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The generalized-hydrodynamic theory for collective diffusion of a monodisperse colloidal suspension is
developed in the framework of the Onsager-Machlup theory of time-dependent fluctuations. The time evolution
of the intermediate scattering functidf(k,t) is derived as a contraction of the description involving the
instantaneous particle number concentration, the particle current, and the stress tensor of the Brownian fluid as
state variables. We show that the proper overdamped limit of this equation requires the explicit separation of
the stress tensor in its mutually orthogonal kinetic and configurational contributions. Analogous results also
follow for the self-intermediate scattering functién(k,t). We show that neglecting the non-Markovian part
of the configurational stress tensor memory, one recovers the single exponential memory approxias¢idn
on sum rules derived from the Smoluchowski equatifor both F4(k,t) and F(k,t). We suggest simple
approximate manners to relate the collective and the self-memory functions, leading to Vineyard-like approxi-
mate relations betwedng(k,t) andF(k,t).

PACS numbd(s): 05.40—a, 82.70.Dd

[. INTRODUCTION unique or canonical route to carry out such derivafi6y],
and the development of the statistical mechanical theory of
The most fundamental dynamic property of a colloidalcolloid dynamics within the last 20 years consists of a rather
suspension in thermodynamic equilibrium is the so-calledich variety of attempts to carry out this derivation along a
van Hove functionG(r,t). This is[1,2] the time-dependent few alternative routes. Although many important issues have
correlation function of the fluctuatiodn(r,t) of the instan- been addressed and understddd8,7,9, a few essential
taneous local concentration of colloidal particlegr,t), at  points still merit further and careful discussion. For example,
positionr and timet, around its bulk equilibrium value, any theory for=(k,t) properly rooted irN-particle Langevin
i.e., G([r—r'|,t)y=(dn(r,t)dn(r’,0)), with dn(r,t)=n(r,t)  equation dynamics should lead to expressions F¢k,t)
—n. Dynamic light scattering techniqué3,4] allow the ex-  valid for all time regimes associated to the Brownian motion
perimental determination of this function, or, rather, of itsof the colloidal particle$10,11] . The regime relevant to the
spatial Fourier transforrf (k,t), referred to as the interme- dynamic light scattering experimenf8], however, corre-
diate scattering functiorG(r,t), or F(k,t), contains all the sponds to times much longer than the typical relaxation time
relevant information on the macroscopic dynamic behaviorrg=¢%M, whereM is the mass of each particle, agis its
of the suspension. Thus the basic goal of a statistical mdf¥iction coefficient in the absence of interactions. In the so-
chanical theory of colloid dynamics consists of the deriva-called diffusive regimet> rg, the initial velocities of the
tion of a macroscopic equation f@(r,t) or F(k,t) starting  Brownian particles have been completely damped out by the
from a microscopic level of description. Although a colloidal friction of the solvent, anddn(r,t) relaxes only through
suspension is formed b colloidal particles plus all the purely diffusive mechanisms. Thus one has to take the so-
atoms or molecules that constitute the solvent, averaging owglled overdamped limit> 75 in any general time-evolution
the microscopic degrees of freedom of the solvent moleculesquation forén(r,t) [or on the corresponding expression for
(and other molecular species, such as salt)ideads to a G(r,t)], obtained from a derivation rooted in the micro-
solvent-averaged dynamic description involving only the de-scopic dynamics represented by tieparticle Langevin
gree of freedom of thé\ colloidal particles, i.e., the many- equations. This full program was carried out by Hess and
body Langevin equatiofb]. It is generally accepted that this Klein [12] in their pioneering work on colloid dynamics,
system ofN stochastic equations for the velocities of tle although they based their derivations on theparticle
colloidal particles, coupled together by the direct and hydro+okker-Planck equation, rather than on Niparticle Lange-
dynamic interaction forces between the particles, constitutein equation. In the absence of hydrodynamic interactions,
an adequate microscopic description of the dynamics of theowever, there is full equivalence between these two micro-
suspension. Thus the crux of the statistical mechanical theorscopic description§13]. In fact, Hess and Klein explained
of colloid dynamics consists of the derivation of a time- and discussed the procedure for taking the overdamped limit
evolution equation for the macroscopic variabba(r,t), in the general expressions obtained fofk,t). From their
starting from the microscopic description provided by thediscussion12], however, it becomes clear that this issue is
N-particle Langevin equation. There is, however, not aat least subtle and delicate. Although the physical concepts
are clear, the actual formal procedure for taking this limit
still deserves additional attention. Addressing this delicate
*Permanent address: Departamento @&ck) Universidad de So- point is just one of the main objectives of the present work.
nora, Hermosillo, Sonora, Mexico. Here we derive a general expression Faik,t) rooted in
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the microscopic dynamics contained in fiegarticle Lange- symmetry considerations. The end result of our application
vin equation. At the present point, to simplify matters, weto colloid dynamics is an expression fefk,t) in terms of a
keep in mind a monodisperse suspension in the absence bierarchy of memory functions. At this point, the reader will
hydrodynamic interactions, and will only consider direct in- recognize that our derivations are just a straightforward
teractions describable by continuous effective pair potentialgranslation to colloids of the corresponding derivations for
For this system, we derive a general expressiorFfde;t) in ~ Molecular liquids, as reviewed in Boon and Yip’s tgxtpook
terms of static structural properties of the suspengasy  [2]. In fact, some of the results féi(k,t) for a simple liquid
sumed determined by statistical thermodynamic methbls corresppnd to_ t_he fnctlonless I_|m|t of our results in Sec. II_I.
given the pair potentiali(r)], and of a memory function Thg main addmop in our work is the treatment pf the oposite
associated with the time-dependent correlation function ofMit, i-€., the derivation of the general expression fidk; t)

the stress tensor of the colloidal fluid. Up to this point, our®f @ colloidal system in the overdamped limit. This is de-
derivation parallels that of Hess and Klein, since, in the apSCibed in detail in Sec. IV, which constitutes the main con-
sence of hydrodynamic interactions, the statistical mechaniribution of this paper. In reality, these results, besides their

cal equivalence between the respective microscopic startintfinsic interest, consitute a basic ingredient of a program
points(i.e., theN-particle Langevin equation and the Fokker- aimed at constructing a fully self-consistent theory of colloid

Planck equationis free from ambiguitie§13]. In the next ~ dynamics. Some aspects of this program, and of its concrete
step, however, we provide our own approach to the probler@Pplications, are briefly described in Sec. V.
of taking the overdamped limit of the general expression for

F(k,t). For this, we found that the use of the generalized Il. GENERAL CONCEPTS
Langevin equatioiGLE) formalism, along with the concept ) ) ) o
of contraction of the descriptiofil4], is particularly useful. Let us consider a monodisperse colloidal suspension in

As a consequence, we obtain the main result of this papefn€ absence of hydrodynamic interactions. For our present
namely, a general expression tk,t) in the overdamped PUTPOSe, we assume that_ the microscopic dynamics of this
limit, written in terms of purely static structural properties SyStem, formed by spherical particles in a volumé, can

and of the memory funcion associated with the time-P€ described by thdl-particle Langevin equatior{S—5]

correlation function of theonfigurationalcomponent of the dui(t)
stress tensor. The main value of our present derivation is its,,AVi(t) _ | o
conceptual simplicity(although some details may require dt ¢ V'(t)+f'(t)+; R (i=12,... N).
careful, and sometimes extensive, statistical mechanical deri- (2.2
vations, which are, however, straightforwarth particular,

the physical assumptions behind the proper manner of taking, these equationdyl is the mass, angi(t) the velocity of
the overdamped limit are formally stated in clear and rigourthe jth particle, andz® is its friction coefficient in the ab-
ous terms. _ _ ~sence of interactions. Alsé(t) is a random force, modeled

t -IrheTfrl:St part gf thl?l papel; \_N|]!|| have a rathfer p?dagotglcf"as a Gaussian white noise of zero mean, and variance given
style. Thus, in Sec. Il we briefly review a few importan R _ o T ST

et o i ey f cold tymmes, and e vanau) (0 Q) KTE2AORT (1202 T e
possible strategies to derive general expression$ &rt). ticles are repres.ented by the sum of the pairwise foFges

in Sec 1 e oxplan and lutte e e o OLE it poj 1 arice oersonparcs . s v
YS” from the pair potentiali(|r; —r;|). The statistical mechanical

tems. The GLE formalism is most commonly understood 3nformation contained in this description can also be cast in

the result of a formal derivation of a time-evolution equation, " < correspondinty-particle Fokker-Planck equa-

for a macroscopic variable, starting from the microscopic,; | - [17] for the probabilityW(r,.r», . .. ¥1.V,..:t) that

N-particle dynamics, by a systematic application of projec- _ .. - e . !
tion operatord15]. This leaves the impression that the full particlei has positiorr; and velocity; at time t,

structure of the resulting time-evolution equation is a direct
QW(r].YrZY CEE 1V11V2!--;t)

consequence of the underlying microscopic dynamlc_s. In re =0 pW(T1 g, - Ny Vo ib),
ality, the most relevant features of the macroscopic time- at
evolution equation of the macroscopic variable are a direct (2.2

consequence of mathematical symmetry conditions, such as

the stationarity condition, or the time-reversal symmetry ofwhereOgp is the Fokker-Planck operatft?2].

the macroscopic variabld44]. Thus, for the GLE formal- Equationg2.1) and(2.2) are equivalent representations of
ism, we prefer to understand the systematic application ofhe same dynamical description. Acording to E2.1), the
the Onsager-Machlufil6] general theory of time-dependent initial decay of the particles’ velocities is determined by the
fluctuations, along with the process of contraction of the defrictional damping of the solvent, and this defines a time
scription[14]. This theoretical framework allows us to write scale rg=M/{°. For timest> 15, normally probed in dy-
quite a few of the most important features of the macroscopionamic light scattering experiments, the dynamics is purely
time-evolution equation without resorting to the underlying diffusive. Thus, one can “tune” this microscopic description
microscopic description. Only at a latter stage, the microto the diffusive regime by taking the limit> 75z in Egs.
scopic dynamics can be employed to determine additional2.1). This amounts to neglecting the inertial terms in these
elements of the time-evolution equation that were left undeequations, thus leading to tlewerdamped Mparticle Lange-
termined by the “selection rules” that derive from general vin equation[18]
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T T N Y m@(K) =k*DZ+nD, [ dr g(r)[1-cogkor]

- . : X(k-V)2Bu(r), (2.7)
Just as for the original Langevin equations, one can express
the same information in Eq2.3), in the Fokker-Planck lan- whereg(r) is the radial distribution function of the colloidal
guage, i.e., in terms of an equation for the probability distri-particles, andu(r) is the pair potential. Arauz-Lara and
butionW(r,r, .. .;t) that a particld has a position; ata  Medina-Noyola[19] extended these calculations to the third
time t. Such an equation is called the Smoluchowski equamomentm(®)(k), with the result
tion, and can be written as

IW(r,ro...51) m(3)(k): —k6D8—3ng2nf dr g(r)(k~V)2,8u(r)
o —OW(ri .., (29

—2D3nf dr g(r)sin(k-r) (k- V)3Bu(r
whereOg is the Smoluchowski operatp8]. The same equa- 0 g(rsintker)( S Au(T)

tion can also be derived from the Fokker-Planck equation
[17]. —ZDgnJ dr g(r)[1—cogk-r)][(k-V)VBu(r)]?
The following conceptually important task is to derive,

from any of the four descriptions above, the properties of the

intermediate scattering function. In doing so, we can distin- —Dgnzf dr'drg(r,r'){1—2 cogk-r)

guish various approaches and strategies. These may differ

depending on their goals and on the general approach they +cog (k-(r—r")]}k-V)(k-V")

use to derive the macroscopic information contained in ,

F(k,t) from the microscopic description in the equations X(V-V)Bu(r)pu(r’) 2.8

above. What follows is a sc_henjaticl summary of the mainWhere g®(r,r') is the three-particle correlation function.
approaches and results in this direction. - . These same results fon?)(k) and m®(k) were also de-

(1) Start from the already overdamped microscopic de-. .
scription provided by either Eq§2.3) or (2.4). Ackerson[6] rived by.Pusey and Tougf18] starting from the' other rep-
chose to start from the Smoluchowski equation, and app"eaesentatlon of the overdamped _microscopic dyna_mlc_s,
the projection operator formalism to derive the relaxationnamely’ the overdamped many-particle Langevin equation in

. . Eqg. (2.3. Similar results were also derived in parallel for
forF(k hich he f h h I . . )
equation forF(k,t), which he found to have the genera F(k,t). Besides these results for the short-time properties of

tructur . . - .
structure the intermediate scattering functions, the methods above do
IF (k,1) not lead to a practical prescription for the full calculation of
at, =—k?DyS H(K)F(k,t) these dynamic properties. However, a simple approximation

for the full time dependence &f(k,t) andF4(k,t), based on
t these exact moment conditions, was suggested by Arauz-
+J M(k,t—t")S H(K)F(k,t)dt’, (2.5 Lara and Medina-Noyol#19]. This consists of assuming a
0 simple functional form for the memory functidvi (k,t) [and
_ —ay . for its self-counterparM(k,t)], namely, a single exponen-
where S(k)=F(k,t=0) is the static structure factoDg tial, with its k-dependent amplitude and decay constants

=kgT/{0 is the short-time self-diffusion coefficient, and . " : L
M(k.t) is a memory function which contains the effects of flxed by the short-time conditions above. This approximation

the direct interactions. For this function, Ackerson wrote an> about the simplest, yet reasonably accurate, approach to

expression involving projection operators related to thethe guantitative calculation of the dynamic properties of a

. . S ~ colloidal suspension. Although most of its concrete applica-
Smoluchowski operatdi6]. This expression is mostly a for tions have been related to self-diffusion phenom@are-

mal result, not very useful for practical calculations, except : S .
) S i o . “"cently its usefulness and limitations were demonstrated in
in certain limiting conditions. However, it is a convenient

i . ; ' the analysis of simulated and experimental resultsédlec-
starting point for the calculation of the first few moments of _. diffusion in quasi-two-dimensional suspensidas,21]
F(k,t). These are the coefficients of the short-time expan:we fiusion In g P L
sion of F(k.), defined as Let us mention that other approaches also derive informa-

e tion on F(k,t) and/or Fg(k,t) starting from theN-particle
™ (k) Smoluchowski equation. These_ in(_:lude the_ application of
F(k,t)= 2 tn. (2.6) linear response theof®2,23 or kinetic-theoretical methods
n=o N! [24,25. We do not refer in detail to these contributions ei-
ther because they do not relate directly to the present work,
Thus the momenm(™(k) is the initial value of thenth  or because they refer to more specific conditions or to effects
time derivative ofF (k,t). Clearly, m(®)(k)=S(k), and, from  (such as hydrodynamic interactigrthat we explicitly wish
Eq. (2.5), it is easy to see tham®(k)=—k?DyS (k). to leave aside for the moment. These contributions, however,
These are two exact moment conditions, assuming the mivere described in recent reviews of the figdg7].
croscopic dynamics to be described by the Smoluchowski (2) Start from the microscopic description without over-
equation. Ackerson also calculated the second momerttamping, provided either by the many-body Langevin equa-
m)(k), for which he found tion [Eq. (2.1)] or its equivalent Fokker-Planck equatifq.

o0
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(2.2)]; derive results forF(k,t), and then take the over- couple to the dynamics of the local particle concentration.
damped limit. To some extent, this is a more general ap- In the present paper we adopt this approach, following the
proach, since the results féi(k,t) before overdamping de- work of Alarcon-Waess and Medina-Noyda8]. Thus we
scribe, in principle, the dynamics of the colloidal suspensiorwrite the most general time-evolution equation for the fluc-
not only in the diffusive regime, but also at earlier times,tuations of the local concentratiam(r,t) of colloidal par-
comparable tag . However, to compare with light scattering ticles, which is consistent with the selection rules referred to
measurements, the overdamped limit has to be taken. Thabove. Specific information about the microscopic dynamics
approach followed by Hess and Kleji2] belongs to this is then employed in the approximate or partial determination
second strategy, as does our present derivations of the ca¥f those elements of the time-evolution equation that such
lective diffusion properties explained in the following sec- selection rules leave undetermined.
tions. Hess and Klein based their derivations on the Fokker- The basis of this appoach, then, is the general mathemati-
Planck equation, whereas we take the elements of theal conditions that the local concentratiorir,t), or any
microscopic dynamics needed in our work from the many-other variable or set the variables that describe fluctuations
body Langevin equation. Thus from the formal equivalencearound the equilibrium state, must satisfy. These general
between these two microscopic descriptions, one should exsonditions are stated by the theorem of stationdfi#. Ac-
pect the same ultimate results for both theories. There igsording to this theorem, the most general linear stochastic
however, an additional conceptual parallelism between Hesdifferential equation that describes(multivariable station-
and Klein’s work and the present work. This refers to the usery stochastic procesxt) =[a;(t),a,(t), ... ,a,(t)], must
of the general theory that we refer to as the generalizethave the structurgl4],
Langevin equation. The application of this formalism in the dat)
context of simple liquids is referred to as generalized hydro- @& -1
dynamics[2], which Hess and Klein adapted to coIIo%/daI Sdt =—oxlat)- f (t=t)xa(t)dt +1(v),
suspensions. In their worKL2], however, the generality of (3.
their treatment, and their thorough analysis using linear re-
sponse theory and projection operator techniques, hide somghere x is the matrix of static correlations,y;
what the intrinsic simplicity of the GLE formalism, which =(@;(0)a(0)), « is an anti-Hermitian matrix d¢;;=
we strongly emphasize in this work. - o), and the matrix (t) is determined by the fluctuation-

In this second general strategy, once the general resultﬁssipation relatiorl; (t) =(f;(t)f;(0)), wherefi(t) is the
for F(k,t) have been derived, the overdamped limit has to beth component of the vector of random fordés).
taken. This is a particularly subtle issue, and merits a careful In the present application of this theorem, we shall con-
and explicit discussion. The physical arguments and the ensidera;(t) to be the Fourier transformin(k,t) of the fluc-
results in Hess and Klein's work are accurate, but are notuations én(r,t)=n(r,t)—n of the local concentration
explicitly detailed. In contrast, this will be the main subject n(r,t) around its bulk valuen. n(k,t) will be normalized
of the present work. Closely related to this issue is thesuch
equivalence between the results obtained from this secornghat its time-independent correlation is y,,(Kk)
strategy, after the overdamped limit has been taken, and the (sn(k,0)sn(—k,0)) = S(k), whereS(k) is the static struc-
results of the alternative strategy (). This issue gave rise ture factor of the bulk suspension.
to considerable initial confusidri2,26], which was clarified If we choose the least detailed description=1), i.e
only in 1986 by Cichocki and Hed26,27. These authors a(t)=[a,(t)]=[n(k,t)], then Eq.(3.1) reads
used projection operators techniques to establish the formal
relationship between the memory functions that naturally don(Kk, t) e e
emerge from the application of these two alternative strage- gt LL(k,t—t )S MKy an(k,t)dt +(k,),
gies. In our present work we will also discuss some aspects (3.2
related to this issue. In particular, the moment conditions
obtained after overdamping will be compared with the cor-since the only element @ vanishes. In this equatiofi(k,t)
responding conditions obtained from the overdamped microrepresents the random diffusive fluxes, whose time-
scopic descriptions. This will be discussed below within ourdependent correlation function is given by the fluctuation
own theoretical approach. dissipation relation(f(k,t)f(—k,0))=L(k,t). Multiplying
Eq. (3.2 by én(—k,0), and taking the equilibrium ensemble
average, we are led to the time-evolution equation for
F(k,t), whose solution, in Laplace space, reads

The two strategies above emphasize the notion that the
structure of the dynamic equation fe(k,t) or Fg(k,t) must F(k,z)= S(k) 3.3
be rooted entirely on the underlying microscopic dynamics ' z+L(k,2)S Y(k) '
provided by either of the descriptions represented by Egs.
(2.1)—(2.4) above. In reality, however, some of the most im- At this minimal level of descriptiofii.e., v=1), the GLE
portant features of the time evolution equations Fqk,t) approach is unable to go further in revealing the structure of
and Fg(k,t) can be written right at the outset, since theythe memory functior(k,t). Thus, although this is the most
derive from rather general selection rulgkd] originating  general and exact time-evolution equation fe(k,t), it is
from the stationarity condition, and from other symmetryalso the least useful. For example, from E§.3) we can
properties of the macroscopic variables whose dynamicexactly calculate only the obvious zeroth moment condition

Ill. GLE FOR COLLECTIVE DIFFUSION
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m(® (k) = S(k), since the higher order moments™ (k) (n  actual structure of the memory functidr{k,t). As a result,
=1) depend orL(k,z), which is unknown. The idea, how- from Eg. (3.3 with Eq. (3.10, we can calculate exactly, in
ever, is to consider next a more detailed description, i.e., Ecaddition tom(®)(k), the first and second moment conditions
(3.1) with »>1, and then contracting down to this minimal m®(k)=0 andm(®(k)=—k?/Mg . Still, the only new in-
description. As an illustration, let us write the continuity formation is basically that derived from the continuity equa-
equation forn(k,t). For this, we do need the information tion, namely, thek? dependence of (k,t). Thus there is
contained in the microscopic definition éh(k,t), nothing in these results that refers specifically to our actual
system of Brownian particles. Furthermore, the time scale
15=M/Z° does not yet appear explicitly, and, hence, we
cannot take the overdamped IirrzitézBErgl in Egs. (3.3

and (3.10. Such specific information must be drawn from
wherer(t) is the position of théth colloidal particle at time the assumed underlying microscopic dynamics. In our ex-
t. Taking the time derivative obn(k,t) we have an exact ample, this is done as follows. If we take the time derivative

equation, namely, the continuity equation of the current in Eq(3.6), and employ théN-particle Lange-
vin equation[Eg. (2.1)], we are led to the result

=ik 8j,(k,t), (3.5 38j(k,t) L0 fO(k,t)
— — ikt —g

N
sn(k,t)= Jiﬁ ;1 glkri(), (3.9)

aon(k,t)
it

where 8j,(k,t)=j,(k,t)=k-j(k,t) is the component of the F (t)
currentj(k,t) in the directionk of the vectork, i.e., elkeri(®)

=k

ﬁl

pzd

1 A .
(k)= —= > k-vi(t)elmi®, 3.6 ik & . .
hikt \/N|21 (v 39 +\/—N > [k-vi(H)]2e*ni®O (3.11)
i=1
with v;(t)=dr;(t)/dt. Thus let us now definea(t)
=[én(k,t), 8] (k,t)], whose static correlation matrix is where
N
k 0 ke
- S(o) | @7 kt)—\/_z (el (3.12
Xijj B

with x;;=kgT/M. From the exact continuity equation, and and Fi(t)=ZX.F;;(t). Clearly, the first two terms on the
keeping in mind the general structure for the tlme evolutiontight-hand side of this equation derive from the first two

equation ofa(t) in Eq. (3.1), we read tha‘rwm)(“ =—jk, terms of the right-hand side of E.1). They describe the
and thatL,(k,t)=L,i(k,t)=0. Hence Eq.(3.1), with »  €ffect of the friction of the solvent on each colloidal particle.
=2, reads ' Although it is not possible to establish the detailed corre-
spondence of the other terms with each of the terms on the
aon(k,t) . right-hand side of Eq(3.9), the previous result indicates that
o~ enjxg dhik, (38  the memory functiorLj;(k,t) should be written, to exhibit
explicitly the first term in Eq(3.11) above, as
95]1(k,t) 1 20
o @S (kenlky Ljj(k2)= x5+ ALy (k,2). (3.13
f Lj(kt—t’ )X”151|(k t))dt’ +f,(k,t), This leads to the following expression Bi(k,z):
k
(39 F(k.2)= kzz(l)(k) : 314
where w,j=— oj, = —iky;; . 7+ 5 Xij
The next step is to contract this description, i.e., to elimi- 74 §—+AL”(k Z)Xj—jl

nate 6j,(k,t) from this set of equations. This leads to an

equation that has a richer structure than B) [or, for that o . .

matter, than Eq(3.3) for F(k,2)]. In terms of F(k,z), the  Clearly, this is a still more useful result than that in E83)
resulting equation can be written as E8.3) itself, but with with Eqg. (3.10. In fact, several interesting limiting condi-

L(k,z) now having the following general structure: tions can be obtained from E¢3.14. The first of them
refers to the short-time moment conditions. In addition to
2
L(kg)= — X (3.10 mO(k) = S(k), (3.15
m®(k)=0, (3.1
Thus this exercise revealed additional features of the
time-evolution equation obn(k,t), more specifically of the and
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k2 ments of F(k,t). Alarcon-Waess and Medina-Noyo|28]

m(z)(k):_M_,B (3.17  carried out this program precisely, by writing(t)
=[én(k,t),8](k,t),50"(k,t)], with o’ (k,t) being de-

[already determined by E¢B.3) with Eq. (3.10], Eq.(3.14  fined by the momentum conservation equatj&i. (3.11)],

also exactly determines the third moment which can also be written as
k?x;i¢° asii(kt)  ¢° fo(k,b)
B)Kky= = L i
m*/(k) M (3.18 pn 5 (K, 1)+ M +ikop(k,t)
which now involves the Brownian frecuenag= /M. tikdo' (K1), (3.23
The other limiting condition that can be considered from

Eq. (3.14 refers to the structure oF(k,z) in the over- With
d d limitz/zz<1. A ing that th ly rel t de-

amped limitz/zg ssuming that the only relevant de 5o (Kt = — 8p(k.t) + 5074k 1), (3.24

pendence of-(k,z) on zg is that explicitly exhibited in Eq.
(3.14, and assuming that ligy_ oALj;(k,2)/zg#0, we

) L . p(k,t) being the Fourier transform of the local osmotic pres-
find that the overdamped limit of E§3.14) is

sure p(r,t)=p[n(r,t)], and So*4k,t) being the instanta-
neous fluctuation of the isotropic diagonal component of the

F(k,2)= S(k) (3.19  Stress tensor
’ kDS Mk
ZBZAL (k Z) N B 1 rﬁrﬁ Keri (1)
1+D M , a =__ a B_ _—_ — . ikeri(t
oaB(K,t) \/_2 vivy oy D2 ri2j Pi(rij) (e ,
with Do=kgT/°. Clearly, this equation, describing the dif- (3.25
fusive dynamics of the suspension, should lead to different
short-time conditions than those in E¢8.19-(3.18. In du(r;;) ekt —1
fact, the exact moment conditions that can be derived from P(rij)=rj (3.26
dr;; Kerii (1)
Eqg. (3.19 are i j
m© (k) = S(k) (3.20 In these equations;;=r;—r;, andu(r;;) is the pair poten-
' tial. The results of Alarcon-Waess and Medina-Noyola’s ex-
mM(k) = — k2D, (3.21) ercise[28] is the following expression foF (k,z):
which coincide with the “Smoluchowskian” moment condi- S(k)
tions derived by Ackerson. The higher-order moments F(k,2)= k2D,S L(Z%/M) . (327
mM(k), n=2, now depend oL ;;(k,z), which is as yet 7+ 0 - —~
undetermined. Equationi3.19 is in reality equivalent to 2° K X oo Xij
Ackerson’s memory equatiofEq. (2.5)], and this equiva- Z+ MJF 24y 1L, (k.2)

lence can be expressed by writing Ackerson’s memory func-
tion M(k,t) in terms of our memory functiodL j;(k,t) as where[29]

follows:
keT d%u(r) [ 1—coskz
_ 2 DoM?BZAL;;(k,2) Yo )= 25| BkeTn | g(r) S &3
M(k,z)=k*Dy . (3.22 972 K2
1+DoM?B2AL;;(k,2)
o 1 kBT
In summary, we see that the result of derivikgk,t) S . (3.28

from a more detailed descriptign'=2, i.e., Eqs.(3.8) and (k)

(3.9)] also leads, before introducing the overdamped limit, to
explicit moment conditions form®(k), m®(k), and
m®)(k), which were not revealed by the minimal description
(v=1). The higher-order moments now depend on the mo
ments of the higher-order memory functiar j; (k,t). Also,
the results generated from the more detailed description (

From this equation, one can derive the momentd(k) of
F(k,t). Forn=0, 1, 2, and 3 one recovers the result in Egs.
(3.15—(3.18, but now we also have explicit expressions for
m*(k), namely,

2 [2a- 02
=2), allowed us to discuss the overdamped limit, although Mm@ (k) = k? | k*S (k) _ §_+ M BK2y o (K) |.
this only led us to rederive Ackerson’s memory equation, M,B MB M ?2 77
including the explicit results fom(® (k) and mM)(k). (3.29

This inmediately suggests that going one step further, i.e.,
starting from a still more detailed description, should reveaFor n=5, m("(k) depends on the higher-order memory
additional features of the structure Bfk,z) by expressing functionL,,,(k,z).
the memory functioAL j;(k,t) in terms of a higher-order Let us now consider the overdamped linzitgzg, of Eq.
memory function. In particular, we would expect that this (3.27). Neglectingz compared t@g, just as we did to derive
procedure will lead to explicit expressions for additional mo-Eg. (3.19 from Eq.(3.14), leads to
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S(k) explicitly in its dynamic behavior the difference between
F(k,z)= > — . (3.30 short and long times, referred to the time scale To see
24 k“DoS this, let us definedoy(k,t), the kinetic contribution of
k?DoX,oXi; Sa' (k,t), as[see eq(3.25]
1+ ——
2+ XgoLoo(K,2) N
oo 1 .
Soy(k,t)=—= > (v9)2emi®), (4.
Once in the diffusive regime, this equation can be used to YN =1

calculate the short-time moment conditions. As a result, we . ) ]
recover the expressions fo'n(o)(k) and m(l)(k) in Eqs and Iet us aISO defln&u(k,t) as the purely Conf|gurat|0na|

(3.20 and(3.22), which we derived from Eq3.19, but, in ~ component
addition, we obtain an expression for the second moment,

a.p
namely, , 1 Fij i ikeri (1)

So(k,t)=— ———P(r;;) et —6p.

aiy(k,t) szi;m - (i) p
m<2>(k)=3k4D§+nDof dr g(r)[1—cogk-r)] (4.2

) Clearly,
X(k-V)=Bu(r). (3.3)

so' (k,t)= o (k,t)+ Sa;(K,t). 4.3

We now would like to see that this result fon® (k)
coincides with Ackerson’s resUylEg. (2.7)]. As it happens, it If we take the time derivative of Ed4.1), we have
does not. The physical reason for this is certainly not obvi-

ous, but was correctly hinted at by Hess and KIEL2], 6o (k,t) 1 N ik .
who suggested that the static correlationy,, gt :\/_lel 2UiZUiZelkr'(t)+\/_ﬁi21 CHECAIH
=(8c’ (k) da’(—k)) appearing in Eq(3.27), should be re- (4.4)

placed by the static correlatiogyy={(da (k) Sa,(—k)),
where 8o ;(k) is the component obo’(k,t) that depends If we now use the microscopic dynamics presented by the
only on the configurations, since the kinetic componentN-particle Langevin equatiofEq. (2.1)], we can write Eq.
doy(k,t) of s0'(k,t) relaxes to equilibrium in the time (4.4) as
scalerg. In fact, one can check that, if this replacement is

made, the result fom®)(k) would coincide with Acker-

son’s. However, this physical argument has not been ex- ot
pressed as a formal mathematical procedure which indeed N

leads to Eq.3.30, with x,,(k) replaced byyxyy(k). The ~|—i 2 207 EZeiki()
notion of splitting 5o’ (k,t) in o ;(k,t) and o (k,t) can NI

be formalized in a simple and explicit manner in the GLE
formalism, and this is the subject of Sec. IV.

ddop(k,t) —2£°
RS skt + ek,

. N
+ % > (v)3elkri), (4.5
=1
IV. KINETIC AND CONFIGURATIONAL COMPONENTS
OF THE STRESS TENSOR This form of writing the relaxation equation fdio (k,t) is
analogous to Eq(3.11) for 8j,(k,t). The first term or the
right-hand side of this equation clearly exhibits the fact that
ghe time derivative ofday(t) couples with o (t) itself
through a dissipative frictional term, with a decay constant

In Sec. lll we illustrated the strategy of deriving expres-
sions forF(k,z) in terms of a hierarchy of memory func-
tions. This strategy consisted of succesively enlarging th
numberv of dynamics variables grouped in the vectgt)
of the noncontracted description represented by the GLEB/Z' . . o , .

[Eq. (3.1)]. We illustrated this strategy by considering the _ [N contrast, if we take the time derivative 6bry(k,t) in
nested sequence of levels=1, with a(t)=(sn(k,t)); v Eq. (4.2, the absence of an explicit dependenc&aef,(k,t)

=2, with a(t)=(sn(k,t),8j(k,t)); and »=3, with a(t) on the particles’ velogities prevents the possibility qf a rapid
=(on(k,t),8j(k,t), 50" (k,t)). The underlying microscopic decay of the type exhibited by the first term on the right-hand
dynamics represented by tiéparticle Langevin equation Side of Eq.(4.5) for doy(K,t). Thus these two components
was assumed, and used explicifsee the derivation of Eq. Of the stress tensafa’ (k,t) clearly have a qualitatively dif-
(3.11)]. In the absence of friction, these equations are just théerent dynamic character in the diffusive regime of Brownian
equations describing the Newtonian dynamics of an atomifluids, and this suggests that we should treat them separately.
fluid [i.e., the solvent frictione®=0 in Eq. (2.1)]; this is a  In the absence of friction, i.e., for atomic fluids, this qualita-
well-studied limit in the molecular hydrodynamic theory of tive difference does not exist, and, hence, we can combine
fluids [2]. The results of Sec. Ill are thus correct and usefuldog(k,t) andda;(k,t) into a single variable&o’ (k,t) with

in this limiting regime, characterized by times rg=M/3.  no important consequences. However, if friction is present,
Hess and Klein accurately pointed out that the stress tens@nd we want to be prepared to take eventually the over-
do’ (k,t) is a sum of two components, one of which dependglamped limit, we better take into account this qualitative
only on the spatial configurations, and another which alsdlifference betweedo (k,t) and sa{,(k,t) right at the out-
depends on the particle’s momenta. The latter exhibits moreet. The GLE formalism provides the obvious and natural
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manner of doing this, namely, to include baih(k,t) and 0 pj 0 0

5crl_’J(I_<,t) as independent variables in the uncontracted de- —wﬁj 0 Ok o

scriptiona(t). 0= . , (4.1
Thus let us now consider the description of the collective 0 —op 0 0

dynamics of a Brownian fluid in terms of the vectaft) 0 ol 0 0

=(on(k,t),dj(k,t), 8ok (k,t),80(k,t)). The first step in

this procedure is to make sure that an important requirement Lon O Lo Lpu

of the components dd(t) is being satisfied by the new vari- 0 L 0 0

ablesday(k,t) andda(,(k,t). This refers to the requirement L(t)= Ii (4.12

of static uncorrelation between the componentft) (i Lrk 0 Lyk Lku '

=1,2,...p),ie., to the diagonality of the static correlation * 0 £ L

matrix y=(a(0)a"(0)). Using the microscopic definitions nu KU —uu

[Egs.(3.4), (3.6), (4.1), and(4.2)] of the components a(t), The determination of the nonzero elementswofand of

one can perform the statistical mechanical calculation of thg e of the nonzero elements loft) is rather straightfor-
correlation matrixy. From the result of such an exercise, We \yard since. from the exact continuity equation

realize that, with this choice of variableg,does not happen
to be diagonal. asn(k,t)

The required diagonalization, however, is easily achieved —a
by means of a change of variable leading to the following
redefinition ofa(t).

=ik dj,(k,t), (4.13

we immediately see thab,j=—iky;;, and thatl,,=Lnx
=L,u=0. Similarly, from Eq.(3.23, which can be rewritten
a(t)=[on(k,t),dj(k,t),dax(k,t),d0y(k, )], (4.6) as

. 36y, (k,t) 0 1 ,
with ! —_> 50
- 011K, 1)+ 10k, t) + ik p(k,)
do (k)= oy (k,t) — xjjon(k,t), (4.7) +ikSo(k,t) +ikday(k,t), (4.19
Saru(kot)=day(k.t)+ xy; n(k.b). (4. We can see thatwjx xj = wjuxu=—ik and Ljx;*

={%M. As a result, all the elements of the “frequency”

o o matrix w have been determined, and in fact, only the kine-
Although rather I.ength)[SO], the equilibrium statistical atic coefficients Lek(k,2), Lgu(k,2)=Lyk(k,2), and
mechanical calculation of the new static correlation funct|on|_uu(k,z) remain undetermined by general symmetry prin-

is straighforward. The result can be written as ciples, or physical principles such as mass or momentum
conservation. Thus the time-evolution equations that com-
Xnmn O 0 0 plete the noncontracted description for the components of the
0 x; O 0 vectora(t) in Eq. (4.6) are the mass and momentum conser-
Y= ) , (4.9  vation equation$Egs.(4.13 and(4.14], along with the fol-
0 0 x« O lowing equations fowoy (k,t) and Soy(k,t):

0 0 0 Xuu

(950-K(k1t) . 1 a
. . TzlkXKKij oji(k,t)
with xnn=S(k) and x;;=kgT/M, as before, and withykk
and yyy given by t
_J Lick(K t=t") xxg o (K, t)dt’
0
XKKZZijj, .
—f Luk(K,t—t") xuddau(k,Ddt’ + fi(k,b),
#2Bu(r) [ 1—cogkz) 1 0
2 _
qu—X” 1+njdr g(l’) (922 k2 S(k) . (415)
@10 seukn
— = ikxuuxj ik

Now we are ready to write the generalized Langevin
equation in the format of Ed3.1) for our new vectog(t) of t
Eq. (4.6). Let us first note that all the variables, except —f Luu(K,t=t") xyboy(k,tydt’
a,(t)= 8j,(k,t) are even functions under time reversal. Ac- 0
cording to Onsager reciprocity relations, and the general t
anti-Hermiticity of w and Hermiticity ofL(z)[14], we have —f Luk(kt=t") xcgdok(k,Hdt' +fy(k,t).
that the only possibly nonzero elements of the madriand 0
L(z) are (4.16
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In these equations, onlyck(k,t), Lyu(k,t), andLyk(k,t)  with
remain unknown.

From this extended dynamic descriptipRqgs. (4.13— L 1 72
(4.16], we can derive the time-evolution equation for K2xoul 1— KuXuu
on(k,t). It is not difficult to show, using Eq$4.13—(4.16), K% XK z+ LKKXIZI%
along with the contraction theorem, that such an equatiofLjj(k,z)= — — —-
reads Z+ Lk Xkk ~1 Xkkbkulukxuu

ztLlouxoo——— . 1
aon(k,t Z+ Lk Xkk

aon(k.y) _ (4.19

t
—J L(k,t—t")x,son(k,t’)dt’ +f(k,t),
0

(4.17) Equations (4.17 and (4.18 correspond to EQgs(3.2),
(3.10, and(3.13 of Sec. lll, which are now complemented
by the explicit expression in Eq4.19 for ALj;(k,2) in
terms of the higher-order memory functiorsck(k,z),
Luu(k,2), andLgy(k,2). In fact, let us finally summarize
these results as an explicit expression for the collective dy-

ot

where f(k,t) is a random term with zero mean and time-
dependent correlation functioff(k,0)f(—k,0))=L(k,t)
with L(k,t) given, in Laplace space, by

k2y::
L(k,z)= _)l(” , (4.18 namic structure factoF(k,z) in terms of these memory
z+2zg+ x;;"ALj(k,2) functions, namely,
S(k)
F(k,z)= py— (4.20
k=S~ (k) xjj
z+ PR
] KUXuu
K2y KoXiixou| 1=
Xijj XKK Z+ LKk XKkK
Z+2zg+ — - —
Z+ Lk xkk _1 Xkkbkulukxuu
Z+LUUXUU_—_1
z+LkkXkk

It is not difficult to show that the moment conditions uprtd*(k), that result from Eq(4.20), are again given by the
results in Eqs(3.15—(3.18 and(3.29 of Sec. Ill, whereasn("(k), for n>4, depends on the memory functiobg(k,z),
Lkk(k,z), andLyy(k,z). Thus, with respect to these short-time conditions, augmenting the noncontracted description from
a(t)=(on(k,t),5j,(k,t),80(k,t)) to a(t)=[ on(k,t), 5j,(k,t),Sok(k,t),day(k,t)] did not lead to any new information. It is
only in the overdamped limit, which is our present interest, when the results iME) turn out to be particularly useful.

To see this, let us rewrite E@¢4.20 in a slightly different manner, in preparation to taking the overdamped krfaj
<1:

S(k)
F(k,2)= DT (4.2
z+ LT
KUXUU

) k?Doxuu -

1+£+ k“Doxkk Z+ Lk XKk
Z5 7+ Lk . XwkLkuLukxod
ztLlyuxou——— -1

Z+ Lk XKk

In this equation, we have an obvious and explicit dependencexplicitly that the kinetic contributiodor(k,t) of the stress
on z/zg which can inmediately be neglected. However, anensor must relax initially with an exponential decay with
additional dependence &i(k,z) onz/zg could be hidden in |5y ation timerg/2. In contrast, no similar relaxation can be

the memory functiond.yy(k,2), Lkk(k.2), andLky(k,2), rgued forda|,(k,t), since this variable does not depend on

and this requires a more careful discusion. Unfortunately, th " . . .
present theoretical approach does not allow any further ddhe velocities of the Brownian particles. Although in order to

termination of those memory functions based on exact andiagonalize y we still transformed fromdoy(k,t) and

general symmetry principles. However, we have not yet usedo((k,t) to dog(k,t) and day(k,t), the new variables
the fact that there is a strong dynamic asymmetry betweedoy(k,t) and doy(k,t) should still retain this fundamental
the variablesdoy(k,t) and doy(k,t), as discussed at the dynamic asymmetry; that isfoy(Kk,t) carries the depen-
begining of this section. In fact, in Eq4.5 we showed dence on the particle’s velocities, add(k,t) continues to
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be a purely configurational variable. Thus it is perfectly rea-Of course, one could think of deriving higher-order moment

sonable to assume that the relaxatiorsof(k,t) does have
a fast exponential component with a relaxation timg?2,

and thatéo(k,t) does not. Mathematically, this can be ex-

pressed by the assumption that neithegy(k,z) or
Lku(k,2) has a dominant term proportional zg, but that
Lkk(k,z) does, i.e., that, to first approximatiohyk(k,z)
should be written as

Lkk(k,2)=2zg+ALkk(k,2), (4.22

conditions by developing a similar exercise to the one carried
out in this section, i.e., by including additional variables in
the noncontracted description. This, however, is certainly not
the aim of our present work, since Ackerson’s approh

is, for this purpose, much more straightforwéfor example,

the corresponding result for the third moment, Ej8), was
obtained[19] as a straightforward extension of Ackerson’s
calculatiori. Our aim in this paper, instead, is to develop an
expression for the full time dependencekafk,t), in terms

of higher-order memory functions, on which we could make

with ALk (k,z) being a function that does not scale linearly {hq |east harmful approximations. With this purpose in mind,

with zg, i.e., that

. . ALkk(k,2)
lim Lgk(k,2)= lim 2zg| 1+ —(——|~223.
, , 275
EHO EHO
(4.23
Similarly, we shall assume thatLy(k,2)/zg and

expression folF(k,z) in Eg. (4.20 will reduce, in the over-
damped limit, to the following surprisingly simple expres-
sion:

S(k)

k?D,S !

F(k,z)= (4.29

z+

kzDo)(UU)(H2

1+ =
z+ xyoluu(k,2)

As it happens, this result is almost identical to that ob-

tained from the noncontracted description definedalt)
=(on(k,t),5],(k,t),50(k,t)), i.e., EqQ.(3.30 of Sec. Il
The main difference now is the appearanceygf;(k) and
Lyu(k,z) in Eq. (4.24), instead, respectively, of,,(k) and
L,,(k,z) appearing in Eq(3.29.

Once in the diffusive regime, described by E4.24), we
can discuss the short-time behaviorFgfk,t) in terms of its
moment conditions. It is not difficult to show, from Eq.
(4.24), thatm(™(k) are given by

m©®(k)=S(k), (4.25

m (k)= —k?D,, (4.26)

m<2>(k)=k4Dg+nD0J dr g(r)[1—cogk-r)]

X(k-V)2Bu(r), (4.27
whereas the higher-order moments depend.gp(k,z). At
this point, we note that the second momen®)(k) thus
obtained, unlike that in Eq:3.30 of Sect. Il, does coincide
with Ackerson’s result in Eq(2.7). As already emphasized,

the availability of additional moment conditions obtained di-
rectly from the Smoluchowski equation, could in fact be
used as a guideline to reveal more details of the structure of
the memory functiorL y(k,z), which our methodology has
left undetermined. To illustrate this, let us start from our
general expression fdf(k,t) in Eq. (4.24), to calculate the
third momentm®)(k). For this, we have to make assump-
tions about the analytic propertieslof;,(k,t) at short times.
gwe naively assume that(k,t) is an analytic function at
t=0, and expand in a Taylor series, the result that we would
obtain form®)(k) happens to be different from the Smolu-
chowski result in Eq(2.8). Thus we can use this observation
to revise such an analytic ansatz fqy,(k,t), and assume a
more general functional dependence.

For example, let us admit thdt,,(k,t) may have a
“Markovian” contribution, of the typel.°(k)24(t), plus an
analytic term that we denote ad_,,(k,t), i.e.,

Luu(k,t)=Lo%Kk)258(t)+ ALyy(k,t)=L%k)248(t)
* L(n+l)(k)tn
+ e —

2 oy , (4.28
or, in Laplace space,
= LM(k)
Luu(k2)= 2 ——. (4.29
n=0 Z

Using this assumption in Ed4.24), we can derive the fol-
lowing result form®)(k):
m® (k) = — 2k°DEM?B2xuu(K) S (k)
—kéD3M*B4*x 3 (k) —k®D3S 2(k)

—k*DEM2B2xyu(K)LO(K). (4.30

It is not difficult to see, using Eq4.10 for yyy(Kk), that if
LO(k) =0, this result form®(k) cannot be reconciled with
the Smoluchowski result in Ed2.8). If, in contrast, we as-

Ackerson derived this result directly from the previously- sume that (9)(k)#0, and require that the two results coin-
overdamped microscopic dynamics represented by theide, then we have to force the equality of the right-hand
N-particle Smoluchowski equation. Thus, although no formalsides of Eqs(4.30 and(2.8), thus leading to a condition that
proof is available that this strategy and the present oneletermines the otherwise unknown paramété?(k). This
should lead to strictly the same short-time moment condiresults in the following explicit expression far{®(k) in
tions, the consistency between both approaches is reassuringrms of purely static quantities:
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2 and
M2,82L°(k):nf d3r g(r)a ,8u2(r)[1+zcosk2]
0z 2

2021 0 22 J ,6’u(r)

) DoM“B“Lg(k)=kDy nf drg(r) >

Don? 3 F*Bu(r) 9z

- fd rg(r) > (1—coskz) 5
. 7 2 o [ s o) PBU(T)
DN —Dgn fd rg(r) 7
0

2

3
fd3rg(r)& ﬁuir)sinkz
0z

aV Bu(r)

+2D§nf dr g(r)[

0z
2Don v Bu(r)|?
42 jd3rg(r)(1—coskz) AL
k? Iz +D2n? | d°r d®’ '
0 g(r,r’)
+D°n2f d3r d3"g(r,r')(1—2 cosk
rd=r’'g(r,r’)(1—2 coskz avpu(r)] | av'Bu(r’
% X[ pun] B()]_ w35
0z '
[V Bu(r)| | aV'Bu(r’)
+eogk(z=2) )| — — |- o : Equationg4.32) and(4.33 are the most general results of

this work. They writeF (k,z) andFg(k,z), in terms only of
(4.3)  their respective unknown memory funciaxL(k,z) and
ALS)(k,2) (recall that all the other elements entering in
From now on, we indeed adopt this condition as the deterthese equations are well-defined static properties, which we
mination of L°(k). As a result, we arrive at the following assume to be previously determine®f course, we could

final expression foF (k,z): still explore further levels of the hierarchical use of the GLE
formalism, so as to investigate some exact features of these
S(k) unknown higher-order memory function. At this point, how-
F(kz2)= K2D.S ! ' ever, we want to consider possible strategies for their ap-
z+ 0 proximate determination. The simplest of them is, of course,
I<2Do)(uu)(fj2 to neglect these unknown memory functions. If we set
+ Z+X63L°(k)+XGLlJALuu(k,Z) ALyy(k,2)=0 in Eq. (4.32, we obtain a closed analytic

(4.32 approximation for~(k,z), namely,

which then expresses(k,z) in terms only of static quanti- S(k)

ties, and of the non-Markovian memory function F(k2)= K2DoS ! (4.39
ALyy(k,z). The idea is that this expression féi(k,z) z+ 5 -

should be suitable for the proposal of simple approximations 14 k“Doxuuxjj

at the level ofALy(k,2). Z+ xuLO(k)

At this point, let us mention that exactly the same analysis
that we have carried out so far fBi(k,z) can be extended to This approximation yields the exadt.e., the Smolu-
the  self-intermediate  scattering  functionFg(k,z) chowskj values for the momentsn®(k), m®)(k), and
=(e'*4RM) “where AR(t)=R(t)—R(0) is the displace- m()(k), and, by constructiofidue to Eq.(4.31] also for
ment of a tagged particle during a tirhe~or this, we have to  m(®)(k). In fact, one can show that this approximation coin-
repeat all the steps and arguments starting from Sec Ill, bulides exactly with the so-called single-exponential memory
considering the dynamic variabigy(k,t)=e'*"" instead of  (SEXP approximation[19]. As it turs out, this simple ap-
the collective variablen(k,t) of Eq. (3.4). Omiting the de-  proximation for F(k,z) already happens to be reasonably
tails, we can summarize the results of such derivation in theccurate in the short-time regime, and even at intermediate

following general expression fdfg(k,z), times.
The self-diffusion version of the SEXP approximation is
1 obtained from Eq(4.33 when we setAL{)(k,2)=0. As
Fs(ki2)= k2D ' stated above, this has proved to be the simplest, yet practical,
z+ 0 approximation to be employed in the interpretation of experi-
. kZDoXEJSL)J(k)XﬂZ mental or simulated self-diffusion properties of colloidal sus-
2+ xS LK) + X, TALD) (k,2) pensions. Our current interest is to extend these applications

(4.33 to collective diffusion, simultaneously attempting to go be-
' yond the SEXP approximation, as we suggest in Sec. V.

where
V. CONCLUSIONS

2 2
X&s&(k)gﬂ nf dr g(r) I pulr) (4.34 In this paper we have addressed one particular aspect of
k? 9z° the theory of colloid dynamics, namely, the formal procedure
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for taking the overdamped limit in the general expression fopressing these memory functions in terms of B{&,t) and
F(k,t) andFg(k,t) derived from the microscopic dynamics Fg(k,t) themselves, thus defining a fully self-consistent
represented by thi-particle Langevin equation. This led us scheme bearing a strong similarity to the self-consistent
to our main results, namely, the expressionsF¢k,t) and theories constructed using a mode-mode coupling anzatz
Fs(k,t) in Egs.(4.32 and (4.33 above, valid in the diffu- [9,33]. Our proposal, however, will be based on the formal-
sive (or overdamped regime. These expressions write ization of two physically intuitive notions. The first is the
F(k,t) andF(k,t) in terms only of static structural proper- €xpectation that collective dynamics should be simply re-
ties and of the memory functioiL ,,(k,2) andALE,SL)J(k,z), Iated to self-dynamics, in the sp|'r|t of Vineyard’s approxima-
respectively. The present exercise leaves these memory funflon [1,2,34. The s_econd consists of _the expectation that
tions undetermined. However, we expect that, at least foFS(k't) ShOUId be §|mply related.to themdependent prop-
short and intermediate times, simple approximations fo'ti€s which describe the Brownian motion of a tagged par-
ALyu(k,2) andALE)(k,2) can be devised, which will lead t|cle.' Thg simplest, WeII;(nown ansatz is the Gaussian ap-
to fairly accurate approximations fde(k.t) and Fg(k,t).  Proximation Fs(k,t)=e™"(, where W(t) is the mean
We already mentioned that the most trivial assumption,squared displacement ofatagged_ particle. Our results m_Eq.
ALUU(k,z)IALEJSL),(k,Z)zo, corresponds to one of the most (4.33, h(_)wever, suggest alternatwe_ methods. The deta|k_ed
widely used approximate schemes in colloid dynamicsexplanatlon of th(=T resultllng self—co_nS|stent scheme, and of its
namely, the SEXP approximation. This scheme is orientedcOncrete applications, will be provided separaf@g]. Here

by construction, to describe the dynamic properties in thdVe decided to focus on the most formal and rigorous aspects
short- and intermediate-time regimes, which can be mo<pf t_he_ cqns_tru_ctlon of this self-consistent the(_)ry, because of
easily probed by dynamic light scattering experiments oftheir intrinsic Interest, and so as to have a S|.mp|e reference
Brownian dynamics simulations. Under some circumstanced0r future extensions to more complex conditions, such as
however, the asymptotically long-time behavior of the SyS_the conS|der'at|.on of c_oIIO|daI mixtures or the treatment of
tem becomes particularly important, as happens for highiy?ydrodynamic interactions.

dense fluids near, for example, their glass transition. In order
to describe the main dynamic features of such highly corre-
lated colloidal fluids, we have to go beyond the SEXP ap- This work was supported by the Consejo Nacional de
proximation. The results in Eq$4.32 and(4.33 will prove  Ciencia y Tecnolog (CONACYT, Mexico) through Grant
particularly useful in this regard. In fact, in separate commu{Nos. G29589E and 0072: “Biomolecular Materials.” L.Y.R.
nications[31,32, we shall present a more elaborate approxi-acknowledges support from the Universidad de Sonora,
mate scheme, far beyond the SEXP approximation, whiclMéxico and also thanks the Centro dér@outo from Uni-
amounts to the proposal of approximations at the level ofersidad de Guadalajara, Meo, for the access to their com-
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