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Slow dynamics of Ising models with energy barriers
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Using Monte Carlo simulations we study the dynamics of three-dimensional Ising models with nearest-,
next-nearest-, and four-spiplaquette interactions. During coarsening, such models develop growing energy
barriers, which leads to very slow dynamics at low temperature. As already reported, the model with only the
plaquette interaction exhibits some of the features characteristic of ordinary glasses: strong metastability of the
supercooled liquid, a weak increase of the characteristic length under cooling, stretched-exponential relaxation,
and aging. The addition of two-spin interactions, in general, destroys such behavior: the liquid phase loses
metastability and the slow-dynamics regime terminates well below the melting transition, which is presumably
related with a certain corner-rounding transition. However, for a particular choice of interaction constants,
when the ground state is strongly degenerate, our simulations suggest that the slow-dynamics regime extends
up to the melting transition. The analysis of these models leads us to the conjecture that in the four-spin Ising
model domain walls lose their tension at the glassy transition and that they are basically tensionless in the
glassy phase.

PACS numbes): 05.50-+q

[. INTRODUCTION disorder [3]. On the other hand, we do not expect the
quenched disorder to be a relevant factor in conventional

A lot of effort has been devoted in the past twenty yearsgglasses because models with strong quenched disorder are
to understanding the behavior of various glassy and disomnlikely to exhibit periodic solutiongwhich are needed for
dered systemfgl]. Such systems, which include conventional the model to be in the crystal phas®ecently, various lat-
glasses, spin glasses, amorphous semiconductors, and méige models, which do not contain quenched disorder, were
others are of great importance both experimentally and thecstudied which have some features of conventional glasses.
retically. However, despite intensive research, our underSome of these models are infinite-dimensional and their ther-
standing of such systems is still limited. For example, evermodynamical properties can be found exa¢#ly. There are
the very nature of the glassy phase in spin glasses is still also finite dimensional models whose dynamics exhibit some
very controversial issu2—4]. Although they are much more glassy behaviof8,9].
abundant, conventional glasses seem to pose an even greateiRecently, it has been shown that the three dimensional
puzzle. Why do supercooled liquids fall out of equilibrium at Ising model with the four-spir(plaquette interaction also
a more or less well defined temperature? Why do they colexhibits some glassy featur¢$0—14. This model under-
lapse into the glassy state when the cooling is fast enougfoes a first-order phase transition between low-temperature
and into the crystalline phase when the cooling is slowdcrysta) and high-temperatureliquid) phases. However,
These fundamental questions still await definitive answerswhen conventional simulation techniques are used, the tran-
One of the important problems in physics of conventionalsition is screened by a very strong metastability during heat-
glasses is the continuing lack of a satisfactory microscopiing as well as cooling. For temperatures lower than the limit
model of such systems. In this respect the situation is mucbf metastability of the liquid phase, the model has a very
better for spin glasses where it is commonly accepted thatlow coarsening dynamics. In addition, the zero-temperature
models containing quenched disorder correctly describeharacteristic length increases very slowly as a function of
physics of such systems. Lattice realizations of such modelthe inverse cooling rate, which is also an expected property
are a particularly valuable source of information about spirof glasses. Further evidence of the glassy behavior in this
glasses[5]. The most realistic models of conventional model has been recently reported by Swiftal. [13]. They
glasses, so-called off-lattice models, still constitute an enorhave shown that the glassy transition coincides with the di-
mous computational challenge although progress in this fiels¢ergence of a certain relaxation time and that aging proper-
is also being madgs]. ties of the model are also typical of glassy systems. They

A model of conventional glasses should be capable ohave also observed that some time correlation functions may
describing(at leas}t three phases: liquid, glass, and crystal.decay as stretched exponentials.
The actual state of the system should be determined by con- These results strongly suggest that the model with four-
trol paramete(s) (e.g., temperatujeand possibly also its his- spin interactions might describe important aspects of the
tory. Since the glass is regarded as a liquid trapped duringlassy transition. It would be interesting to find which prop-
the falling out of equilibrium, the model should possess suclerties of this model are responsible for such a behavior. It has
a trapping mechanism. In spin glasses the trapping mech&een already suggestgtD—17 that the trapping mechanism
nism is related with energy barriers generated by quenchenhight be related with diverging energy barriers. These bar-
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riers would arise in this model basically due to the samdlipping coplanar spins does not change the energy. Thus any
mechanism as in a model with competing nearest-neighbaronfiguration obtained from the ferromagnetic configuration
and next-nearest-neighbor interactions examined by Shoigy flipping coplanar spins is also a ground-state configura-
et al.[8] (the SS model for shortHowever, the behavior of  tion. Moreover, any combination of such coplanar flippings
the SS model is not fU”y consistent with our COﬂCEptiOﬂ Of(even for Crossing p|an)33joes not increase the energy.
glasses since it orders too quickly under cooliy It was  Simple analysis along these lines shows that for the model
also suggested that the difference in the behavior of the Sgn the lattice of the linear sizé the degeneracy of the
and four-spin models might be related with the degeneracyround state is equal to®2 Although ground state of this
of the ground state in the four-spin model. This degeneracynodel is strongly degenerate its ground-state entropy is zero.
might lead to some entropy barriers, which would be respon-  The model undergoes a first-order thermodynamic transi-
sible for the strong metastability of the liquid phase. tion at T=T,~3.6 which is, however, screened by very
In the present paper, using Monte Carlo simulations, Westrong metastabilitj11]. As a result, when heated or cooled,
examine a certain class of three-dimensional Ising modelge transition observed in simulations is shiftedrte 3.9 or
which generate energy barriers. These models are describgd-3 4, respectively. Transitions at these spinodals are ac-
by the following Hamiltonian: companied by peaks in the specific heat.

The low-temperature spinoddl~ 3.4 seems to coincide
with the glassy transition. Below this temperature the model
exhibits very slow coarsening dynamidsl] as well as aging

(1) properties which are characteristic of glassy systEt8s A
certain characteristic time, which governs the relaxation of
In the above expressiofi..) and ({---)) denote pairs of €nergy-energy correlation functions, also seems to diverge at
nearest and next-nearest neighbors, respectively, artbis temperatur¢l3]. In addition, the behavior of the model
[i,j,k,1] stands for summation over elementary plaquettesunder continuous cooling supports the glassy-transition inter-
In general, these models have double degenerate ground st@@tation of this temperatufd 2].
and our simulations suggest that the dynamical properties in
this case are similar to the SS model. However, when the
interaction constants are such that the model has a strongly Ill. GONIHEDRIC ISING MODEL
degenerate ground statgonihedric case the dynamical
properties change. Simulations suggest that two types of dy-
namical behavior appear. In the first type the model behaves It has already been suggested that the slow dynamics of
similarly to the already described four-spin model. In thethe four-spin model might be related with energy barriers
second type, the glassy transition appears to coincide witgenerated in that mod§l0,11]. These barriers arise due to
the thermodynamic transition. the shape dependence of the energy of excitations: it is not
Such behavior gives rise to the following questions: whyonly the size of an excitation which determines its energy but
a glassy transition appears only in certain systems with slovalso its shape. Such shape dependence appears also in the SS
dynamics and what is its nature. Analysis of the ground-statenodel.
structure and thermodynamic properties of models studied Are there any other models which could have a similar
here prompts the following conjecture, which, if confirmed, property? In our opinion, the shape dependence of energy of
would constitute an important result of the present paper: aéxcitations should be rather a robust feature of Ising-type
the glassy transition the domain walls lose their surface tenmodels. It is only in some specific cases, like the standard
sion, and, as a result, the glassy phase is composed of tenearest-neighbor case, when this energy du¢slepend on
sionless domains. Although based on the analysis of Isinghe shape of an excitation. In particular, energy barriers ap-
models, we hope that such an interpretation might shed sonmear in model(1). The Hamiltonian of this model is quite
light on the nature of the glassy transition in more realisticgeneral and it includes both the four-spin model and the
systems also. Moreover, such an interpretation of glassghoreet al’s model (J,=0,J,>0,J,<0).
phase is in accord with some recent hypotheses concerning In the present section we examine a class of models de-
the nature of the glassy phase in spin glagdgs scribed by this Hamiltonian, namely gonihedric models
In Sec. Il we discuss briefly the properties of the four-spin[16,17. These models correspond to the following choice of
model. In Sec. Il we present the results of our simulationsinteraction constantsd; =2k,J,=—k/2 and J,=3(k—1).
for the gonihedric case. The case of the doubly-degenerat®onihedric models have a strongly degenerate ground state.
ground state is discussed in Sec. IV. Section V contains & addition to the ferromagnetic ground state any configura-
summary of our results and some arguments on the nature ¢bn obtained by flipping coplanar spins also minimizes the
the glassy transition. Hamiltonian. Any combination of such flips does not in-
creases the energy, provided that flipping planes do not
cross. As a particular example of such a ground state we can
mention lamellar configurations where, e.g., every second
This model corresponds to the cake=J,=0,J,=1, and plane of spins is flipped. Although lamellar structures con-
has been already studied using cluster variational methostitute a legitimate ground state, they do not survive at finite
[14] and Monte Carlo simulationsl5,10-13. temperature as shown by Cirilkt al. using the cluster varia-
Clearly, the ferromagnetic configuration is a ground-stateional method 14]. We will return to this feature in the last
configuration of this model. It is also easy to realize thatsection.

H=-3,> SS-J, > SS-J, > SSSS.
{0 {1 [i,],k,1]

A. Ground state and thermodynamics

II. ISING MODEL WITH PLAQUETTE INTERACTIONS
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scale. Simulations were made for the system &ize100 andT
=1.0, 1.3, 1.6, and 1.Grom bottom to the top The dotted line has FIG. 2. The characterisitc timeneeded for the inversion of the
a slope 0.5. cubic excitation of the sizé& as a function ol for the gonihedric
case k=2). Simulations were made far=1.9 (O), 2.1 (@) and
2.3 (V). The dotted line has a slope corresponding-tel 2.

For k=0 the gonihedric model is equivalent to the four-
spin Ising model. In this case the model has an additional .
symmetry which implies a larger degeneracy of the grour;\igirﬁ]y excess we can employ the frequently used relation
state since the flipping planes can now cross. As a result '
obtain that antiferromagnetic configurations belong to the | ~1/SE. 2)
ground state. Further analysis of differences betweerkthe
=0 and thek# 0 cases is postponed to the last section.  With this identification from Fig. 1 we infer that for all the

Gonihedric models are expected to undergo a thermodyexamined temperatures the asymptotic increadeissmuch
namic transition which fok<Kk, is of first order and fok  slower thart¥’2 At the end of this section we will argue that
>k, is of second order. Only very rough estimations ofthe relation(2) most likely does not hold for this model and
ky(~0.5) are known[14]. In this section we analyze dy- Fig. 1 actually suggest that the increasel @ slower than
namical properties of the gonihedric model for 2, i.e., for tY4 Since there are no theoretical arguments for such a slow
a value with a continuous transition. Our results were ob&lgebraic increase in our opinion it is quite plausible that
tained using a standard Monte Carlo method with randon@Symptotically we havé~Int. Such a slow increase ofis

sequential update using Metropolis algorithb8]. Some de- most likely du_e to energy barriers. . .
tails can be found elsewhefe1,12. An alternative technigue to examine the dynamics of the

To find the thermodynamic transitions we measured th§odel is to measure characteristic times of certain processes.

specific heat. Our simulations, which were made for variou hor.example, c;ne Cabf? n?.iasure_ttht(.e av?r:::ﬁ_e ﬁmﬁdgd f%r. h
linear sizesL up to L=40, locate the peak &f,~2.35, e inversion of a cubic like excitation. In this method, whic

was already applied to similar mod€l8,11], one prepares

which is a good agreement with the cluster variational ) o e
method estimatiof14]. The absence of hysteresis effectsf[he system of the size with fixed boundary conditions and

confirms that the transition af=T, is continuous.(Al- interior spins which are opposite to the boundary spins. One

though the nature of the thermodynamic transition in goni-ﬁgfi(:tiiSthggfgi;v?;n?n“gﬁ’ tg}%gglsfrrgg '#]gndvsr;égiénttﬁé
hedric models is an interesting and still open problem, its pINs. P 9

further analysis is not an objective of the present paper. comer rounding .tran5|.t|on_r . . which !ndlcat_es a _rela
tively fast dynamicgnaive inversion of this relation givds

~t%2), On the other hand, in the SS model below the corner
rounding transition and in the four-spin modelincreases
An important indication of glassy dynamics is a slow evo-much faster, presumably exponentially, with
lution of a random quench. For usual models with noncon- We measured the time needed for magnetization of the
servative dynamics one expedts9d] that the characteristic interior spins to reach the equilibrium value at a given tem-
length| increases with time as|~t'2. However, in glassy perature and the results are shown in Fig. 2. These results
systemd should increase much more slowly and presumablyshow thatr even at the highest examined temperature in-
only logarithmically with time (~Int). Such a behavior creases faster than®. This is a potential indication of an
most likely appears in the SS model and in the four-spinexponential increaser~a-(a>1) in the entire low-
model. In the following we present the results of our simu-temperature phase.
lations of the evolution of quenches in tke-2 model. We Additional confirmation of such behavior is obtained from
measured the excess ener@=E—E.., whereE, is the  simulations of this model under the continuous cooling.
equilibrium energy. Our results for temperatufes T, are  Similarly to simulations of the four-spin modEgl2], we re-
shown in Fig. 1. To relate the characteristic length with thelax the random sample at a temperatdig>T,. and then

B. Dynamics
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FIG. 3. The energf as a function of temperature férom the FIG. 5. A single-layer snapshot of a Monte Carlo configuration
top) r= 0.02, 0.002, 00002, and 0.00002. The ground state energy; the end of the cooling process. Simulations were made. for
for k=2 equals—4.5. =50 andr=0.001.

continuously lower the temperature according to the formula _ ) )
T(t)=To—rt, wherer is the cooling rate. When the tem- A direct confirmation of the assumption about the structure

perature is reduced below the critical poiptthe growth of  ©Of the configuration at the of the cooling process comes from
order begins. The slower the cooling the more ordered is th¥isual inspection. In Fig. 5 we can see an example of single-
system at the end of the cooling , i.e., et 0 (see Fig. 3  layer configuration. One can clearly see cubiclike., non--
To quantify the zero-temperature order we measure the exXough domains whose energy scales linearly with their size.
cess energyE at T=0 and the result is shown in Fig. 4. USIng the. rglat|0r(3) Fig. 4 shows that. the.zero-temperature
Using the relation(2) this data suggests that asymptoti- characteristic length scales as** which is much slower
cally I~r~Y2 Such a relation, which indicates that the than in the two-spin Ising model but faster than in the four-
growth of order is relatively fast, holds for the two-spin Ising SPin model. _ _
model [20] and also for the SS modé8]. However, this In this section we used three independent techniques to
conclusion is based on the validity of the relati®) and, ~Probe the dynamics of the gonihedric model in the case of
similarly to the four-spin model11], we want to argue that Ccontinuous thermodynamic transitida=2. Domain coars-
this relation does not hold. Our argument refers to the fol-8Ning suggest that the model has a slow dynamics up to, at
lowing property of all gonihedric models: the energy of cu-€ast, the temperatufe=1.9 (T.~2.35). An analysis of the
biclike excitations scales as their linear sizd21]. Let us  Size dependence of the characteristic timesuggests that
recall that in two-spin Ising model, this energy scales as théubiclike domains remain nonrough at least up to the tem-
area of the excitation¢L2). Provided that the final configu- PeratureT =2.1. Thus a slow-dynamics regime is most likely
ration is composed of such domains of the dizand using a extended up to this temperature. Since this is very close to

simple dimensional argumefit2] we obtain the critical point is it not unlikely that a slow-dynamics re-
gime actually covers the whole low-temperature phase. The
1 behavior of the model under cooling confirms such a sce-

I~ @ ©) nario: if there would be a certain temperatirg<T. such
that for To<T<T, the dynamics would be fast then for the

0 slow cooling the growth of order would be dominated by the
time spent in this temperature interval and we would have
I~r Y2 Such a scenario takes place in the SS mddgl
The growth of order in ouk=2 model is much slowel
44 ~r~ Y and excludes the existence of such a temperaftyre
(unless it is very close td . and our simulations are not
l0g,(9E) sufficient to detect the true asymptotic behayidet us also
notice that Shoret al. also analyzed certain SOS model for
. which (by necessityT;=T.. Using some scaling arguments
they have shown that for this model one should have
~r~Y4 which is in agreement with our numerical result.

-3 T T T IV. OFF-GONIHEDRIC ISING MODEL
-5 -4 -3 -2 -1

l0g,4(r)

The gonihedric case corresponds to a certain choice of
interaction constants in the Hamiltonidd). As we have

FIG. 4. The excess energ}E as a function of in the log-log  noted this choice has important implications: the ground
scale. The dotted line has slope 0.45. state is strongly degenerate and energy of excitations scale as



3408 A. LIPOWSKI, D. JOHNSTON, AND D. ESPRIU PRE 62

6 0 Ter Te T
5 © (@)
Ing(‘[) <o
4 o 0 Te=Te) T
(o4 A :
34 o b ®)
2 g o 0 Tg TC T
I3 A 3 T T T
14 A ©
o
8 FIG. 7. Three types of dynamical behavior found for madgl

0 4= . ' . (a) Double-degenerate ca$8S model; (b) the gonihedric model

0.0 0.5 1.0 1.5 2.0 with continuous thermodynamic phase transitie); the four-spin

log, (L) model(and possibly the gonihedric model with discontinuous ther-

modynamic phase transitipn

FIG. 6. The characteristic timeneeded for the inversion of the
cubic excitation of the size. as a function ofL for the off-  Most likely this is an important factor for determining the
gonihedric case. Simulations were madeTer2 (¢ ), 3(A), 6 dynamical behavior of models also.
(D)Z, and 8 ©). The dotted line has a slope correspondingrto
~L-.
their linear size and not as their area. In the present section V. NATURE OF THE GLASSY PHASE
we examine what is going on when the interaction constants In the present paper we have examined the dynamics of
of model (1) deviate from the gonihedric ca§22]. models described by the Hamiltoni&éh). Depending on the

As a particular example we choode=6, J,=—-1, J, interaction constants we can distinguish three types of be-
=1/2, which differs from the gonihedric case=2 by a  havior which are schematically shown in Fig. 7.
modified nearest-neighbor couplidg. Such a model has a (a) Double-degenerate ground stathis, the most typi-
double-degeneratdéferromagnetic ground state and our cal situation, appears in the off-gonihedric model studied in
rough estimation of the critical temperatureTis~12.5. previous section and also in the SS model whose dynamics

To examine the dynamics of this model we used the sambas been already examined in great def&]sThe dynamics
techniques as described in the previous section. First, wef the model a low temperature3 €T.) has two regimes
examined the coarsening behavior of this model. At low temseparated by a certain temperatiige. For T<T,, the model
perature(up to T~3.0) we observed a very slow decrease ofhas slow dynamics with most likely logarithmically increas-
the energy toward the ground state value. Our data, whicing characteristic length Such behavior is related with the
we do not present suggests that for such temperaturest  fact that at such temperature the model is below the corner-
likely increases logarithmically with time. However, above roughening transitiofi23]. As a result, an evolving quench
this temperature the dynamics becomes much faster and prdevelops complicated structures of cubiclike excitations
sumably the characteristic length increase$-as"2. which are very stable and effectively block further coarsen-

Such behavior is confirmed by the measurements of theéng dynamicq24]. At T=T the model undergoes the cor-
characteristic timer defined in the same way as in the pre- ner rounding transition and the blocking mechanism is no
vious section. Results of simulations are shown in Fig. 6longer effective. As a result the fagtandargl dynamics is
They indicate that for temperatulle=6 and 8 the character- restored.
istic time 7 increases ak? similarly to the SS model above (b) Gonihedric case with continuous transitiom this
the corner rounding transition. case the entire low-temperature phase has slow dynamics,

The above results indicate that the dynamical behavior oivhose origin is similar to the cas@). Namely, a quench
the model is very similar to the SS model. Namely, in thedevelops cubiclike structures which block further coarsening
low temperature regime the model has a slow dynamics andynamics. The degeneracy of the ground state seems to be
rapidly (faster thanlL?) increasing characteristic time. the most important difference between this and the off-
However, within the ordered phasee., for T<T,~12.5) gonihedric case. Thus, we relate the disappearance of the
there is also a high temperature regime where dynamics igorner-rounding transitiofor maybe its overlap withT.)
much faster. Presumably, in this regime the dynamics isvith the infinite degeneracy of the ground state.
similar to other nonconservative systems with scalar order (c) Four-spin modelAs we already mentioned, the four-
paramete19]. Similarity between the model examined in spin model undergoes a dynamic transition which exhibits a
this section and the SS model is in our opinion related withot of similarities with the glassy transition. It might be in-
the structure of the ground state: both models have onlyeresting to examine whether such a behavior appears only at
double degeneratéerromagnetit ground states. It is well k=0 or persists also for some oth@mall values ofk.
known in the statistical mechanics that degeneracy of the Glassy transition: loss of surface tensioWhy does this
ground state plays a very important role in determining thetransition exist in the four-spin case and not in the other
thermodynamic behavior of mode(s.g., critical behavigr ~ cases? It was already suggested that the difference between
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_|_ such configurations affect coarsening dynamics or, in other
words, are they spontaneously generated in sufficient
amounts? In our opinion the answer to this question is nega-
tive. Our first argument comes simply from the visual in-
spection of the snapshot configuration. In Fig. 5 one can see
relatively large ferromagneticlike domains but there is no
indication of lamellar ones. The second argument comes
from the cluster variational method calculatiddg] by Cir-
illo et al. who have shown that the lamellar structures are
equivalent(i.e., of the same energyo the ferromagnetic one
_|_ + _I_ _I_ but only for the ground state. At nonzero temperatures they
are always metastable. These arguments show why such con-
) ) ) figurations are not spontaneously generated during the evo-
FIG. 8. A two-dimensinal (44) lamellar domain surrounded lution of the quench. They imply that fé=2 the dominant

by Fhe ferromagneyc domain. .The EXCESS energy comes only_fro omain walls which exist at the late-time evolution of the
horizontal boundaries of domain wall and thus scales as the size g .
ench are tensionless.

. . . . . u
the int d . In the three-d | th . .
Wsullg ir(ge Z;nzlnn arr;a g"f mizﬁor'?f:qz;a case he excess energﬂ/ On the other hand, for the four-spin model, antiferromag-
' netic structures are fully equivalent to the ferromagnetic
the four-spin model and the SS model is related to the de2nes- In the liquid phase both ferromagnetic and antiferro-

generacy of the ground stdt&2]. However, the above analy- magnetic domains are intertwinned and form very compli-
sis of the gonihedric model witk=2 shows that the infinite Cated structures. As already notidei®], tensionful domains

degeneracy of the ground state is not sufficient for the modefSually have lowest energy barriers and the system can rela-
to have a glassy transitidof course, we limit our analysis to t|vely easily remove the interior domains. On the contrary,
models which can generate diverging energy barriers angpnsmnless domain walls have large energy barrl_ers_ and their
thus have slow coarsening dynamic#/hy does the gonihe- dynam!cs is much slower. It means that in the liquid pha_lse
dric casek=2 differ from thek=0 case(i.e., the four-spin dynamics is dominated by dyngm|cs of tenglonful domains
mode)? Both models have strongly degenerate ground stat@nd thus resembles the dynamics of two-spin Ising models.

The degeneracy equalé2for k=0 and 2 for k=2. Since It is in our opinion very likely that upon Iowerjng the.
in both cases degeneracy increase exponentially with the lifémpPerature the system will undergo a phase transition which

ear system size this difference does not seem important. |Will eliminate tensionful domain walls. Below that transition

our opinion, however, the difference in the dynamical behayi"€ energy of the system would be located mainly in tension-

ior is related with the ground state structure of these modeld€SS domain walls. It means that at this transition the
As we already mentioned, fok=0 the flipping planes, antiferromagnetic-ferromagnetic symmetry of the model

which generate various ground-state configurations mighf/0uld be spontaneously broken. In other words, at this tran-

cross. As a result, in addition to ferromagneticlike configu-Sition the system selects a dominant type of domains,
rations we obtain antiferromagneticlike ones. For k0 whether ferromagnetic or antiferromagnetic. This type of

such crossings are not allowed and only ferromagneticlikéymmetry breaking is an essential ingredient of the transition

configurations are possibleve consider lamellar configura- Which we tentatively identify as the glassy transition.
tions also as ferromagnetic-like Finally, let us note that the idea that the glassy phase

This difference has important implications. Let us nc)teconsists of a complicated mixture of tensionless domain

that for the four-spin model in addition to tensionless domainVa!!S appeared recently in the contex of spin glaségsit

walls, which appear for example when a cubic ferromagneti(,sugg(aSt.S that, at least at the g_e(_)metrical Igvgl, .s.pin glas_ses
“up” domain is surrounded by “down” one, there are ten- and ordinary glasses might exhibit a lot of similarities. Their

sionful ones too. As an example of such a domain wall Wefurther explorations is, however, left as a future problem.

can consider an antiferromagnetic domain surrounded by fer-

romagnetic ond12]. At first sight it does not seem to be ACKNOWLEDGMENTS
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