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Quantum chaos border for quantum computing
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We study a generic model of quantum computer, composed of many qubits coupled by short-range inter-
action. Above a critical interqubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of
the computer eigenstates. In this regime the noninteracting qubit structure disappears, the eigenstates become
complex, and the operability of the computer is destroyed. Despite the fact that the spacing between multiqubit
states drops exponentially with the number of qubjtare show that the quantum chaos border decreases only
linearly with n. This opens a broad parameter region where the efficient operation of a quantum computer
remains possible.

PACS numbgs): 05.45.Mt, 03.67.Lx, 24.10.Cn

Since the pioneering work of Feynmafh] and modern glance one would expect that such mixing happens when the
developments of efficient algorithnig] and error-correcting coupling between qubits becomes comparable to the multi-
codes[3,4], the realization of quantum computers became &jubit spacingA,. In such a case, the creation of quantum
challenge of modern physid¢§]. Different experimental re- computers competitive with classical ones would be rather
alizations have been proposed, including ion trdp$ difficult: since hund(eds of qu_bits are necessary, this would
interaction controlled electronicalfg,9], quantum dot§10], ~ deed, fom=1000, the minimum number of qubits for which
Cooper pair boxeEL1], and optical lattice§12]. A key com- Shor’s algorithm becon;ses usefd], the multiqubit spacing
mon feature of these experimental settings is the presence BecomesA,~10°x2717A,~10"% K, where we used
interacting qubitstwo-level systems Here we analyze the Ao~1 K that corresponds to the typical one-qubit spacing
effect of qubit interaction on operability of the quantum in the experimental proposal8$,9]. It is clear that the re-
computer. The interaction is required since a quantum comgidual interaction) between qubits in any experimental real-
puter needs to perform two-qubit logical operation such adzation of the quantum computer will be larger than this. For

XOR [5]. We note that such a two-qubit gate has been exper€¥@MPle, in the proposgd], the increase of effective elec-
mentally realized13] tron mass by a factor of two, induced by the electrostatic gate

In an isolated system af uncoupled qubits, the dimen- potential, means that the spin-spin interaction is changed

. . . : fromJ~A,~1 K (corresponding to a distance between do-
sion of the to'aal Hilbert spacély increases exponentially )& ¢ 500 A and an effective Bohr radius of 30 A in Eq.
with n (Ny=2"), while all eigenvalues of the Hamiltonian

included | : | of SIAE~nA . wh (2) of [9]) to the residual interactiod~10"° K>A,.
are included in an energy interval of SIZE~na,, where However the problem is not so simple, since the interac-

A, is the average energy distance between the two states gf, is always of two-body nature and not all of the multiqu-
one qubit. As a result, the average spaciigbetween ad- pit states are directly coupled. Actually the number of states
jacent energy levels of the Hamiltonian decreases exponentirectly coupled to such a quantum register stagg in-

tially with the number of qubits4,~nAq/Ny<Ag). When  creases not faster than quadratically withA similar prob-

a couplingJ between the qubits is added<(A,), one still  |em appears in other physical many-body interacting systems
hasAE~nA,, Ny is unchanged, and the above estimate forsuch as nuclei, complex atoms, quantum dots, and quantum
A, still holds. This general result foA, is related to the spin glasse$16—20. It was realized that sufficiently strong
exponentially large siz&l,, of the Hilbert space, which is interaction leads to quantum chaos and intefdghamical

one of the main reasons for the striking efficiency of quan-thermalization, where the eigenstates properties follow the
tum computing[1,2]. It implies that dense highly excited predictions of random matrix theorfRMT) [14—18. The
states are needed for the computation. However, when peguantum chaos border for this dynamical thermalization has
forming the computation one wants to operate with noninterbeen established only recently and it has been shown that the
acting multiqubit state$y;)=|a4, ... ,a,) wherea,=0,1  relevant coupling strength should be larger than the energy
marks the polarization of each individual qubit. These quanspacing between directly coupled states[17,20. SinceA,

tum register states should remain well defined in the presdrops algebraically witn, it is exponentially larger than
ence of interqubit coupling even if multiqubit levels are ex-A,~n2""A,, and therefore a relatively large coupling
ponentially dense. Therefore the mixing of noninteractingstrength is required for the emergence of quantum chaos and
multiqubit states induced by the interaction is crucial for theergodicity. A similar border for interacting qubit systems
computer operability. In the field of quantum ch4®4,15 it  would allow a reasonable regime of operability for quantum
is known that noninteracting states will be eventually mixedcomputers.

by the interaction and quantum ergodicity will set in: each To investigate the emergence of quantum chaos in quan-
quantum computer eigenstate will be composed of a largeum computers, we chose a model mfqubits on a two-
number of noninteracting multiqubit stateg) and the origi-  dimensional lattice with nearest-neighbor interqubit cou-
nal quantum register states will be washed out. At firstpling. The Hamiltonian reads
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where theo; are the Pauli matrices for the qubitand the
second sum runs over nearest-neighbor qubit pairs with pe-
riodic boundary conditions applied. The energy spacing be-
tween the two states of a qubit is represented psandomly
and uniformly distributed in the interva[Aq—6/2,A¢
+ 6/2]. The parameteb gives the width of the distribution
near the average valuk, and varies from 0 td\,. HereT’
can be viewed as the splitting of nuclear spin levels in a local
magnetic field, as it is discussed in the experimental propos-
als[8,9]. The different values of'; are needed to prepare a
specific initial state by electromagnetic pulses in nuclear
magnetic resonance. In this case the coupligswill rep-
resent the hyperfine interaction between the spins, which is FIG. 1. Transition from Poisson to WD statistics in the model
needed to build the quantum computer. Different physicall) for the states in the middle of the energy bandg(25% around
mechanisms can generate these couplings, such as spin exdie center for n=12: J/A,=0.02,7=1.003 (dashed line histo-
ton exchangé8,9], dipole-dipole interaction, etc. For gener- gram; J/A,=0.48,7=0.049 (full line histogram. Full curves
ality we choseJ;; randomly distributed in the interval ShOWPe(s) andPy(s); Ns>2.5x10%, Np=100, 5= A,.

[ —J,J]. The Hamiltonian1) can be considered as a generic
quantum computer model, which catches the main physics akspect tal/A is presented in Fig. 2 fof= A, showing that
different experimental proposals. For example, a similaindeed  drops from 1 to O with increasing coupling
Hamiltonian appears in a quantum computer based on opticatrength. The transition appears to become sharper for larger
lattices [12,21]. We restrict ourselves to the case of staticsystem sizes. The typicdl, value near which the transition
couplings that are always present as a residual interactiogakes place corresponds to intermediate valuesyofvVe
and are much larger than the multiqubit spacingeven for  chose the conditiom(J;) =0.3. The dependence df onn
moderate values af. In a sense Eq1) describes the hard- is given in the Fig. 2. In analogy with other many-body
ware of the computer, while gates operation in time requiresystems discussed 17,20, we expect thatJ.,~A.
additional studies, which are possible only if the properties~ CAq/n, whereC is some numerical constant. Indeed, one
of the hardware are well understood. multiqubit state is coupled tor2 other states in an energy
As is well known in the field of quantum chaos, the tran-interval of order @,. This theoretical estimate is in agree-

sition to ergodic eigenstates is reflected in the level spacinghent with the data of Fig. 2, wit~3. We stress that this
statistics P(s), which goes from the Poisson distribution

Pp(s)=exp(—s) for nonergodic states to the Wigner-Dyson
(WD) distribution Py(s) = (7s/2)exp( ws¥4), correspond-
ing to RMT, for ergodic states. Hergis the nearest level
spacing measured in units of average spacingrR(®) is the
probability to find two adjacent levels whose spacing is in
[s,s+ds].

The majority of our data are displayed for the middle of
the energy spectrum, where the transition starts, and which
therefore sets the limit of operability of the quantum com-
puter. The mode(l) has two symmetry classes characterized
by an odd or even number of qubits up, and the data are
given for one symmetry class. In order to reduce statistical
fluctuations, we use $Np=<4x10* random realizations of
I'; andJj;;, as is done usually in RMT15]. Eigenvalues and
eigenvectors are computed by exact diagonalization of the
Hamiltonian matrix(1) for each realization. In this way the
total number of spacings is 1@Ng=1.6x10° (Ng
«NpNy). An example of the transition in the spectral statis-
tics is shown in Fig. 1.

To analyze the evolution oP(s) with the coupling
J, it is convenient to use the parametef=f§°[P(s)

- PW(s)]ds/fgo[Pp(s)— Pw(s)]ds, wheres;=0.4728 ...
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FIG. 2. Dependence af on the rescaled coupling strengthl,
for the states in the middle of the energy bandrfer6 (*), 9 (O),
12 (triangles, 15 (square§ &=A,. The upper inset shows
log;o(J./Ag) (diamond$ and loggy(J.s/Ap) (triangles versus
log,¢(n); the variation of the scaled multiqubit spaciag /A with
log,o(n) is shown for comparison+). Dashed line gives the theo-

is the intersection point oPp(s) and Py(s). In this way
Py(s) corresponds tap=1, andPy,(s) to »=0. As is usual
in the field of quantum chaos, the variation pfcharacter-
izes the evolution ofP(s) [20]. The variation ofn with

retical formulaJ.=CAy/n with C=3.16; the solid line isd.
=0.41A,/n. The lower inset shows IqgJ.s/Ag) versus logy(d/Ag)
for n=6 (*), 9 (O), 12 (triangley; straight lines have slope 1.
Logarithms are decimal.
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FIG. 3. Two quantum computer eigenstates of mddgin the FIG. 4. Dependence of the quantum eigenstate entpgn

basis of noninteracting multiqubit states, i.&;=|(|#)|? as a  J/J, for s=A, andn=6 (*), 9 (O), 12 (triangles, 15 (squarek
function of noninteracting multiqubit enerdy; for n=12 andé 10*<Ng=<1.6x10°. Inset shows the dependence on larger scale.

=Aq with J./A;=0.273 (see text (8 J/Ay=0.02; (b) J/Aq o o . )

—0.48. This critical coupling is much larger than the multiqubit level
spacingA,~10 2% K. Even if the quantum bordel cor-

- L . ... responds to a relatively low coupling strength it seems rea-
critical coupling is exponentially larger than the multiqubit g a6 that the residual interaction between qubits can stay

RS B S ) . : : .
level spacingA,~n2 "Ao, as is shown on Fig. 2. For the o0y this threshold with current technologiésit not be-
cased<Ay, the total spectrum al=0 is composed oh |\ A )

o).

bands with interband distance\3 and a bandwidth of/ns. The pictorial image of the quantum computer melting un-
Within one band, one multi-qubit state is coupled to about e the influence of the interqubit couplidgis shown on
states in an energy interval o62so thatlc~Ac.~é&/n. This g 5. The melting starts in the middle of the spectrigh
quantum chaos border is still much bigger thad,  energy and progressively invades low-energy states and the
~\n&l(Ny/n)~n¥27"s. o whole computer, destroying its operability. We stress that
The transition in the level statistics reflects the drasticihis destruction takes place in an isolated system without any
change in the multiqubit structure of the eigenstates of Edexternal decoherence process. Nevertheless the thermaliza-

(1). Indeed, Fig. 3 shows that fat<J. one eigenstate is tion in this closed system, which appears because of the in-
formed only by one or few noninteracting states), while

for J>J; a huge number of them are required. In the latter
case, the computer eigenstates become a random mixture of
quantum register statég;), making it rather difficult to per-
form computation.

To study this drastic change in the structure of eigen-
states, it is convenient to use the quantum eigenstate entropy
Sy defined by:S;= —X;W;log,W;, whereW; is the quan-
tum probability to find the noninteracting multiqubit state
|4) in the eigenstatép) of Eq. (1) (W;=]|{i] ¢|2)). In this
way S;=0 if |$) is one noninteracting statd€0), S=1
if |¢) is equally composed of twdy;), and the maximal
value isS,=n if all 2" states contribute equally {@). The
variation of the average quantum entropy witls shown in
Fig. 4 for 6=A,. It shows thatS; grows with J and the
transition to ergodic states with larg takes place in the
vicinity of J.. In addition these data show that the critical
couplingJ.s at whichS;=1 is J.4~0.13);. The ratioJ.s/J
stays within 15% of the average value whenhanges from
6 to 15, while the ratia\ ,/J., varies from 1 to %X 10 3 (see
upper inset of .F'g' P The _dependence s on Jis shov_vn FIG. 5. The quantum computer melting induced by the coupling
on the lower ms_ert of Fig. 2; it clearly ShOW,S the linear between qubits. Grayness represents the level of quantum eigenstate
decrease ofls with 6 and can be well described hls  enropys,, from black (8,=0) to white (S;~11). Horizontal axis
=0.44/n. Naturally, the quantum chaos border drops {0 Zerqs the energy of the computer eigenstates counted from the ground
with & due to the quasidegeneracy inside the energy bands gfate to the maximal energy-2nA,). Vertical axis is the value of
J=0. JIA,, varying from 0 to 0.5. Her@=12, §=A,, J./A;=0.273,

We note that forn=1000 and6=Ay,=1 K, only two  and one random realization of E€l) is chosen. A color figure is
multiqubit states will be mixed al.s~0.4A,/n~0.4 mK. available on http://xyz.lanl.gov/format/quant-ph/9909074




PRE 62 3507

QUANTUM CHAOS BORDER FOR QUANTUM COMPUTING
terqubit coupling, can mimic the effect of a coupling with the pect that below this border, error-correcting cofigg] will
external world and external decoherence. Above the quarellow us to perform efficient quantum computing with a
tum chaos border an initial register statg) will spread  large number of qubits. Above this border these codes should
quickly with time[22] over an exponential number of eigen- operate much faster compared to the rate with which chaos
states of the system with residual interaction, destroyingets in[22] to allow to suppress it. Due to that, it is much
gates operability. more efficient to operate the computer below the quantum
Our studies of a realistic isolated quantum computer hardehaos border. Finally, we note that quantum chaos sets in
ware show that the mixing of multiqubit states and onset ofery easily if the fluctuation amplitudé of individual qubit
quantum chaos induced by interqubit coupling leads to itspacing drops to zeral(« ).
melting and destruction of its operability; however, the quan-
tum chaos border found for this process corresponds to a We thank O.P. Sushkov and 1.D. Vagner for stimulating
relatively strong interaction, being exponentially larger thandiscussions, and the IDRIS in Orsay and the CICT in Tou-

the energy level spacing between multiqubit states. We exouse for access to their supercomputers.
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