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Periodic orbit effects on conductance peak heights in a chaotic quantum dot
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We study the effects of short-time classical dynamics on the distribution of Coulomb blockade peak heights
in a chaotic quantum dot. The location of one or both leads relative to the short unstable orbits, as well as
relative to the symmetry lines, can have large effects on the moments and on the head and tail of the
conductance distribution. We study these effects analytically as a function of the stability exponent of the orbits
involved, and also numerically using the stadium billiard as a model. The predicted behavior is robust,
depending only on the short-time behavior of the many-body quantum system, and consequently insensitive to
moderate-sized perturbations and interactions.

PACS numbes): 05.45.Mt, 05.60.Gg, 03.65.Sq, 73.23.Hk

[. INTRODUCTION nth dot eigenstate at the boundary, a@g is a constant
associated with the height of the barripossiblyC,# Cy, if
Quantum dots, semiconductor devices in which electronshe two leads are unequally coupleBecause tunneling will
are confined to live inside a two-dimensional mesoscopicalways be dominated by the lead mode which has the largest
sized region, have generated much experimental and theordongitudinal energy, we may without loss of generality re-
ical interest in the past decafi]. In the Coulomb blockade quire ¢, to be the lowest transverse energy mode of the lead
regime[2], the dot is weakly coupled to the outside through[3]. For a smooth lead potential, this will be given by a
two narrow or tunneling leads, and individual resonances caaussian,
be observed when the Fermi energy in the leads matches the
energy of a state dfl electrons in the dot. As a function of
the Fermi energy or gate voltage, one then observes a series
of peaks in the conductance, the peak width being controlled
by the temperature, and the spacing between them by thghere the widthr~ % depends on the detailed properties of
classical charging energy required to add one more electrotime lead.
to the dot(in the experimentally typical regime where the  Of course in reality the multielectron state inside the dot
level spacing is large and the intrinsic resonance width smalik not given by a product of single-particle states, nor do we
compared with the temperatoreThe conductance peak know the electronic Hamiltonian inside the dot well enough
height of thenth resonance is then given by to have any realistic hope of being able to compute the wave
5 functions¥,. We will come back to these important issues
G :e_ig B in Sec. Il
" h 2kTEV Many authorg5] studied the behavior of the conductance
peaksG, in the context of random matrix theofRMT).
where There the overlapgd, V,|¢,) are considered as random
Gaussian variablegreal or complex and thus the widths
~ Tanl'bn 5 Tan, andTy, becomey? random variables of one or two
gn_l“an+ | . @ degrees of freedom in the absence or presence of a magnetic
field, respectively. These predictions have compared favor-
andI',, and 'y, are the partial decay widths of theth ably with the experimental daf#]. In the present work, we
resonance through each of the two leads labaledd b. extend these dynamics-free results to include the effects of
Each of the two partial widths is given by Fermi’s golden short-time dynamics on the distribution of conductance peak
rule as the square of a tunneling matrix element. This matridheights through a ballistic dot. In doing so, we are following
element in turn is obtainedn the single-particle pictupeby  the work of Narimanowet al, [3] who already treated the
taking the overlap of the normal derivative of théh dot  special case of two leads placed symmetrically on the
wave function along the boundary with the electron wavehorizontal-bounce orbit of a stadium billiathough focus-

by~e (@ 90%207 (4)

function in the lead 3,4], ing on peak-to-peak correlations, rather than on the peak
heights themselves, in contrast with the present yvdiere
Fan=Cal(d, ¥, p)|? (3)  we consider in full generality the short-time classical effects

on conductance peak heights, including the dependence of
(and similarly forI',,), where g, is the relevant transverse the peak distribution on the stability exponents of the short
wave function in lead, d, ¥, is the normal derivative of the orbit or orbits near which one or both leads may be located.
We also disentangle the effects of symmetry lines and sym-
metric lead placement from the effects of short-time classical
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We note that although quantum dot experiments providavith some cutoff timeT,. Now as long as the cutoff is
one of the motivations for the present work, the effects wechosen to be small compared with the Ehrenfest time, which
are considering are relevant to a wide variety of physicakcales as the inverse Lyapunov exponent of the system times
situations where observable properties are affected by thieg(kcL) (L being the size of the ditthe short-time dynam-
statistical properties of wave functions. In particular, the con-cs of the wave packep may be determined semiclassically,
ductance problem discussed here is formally analogous to @sing classical motion linearized around the center of the
situation often encountered in molecular or nuclear physicayave packet.
where a reactioM— B— C takes place through an interme-  In particular, let¢ (which we will later identify with¢,)
diate or transition statB living inside a metastable “well,” be a Gaussian wave packet centered on an unstable periodic
and the reaction rate is then determined by the structure ajrbit of periodP. Then we have, fot=mP [12],
the wave functiorB inside the well.

The paper is organized as follows: in Sec. Il we briefly e imo
review some recent results concerning short-time dynamical Aj)hOf t)= — , (8)
effects on wave function intensities. We focus in particular \/Coshﬂm+|Q sinhBm

on the separation of scales between the bounce time in the

dot and the time at which eigenstates are resolved, and on thghere 8>0 is the instability exponent for one iteration of
consequent robustness of short-time effects statistical  the periodic orbit,— ¢ is the classical action in units df
wave function properties. In Sec. Il we analyze the effectsplus Maslov indices, if any andQ is a nonoptimality pa-

of short periodic orbit¢s.p.0.’9 on conductance peak statis- rameter. The largest recurrencéd=0) are obtained when
tics for several qualitatively different situations: one lead onthe initial wave packet is optimally oriented with respect

a s.p.o., two leads on the same s.p.o., and two leads on difp the stable and unstable manifolds of the orbit. For a lead
ferent s.p.o.’s for which the spectral envelopes may be in ofocated on a fixed periodic orbiQ will in general be a
out of phase with each other in the energy range of interestynction of the widtho of the Gaussian mode in the lefske
Numerical tests of these predictions appear in Sec. IV, fol£q. (4) and Ref[12]]. More important than the analytic form

lowed by concluding remarks in Sec. V. of Eq. (8), however, is the fact that for weakly unstable orbits
(strictly B<1, though due to numerical factofs~2 is al-
Il. SCARS AND WAVE FUNCTION INTENSITIES: BASIC ready in a sense “weak, strong recurrences iA(t) persist
RESULTS for O(B~1) periods. In the energy domain, we obtain bumps

dn the smoothed local density of stat@@”‘""”(E) of width

The scar effect is one of the most visually striking aspect .
of quantum chaotic behavior. It was noted already in theo('B)<1 compared to the spacing between the bumps, and

1980s that the quantum wave functions of classically chaotiz(,)f helghtO(,B 1)>1 compared to the mean.“Very rngth
systems display an anomalous enhancement and suppress aklng t_henO(,B) of _aII wave func_tlons are ;slcarred on
of intensity in the vicinity of the unstable periodic orbits, "€ Periodic orbit, having an intensity the® ") greater
contrary to the naive expectation of wave function random—than“the. mean, v,\{h|le_most Of. ihe remaining wave f_unct!ons
ness and uniformity7]. Early theories of this phenomenon are “antiscarred,” their intensity on the periodic orbit being

[8] treated the short-time linearized dynamics around an unfuch smaller than the mean. This separation of wave func-

stable orbit, and thus made predictions about energyt_ions into scarred and antiscarred ones is of course only a
smoothed spectral properties. More recently, theories o versimplified picture, and one can obtain quantitatively the

scars were extended to include long-time nonlinear recur_uII distribution of wave function intensities on the orbit as a

rences, making possible predictions about the distribution ofunction of the exponeng; such a comparison between an
individual eigenstate intensities on a given periodic di®jt analytl_c result for th_e tail of the |nten_5|ty distribution and
The scar formalism was also adapted to study wave functioRUmerical data was in fact performed in REE3]. One can
structure quantitatively in systems as varied as Sinai-typ ,ISO study the moments of the intensity d|str]but|orj, and
billiards [10] and in two-body random interaction ensembles/NdS, for example, that the mean squared intensity ap-
in nuclear physic$11]. proachesz/B times the RMT expectation for smaB (in

The key result of this work that we need for the presentNitS where the mean intensity in normalized tojone
analysis is that wave function intensities in a closed system Y& emphasize the distinction between scar predictions
are given by and the brute-force semiclassical computation of chaotic

wave functions[14]. In many physically interesting situa-
|<‘I’n|¢>|2=rn53,m°°ﬂ(En)y (5) tions, the Hamiltonian of _thg system_ is not known ngarly
well enough to compute individual eigenlevels and eigen-
Where§¢m°°”(E) is a smooth local density of states appro- states either semiclassically or indeed using the full quantum
priate to the test staig, andr , are randomy? variables. The machinery. What is of interest in such situations is not so
smooth envelope can be determined by Fourier transformingiuch the detailed structure of tmth eigenstate in a given

the short-time autocorrelation function ¢f sample, but rather attaining a theoretical understanding of the
statistical properties of the system. In a billigiftard wal)
SMOME) =T AY (D], (6)  system, changing the boundary by even one square wave-
length far away from the periodic orbit of interest will al-
where ready destroy the detailed structure of individual wave func-

<hor 2 tions on the orbit, but will not affect statistical properties
A ) =( Bl ¢(t))e™"To (7)  such as the distribution of intensities on the orbit. In the time
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domain we see this easily by recognizing that to resolve in{C,# Cy, above and also allowing for correlated channels.
dividual eigenstates requires following the dynamics to timesn the presence of time reversal symmeétrigr two leads
of order of the Heisenberg time, which scalesiasver the  consisting of one channel each, this distribution reduces to
mean level spacing, dD(kgL) bounce times id=2. Scar )

predictions, on the other hand, only require short-time dy- @ = (4gl2m?)e (TrT)e

namical information, on the scale of the one-bounce fiige P(g)= flleadTLIZdeT Jsar—12)(syr —112)

(or, to obtain the full effect, the classical Lyapunov decay
T T’
\/:,+ \E) Kl(Zg\/TT’)l
r

time Tg/B if the instability exponen3 is smal). Thus de-
formations of the Hamiltonian will not affect these statistical X
predictions as long as the mean free path associated with

1
Ko(2gy77')+ >

such deformations is larger than the sample &iz@e., as 2
long as we truly remain in the ballistic regime — L i+ i exqg — g i+ i
In the energy domain, the mean level spacingdia 2 V2mg\ Vsa Vs 2\ s, sy
goes as 1/? (in units wherem,%~1), while the scale asso-
ciated with scar effectgi.e., the separation between the _ / 2 o 20, )
bumps in the smooth local density of states envelape 7S, g '

1/Tg~kg/L. Thus a single bump in the local density of _ _

states corresponds ©(keL)>1 level spacings, and in the Wheres, ands; are the mean partial widths through the two

high-energy regiméi.e., many electrons in the dothe re- leadsa andb, and in the last line we use the fact that the

sulting wave function intensity statistics will be quite insen- distribution depends only on the quantity defined by

sitive even to perturbations that are large compared with the

mean level spacing. 1 _E(i+i)
The_precedlng argument also applies to electr(_)n-elect_ron \/g 2 \/S—a \/S—b

scattering effects. It is known that a rather weak interaction

beyond the mean field will completely destroy level repul-For equal leadss, =s,=s;,, and we also notice that in gen-

sion, and cause the distribution of level spacings to approachral the distribution ofy is just the Porter-Thomag? distri-

a Gaussian form, in strong contrast with the Wigner-Dysorpution of one degree of freedom, with mean height4.

prediction of the single-particle theof¢5]. Gaussian behav-  |n this paper we will primarily be interested in the physi-

ior is indeed what is observed experimentally in such syscal case of equal-sized leadisut also see Sec. II)E how-

tems. This is not surprising because strong multiparticle efever, as we will see below, the more general expression is a

fects on the level spacing scale require only that thesery useful starting point for studying periodic orbit and

interaction mean free path be smaller than the very larggymmetry effects.

Heisenberg scale- (keL) Tg . On the other hand, as we have  For two generically placed equal-sized leads, we hayve

seen, the effects on wave function statistics will be weak as-g =s;, and

long as an individual electron can freely travel across the

device before interacting. 2

It is also known(by comparing the ground state of a dot Pgeneri¢9) = \/ ?gefzglso- (11
with N electrons with the excited states of the same dot con- 0
taining only N’ <N electron$ that adding electrons to the The properties of this Porter-Thomas distribution are well
dot changes the shape of the mean field potential, and thugown; in particular
has a significant effect on the character of the single-particle
states. Arguments very similar to those in the preceding So
paragraphs tell us that a very small change in the effective <g>generic:Z and  (g%)generic=3(9generic (12
potential (resulting in matrix elements of the perturbation
which are of order of the mean level spadimgsufficientto  The ratio of the mean squared height to the square of the
destroy our predictive power for individual wave functions, mean, also known as the inverse participation ratio, is the
but does not affect thetatistical properties of these wave simplest measure of the degree of fluctuation in peak ntensi-
functions, which are associated with a much shorter timdies.
scale(the bounce timeand are therefore robust to any such  We note also that for two leads that are symmetrically
perturbation. The statistical predictions would become irrelplaced in a dot with reflection symmetry, the two partial
evant only if adding one or a few electrons to the dotwidthsT',, andI',, are equal for each resonaneeand we
changed the resulting potential in such a way as to comhaveg,=TI",,/2. The peak heights are then again distributed
pletely change the character of the short classical trajectorieaccording to a Porter-Thomas law, but with a larger mean

height:

(10

I1l. CONDUCTANCE PEAK HEIGHTS IN CHAOTIC
SYSTEMS
IFor definiteness, we will consider throughout the time-reversal
invariant situation. Of course, the calculations can also be carried
Within the context of RMT, Alhassid and Lewenkdgf6]  through in the presence of a magnetic fiélde wave function in-
derived an explicit form for the distribution of conductance tensity distribution for that case was studied extensively in Refs.
peak heightg,,, allowing for the possibility of unequal leads [13,12), and all predicted effects are qualitatively similar there.

A. Generically placed leads
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1 So Note that the conductance is always dominated by the more
Psymmetid 9) = Fogefglso, <g>symmetric:E- (13 weakly coupled lead: thus near the scarring energi&s°™

is strongly enhanced, and the mean conductance is moder-

This factor of 2 enhancement associated with perfect corredtely increasedat most by a factor of 4 while at the anti-
lation between the two leads, and independent of any shor&carring energie§*™*"is small, and the mean conductance
time dynamical effects, is already present in the case of thE1ay be greatly suppressed. Sweeping through energy, one
horizontal bounce orbit considered in R¢8]. We note, obtains a gene_:ral expression for the distribution of conduc-
however, that the symmetry effect is much less robust thaf@nce peak heights,

the dynamical effect, requiring the dot potential to be per-

fectly symmetric to better than a single level spadiother- 1 Z#d | 2 —2g/s, (E)

wise the even and odd states mix, and we recover the generic P(9)= 2 0 E Ws*(E)ge A (18)
result of Eq.(12)].

Another independent effect, also present in the specia)here s (E) is given by Eq.(17) and S™°NE) by the
example treated in Ref3], is associated_with the placement Fourier*transform of Eq(8). Note that the energy interval
of one or both leads on the symmetry lines of the system. It responding to one oscillation of the scarring envelope is
both leads are placed on a given symmetry line, as in thgsuen as 0 to 2, because we are working in units where
case of the horizontal bounce orbit of the stadium, then only, _ 1 44 the orbit period® is also normalized to 1. The
the even states produce resonances, leading to half as Maf&tribution of Eq.(18) may be computed numericallgee,
peaks as naively expected, but with double the mean heigh, oxample, Fig. 6 belowfor various values of the stability

of Eq. (13): exponentB [and of the lead nonoptimality paramet@r see

Eq. (8)]. First, however, we obtain some analytic asymptotic

results for the strongly scarred case<€1), where the de-

In a system with two symmetry lines such as the Bunimovichviations from Porter-Thomas behavior are expected to be

stadium or the Sinai billiard, we may also consider the casétrongest.

of two leads on different symmetry lines. Then only a quarter The tail of the distributionP(g) will be dominated(for

of the eigenstates produce conductance peaks, the two partiity 8) by the peak of the envelogsg (E), which coincides

widths are uncorrelated but each is doubled with respect tof course with the peak i8°™°(E) atE=6 mod 2 [see

the naive expectatiosy, and we obtairicf. Eq. (12)] Eq. (8)]. The integral may be performed by stationary phase
(as in Ref.[13]), to obtain

(9)same sym lin& So (half expected density  (14)

So )
(9) diff sym ines= % (quarter expected densjty (15) 1 A
(@=5—2 \/%e_gstO, (19
Finally, for just one lead on a symmetry line, only the even o9
wave functions contribute with mean partial widthsg2

— max
through the symmetry line lead arg} through the other whereA=4/s,*", andB measures the curvature of the enve-

lead; the general expression of ) then leads to lope at the maximumB=24°(s, *)/JE. Equation(19) de-
scribes the large-behavior of the conductance peak distri-
2 bution, whereA and B are appropriate functions of the
(9)one on sym &~ 7= .20 instability exponenp. For smallB one may simplify further,
(V2+1) and obtainA=1+2\B/C+0(B8) and B=1DC 323372
~0.343, (half expected densiy +0(B~?), whereC~5.24 andD~45.1 are numerical con-

stants(which analytically can be expressed using hypergeo-
(16) metric function$. So, finally, we obtain the largg-behavior

Thus we see that a rich diversity of conductance behaviotOr small 8:
may be observed simply by considering the placement of one

or both leads with respect to the symmetry lines of the sys- P(a)= 1 C_3/4 ,8_3’4 — g(1+2VBTC) /25, 20)
tem. (9)= V27 DY¥2 g € '
B. One lead on short periodic orbit Note the long tail dominated by the exponential behavior

We now put aside symmetry considerations, and considegXP(—9/2so) in the strongly scarred regime, to be contrasted
a scenario where one of the two conducting leads,ssdy ~ With the much shorter tail exp(2g/sy) in the RMT (8
located on a shofunstablé periodic orbit of the chaotic dot. — ) case.
Then the mean partial width through leads given bys, The asymptotic behavior of Eq20) is plotted for insta-
:SaossmOOﬂ(E) and[see Eqs(3) and(5)] in an energy range bility exponentg=1 as the leftmost dashed curve in Fig. 1,
nearE. Heres,q is the mean partial width through leaj  and agrees well with numerical data, represented by a solid
averaged over alE. Takn’]g the two leads to be of equa| curve. Thus we see that the apprOXimationS used in Obtaining

width, s,o=s,=Ss,, the effective couplings, becomes en- Ed.(20) are already good fg8=1, even though formally we
ergy dependent: have used a smal- pproximation. The Porter-Thomas pre-

diction of RMT [Eq. (11)] appears in Fig. 1 as a dotted line
s, (E)=4sy(1+ 1/y/SSMOME))~2, (17)  for comparison.
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FIG. 2. The smalfy part of the peak height distributio®(g) is
plotted on a log-log scale for one lead on an unstable periodic orbit
with instability exponenpB= 0.2 (solid curveg. The asymptotic pre-
diction of Eq.(22), valid for g<8<1 appears as a dashed line of
slope— 1. For reference, the RMT prediction of E41) appears as

leads placed on the same orbit wjth= 1. Theoretical predictions, 2 dotted line of slope-1/2. Note the different power-law behavior.
given by Eqgs.(20), (35), and (33), respectively, and strictly valid A9, the normalization is set so that the mean partial width
for g>B '>1, are plotted as dashed curves. The mean partiaifough each lead is given bsp=1. The data would be almost
width s, through each of the two leads has been set to unity herddentical for the cases where both leads are located on the same
and in all subsequent figures, so tigatan be plotted as a dimen- periodic orbit with 8=0.2, or where they are located on two in-
sionless quantity. For reference, the Porter-Thomas prediction dPhase orbitgnot shown.
RMT [Eq. (11), to be compared with data sef$ and(ii)] appears o ) ) )
as the lower dotted curve, while RMT modified to include symme-  The above derivation applies to an optimal 1¢&z=0 in
try effects[Eq. (13), to be compared with data s@)], is shown as ~ Ed. (8)]; for a nonoptimal lead the result of E@2) is modi-
the upper dotted curve. In the dynamics-free limit whare, the  fied only by aQ-dependent constant, leaving the very dis-
data would approach these RMT results. tinct 1/g scaling behavior unchanged. The snwlbehavior

of Eq. (22) is plotted(for instability exponen{z=0.2) as a

The predicted increase in the frequency of very small condashed line in Fig. 2, and differs greatly from RMT expec-

ductance peaks is even more striking. In Rdi2] it was tations(the latter plotted as a dotted line in the same figure
found that in between the scarring enerdgies ¢ mod 2 The very large fraction of small conductance peaks
where the local density of statésDOS) SS"°E) is maxi-  clearly must have a significant effect on the moments of the
mized and the antiscarring energi&=6+7 mod 2w  conductance peak distribution. From H@1) we see that
where it is minimized, the LDOS at the lead followor  only a fractionO(B]log B)) of all energies hav& =1,
sufficiently small instability exponer) the exponential law ~ and at these energies we obtgirs, ~s, [see Eq(17)]. At

all other energies we hav®™°<1, and thusg~s, <s.

FIG. 1. The tail of the conductance peak height distribution
P(g) is plotted with solid curves fofi) one lead on a periodic orbit
with instability exponentg=1, with the other lead generically
placed;(ii) two leads on different orbits, each with instability ex-
ponentB=1, and with in-phase spectral envelopes; &iid two

2 All momentsk=1 of the conductance distribution then scale
Ssmootf(E) — Fef(ﬂZﬂ)\Efﬂ. (21) as
g k
Thus, outside of a small energy windoE— 6|< 8|log | <<—) >~ﬁ||ogﬁ| (23
surrounding the energy of maximal scarring, most eigen- So

states are strongly antiscarred, with a mean intensity at thi%r sufficiently smallg. In particular, the first two moments
location of the lead being™°°"<1. In the strongly antis- are given b y B-Inp ’

carred regime wherE ., is small, we may ignore the partial 9 y

width through the other leall,,,, in Eqg. (2), and so the con- ~0.168ll0g Bls
ductanceg,, is simply proportional td",,~S*"°E,)). We (9)~0.165[log lso.

then obtain the smatl end of the conductance distribution, <92>~0 37,8|Iog,8|52 (24
P(g)= 2p (22) The inverse participation ratidPR) is a useful dimension-
g’ less measure of a variation in heights which does not require

one to predict the mean of the distribution theoretically:
which holds formally for expt 7%/28)<g/s,<B<1. The
constraint expt 7%/28)<gls, is of no practical signifi- (g% 14.5
cance; we also note that although Eg2) becomes exact W’* Bllog 8| (29)
only in the smallg limit, quantitative agreement is already
obtained for exponentg~0.5. Equation(22) should be This result should be compared with an IPR of 3 for the
compared with the generic smal-behavior Pyeneid9) generic Porter-Thomas distributipaee Eq.(12)]. We see a
=\/2/msyg predicted by the Porter-Thomas ld#&q. (11)]. greatly enhanced fluctuation in peak heights in the case



PRE 62 PERIODIC ORBIT EFFECTS ON CONDUCTANCE PHEA .. 3481
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FIG. 3. The mean conductance peak heigdit is plotted as a FIG. 4. The IPR(the ratio of mean squared conductance peak

function of the instability exponens. Three cases are showfiy ~ Neight to the square of the meais plotted as a function of the
one lead on an orbit of exponeg, with the other lead placed instability exponenp of the periodic orbit. Three cases are shown:
generically:(ii) two leads on unrelated orbits each having exponent!) ©n€ lead on an orbit with exponeft with the other lead placed
3; and(iii ) two leads on out-of phase periodic orbits with exponent9enerically; (i) two leads on unrelated periodic orbits, both with
B. For two leads on theameperiodic orbit, the mean conductance €XPOnentB; and (i) two leads on the same periodic orbit. The
follows the RMT predictioniwith symmetry, and is independent of RMT prediction of 3 is shown as a dotted line for reference; all
the exponen(8. (Top) Solid curves are exact; dashed curves areSClid curves converge to the RMT value in tBe-1 regime where
asymptotic forms valid fog<1, given by Eqs(24), (39), and(37), the ort_)lt ceases to bg importaTop) The solld_ curves are exac_t
respectively. In the dynamics-free limit— =, all curves approach numerlca_ll results, while the dashed curves give the asympfbtic
the RMT prediction 0.25, which is shown on the graph for compari-<1 Predictions of Eqs(25), (42), and(32). (Bottom) Same data are
son. (Bottom) Same data are shown for moderate to large values of0Wn for moderate values @, where the asymptotic forms are
the exponenB, where the asymptotic forms are not applicable. Nt applicable.

where one of the leads is located in the periodic orbit. Weapproximations leading to E¢25) do not lead to a quanti-
also note that the numerical prefactor-efl4.5 is valid for  tatively correct answer until we reach the very weakly un-
an optimally placed leafiQ=0 in Eq.(8)]. In general there stable 3<0.1 regime. On the other hand, strong enhance-
is an additional prefactor which is an easily computable anament of the IPR compared to the RMT value of 3 is already
lytic function of the width of the Gaussian lead mode and ofclearly visible even near the moderate expon@stl, where
the monodromy matrix of the periodic orbit, but the impor- the IPR is observed to be almost twice the RMT prediction.
tant scaling behavior, i.e., the increase a8|lbg | of the  Figure 4(bottom shows the same calculation, focusing in on
fluctuations for smalj3, is unchanged. the IPR behavior for moderate values gf where the ap-
The numerically computed mean conductafgefor one  proximations leading to Eq25) do not apply.
lead on an orbit of instability exponeptappears in Fig. 3 as The analysis in this subsection easily generalizes to the
a function of B (solid curve. We observe significant devia- case where the lead located on the periodic orbit also lies on
tions from the RMT value of 0.25Eq. (12), wheresy, has  a symmetry line of the system. As discussed in Sec. Il A, the
been set to unityfor B as large as 2.0, while for larger odd eigenstates do not then produce resonance peaks, while
values of3 the RMT limit is approached. The dashed curvefor the even states we usg,=2s,, and thus
in Fig. 3 (top) shows the asymptotic prediction of E@4),
which is observed to agree well with the exact results only
for very smallg. s, (E)=4sy(1+ 1/y/2SM°N E)) =2, (26)
The asymptotic behavior of Eq25) appears in Fig. 4
(top) as a dashed curve, and can be compared with numerical
data, which are plotted as a solid line. We observe that thestead of the expression given by E47).
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C. Leads on same periodic orbit, or on orbits related In the casex~1, valid for two nearly optimal leads lo-
by symmetry cated on a weakly unstable orbit, the conductance peak

We now proceed to consider more generally the case didreight distribution reduces simply to the distribution of wave
cussed by Narimanoet al. [3], where the two leads are function intensities on a short periodic orbit. This distribu-
either located on the same periodic orbit, or are located offon Was studied previousl{13,12 in the absence of time
orbits related by symmetry. First, we note that if the twoeversal symmetryi.e,, in the presence of a magnetic figld
leads themselves are related by a symmetry, then the twaere we need to develop parallel results for the case where a
wave function intensities and thus the two partial widths arenagnetic field is absent and the wave functions are therefore
identical for each resonance, just as in the discussion leadid§?- o o
to Eq.(13) in the generic case. Less trivially, let us consider . W& Pegin with the moments of the distribution. At any
two leads located on the same orbit but not related by &IVen energy, the peak heigigsare distributed according to
symmetry (for example, one may consider the horizontal@ Porter-Thomas distribution as in EQ.3), but the mean
bounce in a deformed stadium billiard lacking a left-right hg:%gt 60/2 in the generic cagemust be generalized to
symmetry, and two leads placed at either end of the horizor® - \E)So/2 [see Eq(5)]. The moments oP(g) are then
tal bounce orbit If the Gaussian packet corresponding to the9iven by
transverse mode in lead were related to the Gaussian q
packet associated with leacby time evolution in the closed (g% = ([ SOt E)19) rnﬂ ' (29)
system, i.e., 2

|¢b>:e*iﬁt/ﬁ|¢a> (27 where the average in the first factor is over energiesd in
the second factar, is distributed as the square of a Gaussian

for somet, then|¢,) and|¢,) would have identical local V?ﬂéﬁ)le with variance 1. Note that the smooth part
densities of stated{WV,|¢.)|2=|(¥,|#p)|2, and thus once S TE) and the.oscnlatmg part , _of the spectrum are
againl',,=T',,, for each resonance taken to fluctuate independently, being associated with dis-

More generally, even though the centers of the GaussiarfdCt time and energy scales. Sliqoo(rjtgenericqlly locatedugh
|2) and|¢,) must be related by time evolution if they lie Symmetrically placedleads,S TE)=1 independent of

on the same orbit, the time-evolved version |gf,) may E,s%r;g we recover the re§ult_of E(L3). We also note that
have a different aspect ratio or phase space orientation froi® TE))=1 by normalization, so the mean conductance
|é). In Ref.[17] it was found, however, that for any two P€aK heightis given by

optimally shaped leads, the two local densities of states be-
come almost identical in the the limit of small instability
exponentB. Furthermore thaninimumpossible correlation

between the two partial widths was shown to be 0.94 even o
for B as large as 2.8corresponding to a classical stretching when both leads are located on the same orbit, independent

factor e#=10), and this correlation becomes even strongePf the stability of the orbit. This is in contrast with our find-

for smaller3, so that for all practical purposes in the regime!"d in Sec. 1l B[Eq. (24)], that the mean conductance is.
where scarring effects are important we may tike~I", suppressed when only one lead is Iocgted on a short orbit.
for any two optimally oriented leads " Furthermore, the mean squared intensity in this casnis

In the case where either of the leaa®r b are not opti- hancedcompared to the generic value,
mally shaped so as to be aligned with the stable and unstable 1
manifolds of the periodic orbit, we have the more general <[Ssmooti(E)]2>:2 |Ashor(t)|2="> _%z,
expressions T m coshgm B -

1

So
<g>leads on same orbit 2 (30)

= — SMOOt|
Fan=Ca(alyt (1= @)1 ST E,), where in the first line we have used the property of Fourier

(28) transforms[recalling Eq.(6)], in the second line we have
Tpn=Cplar,+(1—a)rp)SSmONE,), substituted from Eq(8) the optimal Q=0) form of the
short-time autocorrelation function, and in the third line we
where we normally consider equally coupled le&js=C, have taken the strong scarring<€1) limit. Then we obtain
as before, and,, r,,, andry,, are independent random
(Porter-Thomagsvariables. The parameteGx<<1 may be 2 T, 2
determined in terms of the linearized time evolution of the {9 >~3E<g> ' (32)
two wave packets around the orbit7]. In the weakly cor-
related regimex— 0, the behavior becomes identical to that The validity of this result is confirmed in Fig. dop), where
of two leads on different orbits but having in-phase short-the IPR (g?)/{(g)?) is plotted as a function of the instability
time envelopesSS™°E). See Sec. Il D below for a de- exponents. The data for two leads on the same orbit appear
tailed discussion of that situation; for now we restrict our-there as the middle solid curve, which fBi<2 agrees very
selves to the strongly correlated case 1. We also note that well with the asymptotic prediction of E432) (represented
all results valid for two leads on the same orbit are obviouslyby a dashed line of slope-1). The behavior of the same
valid also for leads on two orbits related by symmeigyg.,  quantity for larger exponent8 can be seen in Fig. &ot-
for the two V-shaped orbits of the stadiim tom), where we observe that already f8=1 the size of
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peak height fluctuations is three times the RMT expectationbe approximately equal, instead of being related by some
and that deviations from RMT are noticeable evenfoas  other simple fraction like 1/2 or 2/8see the end of this
large as 3. subsection for a discussion of what happens in the case
Thus the IPR can greatly exceed the RMT value of 3, andvhere the two orbit lengths are not at all simply related
grows as the orbit on which the leads are placed becomeBhen the LDOS envelopeS*™°E) at the two leads are
less unstable. This suggests that there should be an excessiaéntical oscillatory functions of energy, shifted with respect
both very large and very small peaks as compared with théo each other by some phasé [see Eqs(6) and(8)]. We
mean[qualitatively similar to the resulEq. 25 for only one  note that obviously it is very unlikely for two orbits to have
lead on a periodic orbjt Indeed one can study the tail of the lengths that are equal to within a fraction of a wavelength. In
P(g) distribution in a way completely analogous to the cal-reality, however, all that is necessary for the following dis-
culation in the previous subsectigand to the similar calcu- cussion to apply is that the difference in length is small com-
lation in Ref.[13] for a system without time-reversed sym- pared with either of the two lengths: then the LDOS enve-
metry). From Eqg. (19, we obtain [using s, (E) lopes of the two orbits continue to be in phase or out of
=25,S5M°M E) instead of the corresponding form Ed.7)  phase with each other for many oscillations of the envelope.

appropriate for only one lead on a periodic ofbit For 66=0, we obtain two in-phase envelopes, and re-
cover thea=0 situation of identical smooth envelopes with
Cc B uncorrelated fluctuations under the envelopes. This scenario
P(9)= V352 ae_ﬁglcs", (33)  was mentioned already in Sec. llI[Eq. (28)], but the dis-

cussion there was postponed until now. We recall that for
two uncorrelated partial widths with the same mean, the dis-
tribution of the conductances is a Porter-Thomas distribution
[Eq. (1D)], just as in the perfectly correlated cd$s. (13)],

but the mean conductance in the uncorrelated case is only
half as large as in the correlated case. This argument applies

dependent, and so the tail becomes ever longeg : of course independently at each energy, so even after aver-
Equation(33) (for 8=1) appears in Fig. 1 as the rightmost _ . P y at gy, So ever
aging over energy we obtain the same distribution of con-

gﬁﬁh?h?cur:vieg 2%&?}”2’? ;’esrsél;gegs?vee.eﬁ(: gggliﬂg?l trri;ductances asin Sec. lll C,_ but with the mean value shifted by
asymptotic prediction of Eq.33) is already very good even a factor of 2. To summarize, the mean is given by
for the moderate expone=1, while the RMT prediction So
[Eq. (13)] is completely wrong in the tai(compare with (9)eads on in-phase o (34)
dotted curvg even after symmetry effects are included.
This strong enhancement in the number of very large con- )
ductance peaks is balanced by a corresponding increase liff- Ed. (30)], while the IPR and the smad-part of the
the number of very small conductance peaks: the sgall- distribution [Egs. (32) and (22), respectively remain un-
part of the distribution is given again by E@2), exactly as changed from the pr_evpusl_y considered case. The tail of the
in the case of only one lead on a periodic orbit. The smgall- conductance peak distribution becomes
data for two leads on the same orbit are not shown here, but
appear very similar to the case already plotted in Fig. 2 for C B
only one lead on a short orbit. P(9)= 27Dg°
The expressions obtained in this subsection need, of
course, to be modified for situations where one of both leads The result of Eq(35) is plotted for 8=1 as the middle
are located on a symmetry line of the system. The necessary, '

o . shed curve in Fig. 1, and is observed to agree well with the
modifications are completely analogous to those discussed In : ? . ; :
numerical calculation, given by the corresponding solid

the previous two subsections, and we do not go into th%urve. We again note that the asymptotic form of Ezp)

valid for small 8 and largeg. C and D are the numerical
constants used previously in EQO). As in Eq.(20), we see
a much slower exponential decay in the tail than that pre
dicted by RMT, but in this case the exponent is strongly

—2Bg/CSOI (35)

details here. works quantitatively even though in our case is not small;
. o _ furthermore the tail of the peak height distributié?(g)
D. Leads on different periodic orbits again differs greatly from the RMT predictigithe leftmost
We now arrive at perhaps the most theoretically interestdotted curve in the same figure ot .
ing situation, where the two leads are located on distinot We now consider two envelopes™ " that are not in

symmetry relater periodic orbits of the classical system. Phase with each other. From E(@®1) we know that each
This situation is particularly interesting, because a very ricrenvelope falls off exponentially away from its peak, and we
diversity of behavior may be obtained depending on the rela@lso know from Eq(2) that when the two local densities of
tive phase between the classical actions, in unit,aff the ~ States are unequal, the conductance is always dommated by
two orbits. (Of course, from an experimental point of view, the more weakly coupled lea@maller S™°°). The maxi-
some of the scenarios discussed in the present section afédm conductance then occurs at energies wHg§eo"
more difficult to achieve, as we will see belowfor definite-  ~Sym™°°".  This  maximum  occurs at E=(¢,
ness and for simplicity of presentation, we will focus on the+ ¢p)/2 mod 27=¢,+ d¢p/2 mod 27, at which energy
case where two orbits have equal stability exponghts SMO°= SSMOUL (27/ B)exp(— wSHIAB). The maximum
though the qualitative results obviously do not depend orpossible conductance peak height is therefore very strongly
this assumption. We also take the periods of the two orbits tsuppressed compared with the RMT prediction,
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S0 - (9%) .
ot of phase orbifs~ E g~ ToHME, (36) ( W ~pB 2, (42
uncorrelated orbits

where the out-of-phase paramei®$ should be taken be-
tween 0 andw. We also note that the fraction of energy
space at which conductances this large are attained scales
B because of the exponential falloff in E(RL); thus the
meanconductance peak height scales as

Because both leads must be scarred to obtain appreciable
cpnductance, the fluctuation in conductance peak heights is
much stronger here than in the case of only one lead on a
periodic orbit[Eq. (25)], or even in the case of two leads on
the same orbifEq. (32)].
o8 OB, (37) The mean conductance peak heigh} for leads on two
unrelated periodic orbits of instability exponegtis plotted
suppressed by an exponential factor from the generic expe@s a function of3 as the labeled solid curve in Fig.(8p),
tation of Eqg.(12). The most dramatic effect arises of coursewhere theB<1 asymptotic prediction of Eq39) appears as
when the two envelopes are out of phase by exactly the  a dashed line. The behavior for larggéragain can be seen in
energy region of interest. There we have Fig. 3 (bottom. Similarly, the IPR for this case can be found
plotted numerically by the correspondingly labeled solid
curves in Fig. 4top and bottont again for smal|3 the result
agrees with the asymptotic prediction of E42) [Fig. 4
(top); dashed ling

<g>0ut of phase orbifs”

S
gmaXN _Oe, 71'2/4,8 <g>~50€7 71'2/43. (38)

B

An exact numerical calculation fdg) is plotted as the low-
est solid curve in Fig. 3top), and is observed to approach
the asymptotic prediction of E¢38) for small 8, while for ) )
large B it of course tends to the RMT prediction of 0.25. We have been focusing throughout on the simple and ex-
Again, Fig. 3(bottom shows in more detail the behavior for Perimentally motivated case of two equal-sized leads; how-
moderate-to-large values ¢. ever, all of the discussion and calculations in this section
The situation described by E¢38) may be obtained in 9eneralize in a very straightforward way to a scenario with
one of the following two ways. One possibility is to take two Unequally coupled leads. Qualitatively, the main observation
orbits of the same period but different Maslov phases, resulthat should be added to the previous discussion is that the
ing in out-of phase behavior at all energies. Alternatively ond®ad which is more weakly coupled naturally has a stronger
may consider two orbits of only approximately equal period;effect on the ponductance peak heights and their dlstr|b_ut|on,
then the two oscillating envelopes slowly move in and out ofand the location of the more weakly coupled lead relative to

phase with each other as one sweeps through energy by adejassical structures_is most important in understanding the
ing electrons to the dot. conductance behavior.

In the scenario of leads placed on two orbits with irratio- A particularly jnteresting case to consider is where one of
nally related periods, we can also imagine collecting statisthe leads, say, is coupled to the dot much more strongly
tics over an energy window wide enough to include boththan the other lead, s€,<C, in Eq. (3). Then Eq.(2)
in-phase and out-of-phase behaviors. We see in this case tH&duces tag,~I',,, and the conductance depends only on
the peak height will always be exponentially suppressed exthe intensity of the wave function near lead Since s;
cept at those energies wherboth LDOS envelopes >Sa. EQ.(10) becomess, =4s,, and we obtain a behavior
SN E) and MO E) are near their respective maxima, identical to that observed previously for two symmetrically
i.e., where the wave function is scarred simultaneously aplaced leaddSec. Ill ), except thats, must be replaced
each of the two leads. Since in each envelope the bumgverywhere by &,. Thus, for example, we obtain
corresponding to scarred wave functions have a wiifjg) (9)=s 43)
compared with the spacing between the bumps, and since the a
bumps inSS™ME) and S™°E) are now assumed to be . _ _
uncorrelated, we find that a fracti@®(82) of all wave func- ~ (independent of the location of leaa), while the IPR is
tions produce substantial peaks, of hei@tg 'sy). Then  diven by Eq.(32) if lead a is located on an orbit of instability

E. Leads with unequal coupling

the mean conductance peak height scales for sghat iéfnoensentﬁ<1. The tail of the peak height distribution be-
(@) uncorrelated orbits” S0, (39
and the higher moments of the distribution behave similarly: P(g)= \/%ge‘ﬁgm%. (44)
(0 uncorretated orbis B~ S, (40

Of course, for these results to be valid the coupling to kead
(9™ uncorrelated orbis” B So- (41)  must be weaker than the coupling boeven near energies
where leada is scarred; assuming is placed generically,
Again, we may measure the fluctuation in conductance peathis meansC,<BC,. If this condition is satisfied, the
heights by taking the ratio of the mean squared peak heightnequal-leads experiment may present a practical alternative
to the square of the meaPR). This shows very strong to trying to ensure that both leads are centered on a periodic
deviations from RMT expectations: orbit.
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IV. NUMERICAL TESTS 6

We now proceed to look at the implications of the results
of Sec. lll for a specific chaotic system, namely, the Buni-
movich stadium. This consists of two semicircular endcaps
of radius 1, attached to either side of a rectangle of dimen-
sion 2X2vy. The system reduces to a circle fge=0; maxi-
mum chaos is attained at=1. We will focus mostly on the
y=1 special case, though scar effects are stronger at smaller
values of y (as the periodic orbit instability exponen
become smaller

The (Dirichlet) wave functions of a billiard system such 2
as the stadium can be obtained by the plane wave method,
where at eactkg one constructs the linear combination of
plane waves that minimizes the integral |Gﬁ|2 along the FIG. 5. The IPR of the conductance peak heighiean squared

boundary, and then picks out those valuekofwhere this ~Peak height divided by the square of the mea plotted as a

. . . unction of the distance of each lead from the center of the straight
integral dips down towards zero. Of course, the mtegraf egment in a stadium billiard. The two leads are placed symmetri-

never becomes strictly zero because of the finite number oif

| d at iVka: h it iv b ally on the two semicircular caps, and have an effective width
plane waves used at any giveg, NOWEVET, It can easily be =1.2\kg , which corresponds te-3.5\r in the energy range con-

chegked that |.dent!fy|ng all the sharp m'n'ma_'n the bo_und'sidered (3068:kg<350). The amount of fluctuation is significantly
ary integral with eigenvalues produces the right density okppanced when the leads are located on unstable periodic orbits, as
states, as predicted by the Weyl law and higher-order correGsompared with the RMT prediction of 3. The locations of the three
tions. For each wave function obtained using this method, Wenortest periodic orbits having normal incidence on the semicircular
can compute the partial widths through each of the two leadgndcapghorizontal bounce, V-shaped orbit, and Z-shaped paiit
via Eq. (3), by simply integrating the normal derivative of marked on the plot. On the horizontal axjs=1.0 corresponds to
the wave function at the boundary, multiplied by {l&auss-  the end of the straight segment, apé 7/2~2.57 corresponds to
ian) lowest transverse mode in the leggq. (4)]. The con-  the middle of the circular endcap.
ductance peak height associated with that resonance is then
easily obtained using E@2). As noted above, this difference has no effect on the conduc-
We begin by considering two leads symmetrically placedtance behavior.
on the two semicircular endcaps. As we have seen above in We also see a strong increase in peak height fluctuations
Eqg. (30), the mean conductance peak height should be indeas the leads approach the edge of the straight segment. This
pendent of classical structures near the lead location, and this not surprising, since the quantum behavior there is
behavior is indeed observed when averaging over the energgtrongly influenced by bouncing-ball and near-bouncing-ball
range 308ckr<350. However, the fluctuation in peak modeg18]. For a lead locatedn the straight segment of the
heights, as measured for example by the mean squardmbundary, the IPR will tend to infinity in the high-energy
height, is expected to depend strongly on whether the leadsnit. In other words, a smaller and smaller fraction of all
are located on a short periodic orbit that is normally incidentmodes will give rise to appreciable conductance in this limit.
at the location of the leafEq. (32)]. To understand the conductance behavior at a quantitative
This qualitative expectation is confirmed in Fig. 5, wherelevel, we focus in on the most pronounced peak in Fig. 5,
we clearly see that the mean squared peak height is strongborresponding to leads located on the horizontal-bounce or-
enhanced over the RMT value whenever the lg@afsvidth  bit, i.e., centered opposite to one another on the two semicir-
o=1.2\kg~3.4\;) are located on a short periodic orbit. cular endcaps. Foy=1, the system previously considered in
Furthermore, the three shortéand least unstablerbits in ~ Ref. [3], the mean squared peak height is observed to be
the stadium having normal incidence on the endcaps are ttgnhanced by a factor of 1.78 over the RMT prediction, as
horizontal bounce(HB), the V-shaped orbit, and the compared with an expected enhancement of 1.81 coming
Z-shaped orbit, in that order, and these are seen to corrdrom Eq.(32), where we have used the valge=1.76 appro-
spond precisely to the three most pronounced peaks in thariate to this orbit[We note that for the value of the lead
plot. We note that the periodic orbit lengths well as the width o given above, the lead shape is close enough to being
instability exponenf3) must be measured by identifying the optimal that we may ignore corrections associated with non-
four quadrants of the stadium billiard, due to symmetry: thuszero paramete) in Eq. (8), discussed aboveSuch close
for example, the length of the horizontal bounce orbit is 2agreement is surely accidental, as one expects deviations due
+2y=4. Looking at the length of the orbiind instability  to the finite number of conductance peaks being sampled, as
exponent in the full billiard, we would be led to underesti- well as systematic finite-energy errors associated with cor-
mate the true importance of scarring effects. rections to the semiclassical approximation and also with the
Note that the leads are always located on the upper half giresence of nonrandom bouncing ball and whispering gallery
the stadium, equidistant from the center point of the uppemodes. Indeed, looking at leads centered on the horizontal
straight segment. Thus, for both the horizontal bounce anfiounce orbit in they=1/2 stadium, and also at leads cen-
the V-shaped orbit, the two leads happen to be on the saniered on the V-shaped orbit in the origingE 1 stadium, we
orbit, while in the case of the Z-shaped orbit, the leads wouldind in each case that the observed mean squared peak height
be placed on distinct orbits that were related by symmetryis about 10% lower than the predicted valeit still much

55 / Bouncing ball modes

Conductance peak height fluctuation
»

12 14 16 18 2 22 24 26 28
Location of leads
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TABLE I. Mean and mean squared conductance peak heights 1
are shown for several lead locations in the stadium billiard, and are b
compared with scar theory as well as with RMT. Unless stated
otherwise, y=1 is used for the shape of the billiaridee text
above. We consider two cases where both leads are located on the
same(horizontal bounceorbit, and one where they are located on
symmetry-related(V-shaped orbits. In addition, scenarios are
shown where one lead is located on the horizontal bounce, while the
other is placed either on the V-shaped orbit or at a generic location

0.9 RMT  symmetrically placed leads

(generic location)
08

o7 ~ both leads on HB orbit

0.6

Cumulative probability

05 r /4 S Smn
. . . leads on HB
(g=2.3 in the coordinates of Fig)5For reference, we also show a 04 andVorbits U

calculation where the two leads are symmetrically placed at a ge- one lead on TS

neric location; there we see that good agreement with RMT is ob- 08 _ HBorbit e

tained. As in the figures, the mean partial width through each lead is 0 0.05 0.1 0.15 0.2
set to unity. g

Lead locations () CRUCS
Actual Theory RMT Actual Theory RMT

both on HB 050 050 050 533 543  3.00 o1y

both on HB 0.50 050 050 6.44 7.17 3.00

(y=0.5)

both on V 0.50 050 050 4.23 4.80 3.00

HB and 0.21 0.22 025 3.70 3.73 3.00

generic 0001 L ‘

HB and V 0.20 0.19 025 411 4.50 3.00 —7
one lead on "

generic 0.50 0.50 0.50 3.02 3.00 3.00 HB orbit |

(symmetrig 0 2 4 6 8 10 12
9

both leads on HB orbit

0.01 ¢

Cumulative probability

Y symme.trically,plat;\é‘d*
X / (generic location)

. ] ) FIG. 6. The cumulative probability ;dg’P(g’) of having a
higher than the RMT expectatiprSee Table | for details. In - conductance peak height greater trgin a stadium billiard with
all three cases, the measured value(gf)/(g)? is easily  two leads is plotted for several lead locations, illustrating the vari-
distinguishable from the IPR value of 3. ous scenarios considered in Sec. (il both leads located on the
The first two moments of(g), as shown in Table I, horizontal bounce orbitji) one lead on the HB orbit and the other
provide useful and concise information about the distributiorat a generic locatiorjii ) one lead on the HB orbit and the other on
of conductance peak heights and can be easily used to the V-shaped orbittop figure only, and (iv) the two leads sym-
distinguish generic lead locations from the case of leads lometrically placed at a generic location. The solid curves represent
cated on a short periodic orbit. More complete information isstadium data, while the dashed curves represent scar theory predic-
of course contained in the full distribution, as shown in Fig.tions [Eq. (18), etc]; for the case of generically placed leads, the
6. [The distributions there are shown as cumulative probsScar theory prediction coincides with RMhown as a dotted
abilitiesfgdg’ P(g’), so as to reduce the effect of statistical curye). .The axes are ;caled SO as to focgs on the tgll of the distri-
noise] We see, for the case of both leads located on the HEUton in the bottom figure and the head in the top figure.
orbit, a long tail[Fig. 6 (bottom), top solid curvé in good
guantitative agreement with the prediction of scar theory(namely, both leads on the HB orbifThe distribution, in the
(dashed curve We also see in Fig. &op, solid curve, sec- head, body, and tail, is in good agreement with the theoreti-
ond from top the increased number of small conductancecal prediction of Eq(18).
peak heights as compared with RMT, and again in very good Finally, the next-to-last line in Table | shows the conduc-
agreement with scar theory predictionfgccompanying tance behavior for the case of two leads found on unrelated
dashed curve We also recallfrom Sec. Ill B that, up to an  short orbits, in this case the horizontal bounce and the
overall scaling factor of 2, exactly the same distributionV-shaped orbit. Both the suppression of the mean conduc-
would be obtained for only one lead located on a short orbitance and the enhancement of conductance fluctuatemns
of the stadium, with the other, much more strongly coupledcompared with RMT are observed, as predicted in Sec.
lead located at a generic location. Il D. However, the size of the effect is 20% smaller than
We may also consider attaching two leads to the stadiunpredicted by the theory. This difference may easily be as-
so that only one of them is located on a short ofbitmpare  cribed to finite-energy effects considered above, in conjunc-
Sec. 1l B). We see from Table | that in this case the meantion with statistical fluctuations. The head of the distribution
conductance is reduced as compared with RMT, while thés shown in Fig. &top, lowest solid curvg and follows the
ratio of the mean square to the square of the mean is erscar theory prediction, which again appears as a dashed
hanced, in agreement with the predictions. The full probabilcurve. The tail of the distribution would overlap the one
ity distribution for this case also appears in Figappropri-  discussed in the immediately preceding paragrepte lead
ately labeled solid curves, top and bottgrwhere we see a on HB, with the other lead genejjcand is not shown.
very noticeably shortened tail as well as an excess of small Finally, the last line in Table | shows the moments of the
intensities, as compared with the previously considered cassonductance peak height distribution for generically placed
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leads, which are seen to agree very well with RMT statisticspath is larger than the ballistic path associated with one
The distribution for this case is also plotted in Figtép and  crossing of the dot.

bottom), and as expected it follows the RMT prediction. The mean conductance, the higher moments, and the full
distribution of peak heights may all be easily computed using
V. CONCLUSION scar theory ideas, for the various scenarios considered in this

paper. These include a single lead located on a short orbit,

In this paper we have studied the statistical properties ofwo leads located on distinct orbits, or two leads located on
transmission through a weakly open chaotic cavity. We havéhe same orbit. The last scenario was seen to be mathemati-
seen that RMT does a very good job in describing these&ally equivalent both to two leads located on orbits related
properties when the leads are located far from classicallpy symmetry, and also to a situation of unequally coupled
important structures. However, the random-wave hypothesiads, where only the weakly coupled lead needs to be lo-
needs to be modified for a quantitatively accurate descriptiofated on a short orbit. All these scenarios may be relevant to
of the transmission process when one or both leads are Iglifferent experimental setups. ,
cated near a classically important structure, such as an un- Experimentally, it is of course much easier to change the
stable periodic orbit. The unstable periodic orbits have &'@ssical dynamics inside the detither by adjusting the
strong effect on the distribution of conductance peak height<'assical geometry or by turning on a strong magnetic field
even in the limit where the dwell time inside the dot become han it is to sweep .through. d'ff?‘fe”t locations of the Iead.
very large compared to the Lyapunov scale on which classi- hu; one may conS|dgr a 5|tuat|qn V\(here the lead quathns
cal decay away from the unstable orbits takes place. Thi€'¢ fixed, but the classical dynamics is changed by adjusting

implies that short-time classical dynamics leaves its imprinte'thirha _vohI:af?e tor ? magnet[{(;] field s'z_er:g(tjh. Ch:har;ﬁes 'g. thte
on quantum behavior at arbitrarily long-time scales, everP€ax heignt fiuctuations are then predicted wnen the adjust-

though at these scales the classical dynamics loses :frple parameter passes through values which cause a periodic

memory of its short-time behavior. We emphasize that theortiIt E[?].h't one or bﬁth of thte Ieadz. d K height |
effect considered in this paper is unrelated to direct pro-. N thiS paper we have not considered peak heignt correla-

cesses, and arises purely from quantum mechanical inten‘e?-OnS [3]_0r the effect of finite temp_erature on conducta_nce
ence purely d peak height$19]; both of these are important effects which

We have also seen that scarlike effects on conductanééave be_en addresseq pr.eviously by other au_thors. We _have
behavior in a quantum dot are robust, and that statistica?mphas'zed the crucial importance of including dynamical

predictions about the distribution of peak heights can bénformation for a quantitative understanding of conductance

made even though we do not have enough information t&)eak heights in a quantum dot. We also note that similar

compute the individual resonances of the system, eithe(]*Jynamical effects should be present in other physical situa-

uantum mechanically or semiclassically. This means, irJiions where tunn_eling in or out o_fa.chaotic well is important,
d y Y @nd that dynamical structures inside the welich as un-

S Stable periodic orbijswill influence the distribution of cou-
trons are added to the dot may not significantly affect the ling strengths between the well and the outside world.

statistical properties of the conductance, even though the\eN L al th i ivolving t ing int h
completely destroy all predictive power for individual reso- ork aiong fNese 1ines involving tunneiing into a smoo

nant wavefunctions. Similarly, electron-electron interactionsoc’tem"'JII well is currently under development.
are expected to make the single-particle picture irrelevant for
the purpose of predicting individual resonances or the spac-
ing distribution, but should not affect the statistical proper- This research was supported by the DOE under Grant No.
ties of the conductance as long as the interaction mean frdeE-FG-06-90ER40561.
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