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Vineyard-like approximations for colloid dynamics

Laura Yeomans-Reyna,* Heriberto Acuña-Campa,* and Magdaleno Medina-Noyola
Instituto de Fı´sica ‘‘Manuel Sandoval Vallarta,’’ Universidad Auto´noma de San Luis Potosı´, Alvaro Obrego´n 64,

78000 San Luis Potosı´, SLP, Mexico
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In this paper we propose a hierarchy of higher-order Vineyard-like approximations for colloidal systems.
These consist of approximate expressions for the intermediate scattering functionF(k,t) in terms of the
self-intermediate scattering functionFs(k,t) ~or some memory function associated with it!, and of other static
structural properties of the suspension. In order to assess the accuracy of the proposed approximations, we
perform Brownian dynamics simulations in a simple model system~a two-dimensional Yukawa Brownian
fluid!, in which we determineF(k,t), Fs(k,t), and the required static structural properties. We study proposals
for ‘‘second-order’’ and ‘‘third-order’’ Vineyard-like approximations. We find that the detailed structure of the
relationship between the correspondingcollectiveandself -memory functions turns out to be most important,
as quantified by our simulation results.

PACS number~s!: 82.20.Wt, 82.70.Dd
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I. INTRODUCTION

The intermediate scattering functionF(k,t) of a colloidal
fluid contains the most relevant information on the dynam
properties of such system@1#. This function is the spatia
Fourier transform~FT! of the so-called van Hove function
G(r ,t), which measures the spatial and temporal correlati
of the fluctuationsdn(r ,t)[n(r ,t)2n of the local concen-
tration n(r ,t) at positionr and timet around its equilibrium
bulk averagen, i.e.,G(urÀr 8u;t)[^dn(r ,t)dn(r 8,0)&, where
the angular brackets indicate average over the equilibr
ensemble@2,3#. Dynamic light scattering allows the exper
mental determination of this property for colloidal system
@4#, just like neutron scattering is employed to determine
same property for an atomic fluid@3#. A closely related prop-
erty is the so-calledself-intermediate scattering functio
FS(k,t). This is defined asFS(k,t)[^eik"DR(t)&, where
DR(t) is the displacement at timet of any of the particles of
the Brownian fluid. This function is also amenable to expe
mental determination by index-matching methods@5#. Hence
many of the experimental and theoretical developments
colloid dynamics have aimed at determining and understa
ing the main features of these dynamic properties@6#. Due to
the close analogy with simple liquids, many of these dev
opments have been based on a direct translation to Brow
fluids @7–9#, of the corresponding developments in simp
atomic liquids@3#. One aspect, however, that has not foun
prominent place in colloid dynamics, refers to the intuiti
notion that collective dynamics, represented byF(k,t),
should be simply related to self-dynamics, represented
FS(k,t). The simplest proposal for an approximate relati
of this sort is referred to as Vineyard approximation@2,3,10#,
which approximatesF(k,t) in terms ofFS(k,t) as

F~k,t !5FS~k,t !S~k!, ~1.1!

*Permanent address: Departamento de Fı´sica, Universidad de So
nora, Hermosillo, Sonora, Mexico.
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where the static structure factorS(k) is the initial value of
F(k,t). Although this particular approximation is of ver
limited value in quantitative applications, for both atom
and colloidal fluids it illustrates the zeroth-order concre
proposal of the notion that collective dynamics can refer
self-dynamics. In fact, this notion was further elaborated
the context of atomic liquids in the early 1970s@3#. Such
developments were based on the expressions forF(k,t) and
FS(k,t), derived by statistical mechanical methods, in ter
of a hierarchy of memory functions@11#. The idea then was
to propose thatF(k,t) andFS(k,t) can be related more ac
curately to each other through some of their higher-or
memory functions, rather than directly. As an illustration,
us consider the fact thatF(k,t) andFS(k,t) can be expressed
in terms of their corresponding memory functionsD(k,t)
andDS(k,t) through the expresions@3,8#

F~k,z!5
S~k!

z1k2S21~k!D~k,z!
, ~1.2!

FS~k,z!5
1

z1k2DS~k,z!
, ~1.3!

where F(k,z), FS(k,z), D(k,z), and DS(k,z) are the
Laplace transforms ofF(k,t), FS(k,t), D(k,t), andDS(k,t).
These equations suggest the proposal of a ‘‘first-ord
Vineyard-like approximation, namely,D(k,z)5DS(k,z).
This leads to a simple explicit expression forF(k,z) in terms
of FS(k,z), namely,

F~k,z!5
FS~k,z!S~k!

11nc~k!@zFS~k,z!21#
, ~1.4!

where nc(k)[12S21(k). This results in an improvemen
over the original Vineyard approximation, at least for simp
liquids @12#. Still in the context of simple liquids, the sam
approach was employed to suggest more refined higher-o
Vineyard-like approximations@11#. These were based on th
derivation of expresions forD(k,z) andDS(k,z) in terms of
3395 ©2000 The American Physical Society
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still higher-order memory functions. Unlike Eqs.~1.1! and
~1.4! above, however, such expressions do reflect the de
of the underlying microscopic laws that govern the~Newton-
ian! N-particle dynamics of the atomic fluid, and hence, a
not directly applicable to colloidal~i.e., Brownian! fluids. In
this work we propose corresponding Vineyard-like appro
mations for colloidal fluids. For this, in the present paper
shall only keep in mind a monodisperse colloidal suspens
in the absence of hydrodynamic interactions, whose mic
scopic dynamics is governed by theN -particle Langevin
equations. In recent work@13#, two of the authors carried ou
a derivation of the most general expressions forF(k,z) and
FS(k,z) in the so-called ‘‘overdamped’’~or diffusive! re-
gime, in terms of higher-order memory functions. This
gime refers to the times ordinarily probed by dynamic lig
scattering@and by Brownian dynamics~BD! computer simu-
lations#. Here we use these general expressions as the b
for a proposal of corresponding Vineyard-like approxim
tions for Brownian fluids. In order to test the quantitati
accuracy of these proposals, we perform BD computer si
lations on a simple model system, namely, a tw
dimensional repulsive Yukawa Brownian fluid. This allow
us to assess the quantitative accuracy of each of these
posals. The knowledge thus generated allows us to cho
the simplest and most accurate one to be employed, for
ample, in the construction of self-consistent descriptions
the dynamics of colloidal fluids@14#.

In Sec. II we consider the general expressions forF(k,z)
and FS(k,z) in terms of their ‘‘third-order’’ memory func-
tions, and present five different proposals of Vineyard-l
approximations at that level of the hierarchy. In Sec. III w
present the results of the quantitative comparisons of th
proposals, and compare the results of the best of these t
order approximations with the corresponding results for
lower-order Vineyard-like approximations. In Sec. IV w
summarize our conclusions.

II. GENERAL EXPRESSIONS FOR F „K,T… AND F S„K,T…

In previous related work@13,15#, the generalized Lange
vin equation approach, and the concept of the contractio
the description, were employed to derive the most gen
time-evolution equation for the fluctuationsdn(r ,t) of a
monodisperse colloidal suspension in the absence of hy
dynamic interactions. In such a derivation, the assumed
derlying microscopicN-particle dynamics was provided b
the many-particle Langevin equation. This is just Newto
equation for each of the spherical particles of the suspens
subject to the friction force of the solvent plus the cor
sponding random force~just as in the ordinary Langevin
equation!, plus the pairwise direct interactions, derivab
from a pair potentialu(r ). As a result, expressions are d
rived for F(k,z) in terms of a hierarchy of memory func
tions, and of static structural properties of the Browni
fluid. In these expressions, the Brownian relaxation timetB

[M /z0 ~or the corresponding frecuencyzB[tB
21) appears,

whereM and z0 are the mass and the solvent-friction coe
ficient of each particle in the suspension, respectively. In
absence of friction (z0→0), these expressions correspond
those of a simple atomic liquid. In the presence of frictio
and in order to ‘‘tune’’ these expressions to the time regi
ils
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normally probed by dynamic light scattering experiments,
by Brownian dynamics simulations, the limitt@tB or z
!zB, must be taken. Taking this, so-called ‘‘overdamped
limit requires a careful analysis, which was the main subj
of Ref. @13#. As a result, one obtains the most general e
pression forF(k,t) that describes the dynamics of the su
pension in the diffusive regime~i.e., for times t@tB), in
which the inertial effects have been damped out by the f
tion forces, and the only relaxation processes occur thro
purely diffusive mechanisms. The resulting overdamped
pressions forF(k,z), along with the corresponding result fo
FS(k,z), constitute the starting point of the present discu
sion.

According to Ref.@9#, the most general expression fo
F(k,z) in the diffusive regime can be written as

F~k,z!5
S~k!

z1
k2D0S21~k!

11
k2D0x~k!x j j

22

z1x21~k!L0~k!1x21~k!DL~k,z!

,

~2.1!

whereD05kBT/z0 is the free-diffusion coefficient of eac
particle (kBT being the thermal energy!, S(k) is the static
structure factor,x j j 5kBT/M , andx(k) is the static correla-
tion function of the fluctuations of the configurational com
ponent of the stress tensor of the Brownian fluid.@Note that
in Ref. @14#, x(k), L0(k), and DL(k,z) carry a subindex
‘‘ UU,’’ which we shall drop systematically in this paper#
x(k) is given by

b2M2x~k!511nE dr g~r !S ]2bu~r !

]z2 D S 12coskz

k2 D
2

1

S~k!
, ~2.2!

with b5(kBT)21; u(r ) is the pair potential of the direc
interaction forces, andg(r ) the radial distribution function of
the Brownian fluid. Thus Eq.~2.1! writesF(k,z) in terms of
these properties~which we will assume to be known!, and of
the memory functionL(k,z)[L0(k)1DL(k,z), which is
just the Laplace transform of the time-dependent correla
function of the configurational component of the stress t
sor. According to Ref.@13#, the Markovian componentL0(k)
of L(k,z) can be expressed in terms ofD0 and of purely
static properties as

M2b2L0~k!5nE d3r g~r !
]2bu~r !

]z2
@112 coskz#

2
D0n2

k2 F E d3r g~r !
]2bu~r !

]z2
~12coskz!G 2

1
2D0n

k F E d3r g~r !
]3bu~r !

]z3
sinkzG 2
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1
2D0n

k2 E d3r g~r !~12coskz!F]“bu~r !

]z G2

1
D0n2

k2 E d3r d3r 8g~r,r 8!„122 coskz

1cos@k~z2z8!#…F]“bu~r !

]z G•F ]“8bu~r 8!

]z8
G ,

~2.3!

whereg(r,r 8) is the three-particle correlation function.
The corresponding results forFS(k,z) can be written

FS~k,z!5
1

z1
k2D0

11
k2D0xS~k!x j j

22

z1xS
21~k!LS

0~k!1xS
21DLS~k,z!

,

~2.4!

with

xS~k!5
x j j

2

k2 FnE dr g~r !
]2bu~r !

]z2 G ~2.5!

and

D0M2b2LS
0~k![k2D0

2FnE dr g~r !
]2bu~r !

]z2 G
2D0

2n2F E d3r g~r !
]2bu~r !

]z2 G 2

12D0
2nE d3r g~r !F]“bu~r !

]z G2

1D0
2n2E d3r d3r 8g~r,r 8!

3F]“bu~r !

]z G•F ]“8bu~r 8!

]z8
G . ~2.6!

Equations~2.1! and ~2.4! constitute the basis of our pro
posals for third-order Vineyard-like approximations. Th
expressF(k,z) andFS(k,z) in terms of purely static proper
ties~assumed known! and of the unknown memory function
DL(k,z) and DLS(k,z). They also suggest several possib
forms to relateF(k,z) with FS(k,z) through some simple
relationships betweenDL(k,z) andDLS(k,z). Of course, the
most straightforward of such relationships consists of eq
ing DL(k,z) to DLS(k,z):

DL~k,z!5DLS~k,z!. ~2.7!

This is, however, not the only possible manner to rel
F(k,z) andFS(k,z) throughDL(k,z) andDLS(k,z). In fact,
as we shall see in Sec. III, it is not even the most accurat
such relationships. For example, from the manner in wh
t-

e

of
h

Eqs.~2.1! and~2.4! have been written, we could also propo
approximatingx21(k)DL(k,z) by its self-counterpart, i.e.,

x21~k!DL~k,z!5xS
21~k!DLS~k,z!. ~2.8!

For some reason, which is not obviousa priori, the
Vineyard-like approximation defined by this equation tur
out to be far more accurate than that defined by Eq.~2.7!. In
fact, a third version of a simple relationship betwe
DL(k,z) andDLS(k,z) can be defined through the approx
mation

DL~k,z!

L0~k!
5

DLS~k,z!

LS
0~k!

. ~2.9!

We can advance that this happens to be the most accu
among these three Vineyard-like approximations defined
terms of simple relationships betweenDL(k,z) and
DLS(k,z) @i.e., Eqs.~2.7!–~2.9!#.

These statements are the results of concrete nume
tests of these approximations when their predictions
compared with the exact results obtained in the compu
simulation experiment, as explained in Sec. III. At this poi
however, we do not have any obviousa priori reason to
expect the quantitative superiority of any of these th
simple proposals. In fact, these three approximations hav
common that the resultingF(k,t) happens to yield the exac
short-time expansion up to terms of ordert3, i.e., they all
satisfy the exact moment conditions@1,7,9#

m(0)~k!5S~k!, ~2.10!

m(1)~k!52k2D0 , ~2.11!

m(2)~k!5k4D0
21nD0E dr g~r !@12cos„k"r …#„k"“…2bu~r !

~2.12!

and

m(3)~k!52k6D0
323D0

3k2nE dr g~r !~k"“!2bu~r !

22D0
3nE dr g~r !sin~k"r !~k"“!3bu~r !

22D0
3nE dr g~r !@12cos~k"r !#@~k"“!“bu~r !#2

2D0
3n2E dr 8dr g~r ,r 8!$122 cos~k"r !

1cos@„k"rÀr 8!…#%~k"“!~k"“8!

3~“"“8!bu~r !bu~r 8!, ~2.13!

where the momentsm(n)(k) of F(k,t) are defined as

m(n)~k!5S ]nF~k,t !

]tn D
t50

. ~2.14!
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Also, the three approximations in Eqs.~2.7!–~2.9! coincide
at large wave vectors since, in that limit,x(k)'xS(k) and
L0(k)'LS

0(k).
The short-time limit ofF(k,z) andFS(k,z) is particularly

interesting, since the contribution ofDL(k,z) andDLS(k,z)
only appears in the terms of ordert4 and higher, in the short
time expansion ofF(k,t) and FS(k,t). In fact, if we set
DL(k,z)50 in Eq.~2.1!, we obtain a simple, closed approx
mation forF(k,z), namely,

F~k,z!5
S~k!

z1
k2D0S21~k!

11
k2D0x~k!x j j

22

z1x21~k!L0~k!

, ~2.15!

and similarly, forFS(k,t),

FS~k,z!5
1

z1
k2D0

11
k2D0xS~k!x j j

22

z1xS
21~k!LS

0~k!

. ~2.16!

Equations ~2.15! and ~2.16! coincide with the so-called
single exponential memory~SEXP! approximation, origi-
nally suggested and applied by Arauz-Lara and Medi
Noyola @9#. Equation~2.16! has been widely employed t
interpret the self-diffusion properties of model experimen
and simulated colloidal systems@16,17#. However, most
such applications deal with rather dilute systems and/or w
relatively short times; in the oposite regime~highly interact-
ing systems at much longer times!, the limitations of this
simple approximation are much more apparent. This is a
true for the SEXP approximation of thecollectiveintermedi-
ate scattering function in Eq.~2.15!, as recently discussed i
Ref. @18#. The structure of the general expression forF(k,z)
and FS(k,z) in Eqs. ~2.1! and ~2.4! suggest, however, tha
the SEXP approximation might serve as a good initial ref
ence to construct higher-order Vineyard-like approximatio
in which DL(k,z) andDLS(k,z) are not neglected. For this
let us rewrite the general expressions forF(k,z) andFS(k,z)
in Eqs.~2.1! and ~2.4! as

F~k,z!5
S~k!

z1
k2D0S21~k!

11C~k,z!

~2.17!

and

FS~k,z!5
1

z1
k2D0

11CS~k,z!

, ~2.18!

with

C~k,z!5
k2D0x~k!x j j

22

z1x21~k!L0~k!1x21~k!DL~k,z!
~2.19!

and
-

l

h

o

-
,

CS~k,z!5
k2D0xS~k!x j j

22

z1xS
21~k!LS

0~k!1xS
21~k!DLS~k,z!

.

~2.20!

Clearly, the SEXP approximation corresponds to sett
DL(k,z)5DLS(k,z)50, i.e., in approximatingC(k,z) and
CS(k,z), respectively, by

C~k,z!5CSEXP~k,z![
k2D0x~k!x j j

22

z1x21~k!L0~k!
~2.21!

and

CS~k,z!5CS
SEXP~k,z![

k2D0xS~k!x j j
22

z1xS
21~k!LS

0~k!
. ~2.22!

Let us now write Eqs.~2.19! and ~2.20! as

C~k,z!5CSEXP~k,z!1DC~k,z! ~2.23!

and

CS~k,z!5CS
SEXP~k,z!1DCS~k,z!. ~2.24!

This allows us to suggest our fourth Vineyard-like appro
mation, namely,

DC~k,z!5DCS~k,z!. ~2.25!

Equations~2.17! and~2.18!, along with this equation, estab
lish our fourth proposal for an approximate relationship b
tween F(k,z) and FS(k,z), this time through the memory
functionsDC(k,z) andDCS(k,z), defined in Eqs.~2.23! and
~2.24!. Just like our previous proposals, this approximation
also exact at short times, up to terms of ordert3. Further-
more, it is also equivalent to an approximate~but rather in-
volved and not very illuminating! expression forDL(k,z) in
terms ofDLS(k,z).

To conclude our presentation of the various proposals
Vineyard-like approximations that use the full information
the general results in Eqs.~2.1! and ~2.4!, let us note that
Eqs.~2.23! and ~2.24! could also be written as

C~k,z!5CSEXP~k,z!@11DC* ~k,z!# ~2.26!

and

CS~k,z!5CS
SEXP~k,z!@11DCS* ~k,z!#, ~2.27!

with

DC* ~k,z![
DC~k,z!

CSEXP~k,z!
~2.28!

and

DCS* ~k,z![
DCS~k,z!

CS
SEXP~k,z!

. ~2.29!

This suggests a fifth possible proposal to relateDL(k,z) with
DLS(k,z), namely,
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DC* ~k,z!5DCS* ~k,z!. ~2.30!

This equation, along with Eqs.~2.17!–~2.24!, defines a
fifth means by which to relateF(k,z) andFS(k,z), which is
also equivalent to an approximate relationship betw
DL(k,z) andDLS(k,z), namely,

x21~k!DL~k,z!

z1x21~k!L0~k!1x21~k!DL~k,z!

5
xS

21~k!DLS~k,z!

z1xS
21~k!LS

0~k!1xS
21~k!DLS~k,z!

. ~2.31!

Let us advance here that this proposal happens to be virtu
as accurate as our third proposal above, defined by Eq.~2.9!.
The reason for this can be understood if we write Eq.~2.31!
as

DL* ~k,z!

11
z

zI~k!
1DL* ~k,z!

5
DLS* ~k,z!

11
z

zI
(S)~k!

1DLS* ~k,z!

,

~2.32!

with

DL* ~k,z![
DL~k,z!

L0~k!
~2.33!

and

DLS* ~k,z![
DLS~k,z!

LS
0~k!

, ~2.34!

and with zI(k)[x21(k)L0(k) and zI
(S)(k)[xS

21(k)LS
0(k).

Clearly,zI
21(k) andzI

(S)21(k) are the relaxation times of th
memory functionsCSEXP(k,z) and CS

SEXP(k,z), respec-
tively. In the short-time, large-wave-vector regime, we ha
that z/zI(k)'z/zI

(S)(k)@1, and hence, Eq.~2.30! is consis-
tent with

DL* ~k,z!5DLS* ~k,z!, ~2.35!

which is Eq. ~2.9!. In the oposite regime, i.e., long time
z/zI(k) andz/zI

(S)(k) can be neglected compared to 1 in E
~2.32!, which is then also consistent with Eq.~2.35!. Thus we
can expect our fifth proposal@Eq. ~2.30!# to lead to similar
predictions to our third proposal@Eq. ~2.9!# @which can be
rewritten as Eq.~2.35! above#.

In summary, here we have defined five different mann
to propose approximate relationships betweenF(k,z) and
FS(k,z), in terms of corresponding relationships between
third-order memory functionsDL(k,z) andDLS(k,z) enter-
ing in the general expressions forF(k,z) and FS(k,z) in
Eqs. ~2.1! and ~2.4!. These five Vineyard-like approxima
tions were suggested by the various possible manner
writing the latter equations, and their respective quantita
accuracy cannot be assesseda priori. Thus, in what follows,
we shall subject these approximations to a quantitative
that will allow us to discriminate among them. This is do
n

lly

e

.

rs

e

of
e

st

with the assistance of exact~i.e., simulated! data for both
F(k,z) andFS(k,z) obtained for a particular model system
namely, a two-dimensional Yukawa Brownian fluid.

III. NUMERICAL COMPARISONS

Let us consider a simple model system of a monodispe
Brownian fluid without hydrodynamics interactions. Sin
all we need is some form of indication of the quantitati
accuracy of the various Vineyard-like approximations ju
defined, we shall choose a particularly simple model syst
namely, a two-dimensional Yukawa Brownian fluid. Th
consists ofN Brownian particles in an areaA, which undergo
Brownian motion governed by the overdampedN-particle
Langevin equations@19#

dr i~ t !

dt
5bD0f i~ t !1bD0Fi~ t ! ~ i 51,2, . . . ,N!,

~3.1!

where f i(t) is the random force with zero mean and tim
dependent correlation funcion given bŷf i

(a)(t) f j
(b)(0)&

5dabd i j kBTz02d(t), and whereFi(t) is the force on par-
ticle i due to its direct interactions with the other (N21)
particles in the system.Fi(t) is assumed to be pairwise ad
ditive, with the pairwise forces derivable from a potent
u(r ). We shall consider a repulsive Yukawa potential, whi
we will write as

bu~r !5H K
e2z(r 21)

r
, r .1

`, r ,1.

~3.2!

Here we have added a physically irrelevant hard-core in
action, with hard-core diameters taken as unity, and will fix
the parametersK and z at the valuesK5500 andz50.15.
There is no special reason for this selection, other than
fact that this model system has been studied extensively e
where@17#. Our Brownian dynamics simulation employs th
Ermack-McCammon algorithm to solve Eq.~3.1! numeri-
cally, and we refer the reader to Refs.@19# for details.

From our simulation experiment, we determine the rad
distribution functiong(r ), from which we calculate the stati
structure factor, and the various static properties referre
in Sec. II @see Eqs.~2.2!, ~2.3!, ~2.5!, and ~2.6!#. The only
approximation we introduced in such calculations refers
the superposition approximations for the three-particle dis
bution functiong(r,r 8) appearing in the last terms of Eq
~2.3! and ~2.6!, which we show elsewhere@18# to be a rea-
sonable approximation. In addition, we also simulate b
F(k,t) andFS(k,t). From our results forFS(k,t), we extract
DLS(k,z) according to Eq.~2.1! @or, equivalently,DCS(k,z),
according to Eq.~2.18!#, to be used as an input in each of th
five versions of the Vineyard-like approximations forF(k,t).
The resulting values forF(k,t) are then compared with eac
other, and with the exact values of this property obtain
directly from the simulation. We carried out this exercise f
various values of the reduced bulk concentrationsn*
5(N/A)s2, ranging from moderately interacting (n*
50.003) to highly interacting (n* 50.012) conditions, as il-
lustrated in Fig. 1, where we present the radial distribut
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function g(r ) obtained in our BD simulations for the lowe
and highest of these concentrations.

The data of the type in Fig. 1 allow us to calculate exac
the value of all the static properties referred to in Sec.
namely, x(k), x (S)(k), L0(k), and LS

0(k) @except for the
term involvingg(3)(r ,r 8), which we approximate by its su
perposition approximation#. In particular, we calculate the
static structure factorS(k), which is the initial value of the
intermediate scattering functionF(k,t). In Fig. 2 we plot
S(k)5F(k,t50) ~solid line! for an intermediate but strongl
correlated system (n* 50.009). Figure 2 serves to illustrat
the main features of the time evolution ofF(k,t). For this, in
this figure we have also includedF(k,t) for latter times,
namely, t513.88t0 and 55.55t0 ~with t0[s2/D0 being a
rather arbitrary time unit, representing the time it takes o
particle to diffuse its hard-sphere diameter!. From Fig. 2 we
immediately learn the most important feature of the dynam
evolution of F(k,t). This refers to the fact that the entir
initial ~static! stucture of the fluid, represented byS(k)

FIG. 1. Radial distribution functiong(r ) for a system with po-
tential parametersK5500 andz50.15. The reduced bulk concen
trations aren* 50.003~dotted line! andn* 50.012~solid line!.

FIG. 2. Intermediate scattering functionF(k,t) for a system
with the same potential parameters as in Fig. 1:n* 50.009 andt
50 ~solid line!, t513.88t0 ~dashed line!, and t555.55t0 ~dotted
line!.
y
,

e

c

5F(k,t50), is washed away rather quickly~i.e., it decays to
almost zero already for timest/t0'10) for most wave vec-
tors, except for those near the positionkmax of the main peak
of S(k). As we see in Fig. 2, at longer times it is onlyF(k
'kmax,t) which survives from the original structure inS(k);
i.e., for t'50t0 F(k,t)/S(k) is already negligible for all
wave vectors, except fork'kmax, whereF(kmax,t) has only
decayed to about 10% its initial value.

This observation suggests that the most stringent tes
any approximate theory of the dynamic evolution ofF(k,t)
is the comparison with the exact~simulated! data for
F(kmax,t)/S(kmax). These data are presented~circles! in Fig. 3
for the concentrationsn* 50.003, 0.009, and 0.012. In thi
figure we also illustrate the main results of this pap
namely, the predictions of the five Vineyard-like approxim
tions defined in Sec. II, and its comparison with the cor
sponding exact data forF(kmax,t)/S(kmax). Let us comment
upon the most salient features of this comparison. As ill
trated in Fig. 3~a!, at low concentrations all these approx
mations provide an excellent description of the time evo
tion of F(kmax,t). This is particularly true for the initial
decay ofF(kmax,t)/S(kmax), but also for a longer time win-
dow (0<t&20 t0). In fact, Fig. 3~a! does not provide strong
quantitative elements to discriminate among the various p
posals for these Vineyard-like approximations. One mig
think that what happens at these small concentrations is
the contributionDL(k,z) to the configurational stress-tens
correlation function is actually very small, and hence, t
differences between all the approximations conside
should also be small at low concentrations. If this were
case, however, all the various approximations would c
verge to the SEXP approximation, corresponding precis
to the conditionDL(k,z)50. In order to check this, in Fig
3~a! we also include the result of the SEXP approximatio
There we can see that the short-time regime, where
SEXP results coincide with the exact data, corresponds
rather narrow time window@0<t&5t0 in Fig. 3~a!# within
which F(kmax,t) has decayed to about 70% of its initia
value. Of course, in this short-time regime, all our five pr
posed approximations indeed coincide with the SEXP a
with the simulation data. For latter times, however, t
SEXP departs more significantly from the exact data th
any of our proposals involvingDL(k,z)Þ0.

Although a closer look at Fig. 3~a! could actually reveal
some quantitative features that are indeed relevant, thes
the ones which are dramatically amplified at higher conc
trations, as illustrated in Figs. 3~b! and 3~c!. First let us note
that in these figures the discrepancy among the various
proximations is now much larger. Also note that the e
pected short-time agreement is now restricted to an
tremely short-time window. The comparison in Figs. 3~b!
and 3~c! do provide strong elements to discriminate amo
the five proposed approximations. Clearly, the most imp
tant conclusion drawn from the results in these figures is
the most accurate approximations are those in which we
proximate eitherDL* (k,z)5DLS* (k,z) @i.e., Eq. ~2.33!# or
DC* (k,z)5DCS* (k,z) @i.e., Eq.~2.28!#. In fact, also surpris-
ingly, the numerical results of both of these approximatio
are virtually indistinguishable from each other in the sca
of Fig. 3. The reason for this coincidence was already
vanced in Sec. II@see the discussion after Eq.~2.29!#. From
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FIG. 3. Semilogarithmic plots ofF(kmax,t)/S(kmax) for a sys-
tem with the same potential parameters as in Fig. 1.~a! n*
50.003 andkmaxs50.37. ~b! n* 50.009 andkmaxs50.63. ~c!
n* 50.012 andkmaxs50.72. In this figure the open circles repr
sent BD results, and the five Vineyard-like approximations
shown by the solid line forDC(k,z)5DCS(k,z), the solid line and
squares for DC* (k,z)5DCS* (k,z), the dotted line for
x21DL(k,z)5xS

21DLS(k,z), the dash-dotted line forDL* (k,z)
5DLS* (k,z), and the dash-dot-dotted line forDL(k,z). In ~a!, the
dashed line represents the SEXP approximation.
Figs. 3~b! and 3~c! we also learn the quantitative importanc
of the specific property that we choose to build a giv
Vineyard-like approximation. Thus, to our surprise, t
‘‘simplest’’ proposal, namely, that based on approximati
the ‘‘bare’’ memory function DL(k,z) by its self-
counterpart, turns out to be the least accurate, and mos
ratic approximation at high concentrations. These nega
features are corrected when we employ notDL(k,z), but
x21(k)DL(k,z), as the basis of our Vineyard-like approx
mation@Eq. ~2.8!#. Although at small concentrations there
no need for this correction@see Fig. 3~a!#, at larger concen-
trations it leads to much more accurate and systematic q
titative results. Note, in fact, that these results always
below the simulation data, i.e., they somewhat overestim
the relaxation ofF(kmax,t). In contrast, if we normalize
DL(k,z) not with x(k) but with L0(k), and choose the di-
mensionless propertyDL* (k,z)[DL(k,z)/L0(k) as the ba-
sis of our Vineyard-like approximation@i.e., Eq.~2.33!#, the
corresponding results are systematically above the sim
tion data for F(kmax,t)/S(kmax). As mentioned above, this
turns out to be the most accurate approximation, and pa
the reason for this can be found in the use of a dimens
lesss property such asDL* (k,z) as the basis of the approx
mation. A similar comment could also be made regarding
Vineyard-like approximations in Eqs.~2.25! and ~2.28!. In
this case, both are based on dimensionless proper
namely, DC(k,z) and DC* (k,z)[DC(k,z)/CSEXP(k,z).
For reasons explained above, however, the latter turns ou
be virtually identical to the approximation based o
DL* (k,z), and, together with this, it is the most accura
proposal. In contrast, the former systematically undere
mates the relaxation ofF(kmax,t).

Let us now compare the results in Fig. 3, for the decay
F(k,t)/S(k) at k5kmax, with the results in Fig. 4, corre
sponding to other values ofk, namely,k2s50.65@Fig. 4~a!#
and k1s51.03 @Fig. 4~b!#. k2 is such thatk2s,kmaxs
50.72 andS(k2)'1, whereask1 is such thatk1.kmax,
and it coincides approximately with the location of the fir
minimum of the static structure factor. As we can see if
compare these figures with Fig. 3~c!, the dispersion of the
results of the various approximations around the exact da
less severe forkÞkmax, especially for wave vectors large
than kmax. In fact, even the most primitive Vineyard-lik
approximation@based on the bareDL(k,z)] performs well at
these wave vectors. Also here, there is an almost exact q
titative coincidence between the results based onDL* (k,z)
and those based onDC* (k,z).

The results in Fig. 4 confirm that these two are the m
accurate of the proposals for Vineyard-like approximatio
based on the full expressions in Eqs.~2.1! and ~2.4! for
F(k,z) andFs(k,z) in terms of the third-order memory func
tions DL(k,z) andDLs(k,z). Thus in the hierarchical sens
in which Vineyard’s approximation@Eq. ~1.1!# is the zeroth
order approximation@Eq. ~1.1!#, and Eq.~1.4!, based on the
~‘‘first-order’’ ! memory functionsD(k,z) andDs(k,z) is the
first-order approximation, we can say that the five appro
mations discussed so far are variants of third-order Vineya
like approximations. Second-order approximations co
also be considered, and these would be based on
‘‘second-order’’ memory functionsC(k,z) and Cs(k,z) in
Eqs. ~2.17! and ~2.18!. If we compare these equations wit

e
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Eqs. ~1.2! and ~1.3!, we have thatD(k,z)5@11C(k,z)#21

andDS(k,z)5@11CS(k,z)#21. Thus simply settingC(k,z)
5Cs(k,z) is actually equivalent to approximatingD(k,z)
5DS(k,z), which leads to the first-order Vineyard-like ap
proximation in Eq.~1.4!. Thus we need more detailed info
mation on the actual structure ofC(k,z) and Cs(k,z). The
most detailed structure of these memory functions is p
vided by the full expressions forF(k,t) andFS(k,t) in Eqs.
~2.1! and~2.4!, or equivalently, in Eqs.~2.19! and~2.20!. For
our purpose, however, let us ignore all the detailed structu
of C(k,z) andCs(k,z) in Eqs.~2.19! and ~2.20!, except for
the initial values C(k,t50)5k2D0x(k) and Cs(k,t50)
5k2D0xs(k), and write

C~k,z!5k2D0x~k!H~k,z! ~3.3!

and

CS~k,z!5k2D0xS~k!HS~k,z!. ~3.4!

FIG. 4. F(k,t)/S(k) for a system with the same potential p
rameters as in Fig. 1, wheren* 50.012. ~a! k2s50.65. ~b! k1s
51.03. The open circles and Vineyard-like approximation lines
as in Fig. 3.
-

es

This suggests the second-order Vineyard-like approxima
H(k,z)5HS(k,z), which can also be written as

x21~k!C~k,z!5xs
21~k!Cs~k,z!. ~3.5!

In Fig. 5 we compare the results of this approximati
with those of the first-order approximation in Eq.~1.4! and
of the best third-order approximaions discussed in Sec
namely, Eqs.~2.33! and ~2.28!.

The comparison in Fig. 5 illustrates the expected fact t
the quantitative accuracy of these approximations increa
with the level of the memory function involved. Figure
corresponds to the most demanding conditions, namelyk
5kmax, for the highest concentrationn* 50.012. Let us
close this section by saying that all the conclusions of t
section, mostly illustrated for strongly correlated system
are systematically confirmed at lower concentrations as w

IV. SUMMARY

In this paper we have presented a hierachy of Vineya
like approximations, based on approximating the collect
memory function of a given order by its corresponding se
memory function. The zeroth-order approximation is t
Vineyard approximation itself,F(k,t)5FS(k,t)S(k), which
only satisfies the zeroth moment condition, and does not
tinguish between Brownian and Newtonian dynamics. T
first-order approximation consists of approximating the fir
order memory funcitonD(k,z) in Eq. ~1.2! by its self-
counterpartDS(k,z), thus leading to Eq.~1.4!. This approxi-
mation for F(k,t) satisfies the zeroth and the first mome
conditions in Eqs.~2.10! and ~2.11! @provided thatFS(k,t)
does satisfy the corresponding conditions#. The second-order
Vineyard-like approximation is defined by Eqs.~2.17! and
~2.18!, together with Eq.~3.5! above. This satisfies up to th
second moment condition in Eq.~2.12!. Finally, for the level
involving the third-order memory functionsDL(k,z) and
DLS(k,z), we studied five different proposals. All of them
are such that the resulting Vineyard-like approximation u

e

FIG. 5. Semilogarithmic plot ofF(kmax,t)/S(kmax) for a system
with the same potential parameters as in Fig. 1:n* 50.012 and
kmaxs50.72. Open circles represent BD results, and the Vineya
like approximations are shown by the solid line forC(k,z)
5CS(k,z), the dashed line forH(k,z)5HS(k,z), and the dotted
line for DL* (k,z)5DLS* (k,z).
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the full structure of the general expressions forF(k,z) and
FS(k,z) in Eqs. ~2.1! and ~2.4!. Furthermore, all of them
satisfy the exact third moment condition in Eq.~2.13!. The
main difference was the specific manner in whichDL(k,z)
and DLS(k,z) were related. In the absence of a reliable
gument to discriminate among these five proposals, we
sorted to a quantitative comparision in the context of
properties of a simple specific model system. This allow
us to discriminate among these five third-order alternativ
Surprisingly enough, two of these five proposals happene
yield virtually indistinguishable results, which also happen
to be systematically the most accurate. The first of these
approximations is defined by Eqs.~2.1! and~2.4!, along with
Eq. ~2.9!. The second is defined by Eqs.~2.17!, ~2.18!,
~2.25!, and~2.27!, along with Eq.~2.30!. From a quantitative
point of view, either of these two approximations constitu
the best representative of the third-order Vineyard-like
proximation. Their results are far better than any of the ot
n

-
e-
e
d
s.
to
d
o

-
r

approximations of the kind considered here, both at the sa
level and at lower levels in the hierarchy discussed in
present work. We expect that the information just summ
rized will be useful in an analysis of experimental or sim
lated results on more realistic models than the one con
ered here. For the time being, this information is bei
employed in the development of a self-consistent theory
colloid dynamics, but this will be reported separately@14#.
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