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Slow dynamics of Ising models with energy barriers
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Using Monte Carlo simulations we study the dynamics of three-dimensional Ising models with nearest-,
next-nearest-, and four-spin~plaquette! interactions. During coarsening, such models develop growing energy
barriers, which leads to very slow dynamics at low temperature. As already reported, the model with only the
plaquette interaction exhibits some of the features characteristic of ordinary glasses: strong metastability of the
supercooled liquid, a weak increase of the characteristic length under cooling, stretched-exponential relaxation,
and aging. The addition of two-spin interactions, in general, destroys such behavior: the liquid phase loses
metastability and the slow-dynamics regime terminates well below the melting transition, which is presumably
related with a certain corner-rounding transition. However, for a particular choice of interaction constants,
when the ground state is strongly degenerate, our simulations suggest that the slow-dynamics regime extends
up to the melting transition. The analysis of these models leads us to the conjecture that in the four-spin Ising
model domain walls lose their tension at the glassy transition and that they are basically tensionless in the
glassy phase.

PACS number~s!: 05.50.1q
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I. INTRODUCTION

A lot of effort has been devoted in the past twenty ye
to understanding the behavior of various glassy and di
dered systems@1#. Such systems, which include convention
glasses, spin glasses, amorphous semiconductors, and
others are of great importance both experimentally and th
retically. However, despite intensive research, our und
standing of such systems is still limited. For example, ev
the very nature of the glassy phase in spin glasses is s
very controversial issue@2–4#. Although they are much more
abundant, conventional glasses seem to pose an even g
puzzle. Why do supercooled liquids fall out of equilibrium
a more or less well defined temperature? Why do they
lapse into the glassy state when the cooling is fast eno
and into the crystalline phase when the cooling is slo
These fundamental questions still await definitive answ
One of the important problems in physics of conventio
glasses is the continuing lack of a satisfactory microsco
model of such systems. In this respect the situation is m
better for spin glasses where it is commonly accepted
models containing quenched disorder correctly desc
physics of such systems. Lattice realizations of such mo
are a particularly valuable source of information about s
glasses @5#. The most realistic models of convention
glasses, so-called off-lattice models, still constitute an en
mous computational challenge although progress in this fi
is also being made@6#.

A model of conventional glasses should be capable
describing~at least! three phases: liquid, glass, and cryst
The actual state of the system should be determined by
trol parameter~s! ~e.g., temperature! and possibly also its his
tory. Since the glass is regarded as a liquid trapped du
the falling out of equilibrium, the model should possess su
a trapping mechanism. In spin glasses the trapping me
nism is related with energy barriers generated by quenc
PRE 621063-651X/2000/62~3!/3404~7!/$15.00
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disorder @3#. On the other hand, we do not expect t
quenched disorder to be a relevant factor in conventio
glasses because models with strong quenched disorde
unlikely to exhibit periodic solutions~which are needed for
the model to be in the crystal phase!. Recently, various lat-
tice models, which do not contain quenched disorder, w
studied which have some features of conventional glas
Some of these models are infinite-dimensional and their th
modynamical properties can be found exactly@7#. There are
also finite dimensional models whose dynamics exhibit so
glassy behavior@8,9#.

Recently, it has been shown that the three dimensio
Ising model with the four-spin~plaquette! interaction also
exhibits some glassy features@10–12#. This model under-
goes a first-order phase transition between low-tempera
~crystal! and high-temperature~liquid! phases. However
when conventional simulation techniques are used, the t
sition is screened by a very strong metastability during he
ing as well as cooling. For temperatures lower than the li
of metastability of the liquid phase, the model has a ve
slow coarsening dynamics. In addition, the zero-tempera
characteristic length increases very slowly as a function
the inverse cooling rate, which is also an expected prop
of glasses. Further evidence of the glassy behavior in
model has been recently reported by Swiftet al. @13#. They
have shown that the glassy transition coincides with the
vergence of a certain relaxation time and that aging prop
ties of the model are also typical of glassy systems. Th
have also observed that some time correlation functions m
decay as stretched exponentials.

These results strongly suggest that the model with fo
spin interactions might describe important aspects of
glassy transition. It would be interesting to find which pro
erties of this model are responsible for such a behavior. It
been already suggested@10–12# that the trapping mechanism
might be related with diverging energy barriers. These b
3404 ©2000 The American Physical Society
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PRE 62 3405SLOW DYNAMICS OF ISING MODELS WITH ENERGY . . .
riers would arise in this model basically due to the sa
mechanism as in a model with competing nearest-neigh
and next-nearest-neighbor interactions examined by S
et al. @8# ~the SS model for short!. However, the behavior o
the SS model is not fully consistent with our conception
glasses since it orders too quickly under cooling@8#. It was
also suggested that the difference in the behavior of the
and four-spin models might be related with the degener
of the ground state in the four-spin model. This degener
might lead to some entropy barriers, which would be resp
sible for the strong metastability of the liquid phase.

In the present paper, using Monte Carlo simulations,
examine a certain class of three-dimensional Ising mod
which generate energy barriers. These models are desc
by the following Hamiltonian:

H52J1(
^ i , j &

SiSj2J2 (
^^ i , j &&

SiSj2J4 (
[ i , j ,k,l ]

SiSjSkSl .

~1!

In the above expression̂...& and ^^•••&& denote pairs of
nearest and next-nearest neighbors, respectively,
@ i , j ,k,l # stands for summation over elementary plaquet
In general, these models have double degenerate ground
and our simulations suggest that the dynamical propertie
this case are similar to the SS model. However, when
interaction constants are such that the model has a stro
degenerate ground state~gonihedric case!, the dynamical
properties change. Simulations suggest that two types of
namical behavior appear. In the first type the model beha
similarly to the already described four-spin model. In t
second type, the glassy transition appears to coincide
the thermodynamic transition.

Such behavior gives rise to the following questions: w
a glassy transition appears only in certain systems with s
dynamics and what is its nature. Analysis of the ground-s
structure and thermodynamic properties of models stud
here prompts the following conjecture, which, if confirme
would constitute an important result of the present paper
the glassy transition the domain walls lose their surface
sion, and, as a result, the glassy phase is composed of
sionless domains. Although based on the analysis of Is
models, we hope that such an interpretation might shed s
light on the nature of the glassy transition in more realis
systems also. Moreover, such an interpretation of gla
phase is in accord with some recent hypotheses concer
the nature of the glassy phase in spin glasses@4#.

In Sec. II we discuss briefly the properties of the four-sp
model. In Sec. III we present the results of our simulatio
for the gonihedric case. The case of the doubly-degene
ground state is discussed in Sec. IV. Section V contain
summary of our results and some arguments on the natu
the glassy transition.

II. ISING MODEL WITH PLAQUETTE INTERACTIONS

This model corresponds to the caseJ15J250,J451, and
has been already studied using cluster variational met
@14# and Monte Carlo simulations@15,10–13#.

Clearly, the ferromagnetic configuration is a ground-st
configuration of this model. It is also easy to realize th
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flipping coplanar spins does not change the energy. Thus
configuration obtained from the ferromagnetic configurat
by flipping coplanar spins is also a ground-state configu
tion. Moreover, any combination of such coplanar flippin
~even for crossing planes! does not increase the energ
Simple analysis along these lines shows that for the mo
on the lattice of the linear sizeL the degeneracy of the
ground state is equal to 23L. Although ground state of this
model is strongly degenerate its ground-state entropy is z

The model undergoes a first-order thermodynamic tra
tion at T5Tc;3.6 which is, however, screened by ve
strong metastability@11#. As a result, when heated or coole
the transition observed in simulations is shifted toT;3.9 or
T;3.4, respectively. Transitions at these spinodals are
companied by peaks in the specific heat.

The low-temperature spinodalT;3.4 seems to coincide
with the glassy transition. Below this temperature the mo
exhibits very slow coarsening dynamics@11# as well as aging
properties which are characteristic of glassy systems@13#. A
certain characteristic time, which governs the relaxation
energy-energy correlation functions, also seems to diverg
this temperature@13#. In addition, the behavior of the mode
under continuous cooling supports the glassy-transition in
pretation of this temperature@12#.

III. GONIHEDRIC ISING MODEL

A. Ground state and thermodynamics

It has already been suggested that the slow dynamic
the four-spin model might be related with energy barrie
generated in that model@10,11#. These barriers arise due t
the shape dependence of the energy of excitations: it is
only the size of an excitation which determines its energy
also its shape. Such shape dependence appears also in t
model.

Are there any other models which could have a simi
property? In our opinion, the shape dependence of energ
excitations should be rather a robust feature of Ising-ty
models. It is only in some specific cases, like the stand
nearest-neighbor case, when this energy doesnot depend on
the shape of an excitation. In particular, energy barriers
pear in model~1!. The Hamiltonian of this model is quite
general and it includes both the four-spin model and
Shoreet al.’s model (J450,J1.0,J2,0).

In the present section we examine a class of models
scribed by this Hamiltonian, namely gonihedric mode
@16,17#. These models correspond to the following choice
interaction constants:J152k,J252k/2 and J45 1

2 (k21).
Gonihedric models have a strongly degenerate ground s
In addition to the ferromagnetic ground state any configu
tion obtained by flipping coplanar spins also minimizes t
Hamiltonian. Any combination of such flips does not i
creases the energy, provided that flipping planes do
cross. As a particular example of such a ground state we
mention lamellar configurations where, e.g., every sec
plane of spins is flipped. Although lamellar structures co
stitute a legitimate ground state, they do not survive at fin
temperature as shown by Cirilloet al.using the cluster varia-
tional method@14#. We will return to this feature in the las
section.
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3406 PRE 62A. LIPOWSKI, D. JOHNSTON, AND D. ESPRIU
For k50 the gonihedric model is equivalent to the fou
spin Ising model. In this case the model has an additio
symmetry which implies a larger degeneracy of the grou
state since the flipping planes can now cross. As a resul
obtain that antiferromagnetic configurations belong to
ground state. Further analysis of differences between thk
50 and thekÞ0 cases is postponed to the last section.

Gonihedric models are expected to undergo a thermo
namic transition which fork,ktr is of first order and fork
.ktr is of second order. Only very rough estimations
ktr(;0.5) are known@14#. In this section we analyze dy
namical properties of the gonihedric model fork52, i.e., for
a value with a continuous transition. Our results were
tained using a standard Monte Carlo method with rand
sequential update using Metropolis algorithm@18#. Some de-
tails can be found elsewhere@11,12#.

To find the thermodynamic transitions we measured
specific heat. Our simulations, which were made for vario
linear sizesL up to L540, locate the peak atTc;2.35,
which is a good agreement with the cluster variatio
method estimation@14#. The absence of hysteresis effec
confirms that the transition atT5Tc is continuous.~Al-
though the nature of the thermodynamic transition in go
hedric models is an interesting and still open problem,
further analysis is not an objective of the present paper.!

B. Dynamics

An important indication of glassy dynamics is a slow ev
lution of a random quench. For usual models with nonc
servative dynamics one expects@19# that the characteristic
length l increases with timet as l;t1/2. However, in glassy
systemsl should increase much more slowly and presuma
only logarithmically with time (l; ln t). Such a behavior
most likely appears in the SS model and in the four-s
model. In the following we present the results of our sim
lations of the evolution of quenches in thek52 model. We
measured the excess energydE5E2E` , whereE` is the
equilibrium energy. Our results for temperaturesT,Tc are
shown in Fig. 1. To relate the characteristic length with

FIG. 1. The excess energydE as a function oft in the log-log
scale. Simulations were made for the system sizeL5100 andT
51.0, 1.3, 1.6, and 1.9~from bottom to the top!. The dotted line has
a slope 0.5.
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energy excess we can employ the frequently used rela
@8,11#

l;1/dE. ~2!

With this identification from Fig. 1 we infer that for all the
examined temperatures the asymptotic increase ofl is much
slower thant1/2. At the end of this section we will argue tha
the relation~2! most likely does not hold for this model an
Fig. 1 actually suggest that the increase ofl is slower than
t1/4. Since there are no theoretical arguments for such a s
algebraic increase in our opinion it is quite plausible th
asymptotically we havel; ln t. Such a slow increase ofl is
most likely due to energy barriers.

An alternative technique to examine the dynamics of
model is to measure characteristic times of certain proces
For example, one can measure the average timet needed for
the inversion of a cubic like excitation. In this method, whi
was already applied to similar models@8,11#, one prepares
the system of the sizeL with fixed boundary conditions and
interior spins which are opposite to the boundary spins. O
expects that after some time, the system will invert the in
rior spins. For a two-spin Ising model or SS model above
corner rounding transition,t;L2, which indicates a rela-
tively fast dynamics~naive inversion of this relation givesl
;t1/2). On the other hand, in the SS model below the cor
rounding transition and in the four-spin modelt increases
much faster, presumably exponentially, withL.

We measured the time needed for magnetization of
interior spins to reach the equilibrium value at a given te
perature and the results are shown in Fig. 2. These res
show thatt even at the highest examined temperature
creases faster thanL2. This is a potential indication of an
exponential increaset;aL(a.1) in the entire low-
temperature phase.

Additional confirmation of such behavior is obtained fro
simulations of this model under the continuous coolin
Similarly to simulations of the four-spin model@12#, we re-
lax the random sample at a temperatureT0.Tc and then

FIG. 2. The characterisitc timet needed for the inversion of the
cubic excitation of the sizeL as a function ofL for the gonihedric
case (k52). Simulations were made forT51.9 (s), 2.1 (h) and
2.3 (¹). The dotted line has a slope corresponding tot;L2.
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PRE 62 3407SLOW DYNAMICS OF ISING MODELS WITH ENERGY . . .
continuously lower the temperature according to the form
T(t)5T02rt , where r is the cooling rate. When the tem
perature is reduced below the critical pointTc the growth of
order begins. The slower the cooling the more ordered is
system at the end of the cooling , i.e., atT50 ~see Fig. 3!.
To quantify the zero-temperature order we measure the
cess energydE at T50 and the result is shown in Fig. 4.

Using the relation~2! this data suggests that asympto
cally l;r 21/2. Such a relation, which indicates that th
growth of order is relatively fast, holds for the two-spin Isin
model @20# and also for the SS model@8#. However, this
conclusion is based on the validity of the relation~2! and,
similarly to the four-spin model@11#, we want to argue tha
this relation does not hold. Our argument refers to the
lowing property of all gonihedric models: the energy of c
biclike excitations scales as their linear sizeL @21#. Let us
recall that in two-spin Ising model, this energy scales as
area of the excitation (;L2). Provided that the final configu
ration is composed of such domains of the sizeL and using a
simple dimensional argument@12# we obtain

l;
1

~dE!1/2
. ~3!

FIG. 3. The energyE as a function of temperature for~from the
top! r 5 0.02, 0.002, 00002, and 0.00002. The ground state en
for k52 equals24.5.

FIG. 4. The excess energydE as a function ofr in the log-log
scale. The dotted line has slope 0.45.
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A direct confirmation of the assumption about the struct
of the configuration at the of the cooling process comes fr
visual inspection. In Fig. 5 we can see an example of sing
layer configuration. One can clearly see cubiclike~i.e., non-
rough! domains whose energy scales linearly with their si
Using the relation~3! Fig. 4 shows that the zero-temperatu
characteristic length scales asr 21/4 which is much slower
than in the two-spin Ising model but faster than in the fo
spin model.

In this section we used three independent technique
probe the dynamics of the gonihedric model in the case
continuous thermodynamic transitionk52. Domain coars-
ening suggest that the model has a slow dynamics up to
least, the temperatureT51.9 (Tc;2.35). An analysis of the
size dependence of the characteristic timet suggests that
cubiclike domains remain nonrough at least up to the te
peratureT52.1. Thus a slow-dynamics regime is most like
extended up to this temperature. Since this is very close
the critical point is it not unlikely that a slow-dynamics re
gime actually covers the whole low-temperature phase.
behavior of the model under cooling confirms such a s
nario: if there would be a certain temperatureT0,Tc such
that for T0,T,Tc the dynamics would be fast then for th
slow cooling the growth of order would be dominated by t
time spent in this temperature interval and we would ha
l;r 21/2. Such a scenario takes place in the SS model@8#.
The growth of order in ourk52 model is much slowerl
;r 21/4 and excludes the existence of such a temperatureT0
~unless it is very close toTc and our simulations are no
sufficient to detect the true asymptotic behavior!. Let us also
notice that Shoreet al. also analyzed certain SOS model f
which ~by necessity! T05Tc . Using some scaling argumen
they have shown that for this model one should havl
;r 21/4, which is in agreement with our numerical result.

IV. OFF-GONIHEDRIC ISING MODEL

The gonihedric case corresponds to a certain choice
interaction constants in the Hamiltonian~1!. As we have
noted this choice has important implications: the grou
state is strongly degenerate and energy of excitations sca

gy
FIG. 5. A single-layer snapshot of a Monte Carlo configurati

at the end of the cooling process. Simulations were made foL
550 andr 50.001.
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3408 PRE 62A. LIPOWSKI, D. JOHNSTON, AND D. ESPRIU
their linear size and not as their area. In the present sec
we examine what is going on when the interaction consta
of model ~1! deviate from the gonihedric case@22#.

As a particular example we chooseJ156, J2521, J4
51/2, which differs from the gonihedric casek52 by a
modified nearest-neighbor couplingJ1. Such a model has a
double-degenerate~ferromagnetic! ground state and ou
rough estimation of the critical temperature isTc;12.5.

To examine the dynamics of this model we used the sa
techniques as described in the previous section. First,
examined the coarsening behavior of this model. At low te
perature~up toT;3.0) we observed a very slow decrease
the energy toward the ground state value. Our data, wh
we do not present suggests that for such temperaturesl most
likely increases logarithmically with time. However, abo
this temperature the dynamics becomes much faster and
sumably the characteristic length increases asl;t1/2.

Such behavior is confirmed by the measurements of
characteristic timet defined in the same way as in the pr
vious section. Results of simulations are shown in Fig.
They indicate that for temperatureT56 and 8 the character
istic time t increases asL2 similarly to the SS model abov
the corner rounding transition.

The above results indicate that the dynamical behavio
the model is very similar to the SS model. Namely, in t
low temperature regime the model has a slow dynamics
rapidly ~faster thanL2) increasing characteristic timet.
However, within the ordered phase~i.e., for T,Tc;12.5)
there is also a high temperature regime where dynamic
much faster. Presumably, in this regime the dynamics
similar to other nonconservative systems with scalar or
parameter@19#. Similarity between the model examined
this section and the SS model is in our opinion related w
the structure of the ground state: both models have o
double degenerate~ferromagnetic! ground states. It is wel
known in the statistical mechanics that degeneracy of
ground state plays a very important role in determining
thermodynamic behavior of models~e.g., critical behavior!.

FIG. 6. The characteristic timet needed for the inversion of th
cubic excitation of the sizeL as a function ofL for the off-
gonihedric case. Simulations were made forT52 (L), 3 (n), 6
(h), and 8 (s). The dotted line has a slope corresponding tot
;L2.
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Most likely this is an important factor for determining th
dynamical behavior of models also.

V. NATURE OF THE GLASSY PHASE

In the present paper we have examined the dynamic
models described by the Hamiltonian~1!. Depending on the
interaction constants we can distinguish three types of
havior which are schematically shown in Fig. 7.

(a) Double-degenerate ground state.This, the most typi-
cal situation, appears in the off-gonihedric model studied
previous section and also in the SS model whose dynam
has been already examined in great details@8#. The dynamics
of the model a low temperatures (T,Tc) has two regimes
separated by a certain temperatureTcr . ForT,Tcr the model
has slow dynamics with most likely logarithmically increa
ing characteristic lengthl. Such behavior is related with th
fact that at such temperature the model is below the cor
roughening transition@23#. As a result, an evolving quenc
develops complicated structures of cubiclike excitatio
which are very stable and effectively block further coarse
ing dynamics@24#. At T5Tcr the model undergoes the co
ner rounding transition and the blocking mechanism is
longer effective. As a result the fast~standard! dynamics is
restored.

(b) Gonihedric case with continuous transition.In this
case the entire low-temperature phase has slow dynam
whose origin is similar to the case~a!. Namely, a quench
develops cubiclike structures which block further coarsen
dynamics. The degeneracy of the ground state seems t
the most important difference between this and the o
gonihedric case. Thus, we relate the disappearance of
corner-rounding transition~or maybe its overlap withTc)
with the infinite degeneracy of the ground state.

(c) Four-spin model.As we already mentioned, the four
spin model undergoes a dynamic transition which exhibit
lot of similarities with the glassy transition. It might be in
teresting to examine whether such a behavior appears on
k50 or persists also for some other~small! values ofk.

Glassy transition: loss of surface tension.Why does this
transition exist in the four-spin case and not in the oth
cases? It was already suggested that the difference betw

FIG. 7. Three types of dynamical behavior found for model~1!.
~a! Double-degenerate case~SS model!; ~b! the gonihedric model
with continuous thermodynamic phase transition;~c! the four-spin
model~and possibly the gonihedric model with discontinuous th
modynamic phase transition!.
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PRE 62 3409SLOW DYNAMICS OF ISING MODELS WITH ENERGY . . .
the four-spin model and the SS model is related to the
generacy of the ground state@12#. However, the above analy
sis of the gonihedric model withk52 shows that the infinite
degeneracy of the ground state is not sufficient for the mo
to have a glassy transition~of course, we limit our analysis to
models which can generate diverging energy barriers
thus have slow coarsening dynamics!. Why does the gonihe
dric casek52 differ from thek50 case~i.e., the four-spin
model!? Both models have strongly degenerate ground st
The degeneracy equals 23L for k50 and 2L for k52. Since
in both cases degeneracy increase exponentially with the
ear system size this difference does not seem importan
our opinion, however, the difference in the dynamical beh
ior is related with the ground state structure of these mod
As we already mentioned, fork50 the flipping planes,
which generate various ground-state configurations m
cross. As a result, in addition to ferromagneticlike config
rations we obtain antiferromagneticlike ones. For thekÞ0
such crossings are not allowed and only ferromagnetic
configurations are possible~we consider lamellar configura
tions also as ferromagnetic-like!.

This difference has important implications. Let us no
that for the four-spin model in addition to tensionless dom
walls, which appear for example when a cubic ferromagn
‘‘up’’ domain is surrounded by ‘‘down’’ one, there are ten
sionful ones too. As an example of such a domain wall
can consider an antiferromagnetic domain surrounded by
romagnetic one@12#. At first sight it does not seem to b
much different from thek52 case. Indeed, when one co
siders a lamellar configuration where successive layers a
opposite sign~see Fig. 8! which is surrounded by a ferro
magnetic domain than the excess energy of such a con
ration scales as the area of the wall~i.e., the domain wall is
tensionful!. There is, however, an important question:

FIG. 8. A two-dimensinal (434) lamellar domain surrounde
by the ferromagnetic domain. The excess energy comes only f
horizontal boundaries of domain wall and thus scales as the siz
the interior domain. In the three-dimensinal case the excess en
would scale as an area of interior domain.
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such configurations affect coarsening dynamics or, in ot
words, are they spontaneously generated in suffic
amounts? In our opinion the answer to this question is ne
tive. Our first argument comes simply from the visual i
spection of the snapshot configuration. In Fig. 5 one can
relatively large ferromagneticlike domains but there is
indication of lamellar ones. The second argument com
from the cluster variational method calculations@14# by Cir-
illo et al. who have shown that the lamellar structures a
equivalent~i.e., of the same energy! to the ferromagnetic one
but only for the ground state. At nonzero temperatures t
are always metastable. These arguments show why such
figurations are not spontaneously generated during the
lution of the quench. They imply that fork52 the dominant
domain walls which exist at the late-time evolution of th
quench are tensionless.

On the other hand, for the four-spin model, antiferroma
netic structures are fully equivalent to the ferromagne
ones. In the liquid phase both ferromagnetic and antifer
magnetic domains are intertwinned and form very comp
cated structures. As already noticed@12#, tensionful domains
usually have lowest energy barriers and the system can
tively easily remove the interior domains. On the contra
tensionless domain walls have large energy barriers and
dynamics is much slower. It means that in the liquid pha
dynamics is dominated by dynamics of tensionful doma
and thus resembles the dynamics of two-spin Ising mode

It is in our opinion very likely that upon lowering the
temperature the system will undergo a phase transition wh
will eliminate tensionful domain walls. Below that transitio
the energy of the system would be located mainly in tensi
less domain walls. It means that at this transition t
antiferromagnetic-ferromagnetic symmetry of the mod
would be spontaneously broken. In other words, at this tr
sition the system selects a dominant type of doma
whether ferromagnetic or antiferromagnetic. This type
symmetry breaking is an essential ingredient of the transi
which we tentatively identify as the glassy transition.

Finally, let us note that the idea that the glassy ph
consists of a complicated mixture of tensionless dom
walls appeared recently in the contex of spin glasses@4#. It
suggests that, at least at the geometrical level, spin gla
and ordinary glasses might exhibit a lot of similarities. Th
further explorations is, however, left as a future problem.
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