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Synchronization in populations of globally coupled oscillators with inertial effects
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A model for synchronization of globally coupled phase oscillators including “inertial” effects is analyzed.
In such a model, both oscillator frequencies and phases evolve in time. Stationary solutions include incoherent
(unsynchronizedand synchronized states of the oscillator population. Assuming a Lorentzian distribution of
oscillator natural frequencieg({}), both larger inertia or larger frequency spread stabilize the incoherent
solution, thereby making it harder to synchronize the population. In the limitingg{@¥g= 5(Q2), the critical
coupling becomes independent of inertia. A richer phenomenology is found for bimodal distributions. For
instance, inertial effects may destabilize incoherence, giving rise to bifurcating synchronized standing wave
states. Inertia tends to harden the bifurcation from incoherence to synchronized states: at zero inertia, this
bifurcation is supercriticalsoft), but it tends to become subcriticéhard as inertia increases. Nonlinear
stability is investigated in the limit of high natural frequencies.

PACS numbgs): 05.45-a, 05.20-y, 05.40—a, 64.60.Ht

I. INTRODUCTION far from being negligible, and it is absent in the Kuramoto
model[13].

The dynamical behavior of large populations of nonlin-  In this paper, we consider the model equations of F8f.
early coupled oscillators may describe many phenomena in
Physics, Biology, and Medicing —3]. In particular synchro-
nization of mean-field coupled phase oscillators with differ-
ent natural frequencies is nicely illustrated by Kuramoto’s
well-known and extesively analyzed modgt,5]. To de-
scribe certain biological phenomena, inertial effects should
be added to this model. In RdB], Ermentrout revisited the
special problem of self-synchronization in populations of i=1,... N,
fireflies of a certain kindthe Pteroptyx malaccae Com-
pared to observed behavior, the approach to oscillator syn-
chronization as described by the Kuramoto model seems tWhered;, «;, and(}; denote phase, frequency, and natural
be too fast. Thus a more appropriate adaptive frequecheq“e,”Cy of thg Fh <_)SC|IIator,.respectwe!y. The nqtural fre-
model has been proposed in Rei8-8], where the natural gquencies are distributed with probability densig((2),

frequency of an oscillator is a new independent variableyvhICh may have a single maximutanimodaldistribution),

which is allowed to vary with time. Thus an oscillator is or several peakémultimodaldistribution. The positive pa-

described by its phase and frequency. From the mathematict metersm and .K are_the “inertia” and the couplmg
. . ' rength, respectively. The complex order parameter defined
standpoint, the new model is governed by a system o
coupled second-order differential equations containing iner-y
tial terms, in contrast to the system of first-order differential
equations governing the Kuramoto model. Indeed inertia . 1 N
slows down synchronization and this may result in better rye'n= N '21 e'’, 2
agreement between theory and experimental measurements. =
Other possible biological applications of Ermentrout-type
models include aftereffects in alterations of circadian cyclesneasures phase synchronizatiog>0 if the oscillators are
in mammalians, cf. Ref.6] synchronized andy=0 if not. Finally, §;’s are independent
A different set of applications for oscillators with inertia identically distributed Gaussian white noises, wih;)
include power systems described by the swing equafi@hs =0, (&(t)¢;(s))=2D §;;6(t—s). White noise terms were
or by Hamilton equationgl0]. An important technologically not included in Refs[6,7]. When the inertial terms vanish,
relevant application is the study of superconducting Joseptm=0, Egs.(1) and(2) are exactly the Kuramoto model.
son junctions arraygl1,12. Here inertial terms describe the  Typically, N is very large, and oscillator synchronization
effect of nonzero electrical capacitance. Such effect is oftefis conveniently analyzed in the limiting case of infinitely
many oscillators. In this limit, models with mean-field cou-
pling are described by an evolution equation for the one-
* Author to whom all correspondence should be addressed; ematiscillator probability density,p(0,,Q,t) [14]. For the
address: bonilla@ing.uc3m.es present model this equation i8]

0j=wl-

m(:t)j:—wj‘l‘Qj‘l‘KrNSin((ﬁN_0])+§j(t), (1)
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D #p 1 4 The rest of the paper is as follows. In Sec. I, we find the
= 55 = (ot Q+Krsin(y—0))p] incoherent solution and study its linear stability for several
It m? g Miw natural frequency distributions. Results are compared with
those obtained in the massless cge-19. It is found that

_wa_p, (3)  the critical coupling needed to destabilize incoherence in-
a0 creases withm for “unimodal” frequency distributions of
) . the Lorentzian type. The critical coupling is independent of
where the order parameter is now given by mwheng(Q)=5(Q). In this case the time needed to reach
o i (i synchronization increases as increases. Ifg(Q)=[4(Q2
relv— f f f &(0,.0,1)g(2)dQ dw 6. — Qo)+ 8(Q+Q0)1/2 (discrete bimodal distribution the
0 J-oJ-o critical coupling may grow or decrease withdepending on

(4)  the values ofQ),. In Sec. lll, we construct other stationary
solutions by two procedures: an amplitude expansion for so-
Equationg(3) and(4) should be supplemented with appropri- Jutions branching off from incoherence and a general expan-
ate initial and boundary datg (is 27 periodic in# and has  sion in Hermite polynomials which is appropriately trun-
suitable decay behavior as— *) plus the normalization cated. An exact analytical solution is obtained gfQ)
condition =5(Q) (cf. Ref. [8]), while analytical approximations for
small m and Q) are available in the general case. We have
observed that inertia tends tearden the synchronization
transition: in the Kuramoto modefr(=0) or with oscillators
with identical natural frequencies, the synchronization tran-
Differentiating [27/*%p(6,w,Q,t)dw d6 with respect to Sition is soft(supercritical bifurcatiop whereas it becomes
time, and then using Eq?) itself, together with periodicity hard (subcritical bifurcation in the cases of unimodal
in # and decay inw, we find that the left side of Eq5) is ~ Lorentzian or discrete bimodal frequency distributions. In
time independent. Normalization to unity of the initial prob- S€C- IV, we obtain approximations to stable time-dependent
ability density then implies Eq(5) for the solution of Eq. Solutions of Eq.(3) in the “high frequency limit,” Q — o
(3). [19]. There are partlally synchrom_zed nonlinearly stable so-
In this paper, we study oscillator synchronization andlutions of standing wave typeéas in the Kuramoto model
transition from incoherence to synchronization in the model[17,18). Finally, numerical results are presented in Sec. V,
Egs. (3)=(5). The incoherent solution of Eq$3)—(5) (or a_nd compf_;lred to the apprOX|.mate or exact solutions of pre-
simply incoherencgis a stationary solution which is inde- Vious sections. Two Appendices at the end are devoted to
pendent ofd. This solution assigns equal probability to all technical details.
angles and has=0 (no ordej, so it corresponds to lack of
oscillator synchronization. There are synchronized solutions
which branch off from incoherence as the coupling among
oscillators is increased. These bifurcations describe the syn-
chronization transitions, which we have analyzed and com-
pared to the corresponding ones in the Kuramoto model. Our The incoherent solution is &-independent stationary so-
main results are that inertigt) may stabilize incoherence, |ution of Eq.(3). Its order parameter is=0 according to Eq.
making it harder to synchronize oscillators; afiid it may  (4). Then Eq.(3), decays as»v— = and the normalization
harden the synchronization transition. In the Kuramotocondition, Eq.(5) yield the incoherent solution:
model (m=0) or with oscillators with identical natural fre-

j:wfj:p(ﬂ,w,ﬂ,t)dwd0=1. (5)

Il. LINEAR STABILITY OF THE INCOHERENT
SOLUTION

guencies, the synchronization transition is gsfipercritical
bifurcation, whereas it may become ha¢subcritical bifur- pol@,Q)= i1 /.M e~ (M2D)(0— Q)% (6)
cation if the distribution of natural frequencies has a non- 27 N 27D

zero spreadunimodal Lorentzian distributionor several
peaks(e.g., a discrete bimodal distributiprThe methods we
have used in our analysis are similar to those previousl
employed in the Kuramoto modgl5-19: linear stability of
incoherence, bifurcation analysis, high-frequency singular

perturbations, and numerical solutions. An important differ- p(6,0,Q,1)=po(0,Q)+en(0,0,Q,t)+0(&?), (7)
ence is that now we do not have an explicit functional form
for stationary solutiongas it was the case for the Kuramoto
mode). This has led us to use mode-coupling expansions of
the solution and solving the corresponding mode-coupling
equations. Solutions of these equations in close form are not 27 [+
always accessible, so that we have introduced some closure fo fﬁx 7(0,0,Q,t)dw d6=0. ®)
assumptions. The results of these uncontrolled assumptions

have been compared to direct simulations or to approximate

amplitude equations and found reasonable in the limit ofVe now introduce Eq(7) into Egs.(3) and(4) and equate
small inertia. like terms ine. To ordere, the result is

To analyze its linear stability, let us consider a small distur-
Yance about incoherence,

heree<1. Normalization ofp(6,w,(},t) then implies
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_+ — e — — — —_—— —
at o0 maw[(“’ Mnl= 5

K a 2w [+ [+
-——=2 ) f J 7 b0, Q1)
X sin(¢— 0)g(Q)dQ dew de. 9)

We now insert a trial solution

o0

)\t E bn(w o) )\)ema

n=-—x

7(0,0,0,1)= (10

(which is 27 periodic in 6) into Eq.(9), thereby obtaining

d%b, . m(o—Q) db, . m(1—mx—inmw)b,
dow? D do D

. . Ipo
Tm K(| 5n’1— | 5n’_ 1)%

= 5 (1by),

(11
where we have defined the scalar product
+ oo “+ 00
(@, )= f_ f_ o(0,0))(0,02)g(Q)dQ dw. (12

Notice thatb_
ization condition(8).

Equation(11) can be transformed into a nonhomogeneous
parabolic cylinder equation by the following change of vari-

able:

m(w—0)?
bn(w;Q.\) = exp — ——5— | Ba(WiQ.\), (13

m
w= \/;(w—Q+2nDi).

Inserting Eqs(13) and (14) into Eq.(11), we obtain

d?g, w?
- 2
e 4{2 7 m(A+inQ+n<D) |8,

(14)

—|7TK—e(1’4)(W 2i ymD)2 (1e~ (1/4)(w— 2|\mD)2B Yn1

(19

(Recall thatdw= D/m dwwhen using the definition of sca-

lar producj. Let us assume now that* =1 and that() is a
fixed real number. Then the right hand side of ELp) is

zero and the resulting equation has the following eigenval-

ues:

Npn(Q)=— %—nZD—inQ, p=0,12..., (16

associated to the eigenfunctions

SYNCHRONIZATION IN POPULATIONS OF GLOBALLY ...

=Hn and thatb,=0 because of the normal-

3439

_ w2 w
IBp,n(W;Qa)\p,n):Dp(W)zz (pi2)g=(w /4)Hp E

17

which are independent af and (. In this formula,D ,(w)
andH(x) are the parabolic cylinder function and the Her-
mite polynomial of indexp, respectively20,21]. The eigen-
values A ,(Q) of Eqg. (16), with n=*1,+2,..., p
=0,1,... andQ belonging to the support aj({}), consti-
tute the continuous spectrum of the linear stability problem.
In fact, a nonhomogeneous linear problem with a homoge-
neous part given by Ed15) cannot be solved for an arbi-
trary source term if\=X\,,. Notice that the continuous
spectrum lies to the left side of the imaginary axiDif-0
andn#0. Then the “eigenvalues,” Eq.16), have negative
real parts(and therefore correspond to stable modés we
have already noted, the neutrally stable modes withO
have zero amplitude due to the normalization condition, Eg.
(8).

If n=1, we can solve Eq.11) by means of an expansion
in eigenfunctiondD ,(w), p=0,1,2 . ... Toobtain the gen-
eralized Fourier coefficients ¢f;, we multiply both sides of
Eq. (11) by Dp(w) and integrate overw. As
J7..Dp(X)Dy(X)dx= 27! 8,, (orthogonality condition,
cf. Sec. 7.711.1 of Ref20]), the result is

i TK B R
ﬁl(w;ﬂ,)\)z—T(l,e [(wi2)=i\DI? g )

o] i =TS 2
f e[(W/2) iVmD] DpP(’) dw

<3,

+)\+|Q+D

° V2mpl| 2

where

dpo

po(w)=— o

w=0-i2D+(D/m)Y2w

m(w—|2\/_)

_ e~ (12)W-i2VmD)? 19
(27T)3/2D ( )
Once we have foun@;, we can calculate the scalar prod-

uct(1,ew2-\MDI° 5.y Since this scalar product appears as
a factor in both sides of the resulting expression, we can
divide by it, thereby obtaining an eigenvalue equationNor

B —iﬂ'K\/B i
JV27m® p=o p!
XJ al(w/2)—i D)2 D) dw

Xf e~ L(wi2)—=i D)2 D, dw

9(Q)

X —dQ. (20)

N —+}\+|Q—|—D
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In Appendix A, we show that this equation may be rewritten

as
K i Ap(YmD) A/ (VmD)
47\mD p=0 p!
+o0 O
xf 0 9() dQ, (21
T 4A+iQ+D
m
where A,(x) is defined as
+o0 o
Ap(x):f Dy(w)e (WA= g, (22

The result of evaluating this integral (sf. Appendix A):

Ap(x):ip\/ﬂe(xz’z)xp (x>0). (23
Inserting Eq.(23) into Eq. (21), we obtain
p
e (— P L
| Ke™ 5 (=mD) (1+mD) = g(Q)dQ
2 = ! . '
P P A+D+IQ+ 2
m
(24)
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FIG. 1. Discrete unimodal frequency distribution: Comparison
between analyticalcontinuous ling, and numericaldoty evalua-
tion of the eigenvaluex as a function ofm for D=1 and two
different values of the coupling strengih

1+i)

=)

f(Im \,m,D)= >,
p=0

(—mD)”(

. (29
D+ D
m

p!{(lm N2+

As m—0, this equation coincides with that obtained for the

Kuramoto model[15]. Equation(24) can be rewritten in
terms of incomplete gamma functions as follop24,22:

2D
T _gm

K DF [MDy(m(A+D+iQ),mD)

9(Q)dQ

_y(1+()\+D+IQ)m,mD)]W

Xg(Q)dQ,

A +iQ)me™"Py(m(N+D+iQ),mD)
N (mD)+D+i)m

(25)
where[21,22

y(a,x)= foxe*ttafldt. (26)

From now on, we analyze E§24) for special frequency
distributions.

(@) Unimodal frequency distributiqrg(Q) = 5((2).

In this case we show that if Re=0, then ImA=0.

Notice that the even functiof(Im \,m,D) decreases mono-
tonically with ImA>0. On the other hand tends to zero, as
Im A— +0o0, and

m
f~5(mD)_mDy(mD,mD)>O, as Imrn—0. (29

Thusf does not vanish at finite values of I\ and therefore
the only solution of(27) is Im A =0. Setting nowx =0, Eq.
(24) yields the critical couplindkK =K.,

(—mD)"

o =1, and therefor& .=2D.

(30

Figures 1 and 2 show the largest eigenvaluas a function
of mand K. To computex numerically, we conclude from
Eqgs.(7) and(10) that the amplitude of the order parameter is

r~Ce, (31

close to incoherence. Then, the goal is to simulate the evo-

Thus, the eigenvalues that may acquire a positive real patution of the system, choosing the initial condition suffi-

are real. Then the critical coupling is obtained by setfing
=0. By subtracting from Eq(24) its complex conjugate, we
obtain

O=Im(N\)f(Im \,m,D), (27)

where

ciently close to the incoherent solution, and obtain numeri-
cally the amplitude order parametgit). Figure 2 shows that
different eigenvalue curve#or different m) intersect the
horizontal axis\ =0, at the same value of Kas expected
from Eq. (30).

(b) Unimodal Lorentzian frequency distributipm({2)
=(elm)(e?+Q?). Equation(24) becomes
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i K=2 1)+ 228 o2, (38
osl ] c=2e(me+1)+—————D+0O(D%). (39
o | / i In the limit of vanishing mass, we recover the reskilt
e =2(D +¢) valid for the Kuramoto moddl15]. Another im-
15t e et ] portant limit ise =0, which reproduces the unimodal distri-
m=9f1 / ,f, e bution. We findK.=2D, independentlyof mass. Thus the
< 17 i e 1 spread in frequency distribution plays an important role in
/ e - synchronizing populations of oscillators affected by inertia.
05 e In case(ii), Eq. (34) yields
{(/ T m=6
0 7 X .
} . -
o5V ] 1= 2batarn 1@ ) (36)
-1 * * * * * ‘ ‘ ‘ from which
10 20 30 40 50 60 70 80 90 100
K
1
FIG. 2. Discrete unimodal frequency distribution: Eigenvalue A=—|et %(Si V1+2Km)). (37)

as a function ofK for three different masses. Other parameter

values and meaning of lines as in Fig. 1. Note that curves correThjs quantity is always real and vanishes fér=K,

sppnding to different masses all intersect the axisO at the same =2&(me+3)+4/m. Note thatK. grows roughly linearly

point, as expected from theory. with m. Thus oscillator synchronization is made harder by
increasing inertia in the limit of vanishing noise. This behav-
ior is slightly different from that described in R¢fZ]. There

K b D = (—mD)" n+mD numerical simulations seemed to show that incoherence re-
=50 |\7D+s +n:1 N mA+D+e)+n mains stable up to a critical coupling, which was indepen-
dent of m. The singular nature of the limib—0 makes the
K 5 (A +D+s) (A +D+8)—1aemD cause of this discrepancy unclear, although we should men-
=5 me"™(mD) (mD) e tion that no stability analysis was conducted in Ré&fl. In
the opposite limitm—«~, A\— —¢, and incoherence is al-
N+D+e ways stable.
—y(M(\+D+e),mD) T_l)} (32 The stability diagram in the parameter spaeeK() is

shown in Fig. 3 form=0.2, and compared to that of the
Kuramoto model in=0). This diagram is obtained from Eq.
(()32) with A =0, for fixed D andm. In this figure, we have
Iso plotted the evolution of the order parameter amplitude

or the parameter values marked in the stability diagram by
(1)—(4). In all cases, the initial condition is taken sufficiently
close to the incoherent solutions=0.

(c) Bimodal frequency distributiqrg(Q) =3[ 5(Q — Q)
+6(Q+Qp)].

Equation(24) becomes

An explicit solution for A cannot in general be found.
Thus, we consider several limiting cases corresponding t
physically interesting parameter choices. In the small nois
limit, D<1, we consider the casés m=0(1) fixed, and
(ii) mD=1. It is remarkable that the expansion

* n

v(a,x)=e *x? , (33

n=0 (a)n+1
D * _

where @),=a(a+1)---(a+k—1), k=1,2, ..., holds in Ke™ ¢ (ZmD)" (n+mD)(m(A+D)+n]_

both cases. Ik=mD—0, a=mD+m(\+¢&)>Xx, Eq. (33 2D <o n!' [m(A+D)+n]?+m2Q3

holds as a convergent expansi®@®?]. If x=mD=1, anda (39

=1+m(\+e&)—oo (with fixed N ande of order 1), Eq.(33)

holds as an asymptotic expansif@3]. Inserting Eq.(33)  In the high frequency limit{2,—c, we can find an analyti-
into Eg. (32), we obtain cal formula for\ by inserting the following asymptotic ex-

pansion for the incomplete gamma function in E2p) [23],

2 3

2D_1+X_a 1+ X + X +
K a a+l (a+1)(a+2)

X
a3

e *x2

o yax~——, a—x, (39)

(34)
wherea=m(A+D+i(Qg), andx=mD. The result is
Similarly to the unimodal case, it is possible to prove that
is always real. To this purpose, notice that replaginge in 1- K 1 N 1
Eg. (32 with \ in Eq. (24) (settingQ)=0) we obtain the 4\N+D+iQy A+D-iQg)’
same equation. The critical couplitg=K_ is then found by
settingh =0 in Eq. (34). In case(i), we have which yields

(40
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FIG. 3. Unimodal Lorentzian
frequency distribution: Stability
diagram of incoherence in the pa-
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rameter spaceg(K) for m=0.2,
D=1. The amplitude of the order
parameter as a function of time is
numerically calculated and dis-
played at the points marked by:
(1) K=6, e=1; (2) K=6, ¢
=1.75; (3) K=20, £=4.25; and
(4) K=20, e=4.75.
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(41)  herence.

model,K.=4D, for the same bimodal frequency distribution

[16].

from Eg. (38) with ReA=0, for D=1 and three different

oscillator population via stationary bifurcations from inco-

Ill. MODE-COUPLING EQUATIONS AND STATIONARY

SOLUTIONS

_ o o _ Inspired by the previous linear stability analysis, we shall
Figure 4 shows the stability diagram, which is obtainedexpand the distribution function using a basis of parabolic

cylinder functiongor, equivalently, Hermite polynomiglef

mass valuesm=0.1, 1, 6. The stability diagram of the unit mean square norfi24]
Kuramoto model (h=0) is also depicted. Notice how the
curves corresponding to differerent masses tertitagiD as

Qp—, as expected. Figure 5 displays the evolution of the p(9,w,0,t)=
order parameter amplitude in different regions of the stability

diagram corresponding tm=0.8 andD=1.

In conclusion, increasing, D, ¢ (inertia, noise, and fre-
quency spreadmakes it more difficult to synchronize the In Eq. (42), we have defined

ZWD)
m

—1/4 *

2
ef(mw /4D) 2
n=0

Cn(6,Q,1) ().
(42
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T ' ' ' dcy 1 \F&cz
28 | : — m=01 - B PN N i
] m=1 ot Leo— e V2N g (48

ac, n \/Bacn+1
7——\/ﬁ£cn,1— Ecn—\/m—l R (47)
Here we have defined the operator
D|d Q+Krsinyg—0)
cf= \fﬁ {ﬁ - = . 49

0'0 1 Il 1 1 Il 1
2.0 4.0 6.0 8.0 10.0 12.0 14.0
K rameter becomes

In terms of the functiong,, the equation for the order pa-

FIG. 4. Discrete bimodal frequency distribution: Stability dia-

. 27 [+
gram of incoherence in the parameter spa@g,(K) for different re"ﬁ:f f e'%y(0,Q,t)g(Q)dQ dé. (49
mass values anb=1. 0 —o

27 ((+ow
\/m —1/2 \ﬁ rsin(y— 0)=f0 fﬁw sin(¢— 0)cy(p,Q,1)g(Q2)dQ deo.
l//n(w):(n! T) Dn( 5‘0) (50
~1/2
:(n!zn ?) Hn( A\ [%w>e—mw2/4D'

(43 The incoherent#-independent solutiong,=C,({2), de-
pends only o). It can readily be obtained from the above

so that/“ ., dw=3,,. The functions,(6,Q,t) are 2 hierarchy of equations, by ignoring all derivatives. The result

B. Incoherence and bifurcating stationary solutions

periodic in 8, and we have IS
1 1 m n/2
2m Ci(Q)=——|=| Q" 51
f co(6,Q,1)do=1, (44) (=52 ﬁ(D) (51)
0
_ o Inserting this into the expansion in Eg2), we indeed re-
as it follows from the normalization q§( 6, w,(},t). cover Eq.(6). In particular setting) =0, this yields the sim-

We shall find a system of mode-coupling equations forplest incoherent solutiorG,= 1/(2), corresponding to the
the coefficient functiong,. Then we shall try to find sta- unimodal frequency distribution. Other interesting stationary
tionary solutions for different frequency distributiogé(2).  solutions are partially synchronized distributions, which de-
This is not so easy in the general case, so that we shall folloygend on 4. Notice that Eq.(45) implies thatc, does not
a standard approach: We shall recognize in the system efepend orp.
equations for the coefficient functions a particular stationary |n the following we analyze stationary solutions bifurcat-
solution corresponding to incoherence. Then we shall try tang from incoherence for different frequency distributions.
find a bifurcation equation for other stationary solutions (a) Discrete unimodal frequency distributipng(Q)
branching off from incoherence. We shall see that even this= 5(().
requires different approximation schemes in order to suc- |et us look for stationary solutions with finitely many
ceed. nonzero coefficientsc,=0 for n>N and g(Q)=6(Q2).

Equation (47) vyields Lcy=0, and therefore, cy

=KeK/PIrcos—0) (K =constant). Inserting this result in
A. Mode-coupling equations Eq. (47) for n=N—1, we find Lcy_,=—Ncy/m. The

corresponding solution is not periodic i unlessKy=0.

Let us insert Eq(42) into the Fokker—Planck equation Repeating this argument, we obtain the stationary solution
(3). We then obtain the following hierarchy of coupled par-

tial differential equations foc,(6,Q,t): (K/D)r cos(y—0)
Co( )= , (52
aCo \F ac, fzw (KID)r cos(y— 6)
Y S e dé
ot m 90"’ (45) 0
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K quency distribution: stability dia-
020 ‘ ‘ ‘ ‘ ‘ ‘ ‘ gram of incoherence in the param-
0.040 : : @ eter space {,, K) for m=0.8
® and D=1. The amplitude of the
0.15 | order parameter as a function of
0.00 time is displayed at the points
marked by:(1) K=4.4, Qy,=1.4;
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wherec,=0 for n>0 and the normalization condition has fixed value of the synchronization parameteiThen we ex-
been used. Observe that the resulting distributje(®, w) pand these solutions in power seriesr @nd write a hierar-
= (27D/m)Y4cy( 6) wo(w)e‘m“’z"‘f’, is factorized with re- qhy of equati.ons for the coefficient functions. The first coef-
spect to its two arguments] and w, cf. Ref.[19]. It is  ficient function should be the incoherent solution of

remarkable thaty(6) is independent ofn, and coincides Synchronization parameter=0. Inserting the power series
with that obtained for the Kuramoto model. Therefore, fromProbability density function into Eq4), we find the ampli-
Eq. (49) the order parameter does not depend on inertia, anfde equation for stationary solutions bifurcating from inco-
the bifurcation diagram for is exactly the same as that for herence. This procedure is explained in Appendix B. We

the Kuramoto model. quote here the result
(b) General frequency distributions.
For general frequency distributions, we could try to find Kr (Kr)®
stationary solutions of the mode-coupling equatid¥3) r=spet % B+O((Kr)%, (53

which bifurcate from incoherence. It is however more direct
to work with the stationary Fokker—Planck equati@®) as
follows. We consider stationary solutions as functions of awhere
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p 2 0.00030 T T T
- — Pl 14 —
ol [* g0+ rorl
a=¢e E—
—o ng p=1 p!
1+ —
b 000020 |- i i
X | g de |, (54 ¥
1+ mD +§ 000010 - m=0.5 s 1
and B can be calculated numerically by solving a system of -
differential equations. As the inertia vanishesD—0+, « e m-0.08
becomes B . .
00 0.4 0.8 1.2
2 )
* g(Q)dQ m(= Q -
a= . 02 "DJ_. 0?2 9(2)dQ+0(m"D?). FIG. 6. Coefficientc,({)y) corresponding to the approximate
14+ — 14— mode-coupling stationary solution for the discrete bimodal fre-
2 D? guency distribution and two different values of The solid (n
(55) =0.05) and dotted ra=0.5) lines correspond to the three-mode

approximation, whereas squares and circles are obtained from direct
Notice thata in Eq. (54) coincides with D/K in Eq. (24)  numerical simulation. Notice that, is even:c;(— Q) =c41(£g).
provided \=0 and g(Q)=g(—Q). This means that the
critical coupling for bifurcation towards stationary synchro- 2m (o
nized states is obtained litv= 2D, no matter what the sym- r= JO f_xCO( 0,Q1)cogy—6)g(Q)dQ d6 (60
metric frequency distribution might be.

Before interpreting the amplitude equatit®8), we shall  holds. The functionc,(2) can be obtained by integrating
outline a procedure to obtain its coefficients based upon agq. (46) with respect tod and using the normalization con-
uncontrolled closure assumption which is accurate for smaljition for ¢, together with the - periodicity in 6 of ¢, and
values ofmD. Consider the expansion, E@2). We expect ¢,
that the coefficientg,, of stationary solutions close to inco-

herence do not differ much from the coefficients of the latter. 1 /m 27
In view of the functional form, Eq(51), we anticipate that ©=5-\p Q"‘KFJO sin(y—6)co(6,Q2)do|.
the coefficients,, approach zero as— o faster for smaller (61)

values of the massThus we shall now consider stationary
solutions for general frequency distributions, such that Then, the stationary distribution can be approximated by
=0 in Eq.(47), for all n=3. By solving Eq.(47) for such a

stationary solution witm=2, we obtain D\

p(e,w,ﬂw(%) (0ol 6,02) (@) +¢4(2) ()

c,(6,Q)= \/% [Q+Krsin(g—6)]cy(Q).  (56) +5(0,0) Py w) Je ™D, (62)

) ) o ) Notice that a nonvanishing (1) in Eq. (42) implies that the
We now insert this expression into E@6). The resulting probability density is no longer even i@ (4, is an odd

equation is solved for &, which is 27 periodic in¢ and  fnction of ). By Eq. (61), this occurs in the synchronized

obeys the normalization condition, E). We find phase for the case of nonidentical oscillators. For the bimo-
B dal frequency distribution, Fig. 6 shows as function of()
(6.0 e(KriD)cosw=0 (9 () (57  for two different values ofn. Both the approximate expres-
o Z(Q) ' sion, Eq.(62), and results of direct numerical simulations are
depicted. Notice that the agreement between our approxima-
om tion and the numerical result improvesaglecreases. Thus
©(6,Q)= [1-mKrcody—6—17n)] we observe that for each fixed nonz&poand each fixed,
0 the distribution function is no longer peakedsat 0. How-
X g~ (WD) Q7 +Kr cos@— -] (58) ever theinstantaneous frequency distributiotlefined by

2 (oo
2 0,0,0)g(Q)dQ do,
Z(Q):fo e‘K”D)C"SW")QD(e,Q)de, (59 fo J_OOP( w )g( )

may turn out to be even im. This is certainly true for the
In Eq. (57), r should be determined so that approximate stationary distribution, E@2), for
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- \ﬁKr 20 foo 1.00 - . —
| cwmsrao= D257 o) R—
X sin(¢— 0)g(Q)dQ do=0, 080 1
as it follows from the definition of the order parameter and
the expansion, Eq42). 0.60 | i
Another indication that the exact instantaneous frequencys
distribution may be even iw is that the average frequency
tends to zero at— +<. This would occur if the stable sta- 040 i
tionary distribution is even imw (although, admittedly, dis-
tributions which are not even i may have zero meanThe 020 | . |
result can be shown directly from the Fokker—Planck equa-
tion (3). We multiply such equation byg({}) and integrate T —
with respect to all variables. Then we obtain the following 0.00 , ‘ ‘ L
equation for the mean valuev): 0.0 2.0 4.0 6.0 8.0 10.0
£
d ® - 1.00 : : . .
o = [ aan L = S
The right-hand side of this expression is zerogif—Q) 0.50 | ]
=g(Q). Then(w) tends to zero exponentially fast as
— + 00,
Let us now go back to the problem of obtaining the coef- . 1 |
ficients in the amplitude equatiof®3). Let us expand Eq. '
(57) in powers ofr and insert the result in Eq60). We
obtain an approximation to the coefficients of the amplitude
Eq.(53). « is again given by Eq55), and the expression for -0.50 | e .
Bis S —
02 3 39 02 . . . .
. 3§ ot yMmy %% 2.0 4.0 6.0 8.0 10.0
A= f . 02\ a2 )
14+ — 4+ _—|D3 FIG. 7. Coefficientr as a function of the frequency spreadior
( 2 D2 the stationary solution in the case of unimodal Lorentzian frequency
distribution. The exact result and that of the three-mode approxima-
22 2 tion are compared. Other parameter values @rel and(a) m
3m7Q0 7 1+ E =0.05;(b) m=1. Note that the approximate result improvesnas
+ STz [9(Q)dQ. (63)  ande decrease.
2D% 1+ — o _ o
2 (i) Unimodal Lorentzian frequency distribution

For a unimodal Lorentzian frequency distribution, the co-
We now interpret the amplitude E?3) in the usual way. efficientsa and 8 of Egs. (55) and(62) are approximately
Notice that the nonzero solution is approximately given by given by

o [3(2D—Ka) 5
' KD a= gy (1=me), (64)

Then the critical value oK is K* =2D/«, and the sign of3

determines the direction of the bifurcating branch of station-

ary solutions. Assume>0. Then the bifurcating stationary 3 1
solution exists forK>K* if B<0 (supercritical bifurca- B_Z (D+&)%(2D+¢)
tion). If B>0, we have asubcritical bifurcationand the

partially synchronized stationary solution exists ForKK* .

The critical coupling tends to infinity aa— 0+, and the Apparently, the sign ot could again be negative provided
bifurcation does not occur at positive couplingsdf<0.  me is sufficiently large. However, evaluation of the exact
Given the formulag54) or (55), a could become negative, expression, Eq:54) shows thaw>0. Figure 7 shows as a
depending on the value of. Let us now analyze the bifur- function of ¢ for two different masses. Notice that the ap-
cation diagram corresponding to two different frequency disproximate expression far fits better the numerical result as
tributions. m ande decrease.

m
-1+ 58(3D+8) . (65
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0.10 : . : : 2.00 . .
(a) —— Numerical
-+ Approximation
0.00 1.60 il
-0.10 1
120 + . _
. Subcritical
w
-0.20 .
0.80 | _
-0.30 § 5
Numerical
0.40 _
—0.400.0 2?0 4‘0 6t0 810 10.0 Supercritical B e ——
Analytical
€ 0.00 ' * '
0.0 1.0 20 3.0 4.0
0.20 T T T T m
(b) —— Numerical
F e 7 Approximation FIG. 9. Stationary solution, Lorentzian frequency distribution:
relation between frequency spread and mass at the criticalgline
=0. This line separates the regions in parameter space on which the
0.00 synchronization transition from incoherence is either a sub- or a
supercritical bifurcation. The numerically evaluated curve is com-
@ pared to the approximate result from three-mode truncation.
020 diagram(order parameter amplitude versk$. In the sub-
critical case, Fig. 11 shows the different evolution of the
order parameter amplitude for two different initial condi-
tions. Notice the bistability between incoherence and the
stable synchronized solution typical of a subcritical bifurca-
0400 2.0 4.0 6.0 8.0 10.0 tion.
€ (i) Bimodal frequency distribution.

o _ For the bimodal frequency distributiom; may be zero.
FIG. 8. CoefficieniB as a function of the frequency spreador This means that there is a critical frequerﬁﬁ(m) above
the stationary solution in the case of unimodal Lorentzian frequencyovhich K* =c¢. In fact, we have shown in Fig. 4, looking at

distribution. The exact result and that of the three-mode approxima; . . .
tion are compared. Other parameter values Brel and (3 m %he branch corresponding d0=0, that in case of a bimodal

=0.05; (b) m=1. Note that the approximate result improvesnas
ande decrease. 0.80 i

In contrast witha, B can really change sign for a Lorent-
zian frequency distribution. Figure 8 shows the good quali- .| ‘ |
tative agreement between the approximate expressiop for
and its numerical evaluation from the exact equations, Eq. o
(B15). S

There is a critical mase, (¢ andD are kept fixedl for ~ 040 | 1
which B=0. This mass separates the supercritical and sub J
critical bifurcation regions. Setting=0 in Eq. (64) yields '

D 0.20 ~ | i
m°_8(3D+s)' (66) :

g

|
Figure 9 shows the qualitative agreement between the ap o f ‘ ‘ ‘ ‘ ‘
proximate expression, E¢66), and the numerical result ob- 3.0 3.5 4.0 4.5 5.0 5.5 6.0
tained from the solution of EqB15). K

Note that in the massless case, the stationary solution al- i 10. Bifurcation diagram for a supercritical bifurcation from

ways branches off supercritically, independentlysoin the  jhcoherence to a synchronized stationary solution, corresponding to
presence of inertia and for appropriate values pive have  the unimodal Lorentzian frequency distribution and parameter val-
found a subcritical bifurcation. This prediction is illustrated yes of m=0.05, D=1, ande=0.5. The amplitude of the order
by Figs. 10(parameters corresponding to a supercritical bi-parameter is represented as a functiorofrhe continuous line is
furcation and 11(parameters corresponding to a subcriticalthe analytical approximation and the dots are obtained by direct
bifurcation. Figure 10 is a typical supercritical bifurcation numerical simulation.
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0.40 . 4.0 , . .
0.35 [ i
0.30 | | ao | |
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€ 020 | | o
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Exact solution
0.05 - I
0.00 e . ‘ Finite K Approdimaton
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m

FIG. 11. Evolution of the amplitude of the order parameter for

two different initial conditions, unimodal Lorentzian frequency dis- mFIG. 12,' Stationary solutiqn, bimodal case: criticallflrequgncy
tribution, and parameter valuem=0.05, D=1, =5, and K Qg , at whicha=0, as a function of mass. Below the critical line,

stationary synchronized states bifurcate from incoherence at a finite
K*. Above the critical lineK* =, at which value the branch of
synchronized states bifurcates subcritically from incoherence. The
exact result for the critical line and that obtained from three-mode
ftruncation are also compared.

=14.6 (in the region of subcritical bifurcation from incoherence
The simulations illustrate the existence of bistability between inco
herence and synchronized stationary solution.

frequency distribution, it is possible to find some values o
Q, without its corresponding in the stability diagram of

incoherence, due to the existence of a horizontal asympto
in the space parameteK(();). This means that there is no X >
finite coupling K* where the stationary solution branches =% ProvidedQy>0Qy .

off. On the other hand. this never occurs in the bimodal Summarizing, inertia favors the subcritical character of
Kuramoto mode[m=0, K /D=2(1+Q(2)/D2)] because in Pifurcations describing the transition from incoherence to the
L] (o4 1

partial synchronized state. In fact in the bimodal case, the
h transition of incoherence to synchronization will most likely

ice thatQ§<Q{ . Then the branch of synchronized station-
ary states bifurcatesubcritically from incoherence akK*

this case there is no such horizontal asymptote.
Equation(55) shows that the critical frequency at whic
a=0is

1.0 e :
Or e — Qg5
_0:_1 . en | /A0 Q725
D ymD 0.8 TS
Figure 12 compares the previous approximate expression ti
the exact critical frequency obtained from E§4). Note that 06 - i
the approximation improves asdecreases. Figure 13 shows __
that K* increases a$), does.K* becomes infinite foK), <
BQBO . 04 - i
For a>0, there is another important critical frequency. In
this case, the sign oB decides whether the bifurcation is
subcritical (3>0) or supercritical $<0). The sign of 3 02 - . _
depends om and (). For small masses, we can use the
approximations in Eqg55) and(62) (ignoring terms which |\ T
are quadratic in the massThen we find that the critical 0.0 \ ‘ e
frequency at which3=0 is 0.0 10.0 20.0 . 30.0 40.0 50.0
Qcc)_ 1 FIG. 13. Stationary solution, bimodal case: amplitude of the

(68) order parameter in the stationary synchronized state as a function

D /oi18mp
2+5mD of the coupling strengthK. We have represented results from the
. three-mode truncatioflines) and from numerical simulationslots,
We have solved numerically the system of EG315), and g4, ares; circlosfor three differents values db,. Other parameter

compared with the approximation, E@2) for . In Fig. 14, yajyes arem=0.1 andD=1. Notice thatk* increases with(l,,

the coefficientg is plotted as a function of), for different  ang it becomes infinity fof2,=3.5, larger than the critical value
masses. Similarly, Fig. 15 shows how the critical frequencm;’;ws.le, as expected. This figure illustrates that synchronization
Qg varies as a function ofn. Note that the analytical ap- issues forth from incoherence as a subcritical bifurcationKt
proximation improves am goes to zerdas expected No- =,
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0.15 . ‘ . ‘ 0.8 . . .
m=0.05 —— Numerical
---------- Analytical
01t _
0.05 . 0.6 i
0 Subcritical
o
[-=% g 04 i
—0.05 . £
]
-0.1 4 Analytical
02 T e
-0.15 .
@ Superecritical
02 . ‘ ‘ ‘ ‘ . ‘ Numerical
.0 20 40 60 80 100 120 140 0 ' ‘ ‘ ‘ ‘ ' '
o 00 10 20 30 40 50 60 70 80
0
0.15 . ; . ; m
—— Numerical . . . L. . .
m=04 Analytical FIG. 15. Stationary solution, bimodal case: critical line at which
0.1 1 B=0 in the (,,m) plane. We have displayed both the direct nu-
merical result and the result obtained from Egj7).
0.05 | _
asy—oe. In order to simplify the calculations, we change
0 variables to a comoving frame:
(<=1
14
-0.05 | ] B=6—Qt=0— -t (70
0.1 7 "=
and letow’=w—Q, where
-0.45 |- 1
(b)
e=—<1. 71
o (71
_0'200 20 40 60 80 100 120 140
' ' ' ' Q, ' ' ' ' Then we obtain the following equations:
FIG. 14. Stationary solution, bimodal case: coefficightis a apj ?p; 1 9 ,9pj
function of . We have compared direct numerical evaluation of ot D&w’z Mg’ (pjUj)—w 98" (72

B (obtained by solving numerically the system of ordinary differ-

ential equations in Appendix B for the case 3), and Eq(62) for m

the discrete bimodal frequency distribution. Other parameter values U=—o'+Im K{ 2 alei(v|— v)tle
areD=1 and(a) m=0.05, or(b) m=0.1. J =1

occur as a subcritical bifurcation as inertia increases. For a N R YT ) L
continuous unimodal Lorentzian frequency distribution, iner- x| o © p(B' 0"ty e)dp dw’ 1,

tia may turn subcritical the supercritical bifurcation to sta-

tionary synchronized states, which is always found in the (73
masslesss Kuramoto model.

o 2
f f pi(B' t0';e)dB dw’ =1, (74)
IV. HIGH FREQUENCY LIMIT —»Jo

The high frequency limit of Eq(3) can be analyzed by where p;=p(B.,t,0’,vj;€), and p~Zajp;s(v—v;) [19].
means of a multiscale method. For the Kuramoto m¢8gl ~ We now define fast and slow time scales;t/e andt, and
this method leads to the result that the probability density isnake the Ansatz
(to leading order a superposition of different components

corresponding to the different peaks of the oscillator fre- 2 - , | 3
quency distribution. To apply this method to the present P:ngo pV (B0, T tv)e"+0O(e%). (79
model, we shall assume that the frequency distribugitf)
has m maxima located atQov;, I=1,... m, so that |nserting this into the governing equations, we obtain the
g(Q)dQ tends to the distribution f0||owing hierarchy:
m (?p(o)
(1)=2, @d(y=mw)dr, (69) =0, (76)
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(1) (0) 2 (0) 1.00 :
(9Pj _ (7Pj +D(9 pj " E (o (0)) oo —— Numerical
aT at Jo'2 Mg P : . — e Anlyical
©) 0.80
gy~ ] (0) —iB7(0)
“ 7B maw’{pj [Im(aje 4
0.60 | 140 ‘
where ’
w (2m 0.20
Z()= f ) fo e7p(n,0,t,v)dy do.  (78) Mmmmm
000 o
Eliminating secular terms yields the following condition: 0.0 10.0 ¢ 200 300
apj(o) (92pj(0) apj(o) FIG. 16. Stable standing wave soluti¢®W) for discrete bimo-
T ot +D > -’ 7 dal frequency distribution. We have depicted the evolution of the
Jw B order parameter amplitudét) for a large(),=15. Other parameter
values aren=0.1,D=1, andK=5. The inset shows a comparison
1 9 ) between the numerical solution and the leading-order asymptotic
- 7{p1(0)[— o' +Kajlm (e*'ﬁZJ(O))]}zo. (79 approximation in the high-frequency limit.
w

incoherence a* =<0, providedQ,>Qg . ThusK* and the
Note that this equation corresponds to the equation of a uniend of the SW and TW branches in Fig. 17 should extend to
modal frequency distribution, already studied[8]. Its so-  jnfinity as ) ,— + .
lution evolves towards the following stationary state as time

evolves: V. NUMERICAL RESULTS

Four different numerical methods have been used. Nu-
merical simulations of the system of Langevin equati@h)s

m _ 12
p](O)(ﬁ,wr): A IZWD e (m/2D) w

e(Kaj /D)R; cos(¥; - B)
X , (80

were carried out for a large number of oscillatorsl (
=20000), using a Euler method. A standard finite difference
method was used to solve numerically the Fokker-Planck

fzwe(Ka,-/D)Rj cos(¥;—B") dg’ equation(3), or the system of partial differential equations

0 (47). In addition, we have used a simple spectral method,
which generalizes the one proposed in R&f. The idea is to
solve a set of ordinary differential equations for moments of

p:

where

Rjei“’i:f fzwei”pfo)(n,w)dn do=lim Z{(t). (e _
=J0 toe (D= ci(6,Q,t)codj(¢—6)]de, (82)
(8 0

Incoherence of a component correspondBjte 0. We know

that asKa; surpasses 2, a stable synchronized solution
bifurcates from incoherence. In the particular case of a sym-
metric bimodal frequency distribution, the bifurcation value

is K=4D, independent of the inertia. This agrees with the
results of the linear stability analysis fd&,—o. All the
results previously obtained for the Kuramoto model can be
applied to the present model without any modificat{@h

Thus, both a stable standing wave soluti{®W) and an un-
stable traveling wave solutiofTW) bifurcate supercritically

from incoherence at=4D [18,19. Figure 16 illustrates the o
comparison between the asymptotic solution in @) and

the result of direct numerical simulation for a value suffi-  FiG. 17. Discrete bimodal frequency distribution: Schematic
ciently large of the frequenci,. Finally, Fig. 17 shows the  global bifurcation diagram for positive values @fand 3 [therefore
global bifurcation diagram of the bimodal case for positive the bifurcation of the stationary synchronized soluti&® from
and 8. As explained in the previous section, the branch ofincoherence is subcritichlStanding and traveling wave solutions
synchronized stationary states bifurcagemcritically from  are also shown.
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0.00080 T T T T T

i 2
(Yf)k==J0 Ci(6,Qy t)sinj(¢—6)]d6, (83 om0

oo =03

0.00060 . b

2 (oo o
rzfo fﬁlewp(B,w,Q,t)COS(l/l— 0)g(Q)dQ dw do.
(84)

max

The coefficient functions;(6,Q),t) are the same as in the & o000 T i
parabolic cylinder expansion in E¢2). The integral in Eq. & /
(83) will be approximated by a suitable quadrature formula ’

as 0.00020 | / s .

max

Q
2m
r=2 aq| Co(Qq,0,0)co8y—0)do= 2 ay(xs)q-
g=1 0 g=1 0.00000

T . . . .
(85) 00 40 80 120 160 200 240 280
n

For instance, the Gauss—Laguerre quadrature has been cho-
sen for the case of a Lorentzian frequency distribution. Them
system of ordinary differential equations is given by

FIG. 18. Discrete bimodal frequency distribution: Ratio
Ch®cy™ (corresponding to the stationary synchronized solyitam
a function of n for various mass values arfldy=1, D=1. The

1 coefficientsc, are calculated numerically by integrating the time-
), = \/\ j i Qu(x) dependent equations and waiting until a stationary profile is
D=V - et Ni-ms ) M
i the moment equation@1) and (82) yields good numerical
m——[(y“l)k (y2Dd- —(xJ)k results is tested in Fig. 19. This figure shows how closely the

previous systenfwith moments of order 4 or 30esembles
- o S the direct solution of the Langevin equations. We notice that
/ ] _ J
+ '+1\/5mj(yi+l)k T (YD (86) the system containing moments of order 10 is rather close to
the solution of the Langevin equations, but it does not con-

i \[\F i JF 1 i tain the fluctuations unavoidable in stochastic methods. If we
(Y= —INT\ X Dw 'mﬂk(yi—l)k are interested in solving the nonlinear Fokker—Planck equa-
tion, the system of moment equations seems a good alterna-
i Kr tive to solving Langevin equations for a large number of
+ ——[(x D= (XD 0- —(y )k oscillators.
mD 2
- Lo A VI. CONCLUSIONS
— i+ 1VDM(d, it j PO, . . o .
We have investigated synchronization properties of a
i=1,...N, j=1,... M, (87 model of globally and nonlinearly coupled phase oscillators,
0.80 :
i Py -
(X0)k=1 V(YD 1¥(Yo)k, (88) T e e

—— Langevin (N=20 000)
———————— Moments=10
— — - Moments=4

N b 0.60
(Vo)== \ 0Dt TIOd,

i=0, j=1,...M. (89 £ 040

In order to numerically simulate this system, it is neces-
sary to truncate the hierarchy after a reasonable number @
modesN andM. These numbers will depend on the inertia 0.20
the spread, and the coupling strength. They should be chose
large enough so that the numerical results do not depend o
N and M. ,
Figure 18 shows the ratic]*/cg®* as a function oh, for T0.0 10.0 20.0
the stationary solution and for various mass valwd¥” is t
the maximum value of the stationary coefficiery(6,(2 FIG. 19. Unimodal Lorentzian frequency distribution: compari-
= 1) It has been obtained from a finite-difference solution Ofson between the numerical solution of a systemNof 20 000
Eq. (3). Note that this ratio increases as inertia does. Thus thgangevin equations, and the numerical method proposed in Sec. V
truncation approximation, E@61), ceases to make sense for containing moments of order 4 or 10. Parametersrare0.2, D
larger values of inertia. Whether truncatifeg higher order =1, e=1, andK=8, and we have use@=15 quadrature nodes.

13.2
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where the effects of white noise, inertia, and spread in th&his can be written as
natural frequency distribution are all considered. The linear
stability of the incoherent solution is rigorously analyzed. 2m +oo
Stationary and time-dependent solutions of the standing and = WI
traveling wave type are obtained by a variety of perturbative (2m)
methods. These include finding and approximately solving
mode-coupling equations for expansions of the probability = —f
distribution in parabolic cylinder functions, finding ampli- i(2m)¥2D J =
tude equations near bifurcation points, and hierarchy-closure
assumptions. Numerical simulations of the different equaProvided we sek=+mD after performing the calculations.
tions and the original model favorably agree with the differ- Thus we see that
ent perturbative results.

Inertia changes the stability boundaries of the incoherent o m A/(JmD
solution in a nontrivial way. In the case of a unimodal - i(27)32D p(VmD).
Lorentzian frequency distribution, incoherence is stabilized,

but the effect of mass completely drops out if the frequencyrhis expression and the previous one Byield Eq. (21).
spread vanishes. For a discrete bimodal frequency distribu- | et us now obtaind,(x) for integerp andx>0. By not-

tion, both stability boundaries and the character of the tranyg thatD (x) is even for everp and odd for oddh, we can
sition from incoherence to synchronized states depend on thgite P

values of the natural frequen€y, and on inertia. The effect

of inertia on the stationary solution is dramatic in some o [+ —
cases. In general, inertia hardens the synchronization transi- Ap(X)=¢€" f e~ WINHWXD (w)dw
tion: it may render subcriticalhard originally supercritical o
(soft) transitions(in unimodal Lorentzian frequency distribu- o [+
tions), or it increases the region in parameter space where the =€ f

transition is subcriticaldiscrete bimodal frequency distribu- -
tions). Analytical as well as numerical calculations confirm o [+ )
these findings. =2e" fo Dp(w)e” W f(xw)dw,

Jd 9
—(1/4)(w—i2x)
Dp(w) awe dw

—o0

+wD J —(1/4)(w—i2x)2d
w)-—e w
p(W) =~

e~ (W) cosxw+i sin xw)D p(w)dw

o0
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APPENDIX A: INTEGRALS OF SPECIAL FUNCTIONS 0

AND EIGENVALUE EQUATION providedx>0. From these formulas, we obtain

In Eq. (20) there appear two integrals over 5
Agn(X)=(—1)"27el72)x2n,

+ 00
A= J el IDI"D oo dw, .
. pPo g 10 =i(— 1)"2met2y2n+1,

+oo R These two expressions are equivalent to §).
_ —[(w/2)—iymD]?
B—ﬁ e [WA=ImDI°D g,

©

APPENDIX B: CALCULATION OF THE COEFFICIENTS

The second integral is directlyl,(VmD). The first integral a AND B

equals We shall now calculate coefficients and 8 of Eq. (53).

The idea is simply to expand the right hand side in the defi-

A=— ﬁfﬂ(w—iz/m D) nition of the order parameter,
T —o0
2m [ oo
Xe—[(wlz)—i\fm]sz(W)dW, rzjo Jixfixcos(w— 0)p(0,0,0,t)g(Q)dQ do db

because of Eq19). An equivalent expression is (B1)

g as a power series in To this end, we fix andy in Eq. (3),

D (w)—e‘[(‘”’z)‘i"mlzdw. expand its stationary solution in powers pfand insert the
P ow result in Eq.(B1). As we do not have a closed formula for

+ oo

A 2m f
(277)3/2D e
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the stationary solution of Eq3), we shall first derive a hi-
erarchy of equations for its coefficients in the series in pow-

ers ofr. Thus we have
- 6 Q
p( 0,(1),9 r E M ,

(B2)

oo

(B3)
Then

- fohf:f: €050 G (6,0,0)9(Q)dQ do d,
(B4)

where we have absorbefdin the definition ofG,,. Compari-
son with Eq.(53) establishes thaty=r,=0, r;=Ka/2D,
andr;=K?3B. From Eqgs.(B2) and(3), we obtain

D aZGn+ 19 06 iG,
oo l(@= D)

m? Jw? 05

n G, _
=— —K sinfg— l,
m Jw

(B5)

with G_;=0. Since we are trying to find solutions bifurcat-

ing from incoherence, we should ha@G) = py(w,Q1), i.e.,
the #-independent incoherent solution in E@). This di-
rectly confirms that,=0.

The unknownsG,(6,w,{}) are 27 periodic in 8, so that
we may Fourier expand them as

Gn(a,w,Q)=|z Z (w,Q)e"’,

(B6)
where
1 (2=m
z'n(w,mz—f e G, (0,0,0)d6. (B7)
2 0
HereZy=0 for | 0 because, is the g-independent inco-

herent solution. The condition that the probability density

function be real yield$G,=G,, which in turn impliesZ,'
=ZE. Inserting these expressions into EB4), we find

rnzzwr F Re(Z})g(Q)dQ do. (B8)

The unknownsZ'n satisfy the following hierarchy of equa-

tions:
D d’z, 1 d |
Ed > Y de —[(w— Q)Zn]—lle
w
n K d N
= T2 de ANCEYANET (B9)

The normalization condition fop and the incoherent solu-

tion together with Eq(B7) imply

SYNCHRONIZATION IN POPULATIONS OF GLOBALLY ...
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f_ Z°9(w)dw= 6,0. (B10)

In order to obtaine and 8, we should show that,=0
and calculate ; andr;. We do this by means of E4B9),
with n=1,2,3.

(a) Case r=1. Equation(B9) becomes

D d?z} 1

1K dz}
m dw 2+md [

m2i do’
(B11)

(0—Q)Z]]—iwZi=—

whereZ3=Gy is the incoherent solution in E¢6), and we

have useti2 0. We can solve EqB11) by means of the
solution of Eq (11), in which we setA=0 and replace
bi(w,Q) with Z}(w,Q), and the right-hand side with
i(mK/2D)dZ5/dw. Then we obtain

1(w )= Ke (M/4D)(w—Q)?

- 0
f e[(W’Z)*ivW]ZDp%dw
— dw

<3
=0 | 2

Dy(w).
+|Q+D

(B12)

The previous analogy allows us to calculajgrom Eq.(B8)
and Eqs.(20), (22), and(23) (with A=0). The result is

_KD mD Jw 1 0)do
r=—-e —xD2+ng( )
P 2
v (= ples
+2( mD) 1+mD)
p=1 p!
o 1
D+—| +0Q?
m

(b) Case r=2. We now show that,=0. In order to ana-
lyzer,, it is necessary to consid&s, which is the solution
to the following equation:

D o|222 1 d
Ew [(w 0)z 2]—|w22
2K d 20
T ma2i dw[ 1 Zl] (B14)

We shall show thaZ9=Z2=0. If this is so, the resulting
homogeneous equation can be transformed into the parabolic
cylinder equation with a quadratic potential having complex
coefficients. Its solution cannot decay to zerowas> =
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unless it is identically zero. The reas@f andZ? are zero is D d?2 1 d
similar. The equation foZ? is homogeneousZ,=0 for | — ——t = —[(0—Q)Z3]
. . _ -0 2/ 2D m2 dwz m dw
#0), and it has a solutio€(Q)e ™«@~N(D) The nor-
malization condition, Eq.B10), then impliesC=0. Z3 2K d
again obeys a homogeneous equation which can be trans- T T m2 do 1]
formed into the parabolic cylinder equation with a complex
potential. The only solution which decays to zero as» 2K d _,
. o =—Im-—127,
* o is againZ;=0. m  do !
(c) Case r=3. The equations foZé are
D dZZ3 1 d Ry D2zt
. w— —Iw
e do? ? : D d?Z} 1 d ozt et LKA
3K d w2 de? Tmdel( @ MalTeZi= " mor s %o
— 0_ 2
=T Mmoo del 24 (B15)
dZZZ 1 d 2K d

1
1>

3 —[(0—Q)Z5]-2iwZ5=
m2 "hde 2 " m2ido

do 2

This system of equations has to be solved numerically in
order to obtain the coefficiers.
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