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We study the entropy time evolution of a quantum mechanical model, which is frequently used as a
prototype for Anderson’s localization. Recently Latora and Barafigkys. Rev. Lett82, 520(1999] found
that there exist three entropy regimes, a transient regime of passage from dynamics to thermodynamics, a
linear-in-time regime of entropy increase, that is, a thermodynamic regime of Kolmogorov kind, and a satu-
ration regime. We use the nonextensive entropic indicator advocated by T3affimt. Phys52, 479(1988]
with a mobile entropic index], and we find that the adoption of the “magic” valge= Q= 1/2, compared to
the traditional entropic indeg= 1, reduces the length of the transient regime and makes earlier the emergence
of the Kolmogorov regime. We adopt a two-site model to explain these properties by means of an analytical
treatment and we argue th@t= 1/2 might be a typical signature of the occurrence of Anderson localization.

PACS numbegps): 05.45.Mt, 05.20-y, 03.65.Bz

[. INTRODUCTION entropy goes through three time regim@g:an early regime
of exponential increasdiji) an intermediate time regime of
In this paper we focus our attention on the process ofinear increase, the Kolmogorov regime, and, finallyi,) a
localization discovered by Andersdd,2], and we discuss saturation regime. On the basis of arguments similar to those
the corresponding time evolution using the nonextensiveised here earlier, the second time regime is identified with
thermodynamics view of Tsalli3,4]. The subject of Tsallis the thermodynamic regime. In this classical case, the coarse
nonextensive thermodynamics is attracting the interest of agraining is done by the division of the space into cells.
ever increasing number of investigators in different branchs The quantum cas—9] is very complex. The results de-
of complexity theory(see, for instance, Rd5]). We wantto  pend on the relations among three fundamental parameters,
apply this new perspective to the delicate problem of theexpressed in the same units. These/aré, andD. The first
connection between thermodynamics and quantum dynanis the Planck constant, the second the classical action, and
ics. the third the intensity of the coarse grain generating stochas-
According to the new paradigm of deterministic chaos,tic force. For the quantum system to exhibit ordinary ther-
study of this connection leads to study of the quantum bemodynamic behavior it is necessary not only that!l but
havior of those systems that would be chaotic in the classicallso that: <D [6]. In this case the rate of increase of the von
limit. The subject of the entropy increase of quantum sysNeumann entropy is foun8] to be proportional to the KS
tems that would be classically chaotic has been addressed @ntropy.
a number of paper6—-9|. The pioneering work of Ref6] The authors of Ref.7] focused their attention on the tran-
has established that the coarse graining necessary for tisgion from dynamics to thermodynamics, namely, the first of
entropy to increase can be produced by a weak fluctuatiorihe three time regimes discussed in R&2], in the case of
As a consequence of this, after a transient of time duratiothe quantum Arnold’s ca8]. They focused their attention
inversely proportional to the classical Lyapunov coefficienton the condition|>D>#, where, according td6], an
the system is expected to reach a thermodynamic conditiorexponential-like transition from dynamics to thermodynam-
This prediction is based on several conjectures. The first igs is expected to occur. The numerical results of these au-
that there must be a kind of equivalence between the Gibbihors provide a satisfactory support to the heuristic argu-
entropy and the Kolmogorov-SingKS) entropy [10,11] ments of Zurek and Pd56]. The authors of Ref.9] studied
hks. The Gibbs entropy is a functional of probability den- the quantum kicked rotor in the regime whefe=D, and
sity, whereadgs is the entropy of a trajectory and, in prin- found that it yields an entropy increase proportionak tp
ciple, might not coincide with the entropy expressed in termswvith «>1. This finding agrees with the result found by Pat-
of probability density. Furthermore, the KS entropy is antanayak and Brumdi7] in the case of the quantum Arnolds’s
entropy per unit time and the existence of a finite value ofcat, when the same conditidi=D applies. The authors of
hks implies a steady rate of entropy increase. ConsequenthRef.[7], however, overlook this interesting aspect, probably
one must make a second important conjecture: The thermdsecause an algebraic entropy increase in time is interpreted
dynamic regime corresponds to the probability entropy in-as a dramatic postponement of the transition to thermody-
creasing as a linear function of time. namics. The authors of R€f9], on the contrary, found that
Both conjectures are supported by the recent findings oih this case also a kind of thermodynamic behavior, namely,
Latora and Baranggid.2]. These authors studied several cha-a regime of linear increase in time, shows up quickly when
otic maps and found that the time evolution of the Gibbsthey adopt a nonextensive form of entropy indicator.
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According to Tsallig 3] the proper entropy indicator, ex- The outline of this paper is as follows. Section Il defines
pressed in terms of the quantum statistical densjtyeads  the model under study in this paper and points out that the
Anderson noise has the twofold role of creating statistical
mechanics and localization. The former aspect, in an appar-
1-Tr{pd(1)} o . . . )
Sy =—-"7—. (1) ent conflict with the latter, is compatible with the existence
q-1 of a thermodynamic perspective. Section Il is devoted to the
illustration of the numerical results of this paper. This nu-
It is straightfoward to show3] that atq=1 the entropy merical treatment has to be considered as a sort of exact

indicator of Eq.(1) becomes identical to the Gibbs entropy treatment of the entropy time evolution triggered by Ander-

indicator. Note that is thought of as a variable parameter, SON randomness. An analytical treatment of the problem,
implying that we make the observation of the entropy timeShedding light on the reasons why the Tsallis entropy indi-
evolution for different values af until we detect the “magic pator is SO efflc_lent, is illustrated in Sec. !V. Finally, Sec. V
value” of g, denoted byQ, as the value of the entropic index S devoted to discussing the results of this paper.
establishing again the three regimes discovered by Latora

and Barangef12]. In the case studied in this paper the ob- !l. MASTER EQUATION, ANDERSON LOCALIZATION,

served density matrix, as we shall see, does not undergo a AND STATISTICAL MECHANICS

unitary time evolution, thereby implying no need of an

. t-induced ning. A ¢ The main purpose of this section is to show that the tight-
environment-induced coarse graining. As a consequence ‘Binding Hamiltonian system that we use to discuss Anderson

this property, |r;]tr|1|e case ﬁf z?_very_ strong Andersonbramdoml'ocalization is a remarkable example of joint action of ran-
nﬁss, as W% sha sge,.t_;l Irst t;]me.reglmelcarrl] ecomﬁ mness and order. This is, in other words, a system that is
short as to become invisible on the time scale that we shajj . oqivalent to the classical condition of full chaos. Rather,

ghoose to .'”L.anlate tT]e s_econd time r%glmei The ca}se of O%s we shall see, this system is equivalent to the condition of
Inary statistical mechanics correspon e 1, namely, 0\ oay classical chaos, or to the condition of sporadic random-
the case when the Kolmogorov regime emerges from thﬁess

adoptio_n of the Gibbs entroml_Z]. The departure of) from _ We study a system described by the Hamiltonian

Q=1 signals that the dynamics of the system do not fulfill

the condition of short-range interaction and correlation that H=Hy+W, 2

according to the traditional wisdom are necessary to estab-

lish thermodynamic properties. The authors of Rél.find  where

that the entropy of Eq(1) increases linearly in time if

=Q, whereQ=~0.33. They argued th.awﬁl is a sigpature HOEE E/m)(m| 3)

of the occurrence of Anderson localization, which is known m

to be a property of the quantum kicked ro{d3]. In this

paper we shall deal with this issue using the statistical apand

proach of Ref[14]. We shall see that this implies a conflict

with ordinary statistical mechani¢45]. W=V, (jmy(m+1|+|m+1)(m|). (4)
We aim at substantiating the conjecture of R6f.and for m

this purpose we study the Anderson tight-binding Hamil-_ o o )

tonian. In other words, we study a prototype of AndersonThis is the Hamiltonian originally taken into account by

localization processes, rather than the quantum kicked rotof\nderson[1,2]. We make this Hamiltonian result in a trans-

It is well known that the rate of energy increase of the quanOrt process dlffe_rent from the ballistic diffusion of a perfect

tum kicked rotor is made to vanish with a finite time scale bycrystal by assuming that

guantum correlation, namely, by the same cause as that re- E — 5

sponsible for Anderson localizatigti3]. However, the exact m= €+ &m. ®)

equivalence betwgen the dy”?mics of the quantum .kiCkeﬁere we are assuming that at different sites there is a fluc-
rotor and that of disordered solifi§6] seems to be question- uation ¢, around the common value We assume no cor-
able[17]. This might generate doubts about the conjecture Ofelation ammong different sites, namely

Ref.[9] that the process of Anderson localization has a non-
extensive thermodynamic nature. Thus, a direct study of the {mbm)=ASmm » (6)
prototype model of Anderson localization would make more

convincing the conjecture of Ref9], if we found, as we where(...) means an average over infinitely many realiza-
will, that in this case also the variable entropic indgmust  tions of the Anderson noise.

be assigned a valug<1 for the Kolmogorov condition, and It has to be pointed out that according to the prescriptions
the related thermodynamic behavior, to emerge. It has beeof quantum statistical mechanics, any entropy indicator must
pointed out that in the case under study in this paper recourdee expressed in terms of the density matrix associated with
to environment-induced coarse graining is not necessarghe Hamiltonian of Eq(2). The time evolution of this den-
This is because the entropy indicator will be expressed irsity matrix is unitary, and consequently any form of entropic
terms of a proper statistical density matpx. This statistical indicator, expressed in terms of the density matrix, is time
density, according to the prescription of an earlier pfdt, independent. From this point of view, there is no difference
is an average over infinitely many realizations of a randonbetween the system under study and a system characterized
distribution of site energies. by regular dynamic properties, and thus strongly departing
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from the randomness condition intuitively associated with We are therefore in a position to establish a comparison

the second principle. This is disconcerting. At first sight, inbetween the time evolution @f(t) and the density matrix of

fact, the Anderson prescriptions of Eq$) and (6) sow a  the quantum kicked rotdi8,9]. In the latter case the source

seed of randomness into the system dynamics and the eof randomness is given by the deterministic chaos of the

tropy indicator should make this randomness ostensible. Sdassical time evolution of the system. In both cases, ran-

the question is raised of how to make the entropy indicatodomness has a twofold role. In the early time region of the

sensitive to this randomness. process this randomness creates a condition of transport
The source of entropy increase in the model of Zurek andgimilar to that of ordinary Brownian motion. At later times,

Paz[6] is given by the deterministic chaos that the systemthe diffusion process is quenched by the occurrence of

would exhibit in the classical limit. To trigger a regime of Anderson localization.

entropy increase, these authors took into account the influ- The model under study rests only on the two parameters

ence of the environment as a source of dephasing, a proceaadV, and it would be tempting for us to refer to the condi-

that does not imply any exchange of energy between théon

system and its environment. This is in line with the second

law which forces entropy to increager to remain constant if y<V (10

the process is reversibléf no thermal exchange with the

environment is allowed. This means that an interaction be2SWeak randomnessy the same token, we are tempted to

tween system and environment is allowed, provided that if€er to the condition

does not cause any energy exchange. The perspective of

Zurek and Paz is not trivial, because, even if the entropy

increase is made possible by the key ingredient of externgls 5 condition oftrong randomnessThis would be incor-
fluctuations, these are so weak that the time scale of thgsct since, as we shall see through the joint use of numerical
process of transition from dynamics to thermodynamics i%:alculations(Sec. 1) and analytical theorySec. I\), in both
determined by the Lyapunov coefficients, namely, a genugonditions Anderson randomness and quantum correlation
inely dynamic property of the Hamiltonian system undergpe present, and, the condition of Ed1) has the effect of
study. realizing Anderson localization at earlier times. In a sense,

Here we find that the Anderson randomness is a sort ofhis corresponds to a case where order is more significant, on
counterpart of the deterministic chaos randomness of Zureje intuitive grounds that quantum correlation of larger in-

and PaZ6]. To reveal this randomness we must adopt theensjty means an enhancement of the role of order. Thus,
statistical density matrix defined by both conditions have to be considered as being equivalent to
the weak chaos of classical mechanics. The case of1Hj.
@) makes it possible to perform analytical calculations. There-
fore in Sec. IV we shall focus on the condition of Ed1).
The twofold role of the Anderson randomness was stud-
The integrand of Eq(7) is proportional through the statisti- ied, in the case/>V, in an earlier publication by Mazza and
cal weighting factorw([ ¢],t) to p([ #],t), which denotes Grigolini [14]. The authors of this paper proved that the time
the ordinary density matrix corresponding to a given randonevolution of the site populatiop,(t)=(n|ps|n) is driven by
distribution of the energy fluctuations,,. The symbol ¢]  the following generalized master equation:
denotes a given Anderson realization, that is¢]
=d¢,,0,, ...,¢;.... Note that, as a consequence of the
assumption of Eq(6), we have

y>V (11)

pu01= [ dLsTUC D410

9 t
Zon0== 3 |t Znt-t )byt~ )]
(12

W([@])="--p(Pm-1)P(Pm)P( ) o (8
L#] P(&m-2)P{Om)P( Pms 1 The authors of Ref{14] proved that in the deep regime of
We also make the assumption that the random distribution o¥trong Anderson noisey>V) the memory kermnek nn(t

the site energies follows the Cauchy prescription —t') becomes
1 y Enm(t):ZK(t)(5n,m-¢—l+5n,m—1)a (13)
p(d)=— W 9 where
2
where p(¢) denotes the probability that the energy of a K(t)= vy i(ye—ht/ﬁ_\/e—zvr/h)
given site fluctuates by the quantity about the common y?—=V? 12

valuee. It is interesting to remark that the time evolution of

the average density matrpg(t) of Eqg. (7) becomes identical "
to that of a perfect lattice ify=0. If, on the contrary, the wyh?
value of the parametey increases, the time evolution of the

statistical density matriyg(t) increasingly departs from the It is worth stressing that the oscillatory term in Ef4) (the
prescription of unitary time evolution. Consequenty,the  second term on the right-hand sjddoes not play any rel-
width of the Anderson noise, can be regarded as the randonevant role and was introduced by the authors of Rief] for
ness intensity of the system. the minor purpose of reproducing the weak and fast oscilla-

cog 2Vt/h). (14



3432 GRIGOLINI, PALA, PALATELLA, AND RONCAGLIA PRE 62

16 | .
12 1

x %X
08 r M Xxxxxxxxxx 1

M,, S5 and Sy 5
Tsallis Entropy
[\+]

04 | + 1} .t

i fun L N R
0 02 04 _ 06 0.8
Time In(time)

f F IG. 1. fThet_entrop?cr|nd|c/<';ltgr2 ancjj i?/eﬁ s_elc or_}(:] moment dOf_d'f' FIG. 3. The Tsallis entropy witly=0.5 expressed with respect
usion as functions of imey/a =4 an — .- the curve de- ., In(t) with the same parameters as those of Fig. 2.

noted by+ is the Tsallis entropy witlQ=0.5; the curve denoted
by X is the Gibbs entropythe Tsallis entropy withQ=1); the
curve denoted by is the second moment of the distribution,
M,(t). Time is expressed in units &ffV.

regardless of the time extension of this condition, which is
apparently indistinguishable from the Brownian motion re-
gime realized with a dephasing process of external origin. In
a§ec. IV we shall also see that in the latter c&se 1. This
means that the entropic index is a very sensitive indicator,
actually much more sensitive than the second moment,
which keeps increasing linearly in time for the whole dura-
tion of the regime of apparent Brownian motion.

tions revealed by the numerical treatment. In the theoretic
treatment of Sec. IV we shall make an approximation
equivalent to disregarding the influence of this term.

The main result of Refl14] is that in the time region

h h
;<t<v (15 Ill. NUMERICAL RESULTS

The numerical calculations have been done by producing,
the time evolution of the system is virtually indistinguishable first of all, about 1000 realizations of the Hamiltonian system
from ordinary Brownian diffusion. This is so because theof Egs.(2), (3), and(4). Each realization is obtained by using
negative and slow exponential appearing in the right-hané random noise generator which assignes to any|sijea
side of Eq.(14) is not yet strong enough to balance the fastfluctuation¢,, so as to realize the Cauchy prescription of Eq.
and strong exponential. In the cage-V Anderson localiza-  (9). The Hamiltonian of each realization is diagonalized so
tion occurs at the timé/V. as to determine the corresponding time evolution and the

Note that the region of apparent equivalence with ordi-corresponding density matrix. For any realization the initial
nary Brownian motion can thus be assigned an increasingondition is given by the wave functioh)(0))=|m=0).
time duration by keeping constant the rafiby<1 and de-  Finally, an average over all the realizations is made.
creasing the intensity df. This has the effect of weakening  The numerical results concern these two distinct ca$es:
the intensity of the negative tail of E¢14) and postponing >V and (i) y<V. Figure 1 refers to casg) and Figs. 2
the time of occurrence of Anderson localization. In Sec. IVand 3 to casdii). Let us examine casé) first. Figure 1
we shall see that the entropic indéxremains equal to 1/2, shows the second moment of the distributidvi,(t)

=123 ,,m’py(1). L denotes the lattice spacing and for sim-

i plicity we assumeL=1. We see thaiM,(t) undergoes a
nonlinear time increase for a time interval of the order of
2r **:”* I hlvy. After this first time region, the increase bf,(t) be-
| s ] comes linear in time. The regime of linear increase lasts for
< atime of the order of/V. In the last time regime, not shown
& 12l 1 here, the functiorM,(t) tends to become time independent,
% thereby signaling the occurrence of Anderson localization.
s 08} Figure 1 illustrates also the time evolution of the two
entropy indicator$, (t) andS;(t), as well as that oM »(t).
1 ] In fact, as earlier discussed in detail, we think that some
0 T ek . . . . interesting information can be derived from the observation
0 0.2 0.4 (%i% . 0.8 1 1.2 of the entropy indicator
FIG. 2. The entropic indicators and the diffusion second mo- S, (t)= 1_Tr{Pg(t)} (16)
ment as functions of timey/A2=0.3 andV/A=1. The curve de- 4 qg-1 '

noted by+ is the Tsallis entropy witlQ=0.5; the curve denoted

by X is the Gibbs entropythe Tsallis entropy withQ=1); the It is well known [3] that the traditional von Neumann en-
curve denoted by« is the second moment of the distribution, tropy is obtained from Eq.16) by settingg=1. Notice that
M,(t). Time is expressed in units @f/V. the choiceq=Q=1/2 is dictated by the theoretical argu-
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FIG. 4. The entropic indicator§(t) as functions of time. The FIG. 5. The entropic indicatorSy(t) as functions of time with
values of the parameters ang/=0.3 andV/A=1. The plotted Anderson randomnessg/A =100 andV/A=1. The plotted curves
curves from the bottom to the top refer gp=0.3, q=0.4, q from the bottom to the top refer tg=1, q=0.6, q=0.5, andq
=0.5, g=0.6, andg=0.7. =0.4.

ments of Sec. IV. Here we limit ourselves to pointing out Will be discussed again in Sec. IV. We also note that this leaf

that with g=0.5 the transition to the regime of entropy lin- effect is reminiscent of that revealed by the study of the

early increasing with time is faster than wit=1. We also  Kicked quantum rotor of Ref.9]. The authors of Ref[9]
notice that the slope of the resulting straight line /2, in made the conjecture that this leaf effect might be related to

accordance with the theoretical prediction of Sec. IV. Thethe occurrence of Anderson localization. With the help of the
regime of linear-in-time entropy increase, namely, the Kol-numerical results of this section and the theoretical analysis

mogorov regime, is not very extended in this case, the reasd?f Sec. IV, in the concluding remarks of Sec. V we shall
being that almost immediately after its onset a new transitiofddress this interesting issue again.

takes place, to the stationary diffusion regime, which is char-

acterized by the entropy increasing logarithmically in time. IV. NONEXTENSIVE INTERPRETATION:

This is the reason why in Sec. IV the theoretical search for AN ANALYTICAL TREATMENT

the magicQ, reflecting a genuine Kolmogorov regime, will
be made at the tim&/y, namely, immediately at the end of
the transition regime. The time duration of the Kolmogorov
regime is limited by the fast onset of the logarithmic regime,
and it will become much shorter at the higher valuesyof

considered in Fig. 5 below. NevertheleSs, is an entropy possible to carry out an analytical treatment based on the

indicator more reliable tha®;, in particular because it al- study of only two sites. Adoption of the distribution of Eq.

lows us to interpret as thermodynamic the early time regiong, vieiys the following values for the four elements of the
that, on the basis 0§;, would be mistaken as a regime of tatistical density matrix of Eq7):

transition to thermodynamics. The theoretical arguments o
Sec. IV will give additional support to this argument. o
Ps(t)n:f

The numerical analysis of Reff14], suppported also by
the numerical treatment of this paper, proves that the regime
of strong Anderson randomness is characterized by the im-
portant fact that the transition fromto m+ 1 is statistically
independent of that froorm to m—1. This means that it is

1 2
dE 4

Figure 2 illustrates the same properties as those of Fig. 1, -
—% T 4y’ +E?

referred to caséi). We see that the functiokl ,(t) signals a

transition to the statistical regime of Brownian diffusion at a 4v2 ¢

time of the orderi/V. In the time scale explored by Fig. 2 x| 1— sinz( EZ+ 4V2 _) 1
there is no sign of the occurrence of Anderson localization, 4V2+E? 2h) | a7
which takes place at a much later time. Even in this case the

entropic analysis reveals the existence of the three regimes énd

Latora and Barangdi2]. The Kolmogorov regime lasts for .

a time of the order ofi/V and the entropys(t) is @ much (D) fﬂchZl W 1 1

more accurate indicator of the Kolmogorov regime. Even in Pt | OETL 4y2+E2 EZ+4V2

this case the slope @&, ,,(t) in the regime of linear increase

is given by 2//%. We note that at a time of the order &fV N v

the entropyS;»(t) makes a transition to a regime of loga- xsin| VES+4V . (18)

rithmic dependence on time as can be clearly observed in

Fig. 3. Again, the adoption &, (t) as entropy indicator does Of courseps(t),1=ps(t)1, and ps(t)2,=1—pg(t)11. By di-

not establish a clear distinction betwen the regime of lineamgonalizing the X2 density matrix, we obtain the eigenval-

increase and that of logarithmic dependence on time. ues
Of some interest is also Fig. 4, which shows the time .

evolution of Sy(t) for several values of the mobile entropic Ay(t) = }+ Vps(D) 11— ps() 22)° + 4ps(t) 12ps(1) 21

index g. We note in the first and second time regimes a 1 2 2

pattern of curves recalling the form of a leaf. This leaf effect (19
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oot £ =1/2. The numerical leaf-shape effect means that the adop-
N . tion of the magic value ofj results in a linear increase of
0.035 | entropy as a function of time after a transient process of time
003 E durationfi/y. Thus, we make an expansion §f(t) supple-
: / menting the conditionV<+y (which is necessary to give
F a3 credibility to the two-site modglwith additional conditions
0oz [ Vt/A<1l andyt/A~1. We thus obtain from Eq21), with
oo 3 Egs.(19), (20), (22), and(23),
0.01 — ___________ S.(1) 1 (Vt 2 Vt) 29 (24)
0.005 [ S e - d g—1 g h h
0 e R It is easy to prove that the linear dependencé isrobtained
0 0.002 0.004 0.006 0.008 001 0.012 0.014 0.016 0.018 0.02

by assigning tog the magic valueQ=1/2. In fact, in this
case we derive from Edq24)

Time

FIG. 6. The entropic indicator§,(t) as functions of time with

Anderson randomness/# =100 andV/#=1. This is nothing but V22 2Vt 2Vt
an enlargement of Fig. 5. Thus, as in Fig. 5, the plotted curves from SyAt)~——- +T ~ (25
the bottom to the top refer tg=1, q=0.6, q=0.5, g=0.4. The h

dashed lines denote straight lines which are tangent to the curves

t=0. In the case ofj=0.5 the tangent curve is not visible because,filhls means that the rate of entropy increase is

in the scale of this figure, it coincides with the corresponding curve. d 2V
In the case ofg=1 the tangent to the curve is not visible either —S, (t)~ — 26
1/2(t) : (26)
because it coincides with the time axis. dt h
and To show that this theoretical prediction agrees with the re-
sults illustrated by Fig. 5 we refer to Fig. 6, which is ob-
1 ps(D11— pe(D) s+ 4pe(t) 12p<(t) 21 tained from Fig. 5 by enlarging the time scale. We see that

As(t)= 5 2 2 5 > - . on the scale of this figure the magic val@e=1/2 results in

(20) a straight line with the slope of Ed26), while the other
values ofq result in a much earlier departure of the corre-

The time evolution of the Tsallis entropy corresponding tosponding entropic indicator from the linear dependence on

the variable entropic indeg is given by time.
It is interesting to compare the effects of Anderson ran-
1-A(H)9=Ay(1) domness to the case where statistical mechanics are realized
Sa(t) = q-1 : (21) by environmental fluctuation. This means that, in the absence

of coupling V between the statl) and the statd2), the

The expression of Eq21) is not yet suitable for an ana- off-diagonal matrix element between the stgt¢ and the
lytical discussion of the problem under study, since it de-State |2) would decay exponentially with the rates?%,
pends on integrals defining the terms of EGs?) and(18).  whose intensity can be thought of as the strength of the ex-
Those integrals can be easily solved if we make the approxiternal randomness. In this condition, we would obtain a mas-
mation of neglectingy? compared toE? in the oscillatory  ter equation identical to that of E¢12) with the memory
term of Eqs.(17) and(18). This approximation is equivalent kernel of Eq.(14) replaced by
to that of disregarding the right-hand side of Efj4). We

thus obtain V?
K(t)=—e_2””h. (27)
hZ
Y,
- __ a—2Vtlhy _ _ A= 2vtlh
ps(t)11=1 2(y2—\2) [»(1-e )—V(1-e =] In this specific case an analytical treatment of the same

(22) kind as that illustrated above yields an analytical expression
for Sy(t), which is then plotted in Fig. 7. It is immediately

and evident from Fig. 7 that in this cas@=1. In fact, we see
that the curve corresponding ¢e=1 is a straight line. Figure
7 has to be compared to Fig. 5: This is equivalent to com-
paring the entropy time evolution triggered by external ran-
domness to the entropy time evolution produced by Ander-
With the help of Eqs(22) and(23) the time evolution of the son randomness. In fact, in Fig. 5 we study the leaf effect
Tsallis entropy becomes analytical. It is interesting to noteassociated with Anderson randomness wifli7zi =100,
that the entropy5,(t), plotted in Figs. 5 and 6 for different changing the variable entropic index from g=1 to q
values of the entropic indeg, results in the same kind of =0.4. In Fig. 7 we do the same thing withW/A=100. We
leaf-shape effect as that given by the numerical results oélso note that the entropy increase generated by external ran-
Sec. lll (see Fig. 4. It is possible to prove analytically that domness lacks the typical leaf effect of Fig. 4. In contrast,
the magic value of the mobile entropic index Q, is Q  Anderson’s randomnesgsee Fig. byields a leaf effect simi-

iv
ps<t)12='2—7<1—e-27“ﬁ>. 23
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FIG. 7. The entropic indicator§(t) in the presence of only FIG. 9. Externally generated time increaseSpft). o/%=400.
external randomness as functions of time. The system’s parameteg$om the bottom to the top#/#=0.5, VIih=1, VIh=2.

areo/f =100 andV/A=1. The plotted curves from the bottom to

the top refer tog=1, g=0.6, q=0.5, andq=0.4. showing the three regimes recently discovered by Latora and

) ) ] Barangef12]. Furthermore, from Fig. 1 we see that the re-
lar to that of Fig. 4, the only remarkable difference being thegime of Brownian diffusion discussed by Mazza and

fact that the largey condition strongly reduces the time du- Grigolini [14] is a regime of constant KS entropy.
ration of the first time regime. _ On the basis of this observation, we would be tempted to
With the help of Figs. 8 and 9 we note that in the case of;gncjude that this Kolmogorov regime is characterizecd by
merely external randomness the rate of entropy increase [sinary statistical mechanics, but this interpretation would
proportional toV*/a#. In fact, from Figs. 8 ang 9 we see not pe totally satisfactory. In fact, it is well knowi4] that
that the entropy rate is proportional tarland toV<, respec-  tnjs regime of apparently ordinary statistical mechanics is
tively. In other words, we find that in this case the entropycompatible with the silent action of quantum correlation. In
increase corresponds to the rate of the environment-inducggle casey>V this has to do with the silent action of the
dephas_ing process. This has to be c.ontrasted with the e?r”ﬁbgative tail of Eq(14), whose time scale i&/(2V). At the
theoretical result of Eq26). We see, in other words, thatin enq of this transient process, Anderson localization takes
the case of merely external randomness the “magic” enpjace. Thus, we find it to be to some extent embarrassing to
tropic index is given by the conventional entropic INd@X  jnterpret this regime as a manifestation of ordinary statistical
=1 and that the adoption of this magic entropic index re-mechanics. According to the illuminating picture given by
veals an ordinary source of rar_ld(_)mness. In the case Whe@aslavsky in his recent booKL5], ordinary statistical me-
the only source of randomness is internal, namely, Andersognanics are closely related to deterministic motion of the
randomness, the “magic” entropic index is given by the yne of the Bernouilli shift or map, namely, a case of dynam-
value Q=0.5. The corresponding nonextensive entropy iSics with no memory. Here, on the contrary, the ensuing pro-
the proper entropic indicator signaling that a thermodynamigess of Anderson localization is a consequence of the action
perspective is still possible in spite of dynamics dominatecyf quantum correlations, even if this remained silent through

by quantum correlation. the whole Kolmogorov regime of Fig. 1. For this reason, we
find it to be extremely interesting that the adoption of the
V. CONCLUDING REMARKS Tsallis entropy makes a different interpretation emerge. This

is so because the regime of steady entropy increase per unit

The first indisputable result of this paper is given by Figs.ime hecomes clearly distinct only if we use the magic value
1, 2, and 3. These figures prove that the tight-binding Hamil

. . X ) Q=1/2, which implies that the Brownian diffusion regime
tonian of Eq(2) is a source of entropy time evolution clearly ¢ ,gied by Mazza and GrigolifiL4] is actually a form of

nonextensive rather than extensive thermodynamics. This is

0.06 b compatible with the fact that this process is characterized by
0.05 - the silent action of quantum correlations which are respon-
i sible for the occurrence of Anderson localization. We note
0.04 [ that this interpretation is also supported by the observation,
_ i numerical and analytical, that the rate of entropy increase is
v 0.03 2V/#. In the casey>V this is also the rate of establishment
0.02 a of Anderson localization.
T The results illustrated by Fig. 2 are an exciting confirma-
001 L tion of the fact that the magic valu@=0.5 results in a
5 marked regime of linear entropy increase. However, in this
R I IR P NS AL B case the onset of Anderson localization takes place at a time

scale much larger thafi/V, and this makes it difficult to
maintain the claim about a direct connection betw€enl

FIG. 8. Externally generated time increaseSf{t). V/i#=1.  and Anderson localization. We think that in this specific case
From the bottom to the topr/% =400, o/f =200, o/A=100. the frequency/# has to do with the coherent motion of a

Time
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regular lattice. The memory kernKl(t) of Eq. (13) under-  context of classical dynamics the demonstration tQat1
goes many oscillations with frequencies of this order of magimplies localization might be more direct, sin€e<1 dic-
nitude before producing localization. Thus, in this specifictates the form of sensitivity to initial conditiofi$9] and this,
case the connection betwe@ 1 and Anderson localiza- in turn, might determine the antidispersive correlation func-
tion seems to be much less direct. tion which is prover{18] to be responsible for localization.

Is it possible thatQ<1 might signal quantum coherent  Although the conjecture thaD<1 is closely related to
motion, without necessarily implying Anderson localization? onderson localization is not yet proved, it cannot be easily
We think that some more research work must be devoted tgismissed either. From the theory of Sec. IV we see that if

this_intriguing issue. The result_s of t_his paper suppqrt théanderson randomness vanishes and entropy increase rests
conjecture of Ref[9] that Q<1 is a signature of localiza- only on external fluctuations, the magic entropic indgxs

tion. We hope that this result might trigger further researchgiven the ordinary valu®@=1 again. On top of that, the rate

to prove, or disprove, this interesting conjecture. A promis- . ) . .
ing research direction is that based on the hypothesis th Otf entropy increase i%/*/o#, in accordance with the fact

there exists a statistical equivalence between fractal dynarﬁt'at entr(_)py measures randomness, and,that the rate of deco-
ics and Anderson randomness. The result of the recent ré]_erence Is a proper measure of a system’s randomness. Thus,

search work of Ref[18] encourages us to pursue a search inVe conclude that the adoption of Tsallis entropy makes it
that direction. In fact, the authors of this paper show that thé0SSible to adopt a thermodynamics perspective, even when
logistic map at the transition to chaos, a physical conditiorin® entropy rate signals a coherent property/7, rather

that is known to yieldQ<1, results in a process of localiza- than an incoherent dephasing process, and that this is pos-
tion taking place with a finite time scale. From within the Sible due to the adoption of the entropic ind@x0.5.
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