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Vineyard-like approximations for colloid dynamics
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In this paper we propose a hierarchy of higher-order Vineyard-like approximations for colloidal systems.
These consist of approximate expressions for the intermediate scattering fuR¢kdn in terms of the
seltintermediate scattering functidiy(k,t) (or some memory function associated with &nd of other static
structural properties of the suspension. In order to assess the accuracy of the proposed approximations, we
perform Brownian dynamics simulations in a simple model systantwo-dimensional Yukawa Brownian
fluid), in which we determiné& (k,t), F¢(k,t), and the required static structural properties. We study proposals
for “second-order” and “third-order” Vineyard-like approximations. We find that the detailed structure of the
relationship between the correspondiglectiveand self-memory functions turns out to be most important,
as quantified by our simulation results.

PACS numbe(s): 82.20.Wt, 82.70.Dd

[. INTRODUCTION where the static structure fact&k) is the initial value of
F(k,t). Although this particular approximation is of very
The intermediate scattering functiér(k,t) of a colloidal  limited value in quantitative applications, for both atomic
fluid contains the most relevant information on the dynamicand colloidal fluids it illustrates the zeroth-order concrete
properties of such systefii]. This function is the spatial proposal of the notion that collective dynamics can refer to
Fourier transform(FT) of the so-called van Hove function, self-dynamics. In fact, this notion was further elaborated in
G(r,t), which measures the spatial and temporal correlationthe context of atomic liquids in the early 19703]. Such
of the fluctuationson(r,t)=n(r,t)—n of the local concen- developments were based on the expression§ (&rt) and
trationn(r,t) at positionr and timet around its equilibrium  Fg(k,t), derived by statistical mechanical methods, in terms
bulk average, i.e.,G(|r—r'[;t)=(én(r,t) on(r’,0)), where  of a hierarchy of memory functiorid1]. The idea then was
the angular brackets indicate average over the equilibriunto propose thafF (k,t) andFg(k,t) can be related more ac-
ensembld2,3]. Dynamic light scattering allows the experi- curately to each other through some of their higher-order
mental determination of this property for colloidal systemsmemory functions, rather than directly. As an illustration, let
[4], just like neutron scattering is employed to determine theus consider the fact th&i(k,t) andFg(k,t) can be expressed
same property for an atomic fluj@]. A closely related prop- in terms of their corresponding memory functioBgk,t)
erty is the so-calledselfintermediate scattering function andDg(k,t) through the expresion$,8]
Fg(k,t). This is defined asFg(k,t)=(e'*2R®)  where

AR(t) is the displacement at tinteof any of the particles of S(k)

the Brownian fluid. This function is also amenable to experi- F(k.2)= 2+ k2S L(k)D(k,2) ) 1.2
mental determination by index-matching meth@ss Hence '

many of the experimental and theoretical developments in

colloid dynamics have aimed at determining and understand- Fo(k,2) 1.3

. . . )= s
ing the main features of these dynamic propeiftigsDue to z+k?Dgy(k,2)
the close analogy with simple liquids, many of these devel-

opments have been based on a direct translation to Browniamhere F(k,z), Fg(k,z), D(k,z), and Dg(k,z) are the
fluids [7-9], of the corresponding developments in simpleLaplace transforms d¥ (k,t), Fg(k,t), D(k,t), andDg(k,t).
atomic liquids[3]. One aspect, however, that has not found aThese equations suggest the proposal of a “first-order”
prominent place in colloid dynamics, refers to the intuitive Vineyard-like approximation, namelyD(k,z)=Dg(k,2z).
notion that collective dynamics, represented Byk,t),  Thisleads to a simple explicit expression f(k,z) in terms
should be simply related to self-dynamics, represented bwf F¢(k,z), namely,

Fs(k,t). The simplest proposal for an approximate relation

of this sort is referred to as Vineyard approximatj@3,10, Fs(k,2)S(k)

which approximate$ (k,t) in terms ofFg(k,t) as F(k.2)= 1+nc(k)[zFg(k,z)—1]"

(1.9

wherenc(k)=1-S (k). This results in an improvement
F(k,t)=Fg(k,t)S(k), (1.2 over the original Vineyard approximation, at least for simple
liquids [12]. Still in the context of simple liquids, the same
approach was employed to suggest more refined higher-order
*Permanent address: Departamento agck) Universidad de So- Vineyard-like approximationgl1]. These were based on the
nora, Hermosillo, Sonora, Mexico. derivation of expresions fdD(k,z) andDg(k,z) in terms of
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still higher-order memory functions. Unlike Eg€l.]) and  normally probed by dynamic light scattering experiments, or
(1.4) above, however, such expressions do reflect the detailsy Brownian dynamics simulations, the limit>75 or z

of the underlying microscopic laws that govern tiNewton-  <zg must be taken. Taking this, so-called “overdamped,”
ian) N-particle dynamics of the atomic fluid, and hence, arelimit requires a careful analysis, which was the main subject
not directly applicable to colloiddi.e., Brownian fluids. In  of Ref. [13]. As a result, one obtains the most general ex-
this work we propose corresponding Vineyard-like approxi-pression forF(k,t) that describes the dynamics of the sus-
mations for colloidal fluids. For this, in the present paper wepension in the diffusive regimé.e., for timest>7g), in
shall only keep in mind a monodisperse colloidal suspensiomhich the inertial effects have been damped out by the fric-
in the absence of hydrodynamic interactions, whose microtion forces, and the only relaxation processes occur through
scopic dynamics is governed by tié -particle Langevin  purely diffusive mechanisms. The resulting overdamped ex-
equations. In recent woik 3], two of the authors carried out pressions foF (k,z), along with the corresponding result for
a derivation of the most general expressionsHgk,z) and  F4(k,z), constitute the starting point of the present discus-
F<(k,z) in the so-called “overdamped’{or diffusive re-  sion.

gime, in terms of higher-order memory functions. This re- According to Ref.[9], the most general expression for
gime refers to the times ordinarily probed by dynamic lightF(k,z) in the diffusive regime can be written as
scatterindand by Brownian dynamic88D) computer simu-

lations]. Here we use these general expressions as the basis

for a proposal of corresponding Vineyard-like approxima- F(k,z)= S(k)

tions for Brownian fluids. In order to test the quantitative ’ k?DS (k) ’
accuracy of these proposals, we perform BD computer simu- z+ 2 2

lations on a simple model system, namely, a two 1+

dimensional repulsive Yukawa Brownian fluid. This allows z+ x YK)LO(k)+ x (k)AL (k,2)

us to assess the quantitative accuracy of each of these pro- (2.1

posals. The knowledge thus generated allows us to choose

the simplest and most accurate one to be employed, for Xghere D,=kgT/¢° is the free-diffusion coefficient of each

ample, in the construction of self-consistent descriptions ofarticle (ksT being the thermal enertlyS(k) is the static

the dynamics of colloidal fluid14]. _ structure factory;; =kgT/M, and x(k) is the static correla-
In Sec. Il we consider the g‘;‘eqeral exp,r,essmnstd{,z) tion function of the fluctuations of the configurational com-

and Fg(k,2) in terms of their “third-order” memory func-  honent of the stress tensor of the Brownian flfiote that

tions, and present five different proposals of Vineyard-likej, ref. [14], x(K), LK), and AL(k,z) carry a subindex

approximations at that level of the hierarchy. In Sec. Ill we« iy » \which we shall drop systematically in this papkr.
present the results of the quantitative comparisons of the (k) is given by

proposals, and compare the results of the best of these third-
order approximations with the corresponding results for the X
lower-order Vineyard-like approximations. In Sec. IV we ,BZMZX(k)=1+nJ dr g(r)(a Buz(r))(l—coskz)

summarize our conclusions. K2

1

Il. GENERAL EXPRESSIONS FOR F(K,T) AND Fg(K,T) — %,

(2.2

In previous related work13,15|, the generalized Lange-
vin equati'on. approach, and the concep.t of the contraction %ith B=(keT)"%: u(r) is the pair potential of the direct
the descrlp_non, were employed to derlv_e the most genera},ﬂteraction forces, and(r) the radial distribution function of
time-evolution equation for the fluctuationdn(r,t) of a

: . . the Brownian fluid. Thus Eq2.1) writesF(k,z) in terms of
monodisperse colloidal suspension in the absence of hydrt%F1ese propertieavhich we will assume to be knowyand of
dynamic interactions. In such a derivation, the assumed Uhe memory functionL (k,2)=L9(k)+ AL (k.z), which is
derlying m|cro_scop|d\|-par_t|cle dyn_amlcs was _prowded by,sjust the Laplace transform of the time-dependent correlation
the many-particle Langevin equation. This is just Newton

equation for each of the spherical particles of the suspensio#;unCtIon of the configurational component of the stress ten-

) H 1 0
subject to the friction force of the solvent plus the corre->o" According to RefL13], the Markovian component”(k)

sponding random forcéjust as in the ordinary Langevin gtfalt_iékf()) (;e:gegea:xpressed in terms Diy and of purely
equation, plus the pairwise direct interactions, derivable prop
from a pair potentiali(r). As a result, expressions are de-

rived for F(k,z) in terms of a hierarchy of memory func- 5 2 0 3 d%Bu(r)

tions, and of static structural properties of the Brownian M“B8°L (k)=nj d°rg(r) 7 [1+2 coskz]

fluid. In these expressions, the Brownian relaxation tirge z

=M/¢° (or the corresponding frecuenagzrgl) appears, Don? #Bu(r) 2
whereM and ¢° are the mass and the solvent-friction coef- - f d3r g(r) > (1—coskz)
ficient of each particle in the suspension, respectively. In the k 9z

absence of friction {°—0), these expressions correspond to 3

. S/ PO - 2Dgn a°pu(r) .
those of a simple atomic liquid. In the presence of friction, + d3rg(r) sinkz
and in order to “tune” these expressions to the time regime k 9z°
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gV Bu(r)1?

rg(r)(1—coskz)| ———— 2

rd3’g(r,r’')(1—2 coskz

dvV Bu(r)
9z |

av'Bu(r’)
0z’

+cogk(z—2")])

(2.3

whereg(r,r') is the three-particle correlation function.
The corresponding results férg(k,z) can be written

Fo(k,2)= !
S( 12)_ kZDO y
Z+ 5 -
+ k DoXs(k)ij
2+ xs " (KLYAK) + x5 'ALg(k,2)
(2.9
with
2
{ f ar gry B (r)] 05
and
2
DoM282LY(k)=k?D3 nj drg(r)a Bu(r)}
a2,8u(r)

_D2 2

|

IV Bu(r)]?
0z

Jd3rg r)

+2D3nj dr g(r){

+ Dénzf d3rd3’g(rr’)

.
Equations(2.1) and (2.4) constitute the basis of our pro-
posals for third-order Vineyard-like approximations. They
express-(k,z) andF4(k,z) in terms of purely static proper-
ties (assumed knowrand of the unknown memory functions
AL(k,z) andALg(k,z). They also suggest several possible

forms to relateF(k,z) with Fg(k,z) through some simple
relationships betweeAL (k,z) andALg(k,z). Of course, the

dV Bu(r)
9z |

av'Bu(r’)
a7’

] . (2.6

most straightforward of such relationships consists of equat-

ing AL(k,z) to ALg(k,2):

AL(k,2)=ALg(k,2). 2.7)
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Egs.(2.1) and(2.4) have been written, we could also propose
approximatingy ~*(k)AL(k,z) by its self-counterpart, i.e.,

X H(K)AL(k,2)=xs (K ALg(k,2). (2.8
For some reason, which is not obviows priori, the
Vineyard-like approximation defined by this equation turns
out to be far more accurate than that defined by Edg). In
fact, a third version of a simple relationship between
AL(k,z) andALg(k,z) can be defined through the approxi-
mation

AL(k2)

ALg(k,2)
LO(k) '

L(k)

(2.9

We can advance that this happens to be the most accurate
among these three Vineyard-like approximations defined in
terms of simple relationships betweeAL(k,z) and
ALg(k,z) [i.e., Egs.(2.7—(2.9)].

These statements are the results of concrete numerical
tests of these approximations when their predictions are
compared with the exact results obtained in the computer
simulation experiment, as explained in Sec. IIl. At this point,
however, we do not have any obvioaspriori reason to
expect the quantitative superiority of any of these three
simple proposals. In fact, these three approximations have in
common that the resulting(k,t) happens to yield the exact
short-time expansion up to terms of ordér i.e., they all
satisfy the exact moment conditiofi, 7,9

m©@(k) =S(k), (2.10

m®(k)=—k?D,, (2.11)

m@(k)=k*D3+ nDOJ dr g(r)[1—cogk-r)](k-V)?Bu(r)
(2.12

and

mk) = —k°D3-3DFen [ ar g(r) (k-¥)?Bu(r)
~203n [ dr g(r)sintken)(k:¥)?Bu(r)
~203n [ dr g([1-cogken) [ (k:V)V pu(r) T

SnZJ dr’dr g(r,r'){1—2 cogk-r)
+cog (k-r=r")]}(k-V)(k-V")
X(V-V")Bu(r)Bu(r’), (2.13

where the moments(W (k) of F(k,t) are defined as

This is, however, not the only possible manner to relate

F(k,z) andFg(k,z) throughAL(k,z) andALg(k,z). In fact,

as we shall see in Sec. lll, it is not even the most accurate of
such relationships. For example, from the manner in which

I"F(k,t)
at"

m(”)(k)z( (2.14

|

0
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Also, the three approximations in EqR.7)—(2.9) coincide k2D oxs(K) xii 2
at large wave vectors since, in that limjg(k) ~ ys(k) and Cs(k,2)= ——— _1” _
LO(k) =L (k). z+ x5 (K)Lg(k) + x5 (k) ALs(k,2)

The short-time limit ofF (k,z) andFg(k,z) is particularly (2.20

interesting, since the contribution &fl(k,z) andALg(k,z)
only appears in the terms of ordérand higher, in the short-
time expansion ofF(k,t) and Fg(k,t). In fact, if we set
AL(k,z)=0 in Eq.(2.1), we obtain a simple, closed approxi-

Clearly, the SEXP approximation corresponds to setting
AL(k,z)=ALgk,z)=0, i.e., in approximatingC(k,z) and
C4(k,2), respectively, by

mation forF(k,z), namely, k2D -2
X (K) xij
C(k,2)=CSEXRk,z)= ————21__ (55
S(k) k2 2 z+ x H(k)LO(k) =2
F(k,z)= P — : (2.19
k?DyS (k) and
2 -2
M kzDOXS(k)XTZ
z+x H(k)LO(k) Ce(k2)=CE*k)=—F——. (2.22
& similarly, forFo(k.0 z+ xs "(k)Lg(k)
and similarly, forFg(k,t),
Let us now write Eqs(2.19 and(2.20 as
1
Fs(k,2)= 5 . (2.16 C(k,z)=CS5*Ak,2)+ AC(k,2) (2.23
0
k?Doxs(K)x;; 2 an
z+ x5 (k) LY(K) Cs(k,2)=C5"Mk,2) +ACq(k,2). (2.24

Equations (2.15 and (2.16 coincide with the so-called This allows us to suggest our fourth Vineyard-like approxi-
single exponential memorySEXP approximation, origi- mation, namely,

nally suggested and applied by Arauz-Lara and Medina-

Noyola [9]. Equation(2.16) has been widely employed to AC(k,z)=AC4(k,2). (2.29
interpret the self-diffusion properties of model experimental ) ) , )

and simulated colloidal systemig6,17. However, most Equations(2.17) and(2.18) along with this equation, estab-
such applications deal with rather dilute systems and/or wittSh our fourth proposal for an approximate relationship be-
relatively short times; in the oposite regirfféghly interact-  WeenF(k,z) and Fg(k,2), this time through the memory
ing systems at much longer timeshe limitations of this ~functionsAC(k,z) andACs(k,2), defined in Eqs(2.23 and
simple approximation are much more apparent. This is als&?-24- Just like our previous proposals, this approximation is
true for the SEXP approximation of thwllectiveintermedi- ~ /S0 €xact at short times, up to terms of orfér Further-
ate scattering function in E¢2.15), as recently discussed in More, it is also equivalent to an approximabeit rather in-
Ref.[18]. The structure of the general expressionfdk,z) volved and not very illuminatingexpression foA L (k,z) in
and F4(k,2) in Egs.(2.1) and (2.4 suggest, however, that terms ofALg(k,z). , ,

the SEXP approximation might serve as a good initial refer- 10 conclude our presentation of the various proposals for
ence to construct higher-order Vineyard-like approximationsYinéyard-like approximations that use the full information in
in which AL (k,z) andAL(k,2) are not neglected. For this, the general results in Eq&2.1) and (2.4), let us note that
let us rewrite the general expressionsfdk,z) andFg(k,z) ~ E0S:(2.23 and(2.24 could also be written as

in Egs.(2.1) and(2.4) as C(k,2)= CSEXRK, 2)[1+ AC* (k,2)] (2.26

= S(k) and
F(k,Z)—W (2.17)
" 1icko Co(k,2)=C3¥fk,2)[1+ACE(k,2)], (2.2
and with
! ACH (k,2) = 26 2.2
Fs(k,Z)ZTDO, (2.18 ( ,Z)—CSTP(KZ) (2.289
2T T4 Cok2)
and
with
ACE (K z) = —osk2) (229
2 -2 Z)=——, )
Clk2)= KDox9x, 219 ST s )

z+ x M (KLY +x (k)AL (k,2)
This suggests a fifth possible proposal to relatgk,z) with
and AL (k,z), namely,
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AC*(k,z)=AC%(k,2). (2.30  Wwith the assistance of exate., simulateyl data for both
F(k,z) andFg(k,z) obtained for a particular model system,
This equation, along with Eqg2.17—(2.24), defines a namely, a two-dimensional Yukawa Brownian fluid.
fifth means by which to relaté(k,z) andFg(k,z), which is
also equivalent to an approximate relationship between ll. NUMERICAL COMPARISONS

AL(k,z) andALg(k,z), namely,
(k.2) s(k.2) Y Let us consider a simple model system of a monodisperse

¥~ YK)AL(K,Z) Brownian qui_d without hydrodyngmi_cs interactions. _Sin_ce
— 5 — all we need is some form of indication of the quantitative
z+x (LK) +x (k)AL (k,2) accuracy of the various Vineyard-like approximations just
XM ALg(K,2) defined, we shaII.choos_e a particularly simplg modgl system,
_ (2.31) namgly, a two-d|rr_1en5|0ngl Yu_kawa Brownl_an fluid. This
Z+xs (k)LS(k)+X YKk)ALg(K, 7) consists oN Brownian particles in an are® which undergo

Brownian motion governed by the overdampBeparticle
Let us advance here that this proposal happens to be virtuallyangevin equationg19]
as accurate as our third proposal above, defined byZ®).

The reason i i i dr;
T for this can be understood if we write @081) d( )_,BDof ()4 BDGF() (=12, ... N),
(3.1
AL*(k,z) AL%(K,2)
= ; wheref;(t) is the random force with zero mean and time-
+AL*(k2) 1+ LJFAL;(KZ) dependent_correlation funcion_given b (1) 1£)(0))
'(k) zZ9(k) aﬁéllkBTg‘)Zé(t) and whereF;(t) is the force on par-

(2.32 tlcle i due to its direct interactions with the otheN+{ 1)
particles in the systent;(t) is assumed to be pairwise ad-

with ditive, with the pairwise forces derivable from a potential
u(r). We shall consider a repulsive Yukawa potential, which
AL*(k )_ (k Z) (233) we will write as
L (k) e—z(r—l)
K , r>1
and Bu(r)= r (3.2
La(k,2) o, r<i.
ALg(kz )——, (2.39 . . .
LS(k) Here we have added a physically irrelevant hard-core inter-

action, with hard-core diameter taken as unity, and will fix
and with z|(k) x HK)LO(k) and ZF(K)=xs (k)LY(K).  the parameter& andz at the valuek =500 andz=0.15.
Clearly,z,” L(k) andz(s) (k) are the relaxation times of the There is no special reason for this selection, other than the
memory functions CSEXP(k,z) and C35*fk,z), respec- fact that this model system has been studied extensively else-
tively. In the short-time, large-wave-vector regime, we havewhere[17]. Our Brownian dynamics simulation employs the

thatz/z,(k)%z/zfs)(k)>1, and hence, Eq2.30) is consis- Ermack-McCammon algorithm to solve E(B.1) numeri-
tent with cally, and we refer the reader to Ref&9] for details.

From our simulation experiment, we determine the radial
AL*(k,z)=AL%(k,2), (2.35 distribution functiong(r), from which we calculate the static
structure factor, and the various static properties referred to
which is Eq.(2.9). In the oposite regime, i.e., long times, in Sec. ll[see Egs(2.2), (2.3, (2.5, and(2.6)]. The only
z/z,(K) andz/zfs)(k) can be neglected compared to 1 in Eq. approximation we introduced in such calculations refers to
(2.32, which is then also consistent with §Q.35. Thus we  the superposition approximations for the three-particle distri-
can expect our fifth propos@Eq. (2.30] to lead to similar  bution functiong(r,r ') appearing in the last terms of Eqgs.
predictions to our third propos&Eq. (2.9)] [which can be (2.3) and(2.6), which we show elsewhele 8] to be a rea-
rewritten as Eq(2.35 above. sonable approximation. In addition, we also simulate both
In summary, here we have defined five different manner$ (k,t) andFg(k,t). From our results foF g(k,t), we extract
to propose approximate relationships betwégik,z) and  ALg(k,z) according to Eq(2.1) [or, equivalently ACg(k,2),
F4(k,2), in terms of corresponding relationships between theaccording to Eq(2.18)], to be used as an input in each of the
third-order memory functiondL(k,z) andALg(k,z) enter-  five versions of the Vineyard-like approximations fefk,t).
ing in the general expressions féi(k,z) and Fg(k,z) in  The resulting values fdf (k,t) are then compared with each
Egs. (2.1) and (2.4). These five Vineyard-like approxima- other, and with the exact values of this property obtained
tions were suggested by the various possible manners dfirectly from the simulation. We carried out this exercise for
writing the latter equations, and their respective quantitativevarious values of the reduced bulk concentratioms
accuracy cannot be assessegriori. Thus, in what follows, =(N/A)o?, ranging from moderately interacting ni
we shall subject these approximations to a quantitative test 0.003) to highly interactingr(* =0.012) conditions, as il-
that will allow us to discriminate among them. This is donelustrated in Fig. 1, where we present the radial distribution
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3.0

254

2,04

a(n

0.5+

0.0 T T T

FIG. 1. Radial distribution functiog(r) for a system with po-
tential parameter& =500 andz=0.15. The reduced bulk concen-
trations aren* =0.003(dotted ling andn* =0.012(solid line).

functiong(r) obtained in our BD simulations for the lowest
and highest of these concentrations.

The data of the type in Fig. 1 allow us to calculate exactly

=F(k,t=0), is washed away rather quick{ye., it decays to
almost zero already for timegty,~10) for most wave vec-
tors, except for those near the positigp,, of the main peak
of S(k). As we see in Fig. 2, at longer times it is orfi(k
~Kmax:t) Which survives from the original structure 8{k);
i.e., for t=50ty F(k,t)/S(k) is already negligible for all
wave vectors, except fde~K,ay, WhereF (Kpax.t) has only
decayed to about 10% its initial value.

This observation suggests that the most stringent test of
any approximate theory of the dynamic evolutionFdik,t)
is the comparison with the exadisimulated data for
F (Kmax:t)/S(kmay)- These data are presenteircles in Fig. 3
for the concentrations* =0.003, 0.009, and 0.012. In this
figure we also illustrate the main results of this paper,
namely, the predictions of the five Vineyard-like approxima-
tions defined in Sec. Il, and its comparison with the corre-
sponding exact data fdf (Kyay,t)/SKna- Let us comment
upon the most salient features of this comparison. As illus-
trated in Fig. 8a), at low concentrations all these approxi-
mations provide an excellent description of the time evolu-
tion of F(knat). This is particularly true for the initial
decay ofF (Knaxt)/S(knmay, but also for a longer time win-
dow (0<t=20 ty). Infact, Fig. 3a) does not provide strong

the value of all the static properties referred to in Sec. ”,quantitative elements to discriminate among the various pro-

namely, x(k), x(k), L°(k), and LY(k) [except for the
term involvingg®)(r,r’), which we approximate by its su-
perposition approximatign In particular, we calculate the
static structure facto8(k), which is the initial value of the
intermediate scattering functioR(k,t). In Fig. 2 we plot
S(k) =F(k,t=0) (solid line) for an intermediate but strongly
correlated systemn®* =0.009). Figure 2 serves to illustrate
the main features of the time evolution®fk,t). For this, in
this figure we have also include(k,t) for latter times,

particle to diffuse its hard-sphere diametéfrom Fig. 2 we

evolution of F(k,t). This refers to the fact that the entire
initial (statig stucture of the fluid, represented I§(k)

3.5

F(k,t)

FIG. 2. Intermediate scattering functida(k,t) for a system
with the same potential parameters as in Fign1=0.009 andt
=0 (solid line), t=13.88, (dashed ling andt=55.55, (dotted
line).

posals for these Vineyard-like approximations. One might
think that what happens at these small concentrations is that
the contributionAL (k,z) to the configurational stress-tensor
correlation function is actually very small, and hence, the
differences between all the approximations considered
should also be small at low concentrations. If this were the
case, however, all the various approximations would con-
verge to the SEXP approximation, corresponding precisely
to the conditionAL(k,z)=0. In order to check this, in Fig.
3(a) we also include the result of the SEXP approximation.
There we can see that the short-time regime, where the

SEXP results coincide with the exact data, corresponds to a

: . <t=5t. in Fia. L
immediately learn the most important feature of the dynamicrather narrow time windo}O=t=5t, in Fig. 3(a] within

which F(kat) has decayed to about 70% of its initial
value. Of course, in this short-time regime, all our five pro-
posed approximations indeed coincide with the SEXP and
with the simulation data. For latter times, however, the
SEXP departs more significantly from the exact data than
any of our proposals involvind L (k,z) #0.

Although a closer look at Fig.(8) could actually reveal
some quantitative features that are indeed relevant, these are
the ones which are dramatically amplified at higher concen-
trations, as illustrated in Figs(l® and 3c). First let us note
that in these figures the discrepancy among the various ap-
proximations is now much larger. Also note that the ex-
pected short-time agreement is now restricted to an ex-
tremely short-time window. The comparison in Figgb)3
and 3c) do provide strong elements to discriminate among
the five proposed approximations. Clearly, the most impor-
tant conclusion drawn from the results in these figures is that
the most accurate approximations are those in which we ap-
proximate eitherAL* (k,z)=ALZ(k,2) [i.e., Eq.(2.33] or
AC*(k,z)=AC%(k,z) [i.e., Eq.(2.28]. In fact, also surpris-
ingly, the numerical results of both of these approximations
are virtually indistinguishable from each other in the scales
of Fig. 3. The reason for this coincidence was already ad-
vanced in Sec. I[see the discussion after E@.29]. From
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FIG. 3. Semilogarithmic plots of (Kyax,t)/S(Kmay for a sys-
tem with the same potential parameters as in Fig.(d. n*
=0.003 andkp,,x0=0.37. (b) n*=0.009 andk,,,0=0.63. (c)

Figs. 3b) and 3c) we also learn the quantitative importance
of the specific property that we choose to build a given
Vineyard-like approximation. Thus, to our surprise, the
“simplest” proposal, namely, that based on approximating
the “bare” memory function AL(k,z) by its self-
counterpart, turns out to be the least accurate, and most er-
ratic approximation at high concentrations. These negative
features are corrected when we employ adt(k,z), but

x Y(K)AL(k,z), as the basis of our Vineyard-like approxi-
mation[Eqg. (2.8)]. Although at small concentrations there is
no need for this correctiofsee Fig. 8a)], at larger concen-
trations it leads to much more accurate and systematic quan-
titative results. Note, in fact, that these results always lie
below the simulation data, i.e., they somewhat overestimate
the relaxation ofF (Knat). In contrast, if we normalize
AL(k,z) not with y(k) but with L°(k), and choose the di-
mensionless propertfL* (k,z)=AL(k,2)/L°(k) as the ba-

sis of our Vineyard-like approximatiop.e., Eq.(2.33], the
corresponding results are systematically above the simula-
tion data for F(Kmax.t)/SKknad- AS mentioned above, this
turns out to be the most accurate approximation, and part of
the reason for this can be found in the use of a dimension-
lesss property such asL* (k,z) as the basis of the approxi-
mation. A similar comment could also be made regarding the
Vineyard-like approximations in Eq$2.25 and (2.28. In

this case, both are based on dimensionless properties,
namely, AC(k,z) and AC*(k,z)=AC(k,z)/CSE*Ak,z).

For reasons explained above, however, the latter turns out to
be virtually identical to the approximation based on
AL*(k,z), and, together with this, it is the most accurate
proposal. In contrast, the former systematically underesti-
mates the relaxation df(Kqax.t)-

Let us now compare the results in Fig. 3, for the decay of
F(k,t)/S(k) at k=K. With the results in Fig. 4, corre-
sponding to other values &f namely,k_o=0.65[Fig. 4(a)]
and k. 0=1.03 [Fig. 4(b)]. k_ is such thatk_ o <Ko
=0.72 andS(k_)~1, whereask, is such thatk, >k,
and it coincides approximately with the location of the first
minimum of the static structure factor. As we can see if we
compare these figures with Fig(c3, the dispersion of the
results of the various approximations around the exact data is
less severe fok# k., €specially for wave vectors larger
than k.. In fact, even the most primitive Vineyard-like
approximatiorfbased on the barkL (k,z)] performs well at
these wave vectors. Also here, there is an almost exact quan-
titative coincidence between the results based\ar (k,z)
and those based akC* (k,z).

The results in Fig. 4 confirm that these two are the most
accurate of the proposals for Vineyard-like approximations
based on the full expressions in Eq2.1) and (2.4) for
F(k,z) andF¢(k,z) in terms of the third-order memory func-
tions AL(k,z) andAL(k,z). Thus in the hierarchical sense
in which Vineyard's approximatiofEq. (1.1)] is the zeroth
order approximatiofiEq. (1.1)], and Eq.(1.4), based on the

N*=0.012 andky,.0=0.72. In this figure the open circles repre- (“first-order”) memory functiond(k,z) andD(k,z) is the
sent BD results, and the five Vineyard-like approximations arefirst-order approximation, we can say that the five approxi-

shown by the solid line foA C(k,z) =ACg(k,z), the solid line and
squares for AC*(k,z)=AC%(k,z), the dotted line for
X’lAL(k,z):XglALS(k,z), the dash-dotted line foAL*(k,z)

=AL%(k,2), and the dash-dot-dotted line farL(k,z). In (a), the
dashed line represents the SEXP approximation.

mations discussed so far are variants of third-order Vineyard-
like approximations. Second-order approximations could
also be considered, and these would be based on the
“second-order” memory function€(k,z) and Cq(k,z) in
Egs.(2.17 and(2.18. If we compare these equations with
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(a) FIG. 5. Semilogarithmic plot of (Kyax:t)/S(Kmay for a system

with the same potential parameters as in Fig.n1=0.012 and
kmaxo=0.72. Open circles represent BD results, and the Vineyard-
like approximations are shown by the solid line f@(k,z)
=Cgq(k,z), the dashed line foH(k,z)=Hg(k,z), and the dotted
line for AL* (k,2) =AL¥(k,2).

0.8+

This suggests the second-order Vineyard-like approximation
H(k,z)=Hg(k,z), which can also be written as

o
S
1

2 X 1(K)C(k,2)= x5 *(K)Cy(k,2). (35
T 044
= In Fig. 5 we compare the results of this approximation
with those of the first-order approximation in Ed..4) and
024 of the best third-order approximaions discussed in Sec. ll,
namely, Eqs(2.33 and(2.28.
The comparison in Fig. 5 illustrates the expected fact that
00 ' the quantitative accuracy of these approximations increases
0 % @ with the level of the memory function involved. Figure 5
corresponds to the most demanding conditions, naniely,
(b) =Kmax, for the highest concentration* =0.012. Let us

FIG. 4. F(k,t)/S(k) for a system with the same potential pa- CIO‘? this Se?ltlom b){ Sflyén? thatt all 'ihe con(I:Ilisg)ns otf this
rameters as in Fig. 1, wher&* =0.012.(a) k_o=0.65.(b) k, o~ Sccton, Mosty liustrated for strongly correlated systems,

=1.03. The open circles and Vineyard-like approximation lines aré?'® systematically confirmed at lower concentrations as well.
as in Fig. 3.

IV. SUMMARY
Egs.(1.2) and(1.3), we ha\iel thaD (k,z)=[1+C(k,2)]"* In this paper we have presented a hierachy of Vineyard-
andDg(k,z) =[1+Cg(k,2)]" . Thus simply settind>(k,z)  |ike approximations, based on approximating the collective

=Cq(k,2) is actually equivalent to approximating(k,zZ) ~ memory function of a given order by its corresponding self-
=Dg(k,2), which leads to the first-order Vineyard-like ap- memory function. The zeroth-order approximation is the
proximation in Eq.(1.4). Thus we need more detailed infor- vineyard approximation itself(k,t) = Fg(k,t)S(k), which
mation on the actual structure @f(k,z) and C4(k,z). The  only satisfies the zeroth moment condition, and does not dis-
most detailed structure of these memory functions is protinguish between Brownian and Newtonian dynamics. The
vided by the full expressions fdf(k,t) andFg(k,t) in Egs.  first-order approximation consists of approximating the first-
(2.1) and(2.4), or equivalently, in Eqs(2.19 and(2.20. For  order memory funcitonD(k,z) in Eq. (1.2 by its self-

our purpose, however, let us ignore all the detailed structuregounterparDs(k,z), thus leading to Eq(1.4). This approxi-

of C(k,z) andCq(k,z) in Egs.(2.19 and(2.20, except for  mation for F(k,t) satisfies the zeroth and the first moment
the initial values C(k,t=0)=k?Dox(k) and C4(k,t=0)  conditions in Eqs(2.10 and (2.11) [provided thatF(k,t)

=k?Doxs(k), and write does satisfy the corresponding conditibriEhe second-order
Vineyard-like approximation is defined by Eq®.17) and

C(k,2)=k?Dox(k)H(k,2) (3.3 (2.18, together with Eq(3.5) above. This satisfies up to the
second moment condition in E€R.12). Finally, for the level
and involving the third-order memory functiondL(k,z) and

AL 4(k,z), we studied five different proposals. All of them
Co(k,2)=k?Doxs(k)Hs(k,z). (3.9 are such that the resulting Vineyard-like approximation uses
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the full structure of the general expressions Fdik,z) and  approximations of the kind considered here, both at the same
Fs(k,2) in Egs. (2.1) and (2.4). Furthermore, all of them level and at lower levels in the hierarchy discussed in the
satisfy the exact third moment condition in E&.13. The  present work. We expect that the information just summa-
main difference was the specific manner in whith(k,z) rized will be useful in an analysis of experimental or simu-
andALg(k,z) were related. In the absence of a reliable ar-lated results on more realistic models than the one consid-
gument to discriminate among these five proposals, we reered here. For the time being, this information is being
sorted to a quantitative comparision in the context of theemployed in the development of a self-consistent theory to
properties of a simple specific model system. This allowectolloid dynamics, but this will be reported separately].

us to discriminate among these five third-order alternatives.
Surprisingly enough, two of these five proposals happened to
yield virtually indistinguishable results, which also happened
to be systematically the most accurate. The first of these two This work was supported by the Consejo Nacional de
approximations is defined by Eq®.1) and(2.4), along with  Ciencia y Tecnolog (CONACYT, Mexico) through Grant
Eqg. (2.9. The second is defined by Eq&.17), (2.18), No. G29589E, and through the Project “Biomolecular Ma-
(2.25, and(2.27), along with Eq.(2.30. From a quantitative terials.” L.Y.R. and H.A.C. acknowledge support from the
point of view, either of these two approximations constituteUniversidad de Sonora, W&o and also thank the Centro de
the best representative of the third-order Vineyard-like ap-Computo from Universidad de Guadalajara, dite, for the
proximation. Their results are far better than any of the otheaccess to their computing facilities.
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