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Six-vertex model with domain wall boundary conditions and one-matrix model
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The partition function of the six-vertex model on a square lattice with domain wall boundary conditions
(DWBC) is rewritten as a Hermitian one-matrix model or a discretized version @@ritilar to sums over
Young diagramp depending on the phase. The expression is exact for finite lattice size, which is equal to the
size of the corresponding matrix. In the thermodynamic limit, the matrix integral is computed using traditional
matrix model techniques, thus providing a complete treatment of the bulk free energy of the six-vertex model
with DWBC in the different phases. In particular, in the antiferroelectric phase, the bulk free energy and a
subdominant correction are given exactly in terms of elliptic theta functions.

PACS numbs(s): 05.50+q

[. INTRODUCTION are analyzed in more detail by considering various limits of
the parameters, and the subleading correction of the free en-
In [1], Korepin and the author brought up the issue of theergy is calculated.
sensitivity of the six-vertex model to its boundary conditions
(even in the thermodynamic limit The motivation came Il. PROPERTIES OF THE DETERMINANT FORMULA
mostly from some recent work on domino tilin§,3,4], in ) ) )
which boundary conditions seemed to affect greatly the typi- Ve use the same notations as[i. We consider the

cal arrangement of dominos. The problem of counting?omogeneous six-vertex model, with the following param-
domino tilings is equivalent to the six-vertex model with etrization of the Boltzmann weights attached to the vertices:

particular Boltzmann weights; this is schematically described
on Fig. 1. Therefore it seems natural to investigate the cor-
responding problem for the general six-vertex model with
arbitrary weights.

The usual studies of the six-vertex modske[5] and
references therejrare made by assuming periodic boundary
conditions(PBQ). In [1], different boundary conditions, the
so-called domain wall boundary conditio®WBC), were shown that the partition function of the six-vertex model

used_[Fig. _2(a)], and_the therm_odynamic limit of the mod_gI with DWBC on aNXN lattice could be written as
was investigated using determinant formulas for the partition

function[6,7]. The main result found was an expression for inh(t 4 ) sinh t— )TV
the bulk free energy in the disordered phase of the model, N:[sml"( yN)_s;nI"( ¥)] N
which is different from the usual expression for the case of (Ih=on!)? '
periodic boundary conditions. It should be noted that the .

DWBC correspond to the Aztec shape in the domino tilingwherery is a Hakel determinant:
language(see Fig. 2, which is precisely the type of tiling
which was considered i[2,3].

Here, we use a new method to compute the bulk free
energy with DWBC in all phases of the model; in particular,
we obtain an independent confirmation of the resultglf
In Sec. Il, starting from the determinant formula for the par- :
tition function, we shall rewrite the latter as a matrix integral, %1 ==>T1> =
but with a measure on the space of hermitean matrices whicl
is not necessarily smooth. In the disordered phH&se. 1V),
the measure will turn out to be smooth, whereas in the ferro- ;
electric and antiferroelectric phaggecs. Il and Vit will be bj=—<1< =
discrete(when expressed in terms of the eigenvaludhe
sizeN of the matrices is the size of the original square lattice,
and therefore the thermodynamic limit can be investigated
using tools from largeN matrix models. Since the results of ¢ =—<>—
Sec. V(concerning the antiferroelectric phasae new, they

a=sinh(t—vy), b=sinht+vy), c=sinh2y).
(2.1

The domain wall boundary conditiof®WBC) mean that
external horizontal arrows are outgoing, whereas external
vertical arrows are incomingFig. 2(a)]. These boundary
conditions only exist for square lattices. [8,7], it was

(2.2

i+k—2
am:ﬂb(t)}

™™ det
1<i,k=N

FIG. 1. Correspondence between vertices of the six-vertex
*Email address: pzinn@insti.physics.sunysb.edu model and small patches of a domino tiling.
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R Y TN~fdMe““M+V<M”, (2.10
Ty v\
< § \/\ whereM is a HermitianNXN matrix, anddM is the flat
measure.
y / As we shall see, if the measure is not smooth, we shall
< > end up with expressions which can still be treated using ap-
Y N propriately adapted matrix model techniques. This is typi-

cally the case of discrete measures that appear in sums over
a) b) Young diagramg11—18.
FIG. 2. (a) A configuration of the six-vertex model with DWBC, Expressions of the typ.9) have been widely studied in

and (b) one possible corresponding tiling of the Aztec diamond. the Iiteratl_Jre(on_random matrices in parti_CUDaIOne_ impor-
tant goal is to find their larg& asymptotic behavior. Here

we shall mention the simplest method to find their leading
largeN behavior: the saddle point method. The basic idea is
sinh(2) that logA(\;)%, being a sum of~N? terms, scales a? in
sinh(t+ y)sinh(t— )" (2.4 the large limit, whereas there are oMivariables of integra-
tion. Therefore the integral is dominated by a saddle point.

It is known that such determinants are tau functions of thé\n important remark is that, in order to find the saddle point,
Toda semi-infinite chain hierarchy in terms of appropriate'V€ Must write our actiofi.e., log of the function integrated

parameters. Here, as a functiontpthe 7 satisfy the usual N Such a way that all terms are of the same ondér Here,
Toda equations under the bilinear fofgy1]: the termt;\; is naively of orderN, and we reach the im-

portant conclusion that the; will scale as

Here,

()=

" 12
TNTN— TN = TN+1TN—1, VN=1. 2.
NTNT TN N+17N-1 (2.9 TSN 2.19)

This equation was used [i] to derive the bulk free energy After the change of variables — ;. one can use the saddle
1

of the model in the ferroelectric and disordered phase by . .97, ) . ;
making an appropriate Ansatz on the lafgeorm of 7. ?g;mea:jpg;oxmatlon, which gives us access to the function

Unfortunately, the Ansatz in the antiferroelectric phase is no
that simple, as we shall see, and would be hard to justify at
this point. f=lim
We shall therefore use another approach here, based on N—co
the equivalence of Hikel determinants with one-matrix 5
models[9,10]. Let us write formallys(t) as a Laplace trans- wherecy=(I1\_,n!)2. f is essentially the bulk free energy,
form: cf. Eq. (2.2). Note that the saddle point is a very crude ap-
proximation in the sense that it does not naturally allow for a
systematic computation of subleading corrections; however
it will be sufficient for our purposes. We now proceed with a

separate discussion of the different phases of the model.
wheredm(\) is a measure. We then notice that the deriva-

|Og( TN /CN)

N2 , (2.12

¢(t)=j dm(\)e™, (2.6)

tives of ¢(t) are the moments: Ill. FERROELECTRIC PHASE
: i 0 This is the phase in which the weights are given by Eqg.
gr (= | dm)r'e™. (2.9 (2.1 with t and y real, | y| <t. We use the following decom-
position:
Inserting this into Eq(2.3) leads to .
sinh(2
N b(t)= — 2Y) 4 o 2 ginn2q0).

e [ amoamov 3 (-0 e 02y S y)sinE=y) = -

oe Sy i=1 3.1

2.8
29 We are in the situation where the measdneis discrete. The

We see that appears naturally the Van der Monde determi@eterminant takes the form
nantA(\;) =det(}\{_1)=Hi<j()\i—)\j). After a few elementary -
manipulations we find: TN:2N2 S 0 A(li)zeiztzilil_i[ sinh241) (3.2

_ 1 2450\ o
TN_WI dm(Ay)---dmA)A(N)"e=h. (2.9 (we have neglected here, as in all subsequent calculations,
constant factors which manifestly do not contribute to the
If dm(\) is a smooth positive measure of the fodm(\) bulk free energy This expression is very close to what one
=dre V™ then we recognize in E42.9) the expression in  encounters when studying the Plancherel meagrether
terms of its eigenvalues of the matrix integral: similar measureson Young diagram§l1]. In the context of
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Young diagrams, th& represent the shifted highest weights In order to solve the equation, we first remove the logarith-
[;=m;+N—i, where them; are the usual highest weights mic cut of w with the redefinition:®(z) = w(z) —log[ w/(
(sizes of the rows of the diagrammand one is usually inter- —a)]@(2) is analytic everywhere except ¢r, 8] and satis-
ested in the limiting shape of the Young diagram when itsfies

size is sent to infinity. There has been a lot of work on this

type of expressions, both in the mathematical literature - . - .

[11,15-17 (the recent work being concerned witluctua- a(p+i0)+a(pu—i0)=2t-2 Iog,u
tions around the limiting shape, which we shall not discuss

here and the physical literaturfl2—14,18. One relevant This completely determines it to be
observation from[12] is the following: after the rescaling

w=1/N, all sums look like Rieman sums and one is tempted ®(2)=t—+(z—a)(z—f)

to replace them with integrals, and then apply the saddle , ) ,
point method. This is correan conditionthat one imposes % fﬁ_'o dz log Z

an additional constraint coming from the discreteness of the a-io 2im(z—2 ) (2 —a)(Z —B) Z —a
[;. In Eq. (3.2, all I; must be distinct integer&ue to the

M

(3.9

Van der Monde determinantand therefore 3.9
o After some calculations, we find that
[li—1j|=1, Vi#j. (3.3
VB(z—a)+ Ja(z— B)
If introd the densit du of the wi=I;/N, - z)=t—2lo 3.1
we introduce the densitp(u)du of the u;=1,/N, nor w(2) g NETED] (3.10

malized so thaff p(u)du=1, then Eq.(3.3) implies that it

must satisfy the inequality The end pointse and 8 are determined by imposing(z)

~1/z asz—o. This gives rise to two equations:

p(u)<1. (3.4
In general, when thg are trapped in a well of the potential t=|ogM,
(as is the case herethere will be a saturated region at the \/E —a
bottom of the well wherep(x)=1, and an unsaturated re-
gion wherep(u)<1. Vap=1, (3.11
Let us now proceed with the solution. Once the rescaling o
wi=1,/N is performed, one notices that up to correctionsWhose solution is
exponentionally small in N, sinh(2Ng)~1/2e?/7INxi,
Therefore a=coth%, ﬁ:tanh%. (3.12
rn~cy2V > A(pi)2e™ 2N DDZimi In order to conclude, one expands further the functiga):
Bpseein € (UN)Zy 35
. 1 a+B81
w(Z)=E+T'B?+'-- (3.13
Wherec,QENNz. Of course, once this simplification is made,
we regognize a well-known expression; in fact, going backand uses the fact that
now to the original variables one can computey directly
using the Cauchy identity for Schur functions. However, to of a+pB
emphasize the similarity with the other phagesich do not e ()=~ —,  —cotht. 314

possess such a simple group-theoretic interpretptiome
shall use the saddle point method, following the solution Oﬂntegrating once and restoring we have the final result
[18]. Sincey only depends ori—|y|, we temporarily set
y=0. - 1

The support of the saddle point densitfu) is expected e ~sinh(t—[9])’ (3.19
to be of the form[0, B]; the saturated region if0, «],

whereas the unsaturated regior{is 8]. We define the re- \which coincides with what was found [d].
solvent

IV. DISORDERED PHASE

(3.6 In this phase, one usually rewrites the weights

Adup(u)
()= | ———

0 Z—HM

a=sin(y—t), b=sin(y+t), c=sin2y), (4.1

for all complexz«[0,8]. The saddle point equations can be
written in terms ofew: with redefined parametetsand y, |t|<y, and the function
¢(t)=sin(2y)/[sint— y)sint+y)]; the partition function is
o(pu+i0)+w(u—i0)=2t, Vuel[a,B]. (3.7  then given by
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[sin(y+Dsin(y—1) ]V J=ap=m, (4.9
g e @2

which we solve fora and B:

with 7y still given by Eq.(2.3). The Laplace transform is T T
a=—wtanz(1—§), ﬁ:wtanz(lJrg). (4.9

Y
oo sin(2y) _Jﬂd)\ o sinh (m=27) Noting that
0= Sy sy =0 J_.. e TN :
sinh= 7 of _< 1
2 =~
4.3 9%

we find

7 (4.10

> a+ B

r =

This time the measure is smooth anglis a matrix integral

in the usual sense. -
We must now rescale the variablas. We choose to f=—log cosE +const. (4.1

defineu;=y\;/N. Then

. We shall not discuss how to fix the constant of integration,
TN:CM*NZJ Ay dppA (ui)? since this will be addressed in the next section in a more

—o general setting. Reintroducing the dependence coming
from Eq. (4.5, we have the final expression:

a
N sinH\IMi(—— 1)
2 T 1
<T1 Y LN | (4.4 ef=— , (4.12
=1 NP 2 cosmr
Sin ,LLiZ_y 2’)’
One then simplifies the Potential by using shya(w/2y  Which reproduces the result pf].
—1)/sinhNg(a/2y) ~e~N“. Therefore,
V. ANTIFERROELECTRIC PHASE
+
Tch,’W*NZJ dul---d,uNA(Mi)ZeNEi[(t/vmr‘Mi“. We finally study the most interesting phase, in which the
- weights are given by
(4.9
a=sinh(y—t), b=sinh(y+t), c=sinh2vy),
Note that the matrix integral only depends on the ratio y=t) i+ h2y) (5.1)

=t/y.
The matrix model(4.5) is fairly simple and can be solved with |t| <y, and the partition function by
easily in the largeN limit via the saddle point method. One 5
introduces again the saddle point density of eigenvalues [sinh y+t)sinh(y—t)]N
p(w)du, normalized so thaf p(x)du=1. The support of N= (I In1)2 ™ (5.2
p(w) is assumed to be a single interyal 8] (<0< g), due n-o

to the shape of the potentiedingle well centered around.0  with ¢(t)=sinh(2y)/[sinh(y+t)sinh(y—1t)].
The resolvent is defined as before. The saddle point equa-

tions read A. Bulk free energy
o(p+i0)+w(u—i0)=—¢+sgnu), Vuel[a,B], We have the expansion
(4.6 ) o
| N - he— SN2V, 5 pug-om
where the right-hand side is simply the derivative of the po- ~ ¢(U= sinh(y+Osiniy—t) <. % ¢
tential. The solution of this equation (5.3
@ 1-¢ . 2 I VB(z—a)—i—a(z—pB) We perform the rescaling;=2yl; /N and find thatry, takes
w(z)=——+—Ilo
2 i 9 m the form
(4.7)
_ o _ n=cly D A( )2 Sl UM mi=aill,
is very similar to the ferroelectric phase; and the rest of the uys-mNE(2YIN)Z
calculation goes along the same lines. (5.4
R iri that ~1 tain the t . - .
equaetiqourighg atw(2)~1/z as z—e, we obtain the two The remarkable feature is that E.4) is identical to Eq.
' (4.5 up to the discrete nature of the variables. We shall
. comment on this later.
1-¢= _ik,g@, The situation is a bit more complicated than in the previ-
I \/E—i —a ous cases, since we now expect a saturated r¢gioB’ | at
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the bottom of the well ¢’ <0<B’) and two unsaturated o(U)+o(—u)y=1-_. (5.90
regions[ a,a’] and[B’,8] on each side. This is a two-cut
situation, which is in fact the reason why the naive approac
of [1] fails in the antiferroelectric phassee Sec. VD for
more on this. Let us define as beforg=t/y, the density

quation (5.99 is the analytic continuation of Eq5.6).
imilarly, by combining the analytic continuations of the two
equations contained in E¢.7), one obtains Eq€5.9b and

. . ' (5.90.
gfg C)rgpedngzsr?f(ilr\f;n?égégThe constraint coming from the (iii ) The functionw(u) has the following expansion near
! U, =U(z=):
< ! v 5 2
PlwS5, Vu (69 w=—— — (u—u.)+O(u—u,)2
V(B —a)(B—a’)
Therefore we have in the saturated region the equation (5.10

1 1 This is a rewriting of the conditiom(z) ~ 1/z at infinity.
p(p)=—[o(pn—i0)—w(u+i0)]=~—, Using propertiedi) and (ii) [Egs.(5.99 and (5.9h], we
2im 2y conclude thatd/du) w(u) is a doubly periodic holomorphic
function, and so is a constant. In order to restore the coeffi-

Vuela' B, (56  cients ofw(u) we can use propertigg) or (i ). We find that
whereas in the unsaturated regions, the saddle point equa- 1
tions are o(u)=— - (U=Ux) (5.1
o(p+i0)+o(u—i0)=—+sgnu), plus several conditions relating the different parameters of
the problem:
Vuela,a' JULB",B], (5.7 ,
K T
with Z=t/. K 2y’ (5.123
We could proceed as in the previous sections; this would
lead to a representation af(z) in terms of elliptic integrals. V(B —a)(B—a’')=2K, (5.12b
However, this would be fairly cumbersome and we proceed
instead as follows. Introduce an elliptic parametrization Ue 1-¢
—=_ (5.129
. K 2
u(p)=5N(B'—a)(p—a’) Relation(5.123 is particularly interesting since it shows that
the elliptic nomegq=e~"™'/K=e~"/27 depends only ony
> f” dz (5.9 (and not ony). Also, the dual noméunder modular transfor-
g\(z—a)(z—a' ) (z—B)z—B) mation G=e 2? is up to a sign the quantum group defor-

mation parameter of the model.

which corresponds to setting: We can rewrite the three conditions in terms of the end
points; we find
[(B'—a)(B—a)][(B— )/ (B’ — p)]=sr(u,k) dnu
with k=\(B—a)(B'—a')/(B' —a)(B—a'). With an ap- pra=2K snu,.cnu,,’
propriate choice of path of integration, this maps theom-
plex plane(respectively upper half-plane, lower half-plane , cnu,
onto the rectangl¢0,K]x[—iK',iK'] (respectively[ 0,K] B-a ZZKsnumdnuw' (5.13
X[0,jiK'],[0K]X[—iK"',0]), whereK andK’ are the usual
complete elliptic integrals of the first kind. Similarly, the ) cnu.dnu,,
second sheet of the double covering is mapped onto the other B—B'=2K " snu,

half of the torus, which can be chosen to peK,0]X _ _
[—iK’,iK']. The point of this parametrization is that the In order to completely fix the four end points o', B', B,
resolventw is now a well-defined function ofi. In fact we ~ we need one extra relation; this is the equality of chemical
have the following properties. potentials in the two unsaturated regions. This relation takes
(i) The functionw(u) can be extended to a homomorphic the form
function in the wholeu plane. ,
(ii_) The functionw(u) satisfies the following functional fﬁ/ [w(u+i0)+o(pn—i0)]du=(1-)B +(1+a’.
relations(for all complexu): a (5.14

w(u+2iK') = w(u)— 777 (5.93 Using the expressiofb.11) of w(u), we can rewrite it as

snu..
B'=(B=B")

o(U+2K)=o(u)—2, (5.9b chusdnu, 2(U=)=0, (5.15
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whereZ is Jacobi’'s zeta function; this fixés to be ) A
N lim zy" =sinhy(1-0)sinhy(1+0) 57—,
B'=2KZ(u.,). (5.16 Nooe 02(7)
The end points are now determined by E@5.13 and (5.23

(5.16, supplemented by the valg.129 of u.,.
At this point, we are ready to calculate the free energy. o ) .
We first rewrite exp“cmy the reso'ver[tEq_ (511)] under Where§=t/ Y and the e||lptIC nome of the theta functions is

the form g=e "2, Note that this expression is different from the
corresponding expression for PBC. Let us now consider the
2 Jx dz' two limits y—0 andy—oe. In both cases we shall assume
w(z)= ; WAV ' that / remains fixed.
T —a)Z—a)(Z-B)Z B ‘
(5.17

Next we expand it to order 27 to find B. Small y limit

As one sendsy to 0, one reaches the line of the
disordered/antiferroelectric phase transition. As noted earlier,
the bulk free energy of the disordered phase is essentially
obtained from that of the antiferroelectric phase by setting
which generalizes Eq4.10; using some known identities q=0 in the theta functiongand performing the rotatiory
satisfied by zeta and theta functions, we obtain —iy,t—it in the prefactors Considering thaj=e" 11'2/27’

pr 7 0y(mLl2) we expect a very smooth phase transition. More explicitly,

=2 we have the following expansion &f
ag 2 0(mil2)’ (.19

ot ata +p+p

F TR (5.18

T 1
where we recall thad,(z) is f=log 2y T +2
coy§ —
0 ) 2,y
0,(z)=2>, q"*12°cog2n+1)z. (5.20 . o
n=0 q
X X 1= am (1= (= 1)"cog mart/y)].
There are a variety of ways to find the integration constant. m=1 q
One is to calculate explicitly (for a particular value of, (5.24)

e.g.,{=0) using this matrix model solution, and then restore

the vy dependence coming from E¢b.4); this is a straight-

forward but tedious exercise. Another possibility is to use theAfter substraction of the analytic continuation of the disor-

known limits {— *+ 1, that ist— * vy, where we should have dered phase free energ@yote that this analytic continuation

(see[1]) is trivial sincef only depends ot/ y), we obtain the singular
part of the free energy, which has a leading singularity

1
ef~ B (5.2])
v+t
2 7t
. , , fsmg=4e—”’7cos’-(— Heee (5.25
Either way, we finally find 2y
(7 6:(0) o o _
e =5y T (5.22  This is the same type of singularity that appears in the model
Y 92<1) with periodic boundary condition§5]. In more physical
2y terms, if we introduce a temperatuiie which is near the

) critical temperaturd ., we have
where we recall that the elliptic nome gs=e ™" /27.

As a simple check of our calculation, note that if one
sendsy to 0 (keeping ¢ fixed), since the constraints.5), fongee ST T, (5.26
which was the only difference with the disordered phase,
disappears, one should recover the results of the previous
section. This is indeed what happens when one replaces tfiat is an infinite order phase transition.
theta functions with theig—0 limit. Also, Eq. (5.22 has
been numerically checked with high accuracy.

This concludes the calculation of the bulk free energy in
the anti-ferroelectric phase. Restated more explicitly, this is Next, let us consider they—o limit, i.e., A=
the result we have obtained: the partition functipof the ~ —cosh(2)——o. This is a typical zero temperature limit,
six-vertex model on &NX N lattice with DWBC and Boltz- and we expect that the free energy will be dominated by the
mann weights given by Ed5.1) has the following largeN  contribution of a ground state. After a modular transforma-
behavior: tion, the bulk free energy reads

C. Large y limit
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RN ferroelectric and disordered phases, we reduced the compu-
a 7 \\bz 519 tation of 7y to a matrix model with eigenvalues ane single
e AN 2 interval [a,b] (disregarding the saturated region which plays
7 B no role herg it is known that such models have a regular
. ¢ largeN limit. In fact, in the ferroelectric phase one can easily
1-¢ prove that
AN o a 2
by . - ! TNNCNeNZfeN(tflyl) (5.30

FIG. 3. Ground states of the antiferroelectric phase. In regions
andb the arrows are aligned, whereas in regothey alternate in
direction.

up to only exponentially small corrections; whereas in the
disordered phase, one expects an asymptotic expansion
which starts with

F=—log[ sinh( y—t)sinh(y+t)]—f
t2

Y .
=———— +t)+
2 2y log sinf(y+1)+t

[}

mn~cneVINAC (5.31)

and continues with inverse powers Mf(note that this is not
quite the usual topological expansion of 2D gravity since the
potential is not polynomial In either case, the assumption
on the corrections is valid, and indeed, one can check that the
expression$3.15 and(4.12 do satisfy the ODHE5.29).

We can interpret the first terms wher—« On the contrary, in the antiferroelectric regime, we have
found that the support of the eigenvalues contavs inter-
vals[a,a’] and[b’,b] and therefore we expect to be in a
situation similar to what was studied [ih9,20. The analysis
shows thatry should in this case display a pseudoperiodic
as coming from the family of ground states described by Figbehavior, which is indeed what is found in numerical com-

3. The pattern of a rectangle inscribed inside a square iputations. More precisely, after some calculations along the
reminiscent of the circle inscribed inside a square charactefines of[20], one finds that

istic of the disordered phasg].

—2my

+2 sinf[m(y—t)]. (5.2

“1m sinh(2my)

t2

3
= —y— — -2y
Fe= 575, +0(e™) (5.28

. . o 6:(0) N T
D. Subdominant corrections TN~ CN 2y [l 04 §(1+§)N C, (.32
Y a
As a final note, it is interesting to understand why the 2(7)

approach of1] fails in the antiferroelectric phase. There, the
idea was to find an appropriate ansatz on the asymptotic - Lo
behavior of the determinant, and plug it in the Toda equa- wherel=t/vy andzthe elliptic nomey of the theta function is
tion (2.5). The simplest assumption is that only the leadingdS beforeq=e~""2”. The constanC depends only ony.
behavior (bulk free energy must be taken into account, One can check that the right-hand side of E§32 does
which leads to replacingry with CNesz, where ¢y satisfy the Toda equatio(2.5), even though the bulk free

=(IIN-2n!)2. The Toda equation then reduces to the ordi-="c'9Y alone does not satisfy the OIBE29).
nary differential equation fof:

fr=e?f. (5.29

ACKNOWLEDGMENTS

| thank V. Korepin for discussions, and the Center de
We can now use some insight from matrix models to un-Recherches Matmeatiques de I'Universitede Montrel,
derstand whether this assumption was justified or not. In th&here part of this work was performed, for its hospitality.

[1] V. Korepin and P. Zinn-Justin, e-print cond-mat/0004250. [7] A. G. Izergin, D. A. Coker, and V. E. Korepin, J. Phys.2A,
[2] W. Jockush, J. Propp, and P. Shor, e-print math.CO/9801068. 4315(1992.
[3] H. Cohn, N. Elkies, and J. Propp, Duke Math.8b, 117 [8] K. Sogo, J. Phys. Soc. Jp62, 6 (1993; 62, 1987(1993.

(1996. [9] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, and
[4] R. Kenyon, “The planar dimer model with boundary: a sur- A. Orlov, Nucl. Phys. B357, 565 (1991).
vey,” report (http:/ltopo.math.u-psud.frikenyon/  [10] M. Adler and P. van Moerbeke, Duke Math.8D, 863(1995;
papers.html solvint/9706010; math.C0O/;9912143.
[5] R. J. Baxter,Exactly Solved Models in Statistical Mechanics [11] A. M. Vershik and S. V. Kerov, Sov. Math. DoklL8, 527
(Academic, San Diego, CA, 1982 (1977).

[6] A. G. Izergin, Dokl. Akad. Nauk(SSSR 297, 331 (1987 [12] M. R. Douglas and V. A. Kazakov, Phys. Lett. B9 219
[Sov. Phys. Dokl32, 878(1987]. (1993.



3418 P. ZINN-JUSTIN PRE 62

[13] V. A. Kazakov, M. Staudacher, and T. Wynter, Commun. [17] A. Borodin, A. Okounkov, and G. Olshanski, math.CO/

Math. Phys.177, 451(1996); 179 235(1996; Nucl. Phys. B 9905032.

471, 309 (1996; |. Kostov, M. Staudacher, and T. Wynter, [18] E. Brezin and V. Kazakov, e-print math-ph/9909009.

Commun. Math. Physl191, 283(1998. [19] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venak-
[14] V. Kazakov and P. Zinn-Justin, Nucl. Phys5B6, 647(1999. ides, and X. Zhou, Commun. Pure Appl. Math2, 1491
[15] J. Baik, P. Deift, and K. Johansson, J. Am. Math. Sb2. (1999.

1119(1999. [20] G. Bonnet, F. David, and B. Eynard, e-print

[16] K. Johansson, e-print math.C0O/9906120. cond-mat/0003324.



