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We study the entropy time evolution of a quantum mechanical model, which is frequently used as a
prototype for Anderson’s localization. Recently Latora and Baranger@Phys. Rev. Lett.82, 520 ~1999!# found
that there exist three entropy regimes, a transient regime of passage from dynamics to thermodynamics, a
linear-in-time regime of entropy increase, that is, a thermodynamic regime of Kolmogorov kind, and a satu-
ration regime. We use the nonextensive entropic indicator advocated by Tsallis@J. Stat. Phys.52, 479 ~1988!#
with a mobile entropic indexq, and we find that the adoption of the ‘‘magic’’ valueq5Q51/2, compared to
the traditional entropic indexq51, reduces the length of the transient regime and makes earlier the emergence
of the Kolmogorov regime. We adopt a two-site model to explain these properties by means of an analytical
treatment and we argue thatQ51/2 might be a typical signature of the occurrence of Anderson localization.

PACS number~s!: 05.45.Mt, 05.20.2y, 03.65.Bz
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I. INTRODUCTION

In this paper we focus our attention on the process
localization discovered by Anderson@1,2#, and we discuss
the corresponding time evolution using the nonextens
thermodynamics view of Tsallis@3,4#. The subject of Tsallis
nonextensive thermodynamics is attracting the interest o
ever increasing number of investigators in different bran
of complexity theory~see, for instance, Ref.@5#!. We want to
apply this new perspective to the delicate problem of
connection between thermodynamics and quantum dyn
ics.

According to the new paradigm of deterministic chao
study of this connection leads to study of the quantum
havior of those systems that would be chaotic in the class
limit. The subject of the entropy increase of quantum s
tems that would be classically chaotic has been addresse
a number of papers@6–9#. The pioneering work of Ref.@6#
has established that the coarse graining necessary fo
entropy to increase can be produced by a weak fluctuat
As a consequence of this, after a transient of time dura
inversely proportional to the classical Lyapunov coefficie
the system is expected to reach a thermodynamic condi
This prediction is based on several conjectures. The firs
that there must be a kind of equivalence between the G
entropy and the Kolmogorov-Sinai~KS! entropy @10,11#
hKS. The Gibbs entropy is a functional of probability de
sity, whereashKS is the entropy of a trajectory and, in prin
ciple, might not coincide with the entropy expressed in ter
of probability density. Furthermore, the KS entropy is
entropy per unit time and the existence of a finite value
hKS implies a steady rate of entropy increase. Conseque
one must make a second important conjecture: The ther
dynamic regime corresponds to the probability entropy
creasing as a linear function of time.

Both conjectures are supported by the recent findings
Latora and Baranger@12#. These authors studied several ch
otic maps and found that the time evolution of the Gib
PRE 621063-651X/2000/62~3!/3429~8!/$15.00
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entropy goes through three time regimes:~i! an early regime
of exponential increase,~ii ! an intermediate time regime o
linear increase, the Kolmogorov regime, and, finally,~iii ! a
saturation regime. On the basis of arguments similar to th
used here earlier, the second time regime is identified w
the thermodynamic regime. In this classical case, the co
graining is done by the division of the space into cells.

The quantum case@6–9# is very complex. The results de
pend on the relations among three fundamental parame
expressed in the same units. These are\, I, andD. The first
is the Planck constant, the second the classical action,
the third the intensity of the coarse grain generating stoch
tic force. For the quantum system to exhibit ordinary th
modynamic behavior it is necessary not only that\!I but
also that\,D @6#. In this case the rate of increase of the v
Neumann entropy is found@8# to be proportional to the KS
entropy.

The authors of Ref.@7# focused their attention on the tran
sition from dynamics to thermodynamics, namely, the first
the three time regimes discussed in Ref.@12#, in the case of
the quantum Arnold’s cat@8#. They focused their attention
on the condition I @D@\, where, according to@6#, an
exponential-like transition from dynamics to thermodyna
ics is expected to occur. The numerical results of these
thors provide a satisfactory support to the heuristic ar
ments of Zurek and Paz@6#. The authors of Ref.@9# studied
the quantum kicked rotor in the regime where\'D, and
found that it yields an entropy increase proportional tota,
with a.1. This finding agrees with the result found by Pa
tanayak and Brumer@7# in the case of the quantum Arnolds
cat, when the same condition\'D applies. The authors o
Ref. @7#, however, overlook this interesting aspect, proba
because an algebraic entropy increase in time is interpr
as a dramatic postponement of the transition to thermo
namics. The authors of Ref.@9#, on the contrary, found tha
in this case also a kind of thermodynamic behavior, nam
a regime of linear increase in time, shows up quickly wh
they adopt a nonextensive form of entropy indicator.
3429 ©2000 The American Physical Society
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3430 PRE 62GRIGOLINI, PALA, PALATELLA, AND RONCAGLIA
According to Tsallis@3# the proper entropy indicator, ex
pressed in terms of the quantum statistical densityr, reads

Sq~ t ![
12Tr$rq~ t !%

q21
. ~1!

It is straightfoward to show@3# that at q51 the entropy
indicator of Eq.~1! becomes identical to the Gibbs entrop
indicator. Note thatq is thought of as a variable paramete
implying that we make the observation of the entropy tim
evolution for different values ofq until we detect the ‘‘magic
value’’ of q, denoted byQ, as the value of the entropic inde
establishing again the three regimes discovered by La
and Baranger@12#. In the case studied in this paper the o
served density matrix, as we shall see, does not under
unitary time evolution, thereby implying no need of a
environment-induced coarse graining. As a consequenc
this property, in the case of a very strong Anderson ramdo
ness, as we shall see, the first time regime can becom
short as to become invisible on the time scale that we s
choose to illustrate the second time regime. The case o
dinary statistical mechanics corresponds toQ51, namely, to
the case when the Kolmogorov regime emerges from
adoption of the Gibbs entropy@12#. The departure ofQ from
Q51 signals that the dynamics of the system do not fu
the condition of short-range interaction and correlation t
according to the traditional wisdom are necessary to es
lish thermodynamic properties. The authors of Ref.@9# find
that the entropy of Eq.~1! increases linearly in time ifq
5Q, whereQ'0.33. They argued thatQ,1 is a signature
of the occurrence of Anderson localization, which is know
to be a property of the quantum kicked rotor@13#. In this
paper we shall deal with this issue using the statistical
proach of Ref.@14#. We shall see that this implies a confli
with ordinary statistical mechanics@15#.

We aim at substantiating the conjecture of Ref.@9# and for
this purpose we study the Anderson tight-binding Ham
tonian. In other words, we study a prototype of Anders
localization processes, rather than the quantum kicked ro
It is well known that the rate of energy increase of the qu
tum kicked rotor is made to vanish with a finite time scale
quantum correlation, namely, by the same cause as tha
sponsible for Anderson localization@13#. However, the exac
equivalence between the dynamics of the quantum kic
rotor and that of disordered solids@16# seems to be question
able@17#. This might generate doubts about the conjecture
Ref. @9# that the process of Anderson localization has a n
extensive thermodynamic nature. Thus, a direct study of
prototype model of Anderson localization would make mo
convincing the conjecture of Ref.@9#, if we found, as we
will, that in this case also the variable entropic indexq must
be assigned a valueQ,1 for the Kolmogorov condition, and
the related thermodynamic behavior, to emerge. It has b
pointed out that in the case under study in this paper reco
to environment-induced coarse graining is not necess
This is because the entropy indicator will be expressed
terms of a proper statistical density matrixrs . This statistical
density, according to the prescription of an earlier paper@14#,
is an average over infinitely many realizations of a rand
distribution of site energies.
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The outline of this paper is as follows. Section II defin
the model under study in this paper and points out that
Anderson noise has the twofold role of creating statisti
mechanics and localization. The former aspect, in an ap
ent conflict with the latter, is compatible with the existen
of a thermodynamic perspective. Section III is devoted to
illustration of the numerical results of this paper. This n
merical treatment has to be considered as a sort of e
treatment of the entropy time evolution triggered by And
son randomness. An analytical treatment of the proble
shedding light on the reasons why the Tsallis entropy in
cator is so efficient, is illustrated in Sec. IV. Finally, Sec.
is devoted to discussing the results of this paper.

II. MASTER EQUATION, ANDERSON LOCALIZATION,
AND STATISTICAL MECHANICS

The main purpose of this section is to show that the tig
binding Hamiltonian system that we use to discuss Ander
localization is a remarkable example of joint action of ra
domness and order. This is, in other words, a system tha
not equivalent to the classical condition of full chaos. Rath
as we shall see, this system is equivalent to the conditio
weak classical chaos, or to the condition of sporadic rando
ness.

We study a system described by the Hamiltonian

H5H01W, ~2!

where

H0[(
m

Emum&^mu ~3!

and

W[V(
m

~ um&^m11u1um11&^mu!. ~4!

This is the Hamiltonian originally taken into account b
Anderson@1,2#. We make this Hamiltonian result in a tran
port process different from the ballistic diffusion of a perfe
crystal by assuming that

Em5e1fm . ~5!

Here we are assuming that at different sites there is a fl
tuationfm around the common valuee. We assume no cor
relation among different sites, namely,

^fmfm8&5Admm8 , ~6!

where^ . . . & means an average over infinitely many realiz
tions of the Anderson noise.

It has to be pointed out that according to the prescriptio
of quantum statistical mechanics, any entropy indicator m
be expressed in terms of the density matrix associated
the Hamiltonian of Eq.~2!. The time evolution of this den-
sity matrix is unitary, and consequently any form of entrop
indicator, expressed in terms of the density matrix, is ti
independent. From this point of view, there is no differen
between the system under study and a system characte
by regular dynamic properties, and thus strongly depart
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PRE 62 3431TOWARDS THE THERMODYNAMICS OF LOCALIZATION . . .
from the randomness condition intuitively associated w
the second principle. This is disconcerting. At first sight,
fact, the Anderson prescriptions of Eqs.~5! and ~6! sow a
seed of randomness into the system dynamics and the
tropy indicator should make this randomness ostensible
the question is raised of how to make the entropy indica
sensitive to this randomness.

The source of entropy increase in the model of Zurek a
Paz @6# is given by the deterministic chaos that the syst
would exhibit in the classical limit. To trigger a regime o
entropy increase, these authors took into account the in
ence of the environment as a source of dephasing, a pro
that does not imply any exchange of energy between
system and its environment. This is in line with the seco
law which forces entropy to increase~or to remain constant if
the process is reversible! if no thermal exchange with the
environment is allowed. This means that an interaction
tween system and environment is allowed, provided tha
does not cause any energy exchange. The perspectiv
Zurek and Paz is not trivial, because, even if the entro
increase is made possible by the key ingredient of exte
fluctuations, these are so weak that the time scale of
process of transition from dynamics to thermodynamics
determined by the Lyapunov coefficients, namely, a ge
inely dynamic property of the Hamiltonian system und
study.

Here we find that the Anderson randomness is a sor
counterpart of the deterministic chaos randomness of Zu
and Paz@6#. To reveal this randomness we must adopt
statistical density matrix defined by

rs~ t ![E d@f#w~@f#!r~@f#,t !. ~7!

The integrand of Eq.~7! is proportional through the statist
cal weighting factorw(@f#,t) to r(@f#,t), which denotes
the ordinary density matrix corresponding to a given rand
distribution of the energy fluctuationsfm . The symbol@f#
denotes a given Anderson realization, that is,@f#
[f1 ,f2 , . . . ,f i . . . . Note that, as a consequence of t
assumption of Eq.~6!, we have

w~@f#!5•••p~fm21!p~fm!p~fm11!•••. ~8!

We also make the assumption that the random distributio
the site energies follows the Cauchy prescription

p~f!5
1

p

g

g21f2
, ~9!

where p(f) denotes the probability that the energy of
given site fluctuates by the quantityf about the common
valuee. It is interesting to remark that the time evolution
the average density matrixrs(t) of Eq. ~7! becomes identica
to that of a perfect lattice ifg50. If, on the contrary, the
value of the parameterg increases, the time evolution of th
statistical density matrixrs(t) increasingly departs from th
prescription of unitary time evolution. Consequently,g, the
width of the Anderson noise, can be regarded as the rand
ness intensity of the system.
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We are therefore in a position to establish a compari
between the time evolution ofrs(t) and the density matrix of
the quantum kicked rotor@8,9#. In the latter case the sourc
of randomness is given by the deterministic chaos of
classical time evolution of the system. In both cases, r
domness has a twofold role. In the early time region of
process this randomness creates a condition of trans
similar to that of ordinary Brownian motion. At later time
the diffusion process is quenched by the occurrence
Anderson localization.

The model under study rests only on the two parameteg
andV, and it would be tempting for us to refer to the cond
tion

g,V ~10!

asweak randomness. By the same token, we are tempted
refer to the condition

g.V ~11!

as a condition ofstrong randomness. This would be incor-
rect, since, as we shall see through the joint use of nume
calculations~Sec. III! and analytical theory~Sec. IV!, in both
conditions Anderson randomness and quantum correla
are present, and, the condition of Eq.~11! has the effect of
realizing Anderson localization at earlier times. In a sen
this corresponds to a case where order is more significan
the intuitive grounds that quantum correlation of larger
tensity means an enhancement of the role of order. Th
both conditions have to be considered as being equivalen
the weak chaos of classical mechanics. The case of Eq.~11!
makes it possible to perform analytical calculations. The
fore in Sec. IV we shall focus on the condition of Eq.~11!.

The twofold role of the Anderson randomness was st
ied, in the caseg.V, in an earlier publication by Mazza an
Grigolini @14#. The authors of this paper proved that the tim
evolution of the site populationpn(t)[^nursun& is driven by
the following generalized master equation:

]

]t
pn~ t !52 (

mÞn
E

0

t

dt8Jnm~ t2t8!@pn~ t8!2pm~ t8!#.

~12!

The authors of Ref.@14# proved that in the deep regime o
strong Anderson noise (g.V) the memory kernelJnm(t
2t8) becomes

Jnm~ t !52K~ t !~dn,m111dn,m21!, ~13!

where

K~ t !5
V2g

g22V2

1

\2
~ge22gt/\2Ve22Vt/\!

1
V3

pg\2
cos~2Vt/\!. ~14!

It is worth stressing that the oscillatory term in Eq.~14! ~the
second term on the right-hand side! does not play any rel-
evant role and was introduced by the authors of Ref.@14# for
the minor purpose of reproducing the weak and fast osc



ic
on

le
he
an
s

di
sin

g

IV
,

is
e-
. In

tor,
ent,
a-

ing,
m
g

q.
so
the
ial

:

-

of

for
n
t,
.
o

me
ion

-

-

di

n,

o

n,

t
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tions revealed by the numerical treatment. In the theoret
treatment of Sec. IV we shall make an approximati
equivalent to disregarding the influence of this term.

The main result of Ref.@14# is that in the time region

\

g
!t!

\

V
~15!

the time evolution of the system is virtually indistinguishab
from ordinary Brownian diffusion. This is so because t
negative and slow exponential appearing in the right-h
side of Eq.~14! is not yet strong enough to balance the fa
and strong exponential. In the caseg@V Anderson localiza-
tion occurs at the time\/V.

Note that the region of apparent equivalence with or
nary Brownian motion can thus be assigned an increa
time duration by keeping constant the ratioV/g!1 and de-
creasing the intensity ofV. This has the effect of weakenin
the intensity of the negative tail of Eq.~14! and postponing
the time of occurrence of Anderson localization. In Sec.
we shall see that the entropic indexQ remains equal to 1/2

FIG. 1. The entropic indicators and the second moment of
fusion as functions of time.g/\54 and V/\51. The curve de-
noted by1 is the Tsallis entropy withQ50.5; the curve denoted
by 3 is the Gibbs entropy~the Tsallis entropy withQ51); the
curve denoted by* is the second moment of the distributio
M2(t). Time is expressed in units of\/V.

FIG. 2. The entropic indicators and the diffusion second m
ment as functions of time.g/\50.3 andV/\51. The curve de-
noted by1 is the Tsallis entropy withQ50.5; the curve denoted
by 3 is the Gibbs entropy~the Tsallis entropy withQ51); the
curve denoted by* is the second moment of the distributio
M2(t). Time is expressed in units of\/V.
al

d
t

-
g

regardless of the time extension of this condition, which
apparently indistinguishable from the Brownian motion r
gime realized with a dephasing process of external origin
Sec. IV we shall also see that in the latter caseQ51. This
means that the entropic index is a very sensitive indica
actually much more sensitive than the second mom
which keeps increasing linearly in time for the whole dur
tion of the regime of apparent Brownian motion.

III. NUMERICAL RESULTS

The numerical calculations have been done by produc
first of all, about 1000 realizations of the Hamiltonian syste
of Eqs.~2!, ~3!, and~4!. Each realization is obtained by usin
a random noise generator which assignes to any siteum& a
fluctuationfm so as to realize the Cauchy prescription of E
~9!. The Hamiltonian of each realization is diagonalized
as to determine the corresponding time evolution and
corresponding density matrix. For any realization the init
condition is given by the wave functionuc(0)&5um50&.
Finally, an average over all the realizations is made.

The numerical results concern these two distinct cases~i!
g@V and ~ii ! g!V. Figure 1 refers to case~i! and Figs. 2
and 3 to case~ii !. Let us examine case~i! first. Figure 1
shows the second moment of the distributionM2(t)
5L2(mm2pm(t). L denotes the lattice spacing and for sim
plicity we assumeL51. We see thatM2(t) undergoes a
nonlinear time increase for a time interval of the order
\/g. After this first time region, the increase ofM2(t) be-
comes linear in time. The regime of linear increase lasts
a time of the order of\/V. In the last time regime, not show
here, the functionM2(t) tends to become time independen
thereby signaling the occurrence of Anderson localization

Figure 1 illustrates also the time evolution of the tw
entropy indicatorsS1(t) andS1/2(t), as well as that ofM2(t).
In fact, as earlier discussed in detail, we think that so
interesting information can be derived from the observat
of the entropy indicator

Sq~ t ![
12Tr$rs

q~ t !%

q21
. ~16!

It is well known @3# that the traditional von Neumann en
tropy is obtained from Eq.~16! by settingq51. Notice that
the choiceq5Q51/2 is dictated by the theoretical argu

f-

-

FIG. 3. The Tsallis entropy withq50.5 expressed with respec
to ln(t) with the same parameters as those of Fig. 2.
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ments of Sec. IV. Here we limit ourselves to pointing o
that with q50.5 the transition to the regime of entropy lin
early increasing with time is faster than withq51. We also
notice that the slope of the resulting straight line is 2V/\, in
accordance with the theoretical prediction of Sec. IV. T
regime of linear-in-time entropy increase, namely, the K
mogorov regime, is not very extended in this case, the rea
being that almost immediately after its onset a new transi
takes place, to the stationary diffusion regime, which is ch
acterized by the entropy increasing logarithmically in tim
This is the reason why in Sec. IV the theoretical search
the magicQ, reflecting a genuine Kolmogorov regime, w
be made at the time\/g, namely, immediately at the end o
the transition regime. The time duration of the Kolmogor
regime is limited by the fast onset of the logarithmic regim
and it will become much shorter at the higher values og
considered in Fig. 5 below. Nevertheless,S1/2 is an entropy
indicator more reliable thanS1, in particular because it al
lows us to interpret as thermodynamic the early time reg
that, on the basis ofS1, would be mistaken as a regime o
transition to thermodynamics. The theoretical arguments
Sec. IV will give additional support to this argument.

Figure 2 illustrates the same properties as those of Fig
referred to case~ii !. We see that the functionM2(t) signals a
transition to the statistical regime of Brownian diffusion a
time of the order\/V. In the time scale explored by Fig.
there is no sign of the occurrence of Anderson localizati
which takes place at a much later time. Even in this case
entropic analysis reveals the existence of the three regime
Latora and Baranger@12#. The Kolmogorov regime lasts fo
a time of the order of\/V and the entropyS1/2(t) is a much
more accurate indicator of the Kolmogorov regime. Even
this case the slope ofS1/2(t) in the regime of linear increas
is given by 2V/\. We note that at a time of the order of\/V
the entropyS1/2(t) makes a transition to a regime of log
rithmic dependence on time as can be clearly observe
Fig. 3. Again, the adoption ofS1(t) as entropy indicator doe
not establish a clear distinction betwen the regime of lin
increase and that of logarithmic dependence on time.

Of some interest is also Fig. 4, which shows the tim
evolution ofSq(t) for several values of the mobile entrop
index q. We note in the first and second time regimes
pattern of curves recalling the form of a leaf. This leaf effe

FIG. 4. The entropic indicatorsSq(t) as functions of time. The
values of the parameters areg/\50.3 andV/\51. The plotted
curves from the bottom to the top refer toq50.3, q50.4, q
50.5, q50.6, andq50.7.
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will be discussed again in Sec. IV. We also note that this l
effect is reminiscent of that revealed by the study of t
kicked quantum rotor of Ref.@9#. The authors of Ref.@9#
made the conjecture that this leaf effect might be related
the occurrence of Anderson localization. With the help of t
numerical results of this section and the theoretical anal
of Sec. IV, in the concluding remarks of Sec. V we sh
address this interesting issue again.

IV. NONEXTENSIVE INTERPRETATION:
AN ANALYTICAL TREATMENT

The numerical analysis of Ref.@14#, suppported also by
the numerical treatment of this paper, proves that the reg
of strong Anderson randomness is characterized by the
portant fact that the transition fromm to m11 is statistically
independent of that fromm to m21. This means that it is
possible to carry out an analytical treatment based on
study of only two sites. Adoption of the distribution of Eq
~9! yields the following values for the four elements of th
statistical density matrix of Eq.~7!:

rs~ t !115E
2`

1`

dE
1

p

2g

4g21E2

3F12
4V2

4V21E2
sin2SAE214V2

t

2\ D G , ~17!

and

rs~ t !125E
2`

1`

dE
2igV

p

1

4g21E2

1

AE214V2

3sinSAE214V2
t

\ D . ~18!

Of coursers(t)215rs(t)12* and rs(t)22512rs(t)11. By di-
agonalizing the 232 density matrix, we obtain the eigenva
ues

L1~ t !5
1

2
1

A@rs~ t !112rs~ t !22#
214rs~ t !12rs~ t !21

2
~19!

FIG. 5. The entropic indicatorsSq(t) as functions of time with
Anderson randomness,g/\5100 andV/\51. The plotted curves
from the bottom to the top refer toq51, q50.6, q50.5, andq
50.4.
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and

L2~ t !5
1

2
2

A@rs~ t !112rs~ t !22#
214rs~ t !12rs~ t !21

2
.

~20!

The time evolution of the Tsallis entropy corresponding
the variable entropic indexq is given by

Sq~ t !5
12L1~ t !q2L2~ t !q

q21
. ~21!

The expression of Eq.~21! is not yet suitable for an ana
lytical discussion of the problem under study, since it d
pends on integrals defining the terms of Eqs.~17! and ~18!.
Those integrals can be easily solved if we make the appr
mation of neglectingV2 compared toE2 in the oscillatory
term of Eqs.~17! and~18!. This approximation is equivalen
to that of disregarding the right-hand side of Eq.~14!. We
thus obtain

rs~ t !11512
V

2~g22V2!
@g~12e22Vt/\!2V~12e22gt/\!#

~22!

and

rs~ t !125
iV

2g
~12e22gt/\!. ~23!

With the help of Eqs.~22! and~23! the time evolution of the
Tsallis entropy becomes analytical. It is interesting to n
that the entropySq(t), plotted in Figs. 5 and 6 for differen
values of the entropic indexq, results in the same kind o
leaf-shape effect as that given by the numerical results
Sec. III ~see Fig. 4!. It is possible to prove analytically tha
the magic value of the mobile entropic indexq, Q, is Q

FIG. 6. The entropic indicatorsSq(t) as functions of time with
Anderson randomness,g/\5100 andV/\51. This is nothing but
an enlargement of Fig. 5. Thus, as in Fig. 5, the plotted curves f
the bottom to the top refer toq51, q50.6, q50.5, q50.4. The
dashed lines denote straight lines which are tangent to the curv
t50. In the case ofq50.5 the tangent curve is not visible becaus
in the scale of this figure, it coincides with the corresponding cur
In the case ofq51 the tangent to the curve is not visible eith
because it coincides with the time axis.
-

i-

e

of

51/2. The numerical leaf-shape effect means that the ad
tion of the magic value ofq results in a linear increase o
entropy as a function of time after a transient process of t
duration\/g. Thus, we make an expansion ofSq(t) supple-
menting the conditionV!g ~which is necessary to give
credibility to the two-site model! with additional conditions
Vt/\!1 andgt/\'1. We thus obtain from Eq.~21!, with
Eqs.~19!, ~20!, ~22!, and~23!,

Sq~ t !'
1

q21 FqS Vt

\ D 2

2S Vt

\ D 2qG . ~24!

It is easy to prove that the linear dependence ont is obtained
by assigning toq the magic valueQ51/2. In fact, in this
case we derive from Eq.~24!

S1/2~ t !'2
V2t2

\2
1

2Vt

\
'

2Vt

\
. ~25!

This means that the rate of entropy increase is

d

dt
S1/2~ t !'

2V

\
. ~26!

To show that this theoretical prediction agrees with the
sults illustrated by Fig. 5 we refer to Fig. 6, which is o
tained from Fig. 5 by enlarging the time scale. We see t
on the scale of this figure the magic valueQ51/2 results in
a straight line with the slope of Eq.~26!, while the other
values ofq result in a much earlier departure of the corr
sponding entropic indicator from the linear dependence
time.

It is interesting to compare the effects of Anderson ra
domness to the case where statistical mechanics are rea
by environmental fluctuation. This means that, in the abse
of coupling V between the stateu1& and the stateu2&, the
off-diagonal matrix element between the stateu1& and the
state u2& would decay exponentially with the rate 2s/\,
whose intensity can be thought of as the strength of the
ternal randomness. In this condition, we would obtain a m
ter equation identical to that of Eq.~12! with the memory
kernel of Eq.~14! replaced by

K~ t !5
V2

\2
e22st/\. ~27!

In this specific case an analytical treatment of the sa
kind as that illustrated above yields an analytical express
for Sq(t), which is then plotted in Fig. 7. It is immediatel
evident from Fig. 7 that in this caseQ51. In fact, we see
that the curve corresponding toq51 is a straight line. Figure
7 has to be compared to Fig. 5: This is equivalent to co
paring the entropy time evolution triggered by external ra
domness to the entropy time evolution produced by And
son randomness. In fact, in Fig. 5 we study the leaf eff
associated with Anderson randomness withg/\5100,
changing the variable entropic indexq from q51 to q
50.4. In Fig. 7 we do the same thing withs/\5100. We
also note that the entropy increase generated by external
domness lacks the typical leaf effect of Fig. 4. In contra
Anderson’s randomness~see Fig. 5! yields a leaf effect simi-
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lar to that of Fig. 4, the only remarkable difference being
fact that the largeg condition strongly reduces the time du
ration of the first time regime.

With the help of Figs. 8 and 9 we note that in the case
merely external randomness the rate of entropy increas
proportional toV2/s\. In fact, from Figs. 8 and 9 we se
that the entropy rate is proportional to 1/s and toV2, respec-
tively. In other words, we find that in this case the entro
increase corresponds to the rate of the environment-indu
dephasing process. This has to be contrasted with the ea
theoretical result of Eq.~26!. We see, in other words, that i
the case of merely external randomness the ‘‘magic’’
tropic index is given by the conventional entropic indexQ
51 and that the adoption of this magic entropic index
veals an ordinary source of randomness. In the case w
the only source of randomness is internal, namely, Ander
randomness, the ‘‘magic’’ entropic index is given by th
value Q50.5. The corresponding nonextensive entropy
the proper entropic indicator signaling that a thermodyna
perspective is still possible in spite of dynamics domina
by quantum correlation.

V. CONCLUDING REMARKS

The first indisputable result of this paper is given by Fig
1, 2, and 3. These figures prove that the tight-binding Ham
tonian of Eq.~2! is a source of entropy time evolution clear

FIG. 7. The entropic indicatorsSq(t) in the presence of only
external randomness as functions of time. The system’s param
ares/\5100 andV/\51. The plotted curves from the bottom t
the top refer toq51, q50.6, q50.5, andq50.4.

FIG. 8. Externally generated time increase ofS1(t). V/\51.
From the bottom to the top:s/\5400, s/\5200, s/\5100.
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showing the three regimes recently discovered by Latora
Baranger@12#. Furthermore, from Fig. 1 we see that the r
gime of Brownian diffusion discussed by Mazza a
Grigolini @14# is a regime of constant KS entropy.

On the basis of this observation, we would be tempted
conclude that this Kolmogorov regime is characterizecd
ordinary statistical mechanics, but this interpretation wo
not be totally satisfactory. In fact, it is well known@14# that
this regime of apparently ordinary statistical mechanics
compatible with the silent action of quantum correlation.
the caseg@V this has to do with the silent action of th
negative tail of Eq.~14!, whose time scale is\/(2V). At the
end of this transient process, Anderson localization ta
place. Thus, we find it to be to some extent embarrassin
interpret this regime as a manifestation of ordinary statist
mechanics. According to the illuminating picture given b
Zaslavsky in his recent book@15#, ordinary statistical me-
chanics are closely related to deterministic motion of
type of the Bernouilli shift or map, namely, a case of dyna
ics with no memory. Here, on the contrary, the ensuing p
cess of Anderson localization is a consequence of the ac
of quantum correlations, even if this remained silent throu
the whole Kolmogorov regime of Fig. 1. For this reason, w
find it to be extremely interesting that the adoption of t
Tsallis entropy makes a different interpretation emerge. T
is so because the regime of steady entropy increase per
time becomes clearly distinct only if we use the magic va
Q51/2, which implies that the Brownian diffusion regim
studied by Mazza and Grigolini@14# is actually a form of
nonextensive rather than extensive thermodynamics. Th
compatible with the fact that this process is characterized
the silent action of quantum correlations which are resp
sible for the occurrence of Anderson localization. We no
that this interpretation is also supported by the observat
numerical and analytical, that the rate of entropy increas
2V/\. In the caseg@V this is also the rate of establishme
of Anderson localization.

The results illustrated by Fig. 2 are an exciting confirm
tion of the fact that the magic valueQ50.5 results in a
marked regime of linear entropy increase. However, in t
case the onset of Anderson localization takes place at a
scale much larger than\/V, and this makes it difficult to
maintain the claim about a direct connection betweenQ,1
and Anderson localization. We think that in this specific ca
the frequencyV/\ has to do with the coherent motion of

ers
FIG. 9. Externally generated time increase ofS1(t). s/\5400.

From the bottom to the top:V/\50.5, V/\51, V/\52.
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regular lattice. The memory kernelK(t) of Eq. ~13! under-
goes many oscillations with frequencies of this order of m
nitude before producing localization. Thus, in this spec
case the connection betweenQ,1 and Anderson localiza
tion seems to be much less direct.

Is it possible thatQ,1 might signal quantum coheren
motion, without necessarily implying Anderson localizatio
We think that some more research work must be devote
this intriguing issue. The results of this paper support
conjecture of Ref.@9# that Q,1 is a signature of localiza
tion. We hope that this result might trigger further resea
to prove, or disprove, this interesting conjecture. A prom
ing research direction is that based on the hypothesis
there exists a statistical equivalence between fractal dyn
ics and Anderson randomness. The result of the recen
search work of Ref.@18# encourages us to pursue a search
that direction. In fact, the authors of this paper show that
logistic map at the transition to chaos, a physical condit
that is known to yieldQ,1, results in a process of localiza
tion taking place with a finite time scale. From within th
ted
-

to
e

h
-
at
-

e-
n
e
n

context of classical dynamics the demonstration thatQ,1
implies localization might be more direct, sinceQ,1 dic-
tates the form of sensitivity to initial conditions@19# and this,
in turn, might determine the antidispersive correlation fun
tion which is proven@18# to be responsible for localization

Although the conjecture thatQ,1 is closely related to
Anderson localization is not yet proved, it cannot be eas
dismissed either. From the theory of Sec. IV we see tha
Anderson randomness vanishes and entropy increase
only on external fluctuations, the magic entropic indexQ is
given the ordinary valueQ51 again. On top of that, the rat
of entropy increase isV2/s\, in accordance with the fac
that entropy measures randomness, and that the rate of d
herence is a proper measure of a system’s randomness. T
we conclude that the adoption of Tsallis entropy makes
possible to adopt a thermodynamics perspective, even w
the entropy rate signals a coherent property, 2V/\, rather
than an incoherent dephasing process, and that this is
sible due to the adoption of the entropic indexQ50.5.
on
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