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Synchronization in populations of globally coupled oscillators with inertial effects

J. A. Acebrón,1,2 L. L. Bonilla,1,* and R. Spigler2
1Escuela Polite´cnica Superior, Universidad Carlos III de Madrid, Avenida Universidad, 20 28911 Legane´s, Spain

2Dipartimento di Matematica, Universita` di ‘‘Roma Tre,’’ Largo San Leonardo Murialdo, 1 00146 Roma, Italy
~Received 6 March 2000!

A model for synchronization of globally coupled phase oscillators including ‘‘inertial’’ effects is analyzed.
In such a model, both oscillator frequencies and phases evolve in time. Stationary solutions include incoherent
~unsynchronized! and synchronized states of the oscillator population. Assuming a Lorentzian distribution of
oscillator natural frequencies,g(V), both larger inertia or larger frequency spread stabilize the incoherent
solution, thereby making it harder to synchronize the population. In the limiting caseg(V)5d(V), the critical
coupling becomes independent of inertia. A richer phenomenology is found for bimodal distributions. For
instance, inertial effects may destabilize incoherence, giving rise to bifurcating synchronized standing wave
states. Inertia tends to harden the bifurcation from incoherence to synchronized states: at zero inertia, this
bifurcation is supercritical~soft!, but it tends to become subcritical~hard! as inertia increases. Nonlinear
stability is investigated in the limit of high natural frequencies.

PACS number~s!: 05.45.2a, 05.20.2y, 05.40.2a, 64.60.Ht
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I. INTRODUCTION

The dynamical behavior of large populations of nonl
early coupled oscillators may describe many phenomen
Physics, Biology, and Medicine@1–3#. In particular synchro-
nization of mean-field coupled phase oscillators with diff
ent natural frequencies is nicely illustrated by Kuramot
well-known and extesively analyzed model@4,5#. To de-
scribe certain biological phenomena, inertial effects sho
be added to this model. In Ref.@6#, Ermentrout revisited the
special problem of self-synchronization in populations
fireflies of a certain kind~the Pteroptyx malaccae!. Com-
pared to observed behavior, the approach to oscillator s
chronization as described by the Kuramoto model seem
be too fast. Thus a more appropriate adaptive freque
model has been proposed in Refs.@6–8#, where the natura
frequency of an oscillator is a new independent variab
which is allowed to vary with time. Thus an oscillator
described by its phase and frequency. From the mathema
standpoint, the new model is governed by a system
coupled second-order differential equations containing in
tial terms, in contrast to the system of first-order different
equations governing the Kuramoto model. Indeed ine
slows down synchronization and this may result in be
agreement between theory and experimental measurem
Other possible biological applications of Ermentrout-ty
models include aftereffects in alterations of circadian cyc
in mammalians, cf. Ref.@6#

A different set of applications for oscillators with inert
include power systems described by the swing equations@9#,
or by Hamilton equations@10#. An important technologically
relevant application is the study of superconducting Jose
son junctions arrays@11,12#. Here inertial terms describe th
effect of nonzero electrical capacitance. Such effect is o
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far from being negligible, and it is absent in the Kuramo
model @13#.

In this paper, we consider the model equations of Ref.@8#,

u̇ j5v j

mv̇ j52v j1V j1Kr N sin~cN2u j !1j j~ t !, ~1!

j 51, . . . ,N,

whereu j , v j , andV j denote phase, frequency, and natu
frequency of thej th oscillator, respectively. The natural fre
quencies are distributed with probability densityg(V),
which may have a single maximum~unimodaldistribution!,
or several peaks~multimodaldistribution!. The positive pa-
rameters m and K are the ‘‘inertia’’ and the coupling
strength, respectively. The complex order parameter defi
by

r NeicN5
1

N (
j 51

N

eiu j , ~2!

measures phase synchronization:r N.0 if the oscillators are
synchronized andr N50 if not. Finally, j j ’s are independen
identically distributed Gaussian white noises, with^j j&
50, ^j i(t)j j (s)&52Dd i j d(t2s). White noise terms were
not included in Refs.@6,7#. When the inertial terms vanish
m50, Eqs.~1! and ~2! are exactly the Kuramoto model.

Typically, N is very large, and oscillator synchronizatio
is conveniently analyzed in the limiting case of infinite
many oscillators. In this limit, models with mean-field co
pling are described by an evolution equation for the o
oscillator probability density,r(u,v,V,t) @14#. For the
present model this equation is@8#

ail
3437 ©2000 The American Physical Society



ri-

b-

nd
e

-
ll
f
on
n

sy
m

O
,

t
-

n

s

la
er
rm
to
s
lin
n
su
tio
a
o

he
ral
ith

in-

of
ch

y
so-
an-
n-

r
ve

n-

l
In
ent

so-
l
V,
re-

d to

-

ur-
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]r

]t
5

D

m2

]2r

]v2
2

1

m

]

]v
@„2v1V1Kr sin~c2u!…r#

2v
]r

]u
, ~3!

where the order parameter is now given by

reic5E
0

2pE
2`

1`E
2`

1`

eiur~u,v,V,t !g~V!dV dv du.

~4!

Equations~3! and~4! should be supplemented with approp
ate initial and boundary data (r is 2p periodic inu and has
suitable decay behavior asv→6`) plus the normalization
condition

E
0

2pE
2`

1`

r~u,v,V,t !dv du51. ~5!

Differentiating *0
2p*2`

1`r(u,v,V,t)dv du with respect to
time, and then using Eq.~3! itself, together with periodicity
in u and decay inv, we find that the left side of Eq.~5! is
time independent. Normalization to unity of the initial pro
ability density then implies Eq.~5! for the solution of Eq.
~3!.

In this paper, we study oscillator synchronization a
transition from incoherence to synchronization in the mod
Eqs. ~3!–~5!. The incoherent solution of Eqs.~3!–~5! ~or
simply incoherence! is a stationary solution which is inde
pendent ofu. This solution assigns equal probability to a
angles and hasr 50 ~no order!, so it corresponds to lack o
oscillator synchronization. There are synchronized soluti
which branch off from incoherence as the coupling amo
oscillators is increased. These bifurcations describe the
chronization transitions, which we have analyzed and co
pared to the corresponding ones in the Kuramoto model.
main results are that inertia:~i! may stabilize incoherence
making it harder to synchronize oscillators; and~ii ! it may
harden the synchronization transition. In the Kuramo
model (m50) or with oscillators with identical natural fre
quencies, the synchronization transition is soft~supercritical
bifurcation!, whereas it may become hard~subcritical bifur-
cation! if the distribution of natural frequencies has a no
zero spread~unimodal Lorentzian distribution! or several
peaks~e.g., a discrete bimodal distribution!. The methods we
have used in our analysis are similar to those previou
employed in the Kuramoto model@15–19#: linear stability of
incoherence, bifurcation analysis, high-frequency singu
perturbations, and numerical solutions. An important diff
ence is that now we do not have an explicit functional fo
for stationary solutions~as it was the case for the Kuramo
model!. This has led us to use mode-coupling expansion
the solution and solving the corresponding mode-coup
equations. Solutions of these equations in close form are
always accessible, so that we have introduced some clo
assumptions. The results of these uncontrolled assump
have been compared to direct simulations or to approxim
amplitude equations and found reasonable in the limit
small inertia.
l,
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The rest of the paper is as follows. In Sec. II, we find t
incoherent solution and study its linear stability for seve
natural frequency distributions. Results are compared w
those obtained in the massless case@15–19#. It is found that
the critical coupling needed to destabilize incoherence
creases withm for ‘‘unimodal’’ frequency distributions of
the Lorentzian type. The critical coupling is independent
m wheng(V)5d(V). In this case the time needed to rea
synchronization increases asm increases. Ifg(V)5@d(V
2V0)1d(V1V0)#/2 ~discrete bimodal distribution!, the
critical coupling may grow or decrease withm depending on
the values ofV0. In Sec. III, we construct other stationar
solutions by two procedures: an amplitude expansion for
lutions branching off from incoherence and a general exp
sion in Hermite polynomials which is appropriately tru
cated. An exact analytical solution is obtained ifg(V)
5d(V) ~cf. Ref. @8#!, while analytical approximations fo
small m and V are available in the general case. We ha
observed that inertia tends toharden the synchronization
transition: in the Kuramoto model (m50) or with oscillators
with identical natural frequencies, the synchronization tra
sition is soft~supercritical bifurcation!, whereas it becomes
hard ~subcritical bifurcation! in the cases of unimoda
Lorentzian or discrete bimodal frequency distributions.
Sec. IV, we obtain approximations to stable time-depend
solutions of Eq.~3! in the ‘‘high frequency limit,’’ V→`
@19#. There are partially synchronized nonlinearly stable
lutions of standing wave type~as in the Kuramoto mode
@17,18#!. Finally, numerical results are presented in Sec.
and compared to the approximate or exact solutions of p
vious sections. Two Appendices at the end are devote
technical details.

II. LINEAR STABILITY OF THE INCOHERENT
SOLUTION

The incoherent solution is au-independent stationary so
lution of Eq.~3!. Its order parameter isr 50 according to Eq.
~4!. Then Eq.~3!, decays asv→6` and the normalization
condition, Eq.~5! yield the incoherent solution:

r0~v,V!5
1

2p
A m

2pD
e2(m/2D)(v2V)2

. ~6!

To analyze its linear stability, let us consider a small dist
bance about incoherence,

r~u,v,V,t !5r0~v,V!1«h~u,v,V,t !1O~«2!, ~7!

where«!1. Normalization ofr(u,v,V,t) then implies

E
0

2pE
2`

1`

h~u,v,V,t !dv du50. ~8!

We now introduce Eq.~7! into Eqs.~3! and ~4! and equate
like terms in«. To order«, the result is



l-

u
ri-

-

a

r-

m.
ge-
-

Eq.

n

-
as
an

PRE 62 3439SYNCHRONIZATION IN POPULATIONS OF GLOBALLY . . .
]h

]t
1v

]h

]u
2

1

m

]

]v
@~v2V!h#2

D

m2

]2h

]v2

52
K

m

]r0

]v E
0

2pE
2`

1`E
2`

1`

h~f,v,V,t !

3sin~f2u!g~V!dV dv df. ~9!

We now insert a trial solution

h~u,v,V,t !5elt (
n52`

`

bn~v;V,l!einu ~10!

~which is 2p periodic inu) into Eq. ~9!, thereby obtaining

d2bn

dv2
1

m~v2V!

D

dbn

dv
1

m~12ml2 inmv!bn

D

5

pmK~ idn,12 idn,21!
]r0

]v

D
^1,bn&, ~11!

where we have defined the scalar product

^w,c&5E
2`

1`E
2`

1`

w~v,V!c~v,V!g~V!dV dv. ~12!

Notice thatb2n5b̄n and thatbn50 because of the norma
ization condition~8!.

Equation~11! can be transformed into a nonhomogeneo
parabolic cylinder equation by the following change of va
able:

bn~v;V,l!5 expF2
m~v2V!2

4D Gbn~w;V,l!, ~13!

w5Am

D
~v2V12nDi !. ~14!

Inserting Eqs.~13! and ~14! into Eq. ~11!, we obtain

d2bn

dw2
1F1

2
2

w2

4
2m~l1 inV1n2D !Gbn

5 ipK
]r0

]v
e(1/4)(w22iAmD)2

^1,e2(1/4)(w22iAmD)2
b1&dn,1 .

~15!

~Recall thatdv5AD/m dwwhen using the definition of sca
lar product!. Let us assume now thatnÞ61 and thatV is a
fixed real number. Then the right hand side of Eq.~15! is
zero and the resulting equation has the following eigenv
ues:

lp,n~V!52
p

m
2n2D2 inV, p50,1,2, . . . , ~16!

associated to the eigenfunctions
s

l-

bp,n~w;V,lp,n!5Dp~w!522(p/2)e2(w2/4)HpS w

A2
D ,

~17!

which are independent ofn and V. In this formula,Dp(w)
and Hp(x) are the parabolic cylinder function and the He
mite polynomial of indexp, respectively@20,21#. The eigen-
values lp,n(V) of Eq. ~16!, with n561,62, . . . , p
50,1, . . . andV belonging to the support ofg(V), consti-
tute the continuous spectrum of the linear stability proble
In fact, a nonhomogeneous linear problem with a homo
neous part given by Eq.~15! cannot be solved for an arbi
trary source term ifl5lp,n . Notice that the continuous
spectrum lies to the left side of the imaginary axis ifD.0
andnÞ0. Then the ‘‘eigenvalues,’’ Eq.~16!, have negative
real parts~and therefore correspond to stable modes!. As we
have already noted, the neutrally stable modes withn50
have zero amplitude due to the normalization condition,
~8!.

If n51, we can solve Eq.~11! by means of an expansio
in eigenfunctionsDp(w), p50,1,2, . . . . To obtain the gen-
eralized Fourier coefficients ofb1, we multiply both sides of
Eq. ~11! by Dp(w) and integrate over w. As
*2`

` Dp(x)Dn(x)dx5A2pp!dpn ~orthogonality condition,
cf. Sec. 7.711.1 of Ref.@20#!, the result is

b1~v;V,l!52
ipK

m
^1,e2[(w/2)2 iAmD] 2

b1&

3 (
p50

` E
2`

`

e[(w/2)2 iAmD] 2
Dpr08 dw

A2pp! S p

m
1l1 iV1D D Dp~w!,

~18!

where

r08~w!5
]r0

]v
U

v5V2 i2D1(D/m)1/2w

52
m~w2 i2AmD!

~2p!3/2D
e2(1/2)(w2 i2AmD)2

. ~19!

Once we have foundb1, we can calculate the scalar prod
uct ^1,e2[w/22 iAmD] 2

b1&. Since this scalar product appears
a factor in both sides of the resulting expression, we c
divide by it, thereby obtaining an eigenvalue equation forl:

15
2 ipKAD

A2pm3 (
p50

`
1

p!

3E
2`

1`

e[(w/2)2 iAmD] 2
Dpr08 dw

3E
2`

1`

e2[(w/2)2 iAmD] 2
Dp dw

3E
2`

1` g~V!

p

m
1l1 iV1D

dV. ~20!
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In Appendix A, we show that this equation may be rewritt
as

15
K

4pAmD
(
p50

` Ap~AmD!Ap8~AmD!

p!

3E
2`

1` g~V!

p

m
1l1 iV1D

dV, ~21!

whereAp(x) is defined as

Ap~x!5E
2`

1`

Dp~w!e2[(w/2)2 ix] 2
dw. ~22!

The result of evaluating this integral is~cf. Appendix A!:

Ap~x!5 i pA2pe(x2/2)xp ~x.0!. ~23!

Inserting Eq.~23! into Eq. ~21!, we obtain

15
KemD

2 (
p50

` ~2mD!pS 11
p

mDD
p! E

2`

` g~V!dV

l1D1 iV1
p

m

.

~24!

As m→0, this equation coincides with that obtained for t
Kuramoto model@15#. Equation ~24! can be rewritten in
terms of incomplete gamma functions as follows@21,22#:

2D

K
5emDE

2`

`

@mDg„m~l1D1 iV!,mD…

2g„11~l1D1 iV!m,mD…#
g~V!dV

~mD!m(l1D1 iV)

5E
2`

` F12
~l1 iV!memDg„m~l1D1 iV!,mD…

~mD!(l1D1 iV)m G
3g~V!dV, ~25!

where@21,22#

g~a,x!5E
0

x

e2tta21dt. ~26!

From now on, we analyze Eq.~24! for special frequency
distributions.

~a! Unimodal frequency distribution, g(V)5d(V).
In this case we show that if Rel50, then Iml50.

Thus, the eigenvalues that may acquire a positive real
are real. Then the critical coupling is obtained by settingl
50. By subtracting from Eq.~24! its complex conjugate, we
obtain

05Im~l! f ~ Im l,m,D !, ~27!

where
rt

f ~ Im l,m,D !5 (
p50

` ~2mD!pS 11
p

mDD
p! F ~ Im l!21S D1

p

mD 2G . ~28!

Notice that the even functionf (Im l,m,D) decreases mono
tonically with Iml.0. On the other hand,f tends to zero, as
Im l→1`, and

f ;
m

D
~mD!2mDg~mD,mD!.0, as Iml→0. ~29!

Thusf does not vanish at finite values of Iml, and therefore
the only solution of~27! is Im l50. Setting nowl50, Eq.
~24! yields the critical couplingK5Kc ,

Kc

2D
emDF (

n50

`
~2mD!n

n! G51, and thereforeKc52D.

~30!

Figures 1 and 2 show the largest eigenvaluel as a function
of m and K. To computel numerically, we conclude from
Eqs.~7! and~10! that the amplitude of the order parameter

r'Celt, ~31!

close to incoherence. Then, the goal is to simulate the e
lution of the system, choosing the initial condition suf
ciently close to the incoherent solution, and obtain nume
cally the amplitude order parameterr (t). Figure 2 shows that
different eigenvalue curves~for different m) intersect the
horizontal axis,l50, at the same value of K, as expected
from Eq. ~30!.

~b! Unimodal Lorentzian frequency distribution, g(V)
5(«/p)/(«21V2). Equation~24! becomes

FIG. 1. Discrete unimodal frequency distribution: Comparis
between analytical~continuous line!, and numerical~dots! evalua-
tion of the eigenvaluel as a function ofm for D51 and two
different values of the coupling strengthK.
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15
K

2D
emDF D

l1D1«
1 (

n51

`
~2mD!n

n!

n1mD

m~l1D1«!1nG
5

K

2
memD~mD!2m(l1D1«)F ~mD!2m(l1D1«)21e2mD

2g„m~l1D1«!,mD…S l1D1«

D
21D G . ~32!

An explicit solution for l cannot in general be found
Thus, we consider several limiting cases corresponding
physically interesting parameter choices. In the small no
limit, D!1, we consider the cases~i! m5O(1) fixed, and
( i i ) mD51. It is remarkable that the expansion

g~a,x!5e2xxa(
n50

`
xn

~a!n11
, ~33!

where (a)k5a(a11)•••(a1k21), k51,2, . . . , holds in
both cases. Ifx5mD→0, a5mD1m(l1«).x, Eq. ~33!
holds as a convergent expansion@22#. If x5mD51, anda
511m(l1«)→` ~with fixed l and« of order 1!, Eq. ~33!
holds as an asymptotic expansion@23#. Inserting Eq.~33!
into Eq. ~32!, we obtain

2D

K
511

x2a

a F11
x

a11
1

x2

~a11!~a12!
1OS x3

a3D G .

~34!

Similarly to the unimodal case, it is possible to prove thal
is always real. To this purpose, notice that replacingl1« in
Eq. ~32! with l in Eq. ~24! ~setting V50) we obtain the
same equation. The critical couplingK5Kc is then found by
settingl50 in Eq. ~34!. In case~i!, we have

FIG. 2. Discrete unimodal frequency distribution: Eigenvaluel
as a function ofK for three different massesm. Other parameter
values and meaning of lines as in Fig. 1. Note that curves co
sponding to different masses all intersect the axisl50 at the same
point, as expected from theory.
to
e

Kc52«~m«11!1
2~213m«!

21m«
D1O~D2!. ~35!

In the limit of vanishing mass, we recover the resultKc
52(D1«) valid for the Kuramoto model@15#. Another im-
portant limit is«50, which reproduces the unimodal distr
bution. We findKc52D, independentlyof mass. Thus the
spread in frequency distribution plays an important role
synchronizing populations of oscillators affected by inerti

In case~ii !, Eq. ~34! yields

15
Kx

2Da~a11!
1O~a23!, ~36!

from which

l52F«1
1

2m
~36A112Km!G . ~37!

This quantity is always real and vanishes forK5Kc
52«(m«13)14/m. Note thatKc grows roughly linearly
with m. Thus oscillator synchronization is made harder
increasing inertia in the limit of vanishing noise. This beha
ior is slightly different from that described in Ref.@7#. There
numerical simulations seemed to show that incoherence
mains stable up to a critical coupling, which was indepe
dent ofm. The singular nature of the limitD→0 makes the
cause of this discrepancy unclear, although we should m
tion that no stability analysis was conducted in Ref.@7#. In
the opposite limitm→`, l→2«, and incoherence is al
ways stable.

The stability diagram in the parameter space («,K) is
shown in Fig. 3 form50.2, and compared to that of th
Kuramoto model (m50). This diagram is obtained from Eq
~32! with l50, for fixed D and m. In this figure, we have
also plotted the evolution of the order parameter amplitu
for the parameter values marked in the stability diagram
~1!–~4!. In all cases, the initial condition is taken sufficient
close to the incoherent solution,r 50.

~c! Bimodal frequency distribution, g(V)5 1
2 @d(V2V0)

1d(V1V0)#.
Equation~24! becomes

KemD

2D (
n50

`
~2mD!n

n!

~n1mD!@m~l1D !1n#

@m~l1D !1n#21m2V0
2

51.

~38!

In the high frequency limit,V0→`, we can find an analyti-
cal formula forl by inserting the following asymptotic ex
pansion for the incomplete gamma function in Eq.~25! @23#,

g~a,x!;
e2xxa

a
, a→`, ~39!

wherea5m(l1D1 iV0), andx5mD. The result is

15
K

4 S 1

l1D1 iV0
1

1

l1D2 iV0
D , ~40!

which yields

e-



-

r
s
-
:
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FIG. 3. Unimodal Lorentzian
frequency distribution: Stability
diagram of incoherence in the pa
rameter space («,K) for m50.2,
D51. The amplitude of the orde
parameter as a function of time i
numerically calculated and dis
played at the points marked by
~1! K56, «51; ~2! K56, «
51.75; ~3! K520, «54.25; and
~4! K520, «54.75.
to
n

ed

e
e

th
lit

e

o-

all
lic
l52D1
K

4
1

K

4
iA16V0

22K2. ~41!

Rel50 gives the same critical coupling as the Kuramo
model,Kc54D, for the same bimodal frequency distributio
@16#.

Figure 4 shows the stability diagram, which is obtain
from Eq. ~38! with Re l50, for D51 and three different
mass valuesm50.1, 1, 6. The stability diagram of th
Kuramoto model (m50) is also depicted. Notice how th
curves corresponding to differerent masses tend toK54D as
V0→`, as expected. Figure 5 displays the evolution of
order parameter amplitude in different regions of the stabi
diagram corresponding tom50.8 andD51.

In conclusion, increasingm, D, « ~inertia, noise, and fre-
quency spread! makes it more difficult to synchronize th
e
y

oscillator population via stationary bifurcations from inc
herence.

III. MODE-COUPLING EQUATIONS AND STATIONARY
SOLUTIONS

Inspired by the previous linear stability analysis, we sh
expand the distribution function using a basis of parabo
cylinder functions~or, equivalently, Hermite polynomials! of
unit mean square norm@24#

r~u,v,V,t !5S 2pD

m D 21/4

e2(mv2/4D) (
n50

`

cn~u,V,t !cn~v!.

~42!

In Eq. ~42!, we have defined
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cn~v!5S n!A2pD

m D 21/2

DnSAm

D
v D

5S n!2nA2pD

m D 21/2

HnSA m

2D
v D e2mv2/4D,

~43!

so that*2`
` cncp dv5dnp . The functionscn(u,V,t) are 2p

periodic inu, and we have

E
0

2p

c0~u,V,t !du51, ~44!

as it follows from the normalization ofr(u,v,V,t).
We shall find a system of mode-coupling equations

the coefficient functionscn . Then we shall try to find sta
tionary solutions for different frequency distributionsg(V).
This is not so easy in the general case, so that we shall fo
a standard approach: We shall recognize in the system
equations for the coefficient functions a particular station
solution corresponding to incoherence. Then we shall try
find a bifurcation equation for other stationary solutio
branching off from incoherence. We shall see that even
requires different approximation schemes in order to s
ceed.

A. Mode-coupling equations

Let us insert Eq.~42! into the Fokker–Planck equatio
~3!. We then obtain the following hierarchy of coupled pa
tial differential equations forcn(u,V,t):

]c0

]t
52AD

m

]c1

]u
, ~45!

FIG. 4. Discrete bimodal frequency distribution: Stability di
gram of incoherence in the parameter space (V0 , K) for different
mass values andD51.
r

w
of
y
o

is
-

]c1

]t
52Lc02

1

m
c12A2AD

m

]c2

]u
, ~46!

A

]cn

]t
52AnLcn212

n

m
cn2An11AD

m

]cn11

]u
. ~47!

Here we have defined the operator

Lf 5AD

m F ]

]u
2

V1Kr sin~c2u!

D G f . ~48!

In terms of the functionscn , the equation for the order pa
rameter becomes

reic5E
0

2pE
2`

1`

eiuc0~u,V,t !g~V!dV du. ~49!

r sin~c2u!5E
0

2pE
2`

1`

sin~f2u!c0~f,V,t !g~V!dV df.

~50!

B. Incoherence and bifurcating stationary solutions

The incoherentu-independent solution,cn5Cn(V), de-
pends only onV. It can readily be obtained from the abov
hierarchy of equations, by ignoring all derivatives. The res
is

Cn~V!5
1

2p

1

An!
S m

D D n/2

Vn. ~51!

Inserting this into the expansion in Eq.~42!, we indeed re-
cover Eq.~6!. In particular settingV50, this yields the sim-
plest incoherent solution,Cn51/(2p), corresponding to the
unimodal frequency distribution. Other interesting stationa
solutions are partially synchronized distributions, which d
pend onu. Notice that Eq.~45! implies thatc1 does not
depend onu.

In the following we analyze stationary solutions bifurca
ing from incoherence for different frequency distributions

~a! Discrete unimodal frequency distribution, g(V)
5d(V).

Let us look for stationary solutions with finitely many
nonzero coefficients,cn50 for n.N and g(V)5d(V).
Equation ~47! yields LcN50, and therefore, cN
5KNe(K/D)r cos(c2u) (KN5constant). Inserting this result in
Eq. ~47! for n5N21, we find LcN2152ANcN /m. The
corresponding solution is not periodic inu unlessKN50.
Repeating this argument, we obtain the stationary solutio

c0~u!5
e(K/D)r cos(c2u)

E
0

2p

e(K/D)r cos(c2u)du

, ~52!
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FIG. 5. Discrete bimodal fre-
quency distribution: stability dia-
gram of incoherence in the param
eter space (V0 , K) for m50.8
and D51. The amplitude of the
order parameter as a function o
time is displayed at the points
marked by:~1! K54.4, V051.4;
~2! K55, V051.4; ~3! K53.6,
V050.6; and ~4! K54.4, V0

50.6.
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wherecn50 for n.0 and the normalization condition ha
been used. Observe that the resulting distribution,r(u,v)
5(2pD/m)1/4c0(u)c0(v)e2mv2/4D, is factorized with re-
spect to its two arguments,u and v, cf. Ref. @19#. It is
remarkable thatc0(u) is independent ofm, and coincides
with that obtained for the Kuramoto model. Therefore, fro
Eq. ~49! the order parameter does not depend on inertia,
the bifurcation diagram forr is exactly the same as that fo
the Kuramoto model.

~b! General frequency distributions.
For general frequency distributions, we could try to fi

stationary solutions of the mode-coupling equations~47!
which bifurcate from incoherence. It is however more dire
to work with the stationary Fokker–Planck equation~3! as
follows. We consider stationary solutions as functions o
d

t

a

fixed value of the synchronization parameterr. Then we ex-
pand these solutions in power series ofr and write a hierar-
chy of equations for the coefficient functions. The first co
ficient function should be the incoherent solution
synchronization parameterr 50. Inserting the power serie
probability density function into Eq.~4!, we find the ampli-
tude equation for stationary solutions bifurcating from inc
herence. This procedure is explained in Appendix B. W
quote here the result

r 5
Kr

2D
a1

~Kr !3

6
b1O„~Kr !4

…, ~53!

where
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a5emDF E2`

` 1

11
V2

D2

g~V!dV1 (
p51

` ~2mD!pS 11
p

mDD 2

p!

3E
2`

` 1

S 11
p

mDD 2

1
V2

D2

g~V!dVG , ~54!

andb can be calculated numerically by solving a system
differential equations. As the inertia vanishes,mD→01, a
becomes

a5E
2`

` g~V!dV

11
V2

D2

2
m

DE
2`

` V2

11
V2

D2

g~V!dV1O~m2D2!.

~55!

Notice thata in Eq. ~54! coincides with 2D/K in Eq. ~24!
provided l50 and g(V)5g(2V). This means that the
critical coupling for bifurcation towards stationary synchr
nized states is obtained atKa52D, no matter what the sym
metric frequency distribution might be.

Before interpreting the amplitude equation~53!, we shall
outline a procedure to obtain its coefficients based upon
uncontrolled closure assumption which is accurate for sm
values ofmD. Consider the expansion, Eq.~42!. We expect
that the coefficientscn of stationary solutions close to inco
herence do not differ much from the coefficients of the latt
In view of the functional form, Eq.~51!, we anticipate that
the coefficientscn approach zero asn→` faster for smaller
values of the mass. Thus we shall now consider stationa
solutions for general frequency distributions, such thatcn
50 in Eq. ~47!, for all n>3. By solving Eq.~47! for such a
stationary solution withn52, we obtain

c2~u,V!5A m

2D
@V1Kr sin~c2u!#c1~V!. ~56!

We now insert this expression into Eq.~46!. The resulting
equation is solved for ac0, which is 2p periodic in u and
obeys the normalization condition, Eq.~5!. We find

c0~u,V!5
e(Kr /D)cos(c2u)w~u,V!

Z~V!
, ~57!

w~u,V!5E
0

2p

@12mKr cos~c2u2h!#

3e2(1/D)[Vh1Kr cos(c2u2h)]dh, ~58!

Z~V!5E
0

2p

e(Kr /D)cos(c2u)w~u,V!du, ~59!

In Eq. ~57!, r should be determined so that
f

n
ll

r.

r 5E
0

2pE
2`

`

c0~u,V!cos~c2u!g~V!dV du ~60!

holds. The functionc1(V) can be obtained by integratin
Eq. ~46! with respect tou and using the normalization con
dition for c0 together with the 2p periodicity inu of c0 and
c2 ,

c15
1

2p
Am

D FV1Kr E
0

2p

sin~c2u!c0~u,V!duG .
~61!

Then, the stationary distribution can be approximated by

r~u,v,V!'S 2pD

m D 1/4

@c0~u,V!c0~v!1c1~V!c1~v!

1c2~u,V!c2~v!#e2mv2/4D. ~62!

Notice that a nonvanishingc1(V) in Eq. ~42! implies that the
probability density is no longer even inv (c1 is an odd
function of v). By Eq. ~61!, this occurs in the synchronize
phase for the case of nonidentical oscillators. For the bim
dal frequency distribution, Fig. 6 showsc1 as function ofV0
for two different values ofm. Both the approximate expres
sion, Eq.~62!, and results of direct numerical simulations a
depicted. Notice that the agreement between our approxi
tion and the numerical result improves asm decreases. Thus
we observe that for each fixed nonzeroV and each fixedu,
the distribution function is no longer peaked atv50. How-
ever theinstantaneous frequency distribution, defined by

E
0

2pE
2`

`

r~u,v,V!g~V!dV du,

may turn out to be even inv. This is certainly true for the
approximate stationary distribution, Eq.~62!, for

FIG. 6. Coefficientc1(V0) corresponding to the approximat
mode-coupling stationary solution for the discrete bimodal f
quency distribution and two different values ofm. The solid (m
50.05) and dotted (m50.5) lines correspond to the three-mod
approximation, whereas squares and circles are obtained from d
numerical simulation. Notice thatc1 is even:c1(2V0)5c1(V0).
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3446 PRE 62J. A. ACEBRÓN, L. L. BONILLA, AND R. SPIGLER
E
2`

`

c1~V!g~V!dV5Am

D

Kr

2pE0

2pE
2`

`

c0~u,V!

3sin~c2u!g~V!dV du50,

as it follows from the definition of the order parameter a
the expansion, Eq.~42!.

Another indication that the exact instantaneous freque
distribution may be even inv is that the average frequenc
tends to zero ast→1`. This would occur if the stable sta
tionary distribution is even inv ~although, admittedly, dis-
tributions which are not even inv may have zero mean!. The
result can be shown directly from the Fokker–Planck eq
tion ~3!. We multiply such equation byvg(V) and integrate
with respect to all variables. Then we obtain the followi
equation for the mean valuêv&:

d

dt
^v&1

^v&
m

5E
2`

`

Vg~V!dV.

The right-hand side of this expression is zero ifg(2V)
5g(V). Then ^v& tends to zero exponentially fast ast
→1`.

Let us now go back to the problem of obtaining the co
ficients in the amplitude equation~53!. Let us expand Eq
~57! in powers of r and insert the result in Eq.~60!. We
obtain an approximation to the coefficients of the amplitu
Eq. ~53!. a is again given by Eq.~55!, and the expression fo
b is

b5E
2`

` F 3
V2

D2
2

3

2
1

39

4
m

V2

D

S 11
V2

D2D 2S 41
V2

D2D D3

1

3m2V2S 11
V2

2D2D
2D3S 11

V2

D2D 2 Gg~V!dV. ~63!

We now interpret the amplitude Eq.~53! in the usual way.
Notice that the nonzero solution is approximately given b

Kr;A3~2D2Ka!

KbD
.

Then the critical value ofK is K* 52D/a, and the sign ofb
determines the direction of the bifurcating branch of stati
ary solutions. Assumea.0. Then the bifurcating stationar
solution exists forK.K* if b,0 ~supercritical bifurca-
tion!. If b.0, we have asubcritical bifurcation and the
partially synchronized stationary solution exists forK,K* .
The critical coupling tends to infinity asa→01, and the
bifurcation does not occur at positive couplings ifa,0.
Given the formulas~54! or ~55!, a could become negative
depending on the value ofm. Let us now analyze the bifur
cation diagram corresponding to two different frequency d
tributions.
y

-

-

e

-

-

~i! Unimodal Lorentzian frequency distribution.
For a unimodal Lorentzian frequency distribution, the c

efficientsa and b of Eqs. ~55! and ~62! are approximately
given by

a5
D

D1g
~12m«!, ~64!

b5
3

4

1

~D1«!2~2D1«!
F211

m

D
«~3D1«!G . ~65!

Apparently, the sign ofa could again be negative provide
m« is sufficiently large. However, evaluation of the exa
expression, Eq.~54! shows thata.0. Figure 7 showsa as a
function of « for two different masses. Notice that the a
proximate expression fora fits better the numerical result a
m and« decrease.

FIG. 7. Coefficienta as a function of the frequency spread« for
the stationary solution in the case of unimodal Lorentzian freque
distribution. The exact result and that of the three-mode approxi
tion are compared. Other parameter values areD51 and ~a! m
50.05; ~b! m51. Note that the approximate result improves asm
and« decrease.
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In contrast witha, b can really change sign for a Loren
zian frequency distribution. Figure 8 shows the good qu
tative agreement between the approximate expression fb
and its numerical evaluation from the exact equations,
~B15!.

There is a critical massmc (« and D are kept fixed! for
which b50. This mass separates the supercritical and s
critical bifurcation regions. Settingb50 in Eq. ~64! yields

mc5
D

«~3D1«!
. ~66!

Figure 9 shows the qualitative agreement between the
proximate expression, Eq.~66!, and the numerical result ob
tained from the solution of Eq.~B15!.

Note that in the massless case, the stationary solution
ways branches off supercritically, independently of«. In the
presence of inertia and for appropriate values of«, we have
found a subcritical bifurcation. This prediction is illustrate
by Figs. 10~parameters corresponding to a supercritical
furcation! and 11~parameters corresponding to a subcritic
bifurcation!. Figure 10 is a typical supercritical bifurcatio

FIG. 8. Coefficientb as a function of the frequency spread« for
the stationary solution in the case of unimodal Lorentzian freque
distribution. The exact result and that of the three-mode approxi
tion are compared. Other parameter values areD51 and ~a! m
50.05; ~b! m51. Note that the approximate result improves asm
and« decrease.
i-

q.

b-

p-

al-

-
l

diagram~order parameter amplitude versusK). In the sub-
critical case, Fig. 11 shows the different evolution of t
order parameter amplitude for two different initial cond
tions. Notice the bistability between incoherence and
stable synchronized solution typical of a subcritical bifurc
tion.

~ii ! Bimodal frequency distribution.
For the bimodal frequency distribution,a may be zero.

This means that there is a critical frequencyV0
c(m) above

which K* 5`. In fact, we have shown in Fig. 4, looking a
the branch corresponding tol50, that in case of a bimoda

y
a-

FIG. 9. Stationary solution, Lorentzian frequency distributio
relation between frequency spread and mass at the critical linb
50. This line separates the regions in parameter space on whic
synchronization transition from incoherence is either a sub- o
supercritical bifurcation. The numerically evaluated curve is co
pared to the approximate result from three-mode truncation.

FIG. 10. Bifurcation diagram for a supercritical bifurcation fro
incoherence to a synchronized stationary solution, correspondin
the unimodal Lorentzian frequency distribution and parameter
ues of m50.05, D51, and «50.5. The amplitude of the orde
parameter is represented as a function ofK. The continuous line is
the analytical approximation and the dots are obtained by di
numerical simulation.
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frequency distribution, it is possible to find some values
V0 without its correspondingK in the stability diagram of
incoherence, due to the existence of a horizontal asymp
in the space parameter (K,V0). This means that there is n
finite coupling K* where the stationary solution branch
off. On the other hand, this never occurs in the bimo
Kuramoto model@m50, Kc /D52(11V0

2/D2)], because in
this case there is no such horizontal asymptote.

Equation~55! shows that the critical frequency at whic
a50 is

V0
`

D
5

1

AmD
. ~67!

Figure 12 compares the previous approximate expressio
the exact critical frequency obtained from Eq.~54!. Note that
the approximation improves asm decreases. Figure 13 show
that K* increases asV0 does.K* becomes infinite forV0

>V0
` .

For a.0, there is another important critical frequency.
this case, the sign ofb decides whether the bifurcation
subcritical (b.0) or supercritical (b,0). The sign ofb
depends onm and V0. For small masses, we can use t
approximations in Eqs.~55! and ~62! ~ignoring terms which
are quadratic in the mass!. Then we find that the critica
frequency at whichb50 is

V0
c

D
5

1

A21 13
8 mD

. ~68!

We have solved numerically the system of Eqs.~B15!, and
compared with the approximation, Eq.~62! for b. In Fig. 14,
the coefficientb is plotted as a function ofV0 for different
masses. Similarly, Fig. 15 shows how the critical frequen
V0

c varies as a function ofm. Note that the analytical ap
proximation improves asm goes to zero~as expected!. No-

FIG. 11. Evolution of the amplitude of the order parameter
two different initial conditions, unimodal Lorentzian frequency d
tribution, and parameter valuesm50.05, D51, «55, and K
514.6 ~in the region of subcritical bifurcation from incoherence!.
The simulations illustrate the existence of bistability between in
herence and synchronized stationary solution.
f

te

l

to

y

tice thatV0
c,V0

` . Then the branch of synchronized statio
ary states bifurcatessubcritically from incoherence atK*
5`, providedV0.V0

` .
Summarizing, inertia favors the subcritical character

bifurcations describing the transition from incoherence to
partial synchronized state. In fact in the bimodal case,
transition of incoherence to synchronization will most like

r

-

FIG. 12. Stationary solution, bimodal case: critical frequen
V0

` , at whicha50, as a function of mass. Below the critical line
stationary synchronized states bifurcate from incoherence at a fi
K* . Above the critical line,K* 5`, at which value the branch o
synchronized states bifurcates subcritically from incoherence.
exact result for the critical line and that obtained from three-mo
truncation are also compared.

FIG. 13. Stationary solution, bimodal case: amplitude of t
order parameterr in the stationary synchronized state as a funct
of the coupling strengthK. We have represented results from th
three-mode truncation~lines! and from numerical simulations~dots,
squares, circles! for three differents values ofV0. Other parameter
values arem50.1 andD51. Notice thatK* increases withV0,
and it becomes infinity forV053.5, larger than the critical value
V0

`'3.16, as expected. This figure illustrates that synchroniza
issues forth from incoherence as a subcritical bifurcation atK*
5`.
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occur as a subcritical bifurcation as inertia increases. F
continuous unimodal Lorentzian frequency distribution, in
tia may turn subcritical the supercritical bifurcation to s
tionary synchronized states, which is always found in
masslesss Kuramoto model.

IV. HIGH FREQUENCY LIMIT

The high frequency limit of Eq.~3! can be analyzed by
means of a multiscale method. For the Kuramoto model@8#,
this method leads to the result that the probability densit
~to leading order! a superposition of different componen
corresponding to the different peaks of the oscillator f
quency distribution. To apply this method to the pres
model, we shall assume that the frequency distributiong(V)
has m maxima located atV0n l , l 51, . . . ,m, so that
g(V)dV tends to the distribution

G~n![(
l 51

m

a ld~n2n l !dn, ~69!

FIG. 14. Stationary solution, bimodal case: coefficientb as a
function of V0. We have compared direct numerical evaluation
b ~obtained by solving numerically the system of ordinary diffe
ential equations in Appendix B for the casen53), and Eq.~62! for
the discrete bimodal frequency distribution. Other parameter va
areD51 and~a! m50.05, or~b! m50.1.
a
-
-
e

is

-
t

asV0→`. In order to simplify the calculations, we chang
variables to a comoving frame:

b5u2Vt[u2
n

e
t, ~70!

and letv85v2V, where

e5
1

V0
!1. ~71!

Then we obtain the following equations:

]r j

]t
5D

]2r j

]v82
2

1

m

]

]v8
~r jU j !2v8

]r j

]b
, ~72!

U j52v81Im KH (
l 51

m

a le
i (n l2n j )t/e

3E
2`

` E
0

2p

ei (b82b)r~b8,v8,t,n l ;e!db8dv8J ,

~73!

E
2`

` E
0

2p

r j~b8,t,v8;e!db8dv851, ~74!

where r j5r(b,t,v8,n j ;e), and r;(a jr jd(n2n j ) @19#.
We now define fast and slow time scales,t5t/e and t, and
make the Ansatz

r5 (
n50

2

r (n)~b,v8,t,t,n!en1O~e3!. ~75!

Inserting this into the governing equations, we obtain
following hierarchy:

]r j
(0)

]t
50, ~76!

f

es

FIG. 15. Stationary solution, bimodal case: critical line at whi
b50 in the (V0 ,m) plane. We have displayed both the direct n
merical result and the result obtained from Eq.~67!.
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]r j
(1)

]t
52

]r j
(0)

]t
1D

]2r j
(0)

]v82
1

1

m

]

]v8
~v8r j

(0)!

2v8
]r j

(0)

]b
2

K

m

]

]v8
H r j

(0)F ImS a je
2 ibZj

(0)

1(
lÞ j

a je
i (n l2n j )te2 ibZl

(0)D G J , ~77!

where

Zj
(0)~ t !5E

2`

` E
0

2p

eihr j
(0)~h,v,t,n j !dh dv. ~78!

Eliminating secular terms yields the following condition:

2
]r j

(0)

]t
1D

]2r j
(0)

]v82
2v8

]r j
(0)

]b

2
1

m

]

]v8
$r j

(0)@2v81Ka j Im ~e2 ibZj
(0)!#%50. ~79!

Note that this equation corresponds to the equation of a
modal frequency distribution, already studied in@8#. Its so-
lution evolves towards the following stationary state as ti
evolves:

r j
(0)~b,v8!5A m

2pD
e2(m/2D)v82

3
e(Ka j /D)Rj cos(C j 2b)

E
0

2p

e(Ka j /D)Rj cos(C j 2b8) db8

, ~80!

where

Rje
iC j5E

2`

` E
0

2p

eihr j
(0)~h,v!dh dv[ lim

t→`

Zj
(0)~ t !.

~81!

Incoherence of a component corresponds toRj50. We know
that asKa j surpasses 2D, a stable synchronized solutio
bifurcates from incoherence. In the particular case of a s
metric bimodal frequency distribution, the bifurcation val
is K54D, independent of the inertiam. This agrees with the
results of the linear stability analysis forV0→`. All the
results previously obtained for the Kuramoto model can
applied to the present model without any modification@8#.
Thus, both a stable standing wave solution~SW! and an un-
stable traveling wave solution~TW! bifurcate supercritically
from incoherence atK54D @18,19#. Figure 16 illustrates the
comparison between the asymptotic solution in Eq.~80! and
the result of direct numerical simulation for a value suf
ciently large of the frequencyV0. Finally, Fig. 17 shows the
global bifurcation diagram of the bimodal case for positivea
and b. As explained in the previous section, the branch
synchronized stationary states bifurcatessubcritically from
i-

e

-

e

f

incoherence atK* 5`, providedV0.V0
` . ThusK* and the

end of the SW and TW branches in Fig. 17 should extend
infinity as V0→1`.

V. NUMERICAL RESULTS

Four different numerical methods have been used. N
merical simulations of the system of Langevin equations~1!
were carried out for a large number of oscillators (N
520 000), using a Euler method. A standard finite differen
method was used to solve numerically the Fokker-Pla
equation~3!, or the system of partial differential equation
~47!. In addition, we have used a simple spectral meth
which generalizes the one proposed in Ref.@8#. The idea is to
solve a set of ordinary differential equations for moments
r:

~xi
j !kªE

0

2p

ci~u,Vk ,t !cos@ j ~c2u!#du, ~82!

FIG. 16. Stable standing wave solution~SW! for discrete bimo-
dal frequency distribution. We have depicted the evolution of
order parameter amplituder (t) for a largeV0515. Other parameter
values arem50.1, D51, andK55. The inset shows a compariso
between the numerical solution and the leading-order asymp
approximation in the high-frequency limit.

FIG. 17. Discrete bimodal frequency distribution: Schema
global bifurcation diagram for positive values ofa andb @therefore
the bifurcation of the stationary synchronized solution~SS! from
incoherence is subcritical#. Standing and traveling wave solution
are also shown.
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~yi
j !kªE

0

2p

ci~u,Vk ,t !sin@ j ~c2u!#du, ~83!

r 5E
0

2pE
2`

` E
2`

`

r~u,v,V,t !cos~c2u!g~V!dV dv du.

~84!

The coefficient functionsci(u,V,t) are the same as in th
parabolic cylinder expansion in Eq.~42!. The integral in Eq.
~83! will be approximated by a suitable quadrature formu
as

r' (
q51

Q

aqE
0

2p

c0~Vq ,u,t !cos~c2u!du5 (
q51

Q

aq~x0
1!q .

~85!

For instance, the Gauss–Laguerre quadrature has been
sen for the case of a Lorentzian frequency distribution. T
system of ordinary differential equations is given by

~ ẋi
j !k5 jAiAD

m
~yi 21

j !k1Ai
1

AmD
Vk~xi 21

j !k

1A i

mD

Kr

2
@~yi 21

j 11!k2~yi 21
j 21!k#2

i

m
~xi

j !k

1Ai 11ADm j~yi 11
j !k2 j ċ~yi

j !k , ~86!

~ ẏi
j !k52 jAiAD

m
~xi 21

j !k1Ai
1

AmD
Vk~yi 21

j !k

1A i

mD

Kr

2
@~xi 21

j 21!k2~xi 21
j 11!k#2

i

m
~yi

j !k

2Ai 11ADm j~xi 11
j !k1 j ċ~xi

j !k ,

i 51, . . . ,N, j 51, . . . ,M , ~87!

~ ẋ0
j !k5 jAD

m
~y1

j !k2 j ċ~y0
j !k , ~88!

~ ẏ0
j !k52 jAD

m
~x1

j !k1 j ċ~x0
j !k ,

i 50, j 51, . . . ,M . ~89!

In order to numerically simulate this system, it is nece
sary to truncate the hierarchy after a reasonable numbe
modesN andM. These numbers will depend on the inertiam,
the spread, and the coupling strength. They should be ch
large enough so that the numerical results do not depen
N andM.

Figure 18 shows the ratiocn
max/c0

max as a function ofn, for
the stationary solution and for various mass values.cn

max is
the maximum value of the stationary coefficientcn(u,V0
51). It has been obtained from a finite-difference solution
Eq. ~3!. Note that this ratio increases as inertia does. Thus
truncation approximation, Eq.~61!, ceases to make sense f
larger values of inertia. Whether truncating~at higher order!
ho-
e

-
of

en
on

f
e

the moment equations~81! and ~82! yields good numerical
results is tested in Fig. 19. This figure shows how closely
previous system~with moments of order 4 or 10! resembles
the direct solution of the Langevin equations. We notice t
the system containing moments of order 10 is rather clos
the solution of the Langevin equations, but it does not c
tain the fluctuations unavoidable in stochastic methods. If
are interested in solving the nonlinear Fokker–Planck eq
tion, the system of moment equations seems a good alte
tive to solving Langevin equations for a large number
oscillators.

VI. CONCLUSIONS

We have investigated synchronization properties o
model of globally and nonlinearly coupled phase oscillato

FIG. 18. Discrete bimodal frequency distribution: Rat
cn

max/c0
max ~corresponding to the stationary synchronized solution! as

a function of n for various mass values andV051, D51. The
coefficientscn are calculated numerically by integrating the tim
dependent equations and waiting until a stationary profile
reached.

FIG. 19. Unimodal Lorentzian frequency distribution: compa
son between the numerical solution of a system ofN520 000
Langevin equations, and the numerical method proposed in Se
containing moments of order 4 or 10. Parameters arem50.2, D
51, «51, andK58, and we have usedQ515 quadrature nodes
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where the effects of white noise, inertia, and spread in
natural frequency distribution are all considered. The lin
stability of the incoherent solution is rigorously analyze
Stationary and time-dependent solutions of the standing
traveling wave type are obtained by a variety of perturbat
methods. These include finding and approximately solv
mode-coupling equations for expansions of the probab
distribution in parabolic cylinder functions, finding ampl
tude equations near bifurcation points, and hierarchy-clos
assumptions. Numerical simulations of the different eq
tions and the original model favorably agree with the diffe
ent perturbative results.

Inertia changes the stability boundaries of the incoher
solution in a nontrivial way. In the case of a unimod
Lorentzian frequency distribution, incoherence is stabiliz
but the effect of mass completely drops out if the frequen
spread vanishes. For a discrete bimodal frequency distr
tion, both stability boundaries and the character of the tr
sition from incoherence to synchronized states depend on
values of the natural frequencyV0 and on inertia. The effec
of inertia on the stationary solution is dramatic in som
cases. In general, inertia hardens the synchronization tra
tion: it may render subcritical~hard! originally supercritical
~soft! transitions~in unimodal Lorentzian frequency distribu
tions!, or it increases the region in parameter space where
transition is subcritical~discrete bimodal frequency distribu
tions!. Analytical as well as numerical calculations confir
these findings.
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APPENDIX A: INTEGRALS OF SPECIAL FUNCTIONS
AND EIGENVALUE EQUATION

In Eq. ~20! there appear two integrals overw:

A5E
2`

1`

e[(w/2)2 iAmD] 2
Dpr08 dw,

B5E
2`

1`

e2[(w/2)2 iAmD] 2
Dp dw.

The second integral is directlyAp(AmD). The first integral
equals

A52
2m

~2p!3/2D
E

2`

1`

~w2 i2AmD!

3e2[(w/2)2 iAmD] 2
Dp~w!dw,

because of Eq.~19!. An equivalent expression is

A5
2m

~2p!3/2D
E

2`

1`

Dp~w!
]

]w
e2[(w/2)2 iAmD] 2

dw.
e
r

.
nd
e
g
y

re
-

-

nt
l
,
y
u-
-

he

si-

he

n

h
f

This can be written as

A5
2m

~2p!3/2D
E

2`

1`

Dp~w!
]

]w
e2(1/4)(w2 i2x)2

dw

5
m

i ~2p!3/2D
E

2`

1`

Dp~w!
]

]x
e2(1/4)(w2 i2x)2

dw

provided we setx5AmD after performing the calculations
Thus we see that

A52
m

i ~2p!3/2D
Ap8~AmD!.

This expression and the previous one forB yield Eq. ~21!.
Let us now obtainAp(x) for integerp andx.0. By not-

ing thatDp(x) is even for evenp and odd for oddp, we can
write

Ap~x!5ex2E
2`

1`

e2(w2/4)1 iwxDp~w!dw

5ex2E
2`

1`

e2(w2/4)~cosxw1 i sin xw!Dp~w!dw

52ex2E
0

1`

Dp~w!e2(w2/4)f ~xw!dw,

where f (xw)5 cosxw for p even andf (xw)5 i sinxw for p
odd. We can find~see Sec. 7.741 of@20#!

E
0

1`

Dp~w!e2(w2/4) cosxw dw5~21!nAp

2
e2(x2/2)x2n,

E
0

1`

Dp~w!e2(w2/4) sinxw dw5~21!nAp

2
e2(x2/2)x2n11,

providedx.0. From these formulas, we obtain

A2n~x!5~21!nA2pe(x2/2)x2n,

A2n11~x!5 i ~21!nA2pe(x2/2)x2n11.

These two expressions are equivalent to Eq.~23!.

APPENDIX B: CALCULATION OF THE COEFFICIENTS
a AND b

We shall now calculate coefficientsa andb of Eq. ~53!.
The idea is simply to expand the right hand side in the d
nition of the order parameter,

r 5E
0

2pE
2`

` E
2`

`

cos~c2u!r~u,v,V,t !g~V!dV dv du

~B1!

as a power series inr. To this end, we fixr andc in Eq. ~3!,
expand its stationary solution in powers ofr, and insert the
result in Eq.~B1!. As we do not have a closed formula fo
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the stationary solution of Eq.~3!, we shall first derive a hi-
erarchy of equations for its coefficients in the series in po
ers of r. Thus we have

r~u,v,V;r !5 (
n50

`
Gn~u2c,v,V!

n!
r n, ~B2!

r 5 (
n50

`
r n

n!
r n. ~B3!

Then

r n5E
0

2pE
2`

` E
2`

`

cosu Gn~u,v,V!g~V!dV dv du,

~B4!

where we have absorbedc in the definition ofGn . Compari-
son with Eq.~53! establishes thatr 05r 250, r 15Ka/2D,
and r 35K3b. From Eqs.~B2! and ~3!, we obtain

D

m2

]2Gn

]v2
1

1

m

]

]v
@~v2V!Gn#2v

]Gn

]u

52
n

m
K sinu

]Gn21

]v
, ~B5!

with G21[0. Since we are trying to find solutions bifurca
ing from incoherence, we should haveG05r0(v,V), i.e.,
the u-independent incoherent solution in Eq.~6!. This di-
rectly confirms thatr 050.

The unknownsGn(u,v,V) are 2p periodic inu, so that
we may Fourier expand them as

Gn~u,v,V!5 (
l 52`

`

Zn
l ~v,V!eil u, ~B6!

where

Zn
l ~v,V!5

1

2pE0

2p

e2 i l uGn~u,v,V!du. ~B7!

HereZ0
l [0 for lÞ0 becauseG0 is theu-independent inco-

herent solution. The condition that the probability dens
function be real yieldsGn5Gn , which in turn impliesZn

2 l

5Zn
l . Inserting these expressions into Eq.~B4!, we find

r n52pE
2`

` E
2`

`

Re~Zn
1!g~V!dV dv. ~B8!

The unknownsZn
l satisfy the following hierarchy of equa

tions:

D

m2

d2Zn
l

dv2
1

1

m

d

dv
@~v2V!Zn

l #2 i l vZn
l

52
n

m

K

2i

d

dv
@Zn21

l 21 2Zn21
l 11 #. ~B9!

The normalization condition forr and the incoherent solu
tion together with Eq.~B7! imply
- E
2`

`

Zn
0g~v!dv5dn0 . ~B10!

In order to obtaina and b, we should show thatr 250
and calculater 1 and r 3. We do this by means of Eq.~B9!,
with n51,2,3.

(a) Case n51. Equation~B9! becomes

D

m2

d2Z1
1

dv2
1

1

m

d

dv
@~v2V!Z1

1#2 ivZ1
152

1

m

K

2i

dZ0
0

dv
,

~B11!

whereZ0
05G0 is the incoherent solution in Eq.~6!, and we

have usedZ0
250. We can solve Eq.~B11! by means of the

solution of Eq. ~11!, in which we setl50 and replace
b1(v,V) with Z1

1(v,V), and the right-hand side with
i (mK/2D)dZ0

0/dv. Then we obtain

Z1
1~v,V!52

iK

2m
e2(m/4D)(v2V)2

3 (
p50

` E
2`

`

e[(w/2)2 iAmD] 2
Dp

dZ0
0

dv
dw

A2pp! S p

m
1 iV1D D Dp~w!.

~B12!

The previous analogy allows us to calculater 1 from Eq.~B8!
and Eqs.~20!, ~22!, and~23! ~with l50). The result is

r 15
KD

2
emDF E

2`

` 1

D21V2
g~V!dV

1 (
p51

` ~2mD!pS 11
p

mDD 2

p!

3E
2`

` 1

S D1
p

mD 2

1V2

g~V!dVG . ~B13!

(b) Case n52. We now show thatr 250. In order to ana-
lyze r 2, it is necessary to considerZ2

1, which is the solution
to the following equation:

D

m2

d2Z2
1

dv2
1

1

m

d

dv
@~v2V!Z2

1#2 ivZ2
1

52
2

m

K

2i

d

dv
@Z1

02Z1
2#. ~B14!

We shall show thatZ1
05Z1

250. If this is so, the resulting
homogeneous equation can be transformed into the para
cylinder equation with a quadratic potential having comp
coefficients. Its solution cannot decay to zero asv→6`



a
ex

in
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unless it is identically zero. The reasonZ1
0 andZ1

2 are zero is
similar. The equation forZ1

0 is homogeneous (Z0
l 50 for l

Þ0), and it has a solutionC(V)e2m(v2V)2/(2D). The nor-
malization condition, Eq.~B10!, then implies C[0. Z1

2

again obeys a homogeneous equation which can be tr
formed into the parabolic cylinder equation with a compl
potential. The only solution which decays to zero asv→
6` is againZ1

250.
(c) Case n53. The equations forZ3

1 are

D

m2

d2Z3
1

dv2
1

1

m

d

dv
@~v2V!Z3

1#2 ivZ3
1

52
3

m

K

2i

d

dv
@Z2

02Z2
2#,

D

m2

d2Z2
2

dv2
1

1

m

d

dv
@~v2V!Z2

2#22ivZ2
252

2

m

K

2i

d

dv
Z1

1 ,
al

ns

et
ns-

D

m2

d2Z2
0

dv2
1

1

m

d

dv
@~v2V!Z2

0#

52
2

m

K

2i

d

dv
@Z1

212Z1
1#

5
2K

m
Im

d

dv
Z1

1 ,

D

m2

d2Z1
1

dv2
1

1

m

d

dv
@~v2V!Z1

1#2 ivZ1
152

1

m

K

2i

d

dv
Z0

0 .

~B15!

This system of equations has to be solved numerically
order to obtain the coefficientb.
d

D
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