Second moment of radial displacements25^x21y2&
versus log10e. A time instant t5104T. Rescaling parameterl
5exp(4p2/n)516.

FIG. 21. Exponentsg of the asymptoticss2;tg versus log10e.
The parameters of the system are the same as in Fig. 20.
l

-

spatial radial displacements r
2(t) in the time interval 104

<t/T<105, and curve 2 corresponds to theDG obtained by
fitting the numerically determined PDFP(r ,t) at the time
instant t5105T with the radial Gaussian distributio
PG(r ,t). Figure 22 also shows a quasiperiodical depende
of both values ofD on log10e similar to those ones in Figs
20 and 21. For most values ofe the diffusion coefficientsDs

and DG are close, butDs systematically exceedsDG . The
reason for such a behavior was discussed in Sec. V C,
consists of the fact that there exists a difference between
second moments r

2(t) and the width of the PDFP(r ,t) in a
case of anomalous transport. The coefficientDG is mainly
determined by the central part of the PDF, while rare eve
with long flights may contribute toDs . Results shown in
Fig. 22 suggest that in large periodic intervals of the pert
bation parametere, where differences betweenDs and DG
are small, the transport process may be considered a no
diffusion process.

Superdiffusive regime

From Fig. 22 it also follows that there are large diffe
ences betweenDs and DG in the narrow periodic intervals
of e located near valuese5lk/2e0 and e050.0031
(k50,61,62, . . . ). They correspond to the peaks ins r

2(t)
~see Fig. 20! and to the large exponentsg in Fig. 21. For
these values ofe the Gaussian approximation fails, and ch
otic transport becomes superdiffusive. Enhanced transpo
connected to the existence of flights of long distances~the
Levý flight! at these values ofe. A single event of flight or
long distance is shown in Fig. 23 in the (x,y) plane~a! and
in the (t,H) plane~b! for the specific value ofe50.0124 for
which such a behavior occurs. These flights are conne
with the stickiness of orbits to the specific KAM stabilit
islands. They are shown in Fig. 24 on Poincare´ sections of
orbits on the (x,y) plane near the two saddle points.~a! xs

FIG. 22. Diffusion coefficientsD determined by the asymptotic
Ds5s2/2t ~curve 1! and by fitting with the radial Gaussian distr
butionPG(r ,t)5r (DGt)21exp@2r2/2DGt# ~curve 2! as functions of
log10e. The parameters of the system are the same as in Fig. 2
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520.25,ys50.25 and~b! xs50.25,ys50.25 obtained by di-
rect integration of Hamiltonian equations using the Bulirsc
Stoer method mentioned in Sec. II C. Four types of isla
~seen as dark sticks! responsible for flights of long distance
are continuously labeled by 1–4. Figure 24~c! shows a clo-
seup view of the region near the first island. Islands 1
have different flight directions: the flight direction of the fir
island is 45° with respect to positive direction of thex axis,
that for the second island is 315°, that for the third island
225°, and that for the fourth island is 135°.

The structure of these tiny-sized KAM stability island
may be also shown in the (t,H) plane by plotting Poincare´
plots in the (t,H) plane using the separatrix map. These pl

FIG. 23. Long distance flight event:~a! orbit in the (x,y) plane;
~b! orbit in the (H,t) plane. Parameters aree50.0124 andx50.
-
s

4

s

s

are presented in Fig. 25~a! on sectionS01 and~b! on section
S11. ~c! shows a closeup view of the region near the tin
sized KAM stability island shown in~b!. The island with
H,0 (H.0) in Fig. 25~a! corresponds to the first~second!
and third ~fourth! islands in Fig. 24~a!, and the island with
H.0 (H,0) in Fig. 25~b! corresponds to the first~second!
and third ~fourth! islands in Fig. 24~b!, respectively. From
positions (xe ,ye) of elliptic fixed points of islands in the
(x,y) plane, one can determine the values of energyHe for
the fixed points of corresponding islands in the (t,H) plane.
From Fig. 24~a!, it follows that for the first and third islands
we haveHe5H(xe ,ye ,t5kT)'21.49531024, and for the
second and fourth islands we haveHe'1.424531024. Simi-
larly, from Fig. 24~b! we haveuHeu56.456531024. These
values reproduce with the good accuracy the correspon
values of H determined by the separatrix map:He

561.4856531024 at section S01, and He566.50418
31024 at sectionS11.

One should note that although the applied numerical in
gration scheme sufficiently well determines the positions
these island on the phase space (x,y), it cannot resolve fine
details of their structure because of a loss of accuracy.
fine structure of these tiny-sized KAM stability islands m
be seen on Poincare´ plots in the (t,H) plane, obtained by the
separatrix map@see Fig. 25~c!#.

First we should note the main specific feature of orb
trapped by islands responsible for flights. We call these fli
islands. As one sees from Figs. 23~b!, 24, and 25, the values
of the energy variableH for trapped orbits take successive
positive and negative values near the saddle points; i.e
Hk.0, thenHk11,0 for every step of the separatrix ma
@Eqs.~41! and ~49!#. The elliptic fixed points (w (e),H (e)) of
flight islands at any sectionSmn ~or at equivalent sections
Sm62q,n62p , q,p51,2, . . . ) can bedetermined by the fixed
points of the mapF̂mn

(p) @Eq. ~45!#, similar to those fixed
points @Eqs. ~33!# of KAM stability islands responsible for
trapping in cells, but with the requirement that ifHk

(e).0

then Hk11
(e) ,0, and vice versa. The mapsF̂mn

(p) are con-
structed similarly to Eqs.~A1! and ~A2!. For example, the
map

F̂m,n
(2) 5Ŷn11,n12

(m12) X̂m11,m12
(n11) Ŷn,n11

(m11)X̂m,m11
(n) ~50!
r
FIG. 24. Poincare´ section near the saddle points:~a! xs520.25,ys50.25; ~b! xs50.25,ys50.25; four tiny-sized islands of regula
motion responsible for long distance flights are shown by arrows 1–4.~c! Closeup view of the region near the first island shown in~b!.
Parameters are the same as in Fig. 23.
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transforms the fixed point of the first island at sectionSmn
with even m1n to an equivalent one at sectionSm12,n12
~see Fig. 26!.

To be specific, we determine the principal fixed points
the first island, corresponding toq51. Using Eqs.~41! and
~49!, the equations for the fixed points (w (e),H (e)) may be
written

h25h11eK cosw1 , w25w11V~h2!,

h35h22eK cosw2 , w35w21V~h3!,
~51!

h45h32eK cosw3 , w45w31V~h4!,

h15h41eK cosw4 , w112ps5w41V~h1!,

whereV(h)5(n/2p)ln(2/puhu), w5w1V(h)/21x, ands
51,2, . . . . In Eq.~51! the following notations are intro
duced:

FIG. 25. Poincare´ plots obtained by the separatrix map in th
(H,t) plane at sections~a! S00 and~b! S10. The small-sized islands
~with dark edges! are responsible for long distance flights.~c! Clo-
seup view of one of the islands shown in~b!. Parameters are th
same as in Fig. 23.
f

~w1 ,h1!5~w,H ! at Sm,n and Sm12,n12 ,

~w2 ,h2!5~w,H ! at Sm11,n ,

~w3 ,h3!5~w,H ! at Sm11,n11 ,

~w4 ,h4!5~w,H ! at Sm12,n11 .

Fixed points of the first flight island should also satisfy t
conditionsh1,0, h2.0, h3,0, andh4.0. From the equa-
tions for the angular variableswi ( i 51, 2, 3, and 4! in
Eqs.~51!, it follows that

(
i 51

4

V~hi !52ps or )
i 51

4

uhi u516/~p4ls!, ~52!

wherel is the rescaling parameter.
First we consider the cases whenh15h3 andh25h4. In

these cases Eqs.~51! may be reduced to

h25h11eK cosw1 ,

h15h22eK cos@w11V~h2!#, ~53!

uh1h2u54/~p2ls/2!.

Taking into account thath1,0, h2.0, we come to the tran-
scendental algebraic equation forw1,

cosw12cos$w11V@h2~w1!#%50, ~54!

whereh2(w1) is a positive solution of the quadratic equatio

h2
22eK cosw1h214/~p2ls/2!50. ~55!

Let us determine the fixed points of the island for t
perturbation parametere near its specific valuee50.0124.
For these values ofe the numbers is equal to 11. From Eqs
~54! and ~55! we have numerically found that the fixe
points (w (e),H (e)) exist for 0.0121<e<0.031. At section
S00 the phasew (e)5p ~mod 2p), andH (e) changes in the
interval @21.54262331024,27.51870231025#, and atS01
the phasew (e)53p/2 ~mod 2p) and 6.26384231024

FIG. 26. Construction of the mapFmn
(2) for the determination of

fixed points of the first island responsible for flights.
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<H (e)<1.28516131023, respectively. However, the fixe
points are elliptic only for 0.0121<e<0.0131, and are hy
perbolic fore.0.0131. In the first case the eigenvaluesl1,2
of the matrix

F ]h2 /]h1 ]h2 /]w1

]w2 /]h1 ]w2 /]w1G
are complex numbers, i.e.,l1,25exp(6ia), and in the second
casel1,2 are real, i.e.,l1.1,l2,1,l1l251.

A determination of flight islands with fixed pointsh1
Þh3 or h2Þh4 is more difficult. We have studied them b
directly plotting Poincare´ sections in the (w,H) plane. Such
islands appear fore>0.0132 when the fixed point withh1
5h3 andh25h4 becomes hyperbolic, and generates two
liptic fixed points. With increasing perturbatione, the sto-
chastic layer near the separatrix grows. The islands
appear fore.0.0133. This process is shown in Fig. 27 b
plotting Poincare´ sections near these islands at sectionS10
for two different perturbation parameters~a! e50.0132 and
~b! e50.01322. The sizes of these islands is much sma
than ones with one elliptic point@compare with Fig. 25~c!#.

Therefore, flights may occur for perturbation paramet
0.0121<e<0.0132 due to the stickiness of the island w
elliptic fixed points. Similar results can be obtained for t

FIG. 27. The same as in Fig. 25~c! but for the perturbation
parameters~a! e50.0132 and~b! e50.01322. Other parameters a
the same as in Fig. 23.
l-

s-

r

s

principal fixed points withq51 of the second, third, and
fourth islands. Fixed points with higher numbersq>2 can
be studied by a similar approach. However, this is a rat
difficult task.

One can conclude that chaotic transport in a stocha
web of a 2D time-dependent periodic vortical flow may e
hibit three types of stochastic processes: subdiffusive, n
mal Gaussian, and superdiffusive. Varying the perturbat
parametere, one can control the type of chaotic transport

VII. CONCLUSIONS

We have studied an important relationship between
structure of a stochastic layer and statistical properties
chaotic transport in it. It was shown that systems with top
logically similar stochastic layers have similar statistic
properties of transport. This property of dynamical syste

was extensively studied in 112 -degree-of-freedom Hamil-
tonian systems. First we discussed the universal resca
invariance of motion near the saddle points with respect t
rescaled transformation of the amplitude of a time-perio
perturbation with a shift of its phase; we also established
additional rescaling invariance of motion due to symmetr
of the system. These properties give rise to periodic chan
of the topology of the phase space near the saddle point
varying perturbation amplitudes. This leads, in turn, to qu
siperiodical oscillations of statistical characteristics of tra
port with the change of the perturbation amplitude. The
riod of these oscillations, determining the rescali
parameterl5exp(2pg/n), is a universal parameter whic
depends only on the expansion coefficientg of the unper-
turbed Hamiltonian near the saddle point, as well as on
frequency of the external perturbationn.

This effect is universal for a one-degree-of-freedo
Hamiltonian system subjected to a small time-periodic p
turbation regardless of the specific features of the syst
One can expect the effect to occur in chaotic transport pr
lems in structured flows—for instance, in chaotic mass tra
port in a chain of vortices in a shear layer@16#. Similarly, it
may also be observed in models of physical systems wh
are described by a stochastic web~see, e.g., Ref.@33#!.

Our study shows that the chaotic transport rate is no
monotonic function of the perturbation amplitudee, in spite
of the fact that the stochastic layer’s width increases linea
with e. This suggests, first, that the width of the stochas
layer, the determination of which was the primary goal
many works~see, e.g., Ref.@54#, and references therein!,
does not completely characterize a chaotic motion. The
istence of KAM stability islands embedded in a stochas
layer is one of its essential features, and particularly the o
ermost islands play a crucial role in chaotic transport. T
situation is not taken into account by qualitative transp
theories; for instance, quasilinear theory, predicts the mo
tonic dependence of transport rate on the perturbation am
tude.

The established effect also shows the possible rang
controlling Hamiltonian chaos@55#, in particular, chaotic
transport, by varying the perturbation amplitude. The eff
may be useful in controlling the transport of heat and p
ticles in magnetic fusion devices with stochastic magne
field lines@56#, in controlling the transport of passive scala
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in a chain of vortices@16#, or in a mixing of fluids@7#.
One should note that oscillations of the normal diffusi

coefficient D as a function of the stochasticity parame
K (K.1), with a period 2p, were observed in standar
~Chirikov–Taylor! mapping @2,57,58#. However, this qua-
sioscillatory behavior, related to the existence of acceler
modes@59#, is the exclusive property of standard mappi
and so is unlike the universal quasioscillations of chao
transport in a stochastic layer on log10e considered in this
work.
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APPENDIX: RESCALING PROPERTIES NEAR
THE SADDLE POINTS

According to the geometry of the separatrix maps~see
Fig. 10!, mapsF̂mn

(p) may be obtained by consecutive applic

tions of mapsX̂m,m61
(n) and Ŷn,n61

(m) , i.e.,

F̂m,n
(1) 5Ŷn11,n

(m) X̂m11,m
(n11) Ŷn,n11

(m11)X̂m,m11
(n) ,

F̂m,n
(2) 5Ŷn21,n

(m) X̂m11,m
(n21) Ŷn,n21

(m11)X̂m,m11
(n) ,

~A1!
F̂m,n

(3) 5Ŷn21,n
(m) X̂m21,m

(n21) Ŷn,n21
(m21)X̂m,m21

(n) ,

F̂m,n
(4) 5Ŷn11,n

(m) X̂m21,m
(n11) Ŷn,n11

(m21)X̂m,m21
(n)

for the even summ1n, and

F̂m,n
(1) 5X̂m11,m

(n) Ŷn11,n
(m11)X̂m,m11

(n11) Ŷn,n11
(m) ,

F̂m,n
(2) 5Ŷm11,m

(n) Ŷn21,n
(m11)X̂m,m11

(n21) Ŷn,n21
(m) ,

~A2!
F̂m,n

(3) 5Ŷm21,m
(n) Ŷn21,n

(m21)X̂m,m21
(n21) Ŷn,n21

(m) ,

F̂m,n
(4) 5X̂m21,m

(n) Ŷn11,n
(m21)X̂m,m21

(n11) Ŷn,n11
(m)

for the odd summ1n.
We study a transformation of maps~A1! and ~A2! with

respect to the rescaling transformation~23!. For maps the
latter may be formulated as

e→l1/2e, x→x2p/2,
~A3!

H→2l1/2H, t→2t.

The last expression in the second line in Eq.~A3! corre-
sponds tox→2x,y→2y.

Consider, first, a transformation of the separatrix ma
X̂m,m61

(n) and Ŷn,n61
(m) with respect tot→2t and H→2H.

According to Eq.~43! this transformation gives a map bac
ward to Eq.~41! with opposite signs ofH and the phasex,
i.e.,

X̂m,m61
(n) ~x!→X̂m61,m

(n) ~2x!

~A4!
r

or

c

ts
nd

s

for t→2t, H→2H.

On the other hand, according to Eq.~44! it follows that
products of the mapsX̂m,m61

(n) andŶn,n61
(m) are transformed in

the following ways:

Ŷn,n61
(m61)~2x!X̂m,m61

(n) ~2x!

→Ŷn61,n
(m) ~2x!X̂m71,m

(n61) ~2x!, ~A5!

X̂m,m61
(n61) ~2x!Ŷn,n61

(m) ~2x!

→Ŷm71,m
(n) ~2x!Ŷn71,n

(m61)~2x!

for e→l1/2e, x→x2p/2, H→l1/2H, ~A6!

which are similar to property~32! in the case of a system
with a single saddle point. Therefore, the entire rescal
transformation~A3! transform the mapsF̂mn

(p) in the following
way. Using Eqs.~39!, ~A1!, and~A5!, one can show that, fo
evenm1n,

F̂m,n
(1) 5Ŷn11,n

(m) X̂m11,m
(n11) Ŷn,n11

(m11)X̂m,m11
(n)

→Ŷn,n11
(m) X̂m21,m

(n) Ŷn11,n
(m21)X̂m,m21

(n11) 5F̂m,n11
(3) ,

F̂m,n
(2) 5Ŷn21,n

(m) X̂m11,m
(n21) Ŷn,n21

(m11)X̂m,m11
(n)

→Ŷn,n11
(m) X̂m21,m

(n) Ŷn11,n
(m21)X̂m,m21

(n11) 5F̂m,n11
(4) , ~A7!

F̂m,n
(3) 5Ŷn21,n

(m) X̂m21,m
(n21) Ŷn,n21

(m21)X̂m,m21
(n)

→Ŷn12,n11
(m) X̂m11,m

(n12) Ŷn11,n12
(m11) X̂m,m11

(n11) 5F̂m,n11
(1) ,

F̂m,n
(4) 5Ŷn11,n

(m) X̂m21,m
(n11) Ŷn,n11

(m21)X̂m,m21
(n)

→Ŷn,n11
(m) X̂m11,m

(n) Ŷn11,n
(m11)X̂m,m11

(n11) 5F̂m,n11
(2) .

From Eqs.~A7! it also follows that

F̂m11,n11
(1) →F̂m11,n12

(3) [F̂m11,n
(3) ,

F̂m11,n11
(2) →F̂m11,n12

(4) [F̂m11,n
(4) ,

~A8!
F̂m11,n11

(3) →F̂m11,n12
(1) [F̂m11,n

(2) ,

F̂m11,n11
(4) →F̂m11,n12

(2) [F̂m11,n
(2) .

Using Eqs.~A2!, similarly to Eqs.~A7!, one can obtain
the following transformation properties for oddm1n:

F̂m,n
(1) →F̂m11,n

(3) , F̂m,n
(2) →F̂m11,n

(4) ,
~A9!

F̂m,n
(3) →F̂m11,n

(1) , F̂m,n
(4) →F̂m11,n

(2) .

Transformation properties~A7! and ~A9! of the phase space
near the four saddle points with respect to the rescaling tra
formations~A3! are fully equivalent to the rescaling prope
ties ~23! and ~24! found by the numerical integration o
Hamiltonian system@Eqs.~16! and ~21!#.
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