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Overdamped van Hove function of colloidal suspensions

Laura Yeomans-Reyna* and Magdaleno Medina-Noyola
Instituto de Fı´sica ‘‘Manuel Sandoval Vallarta,’’ Universidad Auto´noma de San Luis Potosı´, Alvaro Obrego´n 64,

78000 San Luis Potosı´, SLP, Mexico
~Received 8 April 2000!

The generalized-hydrodynamic theory for collective diffusion of a monodisperse colloidal suspension is
developed in the framework of the Onsager-Machlup theory of time-dependent fluctuations. The time evolution
of the intermediate scattering functionF(k,t) is derived as a contraction of the description involving the
instantaneous particle number concentration, the particle current, and the stress tensor of the Brownian fluid as
state variables. We show that the proper overdamped limit of this equation requires the explicit separation of
the stress tensor in its mutually orthogonal kinetic and configurational contributions. Analogous results also
follow for the self-intermediate scattering functionFs(k,t). We show that neglecting the non-Markovian part
of the configurational stress tensor memory, one recovers the single exponential memory approximation~based
on sum rules derived from the Smoluchowski equation! for both Fs(k,t) and F(k,t). We suggest simple
approximate manners to relate the collective and the self-memory functions, leading to Vineyard-like approxi-
mate relations betweenFs(k,t) andF(k,t).

PACS number~s!: 05.40.2a, 82.70.Dd
a
le
t

its
-

io
m
a

al

o
ule

de
-
s

ro
tu
th
o

e-

he

of
her
a

ave

le,

on

me

o-

the

so-

or
-

nd
,

ns,
ro-

d
limit

is
pts
it

ate
rk.-
I. INTRODUCTION

The most fundamental dynamic property of a colloid
suspension in thermodynamic equilibrium is the so-cal
van Hove functionG(r ,t). This is @1,2# the time-dependen
correlation function of the fluctuationdn(r ,t) of the instan-
taneous local concentration of colloidal particles,n(r ,t), at
position r and timet, around its bulk equilibrium valuen,
i.e., G(urÀr 8u,t)[^dn(r ,t)dn(r 8,0)&, with dn(r ,t)[n(r ,t)
2n. Dynamic light scattering techniques@3,4# allow the ex-
perimental determination of this function, or, rather, of
spatial Fourier transformF(k,t), referred to as the interme
diate scattering function.G(r ,t), or F(k,t), contains all the
relevant information on the macroscopic dynamic behav
of the suspension. Thus the basic goal of a statistical
chanical theory of colloid dynamics consists of the deriv
tion of a macroscopic equation forG(r ,t) or F(k,t) starting
from a microscopic level of description. Although a colloid
suspension is formed byN colloidal particles plus all the
atoms or molecules that constitute the solvent, averaging
the microscopic degrees of freedom of the solvent molec
~and other molecular species, such as salt ions! leads to a
solvent-averaged dynamic description involving only the
gree of freedom of theN colloidal particles, i.e., the many
body Langevin equation@5#. It is generally accepted that thi
system ofN stochastic equations for the velocities of theN
colloidal particles, coupled together by the direct and hyd
dynamic interaction forces between the particles, consti
an adequate microscopic description of the dynamics of
suspension. Thus the crux of the statistical mechanical the
of colloid dynamics consists of the derivation of a tim
evolution equation for the macroscopic variabledn(r ,t),
starting from the microscopic description provided by t
N-particle Langevin equation. There is, however, not

*Permanent address: Departamento de Fı´sica, Universidad de So
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unique or canonical route to carry out such derivation@6,7#,
and the development of the statistical mechanical theory
colloid dynamics within the last 20 years consists of a rat
rich variety of attempts to carry out this derivation along
few alternative routes. Although many important issues h
been addressed and understood@4,8,7,9#, a few essential
points still merit further and careful discussion. For examp
any theory forF(k,t) properly rooted inN-particle Langevin
equation dynamics should lead to expressions forF(k,t)
valid for all time regimes associated to the Brownian moti
of the colloidal particles@10,11# . The regime relevant to the
dynamic light scattering experiments@3#, however, corre-
sponds to times much longer than the typical relaxation ti
tB5z0/M , whereM is the mass of each particle, andz0 is its
friction coefficient in the absence of interactions. In the s
called diffusive regimet@tB , the initial velocities of the
Brownian particles have been completely damped out by
friction of the solvent, anddn(r ,t) relaxes only through
purely diffusive mechanisms. Thus one has to take the
called overdamped limitt@tB in any general time-evolution
equation fordn(r ,t) @or on the corresponding expression f
G(r ,t)], obtained from a derivation rooted in the micro
scopic dynamics represented by theN-particle Langevin
equations. This full program was carried out by Hess a
Klein @12# in their pioneering work on colloid dynamics
although they based their derivations on theN-particle
Fokker-Planck equation, rather than on theN-particle Lange-
vin equation. In the absence of hydrodynamic interactio
however, there is full equivalence between these two mic
scopic descriptions@13#. In fact, Hess and Klein explaine
and discussed the procedure for taking the overdamped
in the general expressions obtained forF(k,t). From their
discussion@12#, however, it becomes clear that this issue
at least subtle and delicate. Although the physical conce
are clear, the actual formal procedure for taking this lim
still deserves additional attention. Addressing this delic
point is just one of the main objectives of the present wo

Here we derive a general expression forF(k,t) rooted in
3382 ©2000 The American Physical Society
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PRE 62 3383OVERDAMPED VAN HOVE FUNCTION OF COLLOIDAL . . .
the microscopic dynamics contained in theN-particle Lange-
vin equation. At the present point, to simplify matters, w
keep in mind a monodisperse suspension in the absenc
hydrodynamic interactions, and will only consider direct i
teractions describable by continuous effective pair potenti
For this system, we derive a general expression forF(k,t) in
terms of static structural properties of the suspension@as-
sumed determined by statistical thermodynamic methods@1#,
given the pair potentialu(r )], and of a memory function
associated with the time-dependent correlation function
the stress tensor of the colloidal fluid. Up to this point, o
derivation parallels that of Hess and Klein, since, in the
sence of hydrodynamic interactions, the statistical mech
cal equivalence between the respective microscopic sta
points~i.e., theN-particle Langevin equation and the Fokke
Planck equation! is free from ambiguities@13#. In the next
step, however, we provide our own approach to the prob
of taking the overdamped limit of the general expression
F(k,t). For this, we found that the use of the generaliz
Langevin equation~GLE! formalism, along with the concep
of contraction of the description@14#, is particularly useful.
As a consequence, we obtain the main result of this pa
namely, a general expression forF(k,t) in the overdamped
limit, written in terms of purely static structural propertie
and of the memory funcion associated with the tim
correlation function of theconfigurationalcomponent of the
stress tensor. The main value of our present derivation is
conceptual simplicity~although some details may requi
careful, and sometimes extensive, statistical mechanical d
vations, which are, however, straightforward!. In particular,
the physical assumptions behind the proper manner of ta
the overdamped limit are formally stated in clear and rigo
ous terms.

The first part of this paper will have a rather pedagogi
style. Thus, in Sec. II we briefly review a few importa
aspects of the theory of colloid dynamics, and the vario
possible strategies to derive general expressions forF(k,t).
In Sec. III we explain and illustrate the use of the GL
formalism to describe collective diffusion in colloidal sy
tems. The GLE formalism is most commonly understood
the result of a formal derivation of a time-evolution equati
for a macroscopic variable, starting from the microsco
N-particle dynamics, by a systematic application of proje
tion operators@15#. This leaves the impression that the fu
structure of the resulting time-evolution equation is a dir
consequence of the underlying microscopic dynamics. In
ality, the most relevant features of the macroscopic tim
evolution equation of the macroscopic variable are a dir
consequence of mathematical symmetry conditions, suc
the stationarity condition, or the time-reversal symmetry
the macroscopic variables@14#. Thus, for the GLE formal-
ism, we prefer to understand the systematic application
the Onsager-Machlup@16# general theory of time-depende
fluctuations, along with the process of contraction of the
scription@14#. This theoretical framework allows us to writ
quite a few of the most important features of the macrosco
time-evolution equation without resorting to the underlyi
microscopic description. Only at a latter stage, the mic
scopic dynamics can be employed to determine additio
elements of the time-evolution equation that were left un
termined by the ‘‘selection rules’’ that derive from gener
of
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symmetry considerations. The end result of our applicat
to colloid dynamics is an expression forF(k,t) in terms of a
hierarchy of memory functions. At this point, the reader w
recognize that our derivations are just a straightforw
translation to colloids of the corresponding derivations
molecular liquids, as reviewed in Boon and Yip’s textbo
@2#. In fact, some of the results forF(k,t) for a simple liquid
correspond to the frictionless limit of our results in Sec. I
The main addition in our work is the treatment of the opos
limit, i.e., the derivation of the general expression forF(k,t)
of a colloidal system in the overdamped limit. This is d
scribed in detail in Sec. IV, which constitutes the main co
tribution of this paper. In reality, these results, besides th
intrinsic interest, constitute a basic ingredient of a progr
aimed at constructing a fully self-consistent theory of collo
dynamics. Some aspects of this program, and of its conc
applications, are briefly described in Sec. V.

II. GENERAL CONCEPTS

Let us consider a monodisperse colloidal suspension
the absence of hydrodynamic interactions. For our pres
purpose, we assume that the microscopic dynamics of
system, formed byN spherical particles in a volumeV, can
be described by theN-particle Langevin equations@3–5#

M
dvi~ t !

dt
52zovi~ t !1f i~ t !1(

j Þ i
Fi j ~ t ! ~ i 51,2, . . . ,N!.

~2.1!

In these equations,M is the mass, andvi(t) the velocity of
the i th particle, andzo is its friction coefficient in the ab-
sence of interactions. Also,f i(t) is a random force, modeled
as a Gaussian white noise of zero mean, and variance g
by ^f i(t)f j (0)&5kBTzo2d(t)d i j II ( i , j 51,2, . . . ,N; II is the
333 unit tensor!. The direct interactions between the pa
ticles are represented by the sum of the pairwise forcesFi j
that the j th particle exerts on particlei, i.e., Fi j is obtained
from the pair potentialu(ur i2r j u). The statistical mechanica
information contained in this description can also be cas
terms of the correspondingN-particle Fokker-Planck equa
tion @17# for the probabilityW(r1 ,r2 , . . . ,v1 ,v2 ,..;t) that
particle i has positionr i and velocityvi at time t,

]W~r1 ,r2 , . . . ,v1 ,v2 ,..;t !

]t
5OFPW~r1 ,r2 , . . . ,v1 ,v2 ,..;t !,

~2.2!

whereOFP is the Fokker-Planck operator@12#.
Equations~2.1! and~2.2! are equivalent representations

the same dynamical description. Acording to Eq.~2.1!, the
initial decay of the particles’ velocities is determined by t
frictional damping of the solvent, and this defines a tim
scaletB[M /zo. For timest@tB , normally probed in dy-
namic light scattering experiments, the dynamics is pur
diffusive. Thus, one can ‘‘tune’’ this microscopic descriptio
to the diffusive regime by taking the limitt@tB in Eqs.
~2.1!. This amounts to neglecting the inertial terms in the
equations, thus leading to theoverdamped N-particle Lange-
vin equation@18#
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dr i~ t !

dt
[

f i~ t !

zo
1(

j Þ i

Fi j ~ t !

zo
~ i 51,2, . . . ,N!. ~2.3!

Just as for the original Langevin equations, one can exp
the same information in Eq.~2.3!, in the Fokker-Planck lan-
guage, i.e., in terms of an equation for the probability dis
bution W(r1 ,r2 . . . ;t) that a particlei has a positionr i at a
time t. Such an equation is called the Smoluchowski eq
tion, and can be written as

]W~r1 ,r2 . . . ;t !

]t
5OSW~r1 ,r2 . . . ;t !, ~2.4!

whereOS is the Smoluchowski operator@6#. The same equa
tion can also be derived from the Fokker-Planck equat
@17#.

The following conceptually important task is to deriv
from any of the four descriptions above, the properties of
intermediate scattering function. In doing so, we can dis
guish various approaches and strategies. These may d
depending on their goals and on the general approach
use to derive the macroscopic information contained
F(k,t) from the microscopic description in the equatio
above. What follows is a schematic summary of the m
approaches and results in this direction.

~1! Start from the already overdamped microscopic
scription provided by either Eqs.~2.3! or ~2.4!. Ackerson@6#
chose to start from the Smoluchowski equation, and app
the projection operator formalism to derive the relaxat
equation forF(k,t), which he found to have the gener
structure

]F~k,t !

]t
52k2D0S21~k!F~k,t !

1E
0

t

M ~k,t2t8!S21~k!F~k,t8!dt8, ~2.5!

where S(k)[F(k,t50) is the static structure factor,D0
[kBT/z0 is the short-time self-diffusion coefficient, an
M (k,t) is a memory function which contains the effects
the direct interactions. For this function, Ackerson wrote
expression involving projection operators related to
Smoluchowski operator@6#. This expression is mostly a for
mal result, not very useful for practical calculations, exc
in certain limiting conditions. However, it is a convenie
starting point for the calculation of the first few moments
F(k,t). These are the coefficients of the short-time exp
sion of F(k,t), defined as

F~k,t !5 (
n50

`
m(n)~k!

n!
tn. ~2.6!

Thus the momentm(n)(k) is the initial value of thenth
time derivative ofF(k,t). Clearly,m(0)(k)5S(k), and, from
Eq. ~2.5!, it is easy to see thatm(1)(k)52k2D0S21(k).
These are two exact moment conditions, assuming the
croscopic dynamics to be described by the Smoluchow
equation. Ackerson also calculated the second mom
m(2)(k), for which he found
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m(2)~k!5k4D0
21nD0E dr g~r !@12cos~k"r !#

3~k•“ !2bu~r !, ~2.7!

whereg(r ) is the radial distribution function of the colloida
particles, andu(r ) is the pair potential. Arauz-Lara an
Medina-Noyola@19# extended these calculations to the thi
momentm(3)(k), with the result

m(3)~k!52k6D0
323D0

3k2nE dr g~r !~k•“ !2bu~r !

22D0
3nE dr g~r !sin~k"r !~k•“ !3bu~r !

22D0
3nE dr g~r !@12cos~k"r !#@~k•“ !¹bu~r !#2

2D0
3n2E dr 8dr g~r ,r 8!$122 cos~k"r !

1cos@„k"„rÀr 8!…#%~k•“ !~k•“8!

3~“•“ !bu~r !bu~r 8! ~2.8!

where g(3)(r ,r 8) is the three-particle correlation function
These same results form(2)(k) and m(3)(k) were also de-
rived by Pusey and Tough@18# starting from the other rep
resentation of the overdamped microscopic dynam
namely, the overdamped many-particle Langevin equatio
Eq. ~2.3!. Similar results were also derived in parallel fo
Fs(k,t). Besides these results for the short-time properties
the intermediate scattering functions, the methods above
not lead to a practical prescription for the full calculation
these dynamic properties. However, a simple approxima
for the full time dependence ofF(k,t) andFs(k,t), based on
these exact moment conditions, was suggested by Ara
Lara and Medina-Noyola@19#. This consists of assuming
simple functional form for the memory functionM (k,t) @and
for its self-counterpartMs(k,t)], namely, a single exponen
tial, with its k-dependent amplitude and decay consta
fixed by the short-time conditions above. This approximat
is about the simplest, yet reasonably accurate, approac
the quantitative calculation of the dynamic properties o
colloidal suspension. Although most of its concrete appli
tions have been related to self-diffusion phenomena@7#, re-
cently its usefulness and limitations were demonstrated
the analysis of simulated and experimental results forcollec-
tive diffusion in quasi-two-dimensional suspensions@20,21#.

Let us mention that other approaches also derive inform
tion on F(k,t) and/or FS(k,t) starting from theN-particle
Smoluchowski equation. These include the application
linear response theory@22,23# or kinetic-theoretical methods
@24,25#. We do not refer in detail to these contributions e
ther because they do not relate directly to the present w
or because they refer to more specific conditions or to effe
~such as hydrodynamic interactions! that we explicitly wish
to leave aside for the moment. These contributions, howe
were described in recent reviews of the field@4,7#.

~2! Start from the microscopic description without ove
damping, provided either by the many-body Langevin eq
tion @Eq. ~2.1!# or its equivalent Fokker-Planck equation@Eq.
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~2.2!#; derive results forF(k,t), and then take the over
damped limit. To some extent, this is a more general
proach, since the results forF(k,t) before overdamping de
scribe, in principle, the dynamics of the colloidal suspens
not only in the diffusive regime, but also at earlier time
comparable totB . However, to compare with light scatterin
measurements, the overdamped limit has to be taken.
approach followed by Hess and Klein@12# belongs to this
second strategy, as does our present derivations of the
lective diffusion properties explained in the following se
tions. Hess and Klein based their derivations on the Fokk
Planck equation, whereas we take the elements of
microscopic dynamics needed in our work from the ma
body Langevin equation. Thus from the formal equivalen
between these two microscopic descriptions, one should
pect the same ultimate results for both theories. There
however, an additional conceptual parallelism between H
and Klein’s work and the present work. This refers to the u
of the general theory that we refer to as the generali
Langevin equation. The application of this formalism in t
context of simple liquids is referred to as generalized hyd
dynamics@2#, which Hess and Klein adapted to colloid
suspensions. In their work@12#, however, the generality o
their treatment, and their thorough analysis using linear
sponse theory and projection operator techniques, hide so
what the intrinsic simplicity of the GLE formalism, whic
we strongly emphasize in this work.

In this second general strategy, once the general res
for F(k,t) have been derived, the overdamped limit has to
taken. This is a particularly subtle issue, and merits a car
and explicit discussion. The physical arguments and the
results in Hess and Klein’s work are accurate, but are
explicitly detailed. In contrast, this will be the main subje
of the present work. Closely related to this issue is
equivalence between the results obtained from this sec
strategy, after the overdamped limit has been taken, and
results of the alternative strategy in~1!. This issue gave rise
to considerable initial confusion@12,26#, which was clarified
only in 1986 by Cichocki and Hess@26,27#. These authors
used projection operators techniques to establish the fo
relationship between the memory functions that natura
emerge from the application of these two alternative stra
gies. In our present work we will also discuss some asp
related to this issue. In particular, the moment conditio
obtained after overdamping will be compared with the c
responding conditions obtained from the overdamped mic
scopic descriptions. This will be discussed below within o
own theoretical approach.

III. GLE FOR COLLECTIVE DIFFUSION

The two strategies above emphasize the notion that
structure of the dynamic equation forF(k,t) or FS(k,t) must
be rooted entirely on the underlying microscopic dynam
provided by either of the descriptions represented by E
~2.1!–~2.4! above. In reality, however, some of the most im
portant features of the time evolution equations forF(k,t)
and FS(k,t) can be written right at the outset, since th
derive from rather general selection rules@14# originating
from the stationarity condition, and from other symme
properties of the macroscopic variables whose dynam
-
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couple to the dynamics of the local particle concentration
In the present paper we adopt this approach, following

work of Alarcon-Waess and Medina-Noyola@28#. Thus we
write the most general time-evolution equation for the flu
tuations of the local concentrationn(r ,t) of colloidal par-
ticles, which is consistent with the selection rules referred
above. Specific information about the microscopic dynam
is then employed in the approximate or partial determinat
of those elements of the time-evolution equation that s
selection rules leave undetermined.

The basis of this appoach, then, is the general mathem
cal conditions that the local concentrationn(r ,t), or any
other variable or set the variables that describe fluctuati
around the equilibrium state, must satisfy. These gen
conditions are stated by the theorem of stationarity@14#. Ac-
cording to this theorem, the most general linear stocha
differential equation that describes a~multivariable! station-
ary stochastic processa(t)5@a1(t),a2(t), . . . ,an(t)#, must
have the structure@14#,

da~ t !

dt
52vx21a~ t !2E

0

t

L~ t2t8!x21a~ t8!dt81f~ t !,

~3.1!

where x is the matrix of static correlations,x i j

[^ai(0)aj* (0)&, v is an anti-Hermitian matrix (v i j 5

2v j i* ), and the matrixL(t) is determined by the fluctuation
dissipation relationLi j (t)5^ f i(t) f j (0)&, where f i(t) is the
i th component of the vector of random forcesf(t).

In the present application of this theorem, we shall co
sidera1(t) to be the Fourier transformdn(k,t) of the fluc-
tuations dn(r ,t)[n(r ,t)2n of the local concentration
n(r ,t) around its bulk valuen. n(k,t) will be normalized
such
that its time-independent correlation isxnn(k)
[^dn(k,0)dn(2k,0)&5S(k), whereS(k) is the static struc-
ture factor of the bulk suspension.

If we choose the least detailed description (n51), i.e.,
a(t)[@a1(t)#5@dn(k,t)#, then Eq.~3.1! reads

]dn~k,t !

]t
52E

0

t

L~k,t2t8!S21~k!dn~k,t8!dt81 f ~k,t !,

~3.2!

since the only element ofv vanishes. In this equation,f (k,t)
represents the random diffusive fluxes, whose tim
dependent correlation function is given by the fluctuati
dissipation relation^ f (k,t) f (2k,0)&5L(k,t). Multiplying
Eq. ~3.2! by dn(2k,0), and taking the equilibrium ensemb
average, we are led to the time-evolution equation
F(k,t), whose solution, in Laplace space, reads

F~k,z!5
S~k!

z1L~k,z!S21~k!
. ~3.3!

At this minimal level of description~i.e., n51), the GLE
approach is unable to go further in revealing the structure
the memory functionL(k,t). Thus, although this is the mos
general and exact time-evolution equation forF(k,t), it is
also the least useful. For example, from Eq.~3.3! we can
exactly calculate only the obvious zeroth moment condit
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m(0)(k)5S(k), since the higher order momentsm(n)(k) (n
>1) depend onL(k,z), which is unknown. The idea, how
ever, is to consider next a more detailed description, i.e.,
~3.1! with n.1, and then contracting down to this minim
description. As an illustration, let us write the continui
equation forn(k,t). For this, we do need the informatio
contained in the microscopic definition ofdn(k,t),

dn~k,t !5
1

AN
(
i 51

N

eik"r i (t), ~3.4!

wherer i(t) is the position of thei th colloidal particle at time
t. Taking the time derivative ofdn(k,t) we have an exac
equation, namely, the continuity equation

]dn~k,t !

]t
5 ikd j l~k,t !, ~3.5!

whered j l(k,t)[ j l(k,t)5 k̂• j (k,t) is the component of the
currentj (k,t) in the directionk̂ of the vectork, i.e.,

j l~k,t !5
1

AN
(
i 51

N

k̂•vi~ t !eik"r i (t), ~3.6!

with vi(t)5dr i(t)/dt. Thus let us now definea(t)
[@dn(k,t),d j l(k,t)#, whose static correlation matrixx is

x5FS~k! 0

0 x j j
G , ~3.7!

with x j j 5kBT/M . From the exact continuity equation, an
keeping in mind the general structure for the time-evolut
equation ofa(t) in Eq. ~3.1!, we read thatvn jx j j

2152 ik,
and thatLnn(k,t)5Ln j(k,t)50. Hence Eq.~3.1!, with n
52, reads

]dn~k,t !

]t
52vn jx j j

21d j l~k,t !, ~3.8!

]d j l~k,t !

]t
52v jnS21~k!dn~k,t !

2E
0

t

L j j ~k,t2t8!x j j
21d j l~k,t8!dt81 f l~k,t !,

~3.9!

wherevn j52v jn* 52 ikx j j .
The next step is to contract this description, i.e., to elim

nate d j l(k,t) from this set of equations. This leads to a
equation that has a richer structure than Eq.~3.2! @or, for that
matter, than Eq.~3.3! for F(k,z)]. In terms of F(k,z), the
resulting equation can be written as Eq.~3.3! itself, but with
L(k,z) now having the following general structure:

L~k,z!5
k2x j j

z1L j j ~k,z!x j j
21

. ~3.10!

Thus this exercise revealed additional features of
time-evolution equation ofdn(k,t), more specifically of the
q.

n

-

e

actual structure of the memory functionL(k,t). As a result,
from Eq. ~3.3! with Eq. ~3.10!, we can calculate exactly, in
addition tom(0)(k), the first and second moment condition
m(1)(k)50 andm(2)(k)52k2/Mb . Still, the only new in-
formation is basically that derived from the continuity equ
tion, namely, thek2 dependence ofL(k,t). Thus there is
nothing in these results that refers specifically to our act
system of Brownian particles. Furthermore, the time sc
tB[M /z0 does not yet appear explicitly, and, hence, w
cannot take the overdamped limitz!zB[tB

21 in Eqs. ~3.3!
and ~3.10!. Such specific information must be drawn fro
the assumed underlying microscopic dynamics. In our
ample, this is done as follows. If we take the time derivat
of the current in Eq.~3.6!, and employ theN-particle Lange-
vin equation@Eq. ~2.1!#, we are led to the result

]d j l~k,t !

]t
52

z0

M
d j l~k,t !1

f 0~k,t !

M

1
1

AN
(
i 51

N

k̂•
Fi~ t !

M
eik"r i (t)

1
ik

AN
(
i 51

N

@ k̂•vi~ t !#2eik"r i (t), ~3.11!

where

f 0~k,t ![
1

AN
(
i 51

N

k̂"f i~ t !eik"r i (t), ~3.12!

and Fi(t)[( j Þ iFi j (t). Clearly, the first two terms on the
right-hand side of this equation derive from the first tw
terms of the right-hand side of Eq.~2.1!. They describe the
effect of the friction of the solvent on each colloidal particl
Although it is not possible to establish the detailed cor
spondence of the other terms with each of the terms on
right-hand side of Eq.~3.9!, the previous result indicates tha
the memory functionL j j (k,t) should be written, to exhibit
explicitly the first term in Eq.~3.11! above, as

L j j ~k,z!5
z0

M
x j j 1DL j j ~k,z!. ~3.13!

This leads to the following expression forF(k,z):

F~k,z!5
S~k!

z1
k2S21~k!x j j

z1
z0

M
1DL j j ~k,z!x j j

21

. ~3.14!

Clearly, this is a still more useful result than that in Eq.~3.3!
with Eq. ~3.10!. In fact, several interesting limiting condi
tions can be obtained from Eq.~3.14!. The first of them
refers to the short-time moment conditions. In addition to

m(0)~k!5S~k!, ~3.15!

m(1)~k!50, ~3.16!

and
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m(2)~k!52
k2

Mb
~3.17!

@already determined by Eq.~3.3! with Eq. ~3.10!#, Eq. ~3.14!
also exactly determines the third moment

m(3)~k!5
k2x j j z

0

M
, ~3.18!

which now involves the Brownian frecuencyzB5z0/M .
The other limiting condition that can be considered fro

Eq. ~3.14! refers to the structure ofF(k,z) in the over-
damped limitz/zB!1. Assuming that the only relevant de
pendence ofF(k,z) on zB is that explicitly exhibited in Eq.
~3.14!, and assuming that limz/zB→0DL j j (k,z)/zBÞ0, we
find that the overdamped limit of Eq.~3.14! is

F~k,z!5
S~k!

z1
k2D0S21~k!

11D0M2b2DL j j ~k,z!

, ~3.19!

with D0[kBT/z0. Clearly, this equation, describing the di
fusive dynamics of the suspension, should lead to differ
short-time conditions than those in Eqs.~3.15!–~3.18!. In
fact, the exact moment conditions that can be derived fr
Eq. ~3.19! are

m(0)~k!5S~k!, ~3.20!

m(1)~k!52k2D0 , ~3.21!

which coincide with the ‘‘Smoluchowskian’’ moment cond
tions derived by Ackerson. The higher-order mome
m(n)(k), n>2, now depend onDL j j (k,z), which is as yet
undetermined. Equation~3.19! is in reality equivalent to
Ackerson’s memory equation@Eq. ~2.5!#, and this equiva-
lence can be expressed by writing Ackerson’s memory fu
tion M (k,t) in terms of our memory functionDL j j (k,t) as
follows:

M ~k,z!5k2D0

D0M2b2DL j j ~k,z!

11D0M2b2DL j j ~k,z!
. ~3.22!

In summary, we see that the result of derivingF(k,t)
from a more detailed description@n52, i.e., Eqs.~3.8! and
~3.9!# also leads, before introducing the overdamped limit
explicit moment conditions form(1)(k), m(2)(k), and
m(3)(k), which were not revealed by the minimal descripti
(n51). The higher-order moments now depend on the m
ments of the higher-order memory functionDL j j (k,t). Also,
the results generated from the more detailed descriptionn
52), allowed us to discuss the overdamped limit, althou
this only led us to rederive Ackerson’s memory equatio
including the explicit results form(0)(k) andm(1)(k).

This inmediately suggests that going one step further,
starting from a still more detailed description, should rev
additional features of the structure ofF(k,z) by expressing
the memory functionDL j j (k,t) in terms of a higher-orde
memory function. In particular, we would expect that th
procedure will lead to explicit expressions for additional m
nt

m

s

-

o

-

(
h
,
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l

-

ments ofF(k,t). Alarcon-Waess and Medina-Noyola@28#
carried out this program precisely, by writinga(t)
[@dn(k,t),d j l(k,t),ds8(k,t)#, with ds8(k,t) being de-
fined by the momentum conservation equation@Eq. ~3.11!#,
which can also be written as

]d j l~k,t !

]t
52

z0

M
d j l~k,t !1

f 0~k,t !

M
1 ikdp~k,t !

1 ikds8~k,t !, ~3.23!

with

ds8~k,t !52dp~k,t !1dszz~k,t !, ~3.24!

p(k,t) being the Fourier transform of the local osmotic pre
sure p(r ,t)5p@n(r ,t)#, and dszz(k,t) being the instanta-
neous fluctuation of the isotropic diagonal component of
stress tensor

sab~k,t ![
1

AN
(
i 51

N H v i
av j

b2
1

2M (
j Þ i

r i j
a r i j

b

r i j
2

Pk~r i j !J eik"r i (t),

~3.25!

Pk~r i j ![r i j

du~r i j !

dri j

eik"r i j (t)21

k"r i j ~ t !
. ~3.26!

In these equations,r i j [r i2r j , andu(r i j ) is the pair poten-
tial. The results of Alarcon-Waess and Medina-Noyola’s e
ercise@28# is the following expression forF(k,z):

F~k,z!5
S~k!

z1
k2D0S21~z0/M !

z1
z0

M
1

k2xssx j j
21

z1xss
21Lss~k,z!

, ~3.27!

where@29#

xss~k![
kBT

M2 F3kBT1nE g~r !
]2u~r !

]z2 S 12coskz

k2 D d3r G
2

1

S~k! S kBT

M D 2

. ~3.28!

From this equation, one can derive the momentsm(n)(k) of
F(k,t). Forn50, 1, 2, and 3 one recovers the result in Eq
~3.15!–~3.18!, but now we also have explicit expressions f
m(4)(k), namely,

m(4)~k!5
k2

Mb Fk2S21~k!

Mb
2

z02

M2
1Mbk2xss~k!G .

~3.29!

For n>5, m(n)(k) depends on the higher-order memo
function Lss(k,z).

Let us now consider the overdamped limit,z!zB , of Eq.
~3.27!. Neglectingz compared tozB , just as we did to derive
Eq. ~3.19! from Eq. ~3.14!, leads to
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F~k,z!5
S~k!

z1
k2D0S21

11
k2D0xssx j j

22

z1xss
21Lss~k,z!

. ~3.30!

Once in the diffusive regime, this equation can be used
calculate the short-time moment conditions. As a result,
recover the expressions form(0)(k) and m(1)(k) in Eqs.
~3.20! and~3.21!, which we derived from Eq.~3.19!, but, in
addition, we obtain an expression for the second mom
namely,

m(2)~k!53k4D0
21nD0E dr g~r !@12cos~k"r !#

3~k•“ !2bu~r !. ~3.31!

We now would like to see that this result form(2)(k)
coincides with Ackerson’s result@Eq. ~2.7!#. As it happens, it
does not. The physical reason for this is certainly not ob
ous, but was correctly hinted at by Hess and Klein@12#,
who suggested that the static correlationxss

[^ds8(k)ds8(2k)& appearing in Eq.~3.27!, should be re-
placed by the static correlationxUU[^dsU8 (k)dsU8 (2k)&,
wheredsU8 (k) is the component ofds8(k,t) that depends
only on the configurations, since the kinetic compon
dsK8 (k,t) of ds8(k,t) relaxes to equilibrium in the time
scaletB . In fact, one can check that, if this replacement
made, the result form(2)(k) would coincide with Acker-
son’s. However, this physical argument has not been
pressed as a formal mathematical procedure which ind
leads to Eq.~3.30!, with xss(k) replaced byxUU(k). The
notion of splittingds8(k,t) in dsU8 (k,t) anddsK8 (k,t) can
be formalized in a simple and explicit manner in the GL
formalism, and this is the subject of Sec. IV.

IV. KINETIC AND CONFIGURATIONAL COMPONENTS
OF THE STRESS TENSOR

In Sec. III we illustrated the strategy of deriving expre
sions for F(k,z) in terms of a hierarchy of memory func
tions. This strategy consisted of succesively enlarging
numbern of dynamics variables grouped in the vectora(t)
of the noncontracted description represented by the G
@Eq. ~3.1!#. We illustrated this strategy by considering th
nested sequence of levels:n51, with a(t)5„dn(k,t)…; n
52, with a(t)5„dn(k,t),d j (k,t)…; and n53, with a(t)
5„dn(k,t),d j (k,t),ds8(k,t)…. The underlying microscopic
dynamics represented by theN-particle Langevin equation
was assumed, and used explicitly@see the derivation of Eq
~3.11!#. In the absence of friction, these equations are just
equations describing the Newtonian dynamics of an ato
fluid @i.e., the solvent frictionz050 in Eq. ~2.1!#; this is a
well-studied limit in the molecular hydrodynamic theory
fluids @2#. The results of Sec. III are thus correct and use
in this limiting regime, characterized by timest!tB5M /b.
Hess and Klein accurately pointed out that the stress te
ds8(k,t) is a sum of two components, one of which depen
only on the spatial configurations, and another which a
depends on the particle’s momenta. The latter exhibits m
to
e
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explicitly in its dynamic behavior the difference betwee
short and long times, referred to the time scaletB . To see
this, let us definedsK8 (k,t), the kinetic contribution of
ds8(k,t), as@see eq.~3.25!#

dsK8 ~k,t !5
1

AN
(
i 51

N

~v i
z!2eik"r i (t), ~4.1!

and let us also definesU8 (k,t) as the purely configurationa
component

dsU8 ~k,t !52
1

2MAN
(
i 51

N

(
j Þ i

r i j
a r i j

b

r i j
2

Pk~r i j !e
ik"r i (t)2dp.

~4.2!

Clearly,

ds8~k,t !5dsK8 ~k,t !1dsU8 ~k,t !. ~4.3!

If we take the time derivative of Eq.~4.1!, we have

]dsK8 ~k,t !

]t
5

1

AN
(
i 51

N

2v i
zv̇ i

zeik"r i (t)1
ik

AN
(
i 51

N

~v i
z!3eik"r i (t).

~4.4!

If we now use the microscopic dynamics presented by
N-particle Langevin equation@Eq. ~2.1!#, we can write Eq.
~4.4! as

]dsK8 ~k,t !

]t
5

22z0

M
dsK8 ~k,t !1w~k,t !

1
1

AN
(
i 51

N

2v i
zv̇ iFi

zeik"r i (t)

1
ik

AN
(
i 51

N

~v i
z!3eik"r i (t). ~4.5!

This form of writing the relaxation equation fordsK8 (k,t) is
analogous to Eq.~3.11! for d j l(k,t). The first term or the
right-hand side of this equation clearly exhibits the fact th
the time derivative ofdsK8 (t) couples withdsK8 (t) itself
through a dissipative frictional term, with a decay consta
tB/2.

In contrast, if we take the time derivative ofdsU8 (k,t) in
Eq. ~4.2!, the absence of an explicit dependence ofdsU8 (k,t)
on the particles’ velocities prevents the possibility of a rap
decay of the type exhibited by the first term on the right-ha
side of Eq.~4.5! for dsK8 (k,t). Thus these two component
of the stress tensords8(k,t) clearly have a qualitatively dif-
ferent dynamic character in the diffusive regime of Browni
fluids, and this suggests that we should treat them separa
In the absence of friction, i.e., for atomic fluids, this qualit
tive difference does not exist, and, hence, we can comb
dsK8 (k,t) anddsU8 (k,t) into a single variableds8(k,t) with
no important consequences. However, if friction is prese
and we want to be prepared to take eventually the ov
damped limit, we better take into account this qualitati
difference betweendsK8 (k,t) anddsU8 (k,t) right at the out-
set. The GLE formalism provides the obvious and natu
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manner of doing this, namely, to include bothdsK8 (k,t) and
dsU8 (k,t) as independent variables in the uncontracted
scriptiona(t).

Thus let us now consider the description of the collect
dynamics of a Brownian fluid in terms of the vectora(t)
[„dn(k,t),d j (k,t),dsK8 (k,t),dsU8 (k,t)…. The first step in
this procedure is to make sure that an important requirem
of the components ofa(t) is being satisfied by the new var
ablesdsK8 (k,t) anddsU8 (k,t). This refers to the requiremen
of static uncorrelation between the componentsai(t) ( i
51,2, . . . ,n), i.e., to the diagonality of the static correlatio
matrix x5^a(0)aT(0)&. Using the microscopic definition
@Eqs.~3.4!, ~3.6!, ~4.1!, and~4.2!# of the components ofa(t),
one can perform the statistical mechanical calculation of
correlation matrixx. From the result of such an exercise, w
realize that, with this choice of variables,x does not happen
to be diagonal.

The required diagonalization, however, is easily achie
by means of a change of variable leading to the follow
redefinition ofa(t).

a~ t ![@dn~k,t !,d j ~k,t !,dsK~k,t !,dsU~k,t !#, ~4.6!

with

dsK~k,t ![dsK8 ~k,t !2x j j dn~k,t !, ~4.7!

dsU~k,t ![dsU8 ~k,t !1x j j dn~k,t !. ~4.8!

Although rather lengthy@30#, the equilibrium statistical
mechanical calculation of the new static correlation funct
is straighforward. The result can be written as

x5F xnn 0 0 0

0 x j j 0 0

0 0 xKK 0

0 0 0 xUU

G , ~4.9!

with xnn5S(k) and x j j 5kBT/M , as before, and withxKK
andxUU given by

xKK52x j j
2 ,

xUU5x j j
2 F11nE dr g~r !

]2bu~r !

]z2 S 12cos~kz!

k2 D 2
1

S~k!G .

~4.10!

Now we are ready to write the generalized Lange
equation in the format of Eq.~3.1! for our new vectora(t) of
Eq. ~4.6!. Let us first note that all the variables, exce
a2(t)5d j l(k,t) are even functions under time reversal. A
cording to Onsager reciprocity relations, and the gene
anti-Hermiticity of v and Hermiticity ofL(z)@14#, we have
that the only possibly nonzero elements of the matrixv and
L(z) are
-

e

nt

e

d

n

t

al

v5F 0 vn j 0 0

2vn j* 0 v jK v jU

0 2v jK* 0 0

0 2v jU* 0 0

G , ~4.11!

L~ t !5F Lnn 0 LnK LnU

0 L j j 0 0

LnK* 0 LKK LKU

LnU* 0 LKU* LUU

G . ~4.12!

The determination of the nonzero elements ofv and of
some of the nonzero elements ofL(t) is rather straightfor-
ward, since, from the exact continuity equation,

]dn~k,t !

]t
5 ikd j l~k,t !, ~4.13!

we immediately see thatvn j52 ikx j j , and thatLnn5LnK
5LnU50. Similarly, from Eq.~3.23!, which can be rewritten
as

]d j l~k,t !

]t
52

z0

M
d j l~k,t !1

1

M
f 0~k,t !1 ikdp~k,t !

1 ikdsK~k,t !1 ikdsU~k,t !, ~4.14!

we can see thatv jKx jU
215v jUxUU

2152 ik and L j j x j j
21

5z0/M . As a result, all the elements of the ‘‘frequency
matrix v have been determined, and in fact, only the kin
matic coefficients LKK(k,z), LKU(k,z)5LUK(k,z), and
LUU(k,z) remain undetermined by general symmetry pr
ciples, or physical principles such as mass or momen
conservation. Thus the time-evolution equations that co
plete the noncontracted description for the components of
vectora(t) in Eq. ~4.6! are the mass and momentum cons
vation equations@Eqs.~4.13! and~4.14!#, along with the fol-
lowing equations fordsK(k,t) anddsU(k,t):

]dsK~k,t !

]t
5 ikxKKx j j

21d j l~k,t !

2E
0

t

LKK~k,t2t8!xKK
21dsK~k,t !dt8

2E
0

t

LUK~k,t2t8!xUU
21dsU~k,t !dt81 f K~k,t !,

~4.15!

]dsU~k,t !

]t
5 ikxUUx j j

21d j l~k,t !

2E
0

t

LUU~k,t2t8!xUU
21dsU~k,t !dt8

2E
0

t

LUK~k,t2t8!xKK
21dsK~k,t !dt81 f U~k,t !.

~4.16!
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In these equations, onlyLKK(k,t), LUU(k,t), andLUK(k,t)
remain unknown.

From this extended dynamic description@Eqs. ~4.13!–
~4.16!#, we can derive the time-evolution equation f
dn(k,t). It is not difficult to show, using Eqs.~4.13!–~4.16!,
along with the contraction theorem, that such an equa
reads

]dn~k,t !

]t
52E

0

t

L~k,t2t8!xnn
21dn~k,t8!dt81 f ~k,t !,

~4.17!

where f (k,t) is a random term with zero mean and tim
dependent correlation function̂ f (k,0)f (2k,0)&5L(k,t)
with L(k,t) given, in Laplace space, by

L~k,z!5
k2x j j

z1zB1x j j
21DL j j ~k,z!

, ~4.18!
n
an

th
d

an
se
ee
e

n

with

DL j j ~k,z!5
k2xKK

z1LKKxKK
21

1

k2xUUF12
LKUxUU

21

z1LKKxKK
21G 2

z1LUUxUU
212

xKK
21LKULUKxUU

21

z1LKKxKK
21

.

~4.19!

Equations ~4.17! and ~4.18! correspond to Eqs.~3.2!,
~3.10!, and~3.13! of Sec. III, which are now complemente
by the explicit expression in Eq.~4.19! for DL j j (k,z) in
terms of the higher-order memory functionsLKK(k,z),
LUU(k,z), and LKU(k,z). In fact, let us finally summarize
these results as an explicit expression for the collective
namic structure factorF(k,z) in terms of these memory
functions, namely,
n from
F~k,z!5
S~k!

z1
k2S21~k!x j j

z1zB1
k2x j j

21xKK

z1LKKxKK
21

1

k2x j j
21xUUF12

LKUxUU
21

z1LKKxKK
21G 2

z1LUUxUU
212

xKK
21LKULUKxUU

21

z1LKKxKK
21

. ~4.20!

It is not difficult to show that the moment conditions up tom(4)(k), that result from Eq.~4.20!, are again given by the
results in Eqs.~3.15!–~3.18! and~3.29! of Sec. III, whereasm(n)(k), for n.4, depends on the memory functionsLUU(k,z),
LKK(k,z), andLKU(k,z). Thus, with respect to these short-time conditions, augmenting the noncontracted descriptio
a(t)[„dn(k,t),d j l(k,t),ds(k,t)… to a(t)[@dn(k,t),d j l(k,t),dsK(k,t),dsU(k,t)# did not lead to any new information. It is
only in the overdamped limit, which is our present interest, when the results in Eq.~4.20! turn out to be particularly useful.

To see this, let us rewrite Eq.~4.20! in a slightly different manner, in preparation to taking the overdamped limitz/zB
!1:

F~k,z!5
S~k!

z1
k2D0S21~k!

11
z

zB
1

k2D0xKK

z1LKKxKK
21

1

k2D0xUUF12
LKUxUU

21

z1LKKxKK
21G 2

z1LUUxUU
212

xKK
21LKULUKxUU

21

z1LKKxKK
21

. ~4.21!
th
e

on
to

l
-

In this equation, we have an obvious and explicit depende
on z/zB which can inmediately be neglected. However,
additional dependence ofF(k,z) on z/zB could be hidden in
the memory functionsLUU(k,z), LKK(k,z), and LKU(k,z),
and this requires a more careful discusion. Unfortunately,
present theoretical approach does not allow any further
termination of those memory functions based on exact
general symmetry principles. However, we have not yet u
the fact that there is a strong dynamic asymmetry betw
the variablesdsK(k,t) and dsU(k,t), as discussed at th
begining of this section. In fact, in Eq.~4.5! we showed
ce

e
e-
d
d
n

explicitly that the kinetic contributiondsK8 (k,t) of the stress
tensor must relax initially with an exponential decay wi
relaxation timetB/2. In contrast, no similar relaxation can b
argued fordsU8 (k,t), since this variable does not depend
the velocities of the Brownian particles. Although in order
diagonalize x we still transformed fromdsK8 (k,t) and
dsU8 (k,t) to dsK(k,t) and dsU(k,t), the new variables
dsK(k,t) anddsU(k,t) should still retain this fundamenta
dynamic asymmetry; that is,dsK(k,t) carries the depen
dence on the particle’s velocities, anddsU(k,t) continues to
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be a purely configurational variable. Thus it is perfectly re
sonable to assume that the relaxation ofdsK(k,t) does have
a fast exponential component with a relaxation timetB/2,
and thatdsU(k,t) does not. Mathematically, this can be e
pressed by the assumption that neitherLUU(k,z) or
LKU(k,z) has a dominant term proportional tozB , but that
LKK(k,z) does, i.e., that, to first approximation,LKK(k,z)
should be written as

LKK~k,z!52zB1DLKK~k,z!, ~4.22!

with DLKK(k,z) being a function that does not scale linea
with zB , i.e., that

lim
z

zB
→0

LKK~k,z!5 lim
z

zB
→0

2zBF11
DLKK~k,z!

2zB
G'2zB .

~4.23!

Similarly, we shall assume thatLUU(k,z)/zB and
LUK(k,z)/zB will vanish in the same limit. With these con
siderations, it is now easy to see that the rather comp
expression forF(k,z) in Eq. ~4.20! will reduce, in the over-
damped limit, to the following surprisingly simple expre
sion:

F~k,z!5
S~k!

z1
k2D0S21

11
k2D0xUUx j j

22

z1xUU
21LUU~k,z!

. ~4.24!

As it happens, this result is almost identical to that o
tained from the noncontracted description defined bya(t)
[„dn(k,t),d j l(k,t),ds(k,t)…, i.e., Eq. ~3.30! of Sec. III.
The main difference now is the appearance ofxUU(k) and
LUU(k,z) in Eq. ~4.24!, instead, respectively, ofxss(k) and
Lss(k,z) appearing in Eq.~3.29!.

Once in the diffusive regime, described by Eq.~4.24!, we
can discuss the short-time behavior ofF(k,t) in terms of its
moment conditions. It is not difficult to show, from Eq
~4.24!, thatm(n)(k) are given by

m(0)~k!5S~k!, ~4.25!

m(1)~k!52k2D0 , ~4.26!

m(2)~k!5k4D0
21nD0E dr g~r !@12cos~k"r !#

3~k•“ !2bu~r !, ~4.27!

whereas the higher-order moments depend onLUU(k,z). At
this point, we note that the second momentm(2)(k) thus
obtained, unlike that in Eq.~3.30! of Sect. II, does coincide
with Ackerson’s result in Eq.~2.7!. As already emphasized
Ackerson derived this result directly from the previous
overdamped microscopic dynamics represented by
N-particle Smoluchowski equation. Thus, although no form
proof is available that this strategy and the present
should lead to strictly the same short-time moment con
tions, the consistency between both approaches is reassu
-

x

-

e
l
e
i-
ng.

Of course, one could think of deriving higher-order mome
conditions by developing a similar exercise to the one carr
out in this section, i.e., by including additional variables
the noncontracted description. This, however, is certainly
the aim of our present work, since Ackerson’s approach@6#
is, for this purpose, much more straightforward@for example,
the corresponding result for the third moment, Eq.~2.8!, was
obtained@19# as a straightforward extension of Ackerson
calculation#. Our aim in this paper, instead, is to develop
expression for the full time dependence ofF(k,t), in terms
of higher-order memory functions, on which we could ma
the least harmful approximations. With this purpose in min
the availability of additional moment conditions obtained d
rectly from the Smoluchowski equation, could in fact b
used as a guideline to reveal more details of the structur
the memory functionLUU(k,z), which our methodology has
left undetermined. To illustrate this, let us start from o
general expression forF(k,t) in Eq. ~4.24!, to calculate the
third momentm(3)(k). For this, we have to make assum
tions about the analytic properties ofLUU(k,t) at short times.
If we naively assume thatLUU(k,t) is an analytic function at
t50, and expand in a Taylor series, the result that we wo
obtain form(3)(k) happens to be different from the Smolu
chowski result in Eq.~2.8!. Thus we can use this observatio
to revise such an analytic ansatz forLUU(k,t), and assume a
more general functional dependence.

For example, let us admit thatLUU(k,t) may have a
‘‘Markovian’’ contribution, of the typeL0(k)2d(t), plus an
analytic term that we denote asDLUU(k,t), i.e.,

LUU~k,t !5L0~k!2d~ t !1DLUU~k,t !5L0~k!2d~ t !

1 (
n50

`
L (n11)~k!tn

n!
, ~4.28!

or, in Laplace space,

LUU~k,z!5 (
n50

`
L (n)~k!

zn
. ~4.29!

Using this assumption in Eq.~4.24!, we can derive the fol-
lowing result form(3)(k):

m(3)~k!522k6D0
3M2b2xUU~k!S21~k!

2k6D0
3M4b4xUU

2 ~k!2k6D0
3S22~k!

2k4D0
2M2b2xUU~k!L (0)~k!. ~4.30!

It is not difficult to see, using Eq.~4.10! for xUU(k), that if
L0(k)50, this result form(3)(k) cannot be reconciled with
the Smoluchowski result in Eq.~2.8!. If, in contrast, we as-
sume thatL (0)(k)Þ0, and require that the two results coin
cide, then we have to force the equality of the right-ha
sides of Eqs.~4.30! and~2.8!, thus leading to a condition tha
determines the otherwise unknown parameterL (0)(k). This
results in the following explicit expression forL (0)(k) in
terms of purely static quantities:
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M2b2L0~k!5nE d3r g~r !
]2bu~r !

]z2
@112 coskz#

2
D0n2

k2 F E d3r g~r !
]2bu~r !

]z2
~12coskz!G 2

1
2D0n

k F E d3r g~r !
]3bu~r !

]z3
sinkzG 2

1
2D0n

k2 E d3r g~r !~12coskz!F]“bu~r !

]z G2

1
D0n2

k2 E d3r d3r 8g~r,r 8!„122 coskz

1cos@k~z2z8!#…F]“bu~r !

]z G•F ]“8bu~r 8!

]z8
G .

~4.31!

From now on, we indeed adopt this condition as the de
mination of L0(k). As a result, we arrive at the following
final expression forF(k,z):

F~k,z!5
S~k!

z1
k2D0S21

11
k2D0xUUx j j

22

z1xUU
21L0~k!1xUU

21DLUU~k,z!

,

~4.32!

which then expressesF(k,z) in terms only of static quanti-
ties, and of the non-Markovian memory functio
DLUU(k,z). The idea is that this expression forF(k,z)
should be suitable for the proposal of simple approximati
at the level ofDLUU(k,z).

At this point, let us mention that exactly the same analy
that we have carried out so far forF(k,z) can be extended to
the self-intermediate scattering functionFS(k,z)
[^eik•DR(t)&, where DR(t)5R(t)2R(0) is the displace-
ment of a tagged particle during a timet. For this, we have to
repeat all the steps and arguments starting from Sec III,
considering the dynamic variablenS(k,t)[eik"R(t) instead of
the collective variablen(k,t) of Eq. ~3.4!. Omiting the de-
tails, we can summarize the results of such derivation in
following general expression forFS(k,z),

FS~k,z!5
1

z1
k2D0

11
k2D0xUU

(S) ~k!x j j
22

z1xUU
(S)21~k!LS

0~k!1xUU
(S)21DLUU

(S) ~k,z!

,

~4.33!

where

xUU
(S) ~k![

x j j
2

k2 FnE dr g~r !
]2bu~r !

]z2 G ~4.34!
r-

s

is

ut

e

and

D0M2b2LS
0~k![k2D0

2FnE dr g~r !
]2bu~r !

]z2 G
2D0

2n2F E d3r g~r !
]2bu~r !

]z2 G 2

12D0
2nE d3r g~r !F]“bu~r !

]z G2

1D0
2n2E d3r d3r 8g~r,r 8!

3F]“bu~r !

]z G•F ]“8bu~r 8!

]z8
G . ~4.35!

Equations~4.32! and~4.33! are the most general results o
this work. They writeF(k,z) andFS(k,z), in terms only of
their respective unknown memory funcionDLUU(k,z) and
DLUU

(S) (k,z) ~recall that all the other elements entering
these equations are well-defined static properties, which
assume to be previously determined!. Of course, we could
still explore further levels of the hierarchical use of the GL
formalism, so as to investigate some exact features of th
unknown higher-order memory function. At this point, how
ever, we want to consider possible strategies for their
proximate determination. The simplest of them is, of cour
to neglect these unknown memory functions. If we s
DLUU(k,z)50 in Eq. ~4.32!, we obtain a closed analytic
approximation forF(k,z), namely,

F~k,z!5
S~k!

z1
k2D0S21

11
k2D0xUUx j j

22

z1xUU
21L0~k!

. ~4.36!

This approximation yields the exact~i.e., the Smolu-
chowski! values for the momentsm(0)(k), m(1)(k), and
m(2)(k), and, by construction@due to Eq.~4.31!# also for
m(3)(k). In fact, one can show that this approximation co
cides exactly with the so-called single-exponential mem
~SEXP! approximation@19#. As it turns out, this simple ap
proximation for F(k,z) already happens to be reasonab
accurate in the short-time regime, and even at intermed
times.

The self-diffusion version of the SEXP approximation
obtained from Eq.~4.33! when we setDLUU

(S) (k,z)50. As
stated above, this has proved to be the simplest, yet pract
approximation to be employed in the interpretation of expe
mental or simulated self-diffusion properties of colloidal su
pensions. Our current interest is to extend these applicat
to collective diffusion, simultaneously attempting to go b
yond the SEXP approximation, as we suggest in Sec. V.

V. CONCLUSIONS

In this paper we have addressed one particular aspec
the theory of colloid dynamics, namely, the formal procedu
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for taking the overdamped limit in the general expression
F(k,t) andFS(k,t) derived from the microscopic dynamic
represented by theN-particle Langevin equation. This led u
to our main results, namely, the expressions forF(k,t) and
FS(k,t) in Eqs. ~4.32! and ~4.33! above, valid in the diffu-
sive ~or overdamped! regime. These expressions wri
F(k,t) andFS(k,t) in terms only of static structural prope
ties and of the memory functionDLUU(k,z) andDLUU

(S) (k,z),
respectively. The present exercise leaves these memory f
tions undetermined. However, we expect that, at least
short and intermediate times, simple approximations
DLUU(k,z) andDLUU

(S) (k,z) can be devised, which will lead
to fairly accurate approximations forF(k,t) and FS(k,t).
We already mentioned that the most trivial assumpti
DLUU(k,z)5DLUU

(S) (k,z)50, corresponds to one of the mo
widely used approximate schemes in colloid dynam
namely, the SEXP approximation. This scheme is orien
by construction, to describe the dynamic properties in
short- and intermediate-time regimes, which can be m
easily probed by dynamic light scattering experiments
Brownian dynamics simulations. Under some circumstan
however, the asymptotically long-time behavior of the s
tem becomes particularly important, as happens for hig
dense fluids near, for example, their glass transition. In or
to describe the main dynamic features of such highly co
lated colloidal fluids, we have to go beyond the SEXP a
proximation. The results in Eqs.~4.32! and~4.33! will prove
particularly useful in this regard. In fact, in separate comm
nications@31,32#, we shall present a more elaborate appro
mate scheme, far beyond the SEXP approximation, wh
amounts to the proposal of approximations at the leve
DLUU(k,z) and DLUU

(S) (k,z). Such a scheme ends up e
a,
r

nc-
r
r

,

s
d,
e
st
r
s,
-
ly
er
-
-

-
-
h
f

pressing these memory functions in terms of theF(k,t) and
FS(k,t) themselves, thus defining a fully self-consiste
scheme bearing a strong similarity to the self-consist
theories constructed using a mode-mode coupling an
@9,33#. Our proposal, however, will be based on the form
ization of two physically intuitive notions. The first is th
expectation that collective dynamics should be simply
lated to self-dynamics, in the spirit of Vineyard’s approxim
tion @1,2,34#. The second consists of the expectation th
FS(k,t) should be simply related to thek-independent prop-
erties which describe the Brownian motion of a tagged p
ticle. The simplest, well-known ansatz is the Gaussian
proximation FS(k,t)5e2k2W(t), where W(t) is the mean
squared displacement of a tagged particle. Our results in
~4.33!, however, suggest alternative methods. The deta
explanation of the resulting self-consistent scheme, and o
concrete applications, will be provided separately@32#. Here
we decided to focus on the most formal and rigorous asp
of the construction of this self-consistent theory, because
their intrinsic interest, and so as to have a simple refere
for future extensions to more complex conditions, such
the consideration of colloidal mixtures or the treatment
hydrodynamic interactions.
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