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Unusual dynamical scaling in the spatial distribution of persistent sites
in one-dimensional Potts models

A. J. Bray and S. J. O’Donoghue
Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom

~Received 11 May 2000!

The distributionn(k,t) of the interval sizesk between clusters of persistent sites in the dynamical evolution
of the one-dimensionalq-state Potts model is studied using a combination of numerical simulations, scaling
arguments, and exact analysis. It is shown to have the scaling formn(k,t)5t22zf (k/tz), with z
5max(1/2,u), whereu(q) is the persistence exponent which describes the fractionP(t);t2u of sites which
have not changed their state up to timet. Whenu.1/2, the scaling lengthtu for the interval-size distribution
is larger than the coarsening length scalet1/2 that characterizes spatial correlations of the Potts variables.

PACS number~s!: 05.50.1q, 05.40.2a, 82.20.Mj, 05.70.Ln
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I. INTRODUCTION

The discovery of persistence has recently generated
siderable interest in understanding the statistics of fi
passage problems in spatially extended nonequilibrium
tems, both theoretically and experimentally. The definition
persistence is as follows. Letf(x,t) be a stochastic variabl
fluctuating in space and time according to some dynam
The persistence probability is simply the probabilityP(t)
that at a fixed point in space, the quantity sgn@f(x,t)
2^f(x,t)&# does not change up to timet. In many systems
of physical interest a power law decayP(t);t2u is ob-
served, whereu is the persistence exponent and is, in ge
eral, nontrivial. The nontriviality ofu emerges as a conse
quence of the coupling of the fieldf(x,t) to its neighbors,
since such coupling implies that the stochastic process
fixed point in space and time is non-Markovian.

Persistence phenomena have been widely studied in
cent years@1–12#. Theoretical and computational studies i
clude spin systems in one@2,3# and higher@4# dimensions,
diffusion fields@5#, fluctuating interfaces@6#, phase-ordering
dynamics @7#, and reaction-diffusion systems@8#. Experi-
mental studies include the coarsening dynamics of bre
figures@9#, soap froths@10#, and twisted nematic liquid crys
tals @11#. Persistence in nonequilibrium critical phenome
has also been studied in the context of the global order
rameterM (t) ~e.g., the total magnetization of a ferroma
net!, regarded as a stochastic process@12#.

In the present work we consider spatially extended s
tems with a nonequilibrium fieldf(x,t), which takes dis-
crete values, at each lattice sitex. The field then evolves in
time t through interactions with its neighbors. The pers
tence probability at timet is defined as the fraction of sites i
which the stochastic fieldf(x,t) did not change its value in
the time interval@0,t#. The physical interpretation off(x,t)
could be, for example, the coarsening spin field in the Is
model after being quenched to low temperature from an
tial high temperature, the sign of a diffusion field starti
from a random initial configuration, or the sign of the heig
relative to the mean height, of a fluctuating interface. As
stochastic field evolves in time, such systems develop
gions of persistent and nonpersistent sites. Since the num
PRE 621063-651X/2000/62~3!/3366~10!/$15.00
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of persistent sites decays with time according toP(t)
;t2u, the persistent clusters shrink in size and number w
a corresponding growth in the size of the nonpersistent
gions.

Recently, Manoj and Ray~MR! @13# have studied such
spatially extended systems in one dimension~1D! within the
context of theA1A→0 reaction diffusion model, which is
equivalent to the 1D Ising model. They found that the leng
scale which characterizes the interval sizes between pe
tent clustersapparentlyhas a different time dependence fro
the length scale characterizing the walker separations~or
spin correlations, in the Ising representation!, and futhermore
seems to depend on the initial walker density. If true, t
result would be surprising. Naively, one would expect t
initial walker density to be irrelevant to the asymptotic d
namics and the coarsening length scale, set by the mean
tance between walkers, to be the relevant length scale fo
spatial correlations. We shall show that the former expec
tion is correct, but the latter, in general, is not.

In this paper we generalize, and reinterpret, this study
the context of theq-state Potts model, which hasq distinct
but equivalent ordered phases. TheA1A→0 model corre-
sponds to theq52 Potts model, i.e., the Ising model, wit
the walkers identified as the domain walls between up
down Ising spins. In theq-state Potts model the random
walkers represent domain walls between Potts states. At e
time step, every walker hops randomly left or right. Pers
tent Potts sites are those at which the Potts state has n
changed, i.e., sites which have never been crossed b
walker. If two walkers occupy the same site, they eithercoa-
lesce, with probability (q22)/(q21), or annihilate, with
probability 1/(q21), these numbers being the probabiliti
that the states on the farther sides of the walkers are the s
~annihilation! or different ~coalescence!. The persistence
probability ~the fraction of sites that have never been jump
over by a walker! decays as a power of time, with
q-dependent exponent,P(t);t2u(q).

Among the questions which emerge naturally in such
study are the following:~i! What is the dominant length scal
in the problem, as far as the persistent structures are
cerned?~ii ! What is the nature of the spatial distribution
the persistent sites?~iii ! What is the average size of a persi
tent cluster?
3366 ©2000 The American Physical Society



th
i

a

at

at

nt
-

re
th

-
les

on
w

he

lin

ec
e
x

ca

b
nt

o
va
-
it
e-
ne

f

ion

r
r of

es
ters,

gth
n
nt

wo
cal

be

t

dis-
any

PRE 62 3367UNUSUAL DYNAMICAL SCALING IN THE SPATIA L . . .
An important point to make at the outset concerns
different length scales associated with the walkers and w
the persistent sites. The walker density decays ast21/2 for
any q, so the mean distance between walkers grows
Lw(t);t1/2. The density of persistent sites decays ast2u, so
the mean distance between these sites grows asLp(t);tu.
This simple observation immediately suggests that the sp
structure of the persistent sites foru.1/2, whereLp is the
larger length scale, will be very different from whenu
,1/2, whereLw is the larger length. This is precisely wh
we find: the characteristic length scaleLint , controlling the
distribution of the intervals between clusters of persiste
sites, is given byLint5max(Lw ,Lp). For the Ising case stud
ied earlier@13#, one has@3# u53/8, which is ‘‘close’’ to 1/2.
We believe that the proximity of these two exponents is
sponsible for the apparently nonuniversal behavior in
Ising system reported in MR.

Derridaet al. @3# have obtained an exact expression foru
for 1D Potts models with arbitraryq:

u~q!52
1

8
1

2

p2 Fcos21S 22q

A2q
D G 2

. ~1!

The value of q corresponding tou51/2 is qc52/@1
1A2 cos(A5p/4)#52.705 28 . . . , sou(q).1/2 for all inte-
ger q>3. Note that the probabilistic algorithm for imple
menting the Potts model through the annihilation or coa
cence of random walkers~domain walls! allowsq to be a real
number,q>2, while an equivalent Ising spin representati
~see Sec. IV! of the Potts persistence problem even allo
1,q,2! By this means we can explore a range ofu above
and below 1/2.

Our main result is that the scale length controlling t
distribution of interval sizes between persistent clusters
given by t1/2 whenu,1/2, but bytu whenu.1/2. We find
no evidence for any dependence of the asymptotic sca
distribution on the initial walker density~other than through
nonuniversal amplitudes!.

This paper is organized in the following manner. In S
II we outline a scaling phenomenology within which th
above questions can be addressed. In Sec. III we give e
results for theq5` Potts model. Finally, in Sec. IV, we
present extensive numerical simulations for theq-state Potts
model which confirm our predictions based on general s
ing arguments and the exact large-q results. Section V con-
cludes with a discussion and summary of the results.

II. SCALING PHENOMENOLOGY

The basic scaling phenomenology was introduced
Manoj and Ray, although we will adopt a slightly differe
notation. We are interested in the distribution of the sizes
the intervalsbetween persistent sites. We define an inter
sizek as the number ofnonpersistentsites between two con
secutive persistent sites. If the interval size is zero, the s
belong to the sameclusterof persistent sites, and we henc
forth consider only intervals of nonzero size. We defi
n(k,t) to be the number of intervals~per site! of size k at
time t. A natural dynamical scaling assumption is

n~k,t !5t22zf ~k/tz!, ~2!
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whereL(t)5tz is the ‘‘characteristic’’ length scale at timet.
@A dynamical exponentz is conventionally defined viaL(t)
;t1/z, rather thantz. Here we are following the notation o
MR.#

The rationale for the scaling form~2! is as follows. The
number of nonpersistent sites~per site! is given by

Q~ t !5 (
k51

`

kn~k,t !. ~3!

But since the number of persistent sites~per site!, P(t), de-
cays to zero asP(t);t2u, and P(t)1Q(t)51, it follows
that Q(t)→1 for t→`. Converting the sum~3! to an inte-
gral, with a lower limit zero~valid as t→` provided the
integral converges!, we see that the prefactort22z in Eq. ~2!
is precisely what is needed to satisfy the required condit
Q(t)→const fort→`.

Consider next the numberNc(t) of persistent clusters pe
site. Since the number of clusters is equal to the numbe
intervals,Nc is given by

Nc~ t !5 (
k51

`

n~k,t !. ~4!

Converting the sum to an integral~with a lower limit zero!,
using Eq. ~2!, and assuming the integral converges giv
Nc;t2z. Thus the mean distance between persistent clus
i.e., the mean interval size, increases astz.

Is this reasonable? Let us recall that there are two len
scales in the system,Lw;t1/2, the mean distance betwee
walkers, andLp;tu, the mean distance between persiste
sites. To make further progress we make the following t
assumptions, both of which are confirmed by our numeri
studies, by exact results forq5`, and by heuristic argu-
ments to be expounded below:~i! The mean cluster size
tends to a constant fort→`, and ~ii ! the length scaleLint
5tz that controls the interval size distribution is thelarger of
Lw andLp , i.e., z5max (1/2,u).

From assumption~i! we deduce thatNc;t2u, i.e., z5u,
which is consistent with assumption~ii ! provided u.1/2.
What if u,1/2? Then we still requireNc;t2u, but nowz
51/2, so the resultNc;t2z, derived from Eq.~4!, breaks
down. Going back to Eq.~4!, we infer that this breakdown
requires that the conversion of the sum to an integral
invalid—the sum must have its dominant contribution fromk
of order unity, rather thank of ordertz. This in turn requires
that the scaling functionf (x) in Eq. ~2! have a singular
small-x limit of the form @13#

f ~x!;x2t, x→0, ~5!

with 1,t,2. Using this form in Eq.~2!, with z51/2, and
inserting the result into Eq.~4!, givesNc;t2(12t/2). Com-
paring this withNc;t2u fixes the value oft:

t52~12u!, u,1/2. ~6!

We first present a heuristic argument for the resulz
5max(1/2,u). Consider first the caseu.1/2. In this regime,
the distance between clusters is much greater that the
tance between walkers; i.e., there are, on average, m
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(;tu21/2) random walkers between each consecutive pai
persistent clusters, as illustrated in Fig. 1. However, walk
separated by distances large compared tot1/2 are essentially
uncorrelated, because any correlations are mediated by
random walkers, and correlations between walkers deca
the length scalet1/2. Therefore one expects the intervals b
tween clusters, measured on the scaletu, to be independen
random variables and the interval size distribution to sc
with this length. This argument also suggests that the lo
tions of the clusters as a function of position on the latt
are described by a Poisson process; i.e., the interval
distribution is an exponential,n(k,t)5^k&exp(2k/^k&), with
^k&;tu, for u.1/2. These expectations are borne out by o
numerical studies.

For u,1/2, the opposite is true: there are many clust
between each pair of walkers~see theq53/2 snapshot in
Fig. 1!. The largest length scale is set by the walker spac
Lw;t1/2, and the interval size distribution will scale with th
length. On smaller scales, there will be residual structure
the cluster distribution left from an earlier epoch when t
number of walkers was larger. Indeed, on these sma
scales the persistent sites form a fractal set@14–16#. Con-
sider two sites separated by a distancer. The probability
P2(r ,t) that both are persistent has the scaling form

P2~r ,t !5t22uF~r /t1/2!, ~7!

whereF(x)→const forx→`, since forr @t1/2 the sites are
uncorrelated. The residual structure remaining on scaler
!t1/2, however, means that if the first site is persiste
which occurs with probability of ordert2u, the probability
that the second one is also persistent depends only onr. This
implies F(x);x22u for x→0. The number of persisten
sites within a distanceR of a given persistent site can ther
fore be estimated as*0

Rdrr 22u;Rdf , where

df5122u ~8!

is the fractal dimension of the persistent set.

FIG. 1. Snapshots showing the relative densities of persis
sites~0! and random walkers (3) for variousq, at timet5104. The
Ising representation was used to generate theq53/2 data, with the
Potts representation used for the otherq values.
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Clearly this result only makes sense foru,1/2, sincedf
cannot be negative. This suggestsdf50 for u>1/2, corre-
sponding to pointlike objects, i.e., isolated finite clusters. F
q5`, for example, whereu51, we find that there is typi-
cally one cluster of persistent sites, with a fixed mean s
per scale lengthLp;t.

We now present a heuristic argument in support of o
claim that the mean cluster size,^ l & approaches a constant a
t→` for all values ofu. The initial steps of the argumen
follow the approach of MR. The total number of clusters p
site can be written as

Nc~ t !5P~ t !2Pw~ t !, ~9!

wherePw(t) is the fraction of walker sites which have nev
been visited by a walker, i.e., the persistence probability
walker sites. Such sites form ‘‘spacers’’ between each pai
persistent Potts states in a cluster, there being exactly
more persistent Potts site than persistent walker site in e
cluster. The mean cluster size is

^ l &5
P~ t !

Nc~ t !
5F12

Pw~ t !

P~ t ! G21

. ~10!

We expect, on universality grounds, that the exponents
scribing the decay ofP(t) and Pw(t) should be the same
~i.e., u), but the~nonuniversal! amplitudes will be different,
i.e.,P(t)→At2u, while Pw(t)→Awt2u, with Aw,A. Insert-
ing these forms in Eq.~10! gives the limiting value of the
mean cluster size aŝl &`5(12Aw /A)21. This number is
nonuniversal and is determined by the initial distribution
cluster sizes.

III. EXACT RESULTS FOR A¿A\A

Many of the general features of the dynamics foru.1/2
are exemplified by theq→` limit, for which the walker
dynamics reduces toA1A→A; i.e., the walkers always ag
gregate on contact. Att50 all sites are persistent. The ran
dom walkers initially present divide the sites into clusters
persistent sites. Clearly no cluster can increase in size. C
sider a cluster of initial sizel 0. We first calculate the prob
ability densitypl 0

( l ,t) that the cluster survives to timet and

has sizel. The key point is that, forA1A→A dynamics, we
need only consider the two walkers on either side of
initial cluster, since subsequent coalescence processes d
affect the random walk dynamics of these two walkers. T
cluster and the two walkers can therefore be treated in is
tion.

For simplicity we begin by treating the continuum limit i
which the walkers are regarded as continuous-time rand
walkers on a continuous space. This should be correct in
limit l 0@1, an assertion we can subsequently test. Let
ends of the initial cluster~and the two walkers! be located at
x50 andx5 l 0. Each walker obeys an equation of the for
dx/dt5j(t), where j(t) is a Gaussian white noise wit
mean zero and correlator^j(t)j(t8)&52d(t2t8). We first
write down the probability distributionPr(xr ,t) of the right-
most excursionxr , up to time t, of the left walker. An el-
ementary calculation gives

nt
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Pr~xr ,t !5
1

Apt
expS 2

xr
2

4t D . ~11!

For the cluster to survive, we requirexr, l 0, so in the limit
t@ l 0

2 the exponential factor in Eq.~11! can be dropped. The
probability distributionPl(xl ,t) of the leftmost excursion o
the right walker~from its initial position! is given by a simi-
lar expression. Clearlyl 5 l 02xl2xr is the residual size o
the cluster at timet, wherel<0 means the cluster has di
appeared. The probability densitypl 0

( l ,t) that the cluster has

survived and has sizel is therefore given, fort@ l 0
2, by

pl 0
~ l ,t !5E

0

l 02 l dxl

Apt
E

0

l 02 l dxr

Apt
d~ l 02 l 2xl2xr !

5
~ l 02 l !

pt
. ~12!

The probability psurv( l 0 ,t) that the cluster survives unt
time t is given by

psurv~ l 0 ,t !5E
0

l 0
dl

~ l 02 l !

pt
5

l 0
2

2pt
. ~13!

Immediately we see that the mean interval between
viving clusters grows ast @5tu, sinceu(q5`)51], which
is much larger than the mean interval between walke
which grows ast1/2.

The mean length of surviving clusters, of given initial si
l 0, in the t→` limit is

^ l &`5
2pt

l 0
2 E

0

l 0
dll

~ l 02 l !

pt
5

1

3
l 0 . ~14!

If the initial clusters have a distribution of sizes, a straig
forward calculation giveŝ l &`5^ l 0

3&0/3^ l 0
2&0, where^•••&0

indicates an average over this distribution, while the fract
of clusters which survive iŝl 0

2&0/2pt.
The above calculations demonstrate that the mean clu

size approaches a constant at late times and that the
length for the sizes of the intervals between clusters grow
t, and not as the naive scaling lengtht1/2 associated with the
underlying domain wall coarsening. In fact we can calcul
the interval-size distributionn(k,t) explicitly for this model.
First recall that the surviving clusters are separated, at
times, by many (;t1/2) walkers. The fate of a given cluste
depends only on the nearest walker on either side. The
tion of these walkers is uncorrelated with that of the walk
bordering other clusters, because the correlation length
walkers grows only ast1/2. Therefore we can assume, in th
scaling limit k→`, t→`, with k/t fixed, that clusters sur
vive independentlywith probability l 0

2/2pt ~where we have
specialized to initial clusters of fixed sizel 0). The probabil-
ity distribution of the interval sizek between neighboring
clusters is therefore exponential, with mean^k&52pt/ l 0

2,
while n(k,t)5^k&22 exp(2k/^k&), which has the scaling
form ~2! with z51. This exponential form is in excellen
agreement with simulation data presented in Sec. IV.
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Since the initial clusters used in theq5` simulations are
quite small~2 or 4!, the continuum limit is not expected to b
quantitatively correct. To conclude this section, therefore,
quote the asymptotic mean cluster size for clusters of a
trary initial size l 0. The details are given in the Appendix
the result is^ l &`5( l 012)/3, which generalizes the con
tinuum result̂ l &`5 l 0/3.

IV. NUMERICAL SIMULATIONS

Let us recall the zero-temperature coarsening dynamic
the 1D q-state Potts model, starting from a random init
configuration. To maximize the speed of the program,
adopt two-sublattice parallel updating. The zero-tempera
dynamics proceeds as follows: in each time step every s
on one of the sublattices changes its color to that of one o
two neighbors with equal probability, the two sublattices b
ing updated alternately. The dynamics of such systems
equivalently be formulated in terms of the motions of t
domain walls as a reaction-diffusion model. The doma
walls can be considered as random walkers performing in
pendent random walks. Whenever two walkers meet, t
annihilate (A1A→0) with probability 1/(q21) or aggre-
gate (A1A→A), to become a single walker, with probabi
ity (q22)/(q21). The persistence is the probability that
fixed point in space has not been traversed by any rand
walker. Forq52, the particles only annihilate and hence th
is equivalent to the Glauber model, whereas in theq5`
limit the walkers only aggregate.

This algorithm is, however, restricted to modelingq-state
Potts models withq>2, sinceq,2 generates negative prob
abilities, while the general result~1! allows any realq>1. In
order to simulate values ofq in the interval (1,2) we can map
the Potts model~as far as persistence properties are c
cerned! onto an Ising representation with a fraction 1/q of
the sites initially pointing up, and initially persistent, whi
the down spins are nonpersistent. Studying the persistenc
the minority ~majority! spins then corresponds to the ca
q.2 (q,2) @17#. The domain walls between the up an
down spins behave as random walkers, annihilating e
other on contact with probability 1. As far as the persisten
is concerned, the dynamics of the Potts and Ising models
completely equivalent@17#. For q.2, results obtained from
both types of simulation are entirely consistent.

The numerical simulations are performed on a 1D latt
of size 23106 with periodic boundary conditions. The Isin
spins, or Potts variables, occupy the odd sites of the latt
while the random walkers are restricted to even-numbe
sites. Therefore the effective size of the lattice, in terms
Ising or Potts spins, is 106. Each walker jumps to an adjacen
even-numbered site with equal probability, turning any p
sistent site it hops over into a nonpersistent site. The p
tions of all walkers are updated simultaneously at ea
Monte Carlo step. The initial configurations are chosen
eliminate the possibility of any ‘‘crossover’’ of random
walkers when they jump. This can be done by placing th
only on sites whose positions on the lattice are of the fo
4k, wherek is an integer. The walkers then occupy subs
of the sites 4k and 4k12 alternately.

For the Potts simulations (q.2), the lattice is initially
completely persistent. The random walkers are periodic
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laid down, in clusters of uniform initial sizel 0. The walkers
then execute random walks, aggregating or annihilating
cording to the prescribed probabilities, (q22)/(q21) and
1/(q21), respectively. The simulations are performed
initial cluster sizes of 2 and 4. The values ofq chosen are
q5`, 8, and 4, for which the corresponding values ofu are
u(`)51, u(8).0.7942, andu(4).0.6315.

For q,2 the Ising representation is employed, in whi
persistent sites~up spins! are periodically laid down on the
lattice, with a fraction 1/q of all sites persistent, and th
domain walls execute random walks annihilating accord
to A1A→0. The valueq53/2 was chosen, for whichu
.0.2350. The simulations were performed for initial clus
sizes 4 and 8. The Ising simulations were also run forq54
and 8. The results for scaling functions are consistent w
the Potts data, but the statistics are poorer due to the sm
number of clusters generated. For this reason, the data
sented in Figs. 3–9 were generated from the Potts runs
the simulations~Potts and Ising! were run for 10 000 Monte
Carlo steps, and the results averaged over 30 indepen
runs.

The simulations investigate the limiting values of the a
erage sizes of the persistent clusters and the distribu
n(k,t) of intervals between persistent clusters with empha
on its dynamic scaling form. While the first of these len
itself readily to direct measurement, the dynamic scal
form for n(k,t) manifests itself most clearly in the da
through a study of the~complement of the! cumulative dis-
tribution. We define

I ~k,t !5 (
k8>k

n~k8,t !. ~15!

Inserting the scaling form~2! and converting the sum to a
integral in the scaling limitk→`, t→`, with k/tz fixed but
arbitrary, gives

I ~k,t !5t22zE
k

`

dk8n~k8,t !5t2zE
k/tz

`

dx f~x!5t2zg~k/tz!.

~16!

FIG. 2. Mean cluster size as a function of time forq5` and
initial cluster sizesl 052 and 4.
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We now discuss the numerical results for theq5`
model. In Fig. 2 we plot the mean cluster size against ti
for initial cluster sizes of 2 and 4. The numerical results a
summarized in Table I. The numerics clearly support
exact results given in Sec. III@and derived in the Appendix
as Eq.~A5!#, namely,^ l &`5( l 012)/3 wherel 0 is the initial
cluster size. In order to investigate the dynamic scaling fo
~16! for q5`, we plot, in Fig. 3,tI (k,t) againstk/t for t
5500, 1000, 2000, 4000, 8000, for initial cluster size
where we have usedz5u(`)51 for q5`. Excellent data
collapse occurs in agreement with the dynamic scaling fo
~16!.

In Sec. III we argued that the scaling functionf (x) in ~2!
should be a simple exponential, which implies thatg(x) in
Eq. ~16! is also a simple exponential. To test this predictio
we plot ln@tI(k,t)# againstk/t in Fig. 4. The data lie on the
expected straight line except at the latest times, where
deviations from the line are due to statistical noise. Ve
similar results are obtained for initial cluster size 4, confir
ing that the scaling functionf (x) is independent of the initia
walker density.

FIG. 3. Scaling plot forq5`, for initial cluster sizel 052.

TABLE I. Average cluster size at late times,^ l &` , for various
values ofq and various initial cluster sizesl 0, where P or I indicate
whether Potts or Ising representations were employed. In all c
the data were averaged over times between 1000 and 9000 M
Carlo steps.

q l0 ^ l &`

` 2~P! 1.33060.003
4~P! 1.99860.006

8 2~P! 1.36760.002
2~I! 1.33360.005
4~I! 2.01860.013

4 2~P! 1.394560.0007
4~P! 2.15260.001
4~I! 2.08960.004

1.5 4~I! 2.588060.0002
8~I! 4.57260.002
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In Fig. 5 the mean cluster size is plotted against time
various finite values ofq and initial cluster sizel 0. The nu-
merical results indicate that the average cluster size tend
a constant~see Table I! in all cases, as expected on the ba
of the heuristic argument in Sec. II. Forq58, u(q).0.79
.1/2 and the dominant length scale is still determined by
mean distance between persistent clusters. We therefore
ticipate a scaling form of the kind given by Eq.~16! with z
5u(8). Thescaling plot presented in Fig. 6 shows good d
collapse with this value ofz, while Fig. 7 indicates thatg(x)
and, therefore,f (x) are again simple exponentials. The da
collapse is not as good as forq5`, which we attribute to a
poorer separation of the length scalesLp andLw at the time
scales available. This problem becomes more acute foq
54 ~see the discussion below!.

For q54, u(q).0.63.1/2, so we plot~Fig. 8! tzI (k,t)
againstk/tz with z5u(4). This time the scaling collapse i
definitely not as good as forq5` and q58, reflecting an

FIG. 4. Same as Fig. 3, but presented as a log-linear plo
reveal the exponential form of the scaling function.

FIG. 5. Mean cluster size as a function of time for vario
values ofq and various initial cluster sizes. The Potts representa
was used forq.2.
r

to
s

e
an-

a

apparent deviation from the dynamic scaling form~16!. We
believe that this deviation reflects the proximity of the leng
scalesLp;t0.63 andLw;t1/2, which are not sufficiently well
separated on the time scales achievable in the simula
and would disappear for asymptotically large times. For
ample, Lp /Lw;t0.1315.3.26 at t58000, while the corre-
sponding ratio is about 14 forq58 and 90 forq5`. A
similar effect may explain the apparent deviations from u
versality ~e.g., an apparent dependence ofz on the initial
walker density! in the q52 simulations of MR. In this case
u53/8, andLp /Lw;t21/8;0.31 at t512 000, the largest
time reached by the MR simulations. So in this case a
there is not a strong separation of length scales at the ti
achieved in the simulations~a point recently emphasized b
Manoj and Ray@15#!.

Figure 9 gives the log-linear plot forq54. Again, the
data are consistent with an exponential scaling function,
cept at small scaling variable where there is a percept
deviation from a straight line. In this region, however, t

to

n

FIG. 6. Scaling plot forq58 and initial cluster sizel 052, with
z5u(8).0.7942.

FIG. 7. Same as Fig. 6, but presented as a log-linear plo
reveal the underlying exponential form.
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data also do not scale at all well either~see inset in Fig. 9!,
which may be another manifestation of the poor separa
of length scales: the scaling limit requiresk→`, t→` with
k/tz fixed. In particular the conditionk@Lw;t1/2, which
should be satisfied for good scaling, is violated at the sm
values ofk/tz where the upturn in the data occurs. We w
return to this point in the Discussion.

To investigate the spatial distribution of the sites in t
regimeu,1/2 we studyq53/2, for whichu(q).0.235. In
Fig. 5 we show that the mean cluster size is a constant
initial cluster sizes of 4 and 8. In the regimeu,1/2 the
density of the persistent sites decays more rapidly than
of the walkers. The dominant length scale is therefore
longer given by the persistence lengthLp;tu, but is given
instead by the mean separationLw;t1/2 of the the walkers.
Hence we expect asymptotic dynamic scaling of the for
~2! and~16! with z51/2. In Fig. 10 we plott1/2I (k,t) against
k/t1/2 for an initial cluster sizel 054. The numerical results
give excellent data collapse, supporting the proposed

FIG. 8. Same as Fig. 6, but forq54, with z5u(4).0.6315.

FIG. 9. Same as Fig. 8, but presented as a log-linear plot to
the predicted exponential form ofg(x). The inset is an expande
version of the extreme left of the plot.
n

ll

or

at
o

s

y-

namic scaling form. Apart from a change of scale, very sim
lar results are obtained forl 058, supporting the universality
of the scaling function, i.e., the independence ofg(x) from
the initial walker density. We chooseq53/2 rather thanq
52 in order that the length scalesLp andLw be reasonably
well separated at late times:Lp /Lw;t20.265.0.09 at t
58000.

Figure 10 reveals a pronounced upturn at smallk, which
can be seen more clearly in the log-linear plot of Fig. 11 a
its inset, suggesting a divergence fork→0. This is, in fact,
expected from the analysis of Sec. II, which predicts, foru
,1/2, f (x);x2t for x→0, with t52(12u); i.e., t is in
the range 1,t,2. The scaling functiong(x) is given by
g(x)5*x

`dy f(y);x2(t21) for x→0, i.e., g(x);x2(122u)

5x2df , where df5122u is the fractal dimension of the
persistent set on scales smaller thanLw @Eq. ~8!#. According
to this prediction, the productx122ug(x) should approach a
constant at smallx. This product is shown in Fig. 12. Th
small-k divergence has clearly been removed, the funct

st

FIG. 10. Same as Fig. 6, but forq53/2, with z51/2.

FIG. 11. Same as Fig. 7, but forq53/2 and withz51/2. The
inset shows an expanded version of the extreme left of the plot
suggests a singularity for smallx5k/t1/2.
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approaching a constant at smallx as predicted~the erratic
behavior at very smallx is due to statistical noise!.

For q53/2 all of the numerical simulations have be
performed using the Ising representation, with periodic i
tial conditions in which clusters ofl 0 ‘‘up spins’’ are placed
at uniform intervals in a ‘‘down spin’’ background, and o
cupy a fraction 1/q of the sites. Forq.2, the Potts repre-
sentation has mainly been used, but we expect all unive
properties, such as exponents and scaling functions, to b
same for the two representations. This expectation is c
firmed by the results foru(q) and the scaling functiong(x).
In order to obtain aprecise correspondence between th
Ising and the Potts representations, however, it is neces
to run the Ising simulations with random initial condition
rather than periodic initial conditions which we have mos
employed, and to scale the axes appropriately withq to ac-
count for the different interval sizes in the two cases. This
because the reaction-diffusion representation of the P
model, in which walkers annihilate or coalesce with pro
abilities which depend onq, is only an exact representation
the Potts states occur in a completely random sequence.
is not true for the periodic initial conditions employed in th
Ising representation, whose correlations spoil the exact
respondence between Ising and Potts simulations. Our
pectation, then, is that the Ising representation with rand
and periodic initial conditions should give the samescaling
functions as the reaction-diffusion implementation of th
Potts model, but nonuniversal amplitudes will be differe
for the periodic initial conditions.

In order to test the exact equivalence between rand
Ising and Potts simulations we plot, in Fig. 13, the results
the q58 model using the Potts~reaction-diffusion! method.
The lattice is initially all persistent and the initial cluster si
is l 052. This corresponds to a sequence of pairs of P
states in which the members of a pair are in same state
there are no correlations between pairs~except that neighbor
ing pairs must be in different states!. The random initial con-
ditions for the Ising simulation are generated from the Po
initial state by setting all pairs in Potts state ‘‘1’’~say! to be
up spins and all other pairs to be down spins. In the P

FIG. 12. Same data as Fig. 10, but replotted with ordin
t1/2@k/t1/2#122uI (k,t) to show the small-x behavior (x5k/t1/2) more
clearly.
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simulations we keep track of all persistent sites, while in
Ising simulation we track the persistence of the spins initia
‘‘up.’’ The interval sizes ~between persistent clusters! are
then naturally larger by a factorq in the Ising simulations
relative to the Potts simulations. Figure 13 shows both s
ing functions in log-linear form, fort5104, with this factor
of q scaled out@i.e., qtzI (k,t) is plotted againstk/qtz for
these data#. The data overlap almost perfectly. The Ising da
for a periodic initial condition are consistent with the sam
scaling function~exponential!, but with a different ampli-
tude.

V. DISCUSSION AND SUMMARY

In this paper we have investigated the nature of persis
structures in the coarsening dynamics of 1D Potts models
central concept has been the existence of two character
length scales, the mean separationLw;t1/2 of domain walls
~or ‘‘walkers’’ ! and the ‘‘persistence length,’’Lp;tu, which
measures the mean separation of persistent sites or clus
The focus of our attention has been the distribution funct
n(k,t) for the number of intervals~between clusters of per
sistent sites! of length k. This distribution has the scaling
form ~2!, with characteristic length scaletz, which is the
larger of Lw and Lp , i.e., z5max(1/2,u). Within the 1D
Potts model both regimesu,1/2 andu.1/2 can be accesse
by varying the number of Potts statesq. From the general
result, Eq.~1!, we see thatu(q) is a monotonically increas
ing function with qc52.705 28 . . . marking the boundary
between the two regimes.

The regimeu.1/2 is conceptually simpler. Theq5`
limit can been solved exactly~Sec. III!, and results for the
long-time limit of the mean cluster size obtained. The fa
that the locations of the surviving clusters are statistica
independent in the scaling regime leads to the result that
scaling functionf (x) in Eq. ~2! is a simple exponential. We
have argued that the same result should hold for alu

e FIG. 13. Scaling function forq58, showing equivalence o
reaction-diffusion~‘‘Potts’’ ! and Ising~‘‘randomized Ising’’! repre-
sentations, withz5u(8), where the axes areqtzI (k,t) and k/qtz

for the Ising data. The Ising data for periodic initial condition
~‘‘periodic Ising’’ ! has the same functional form but a differe
amplitude.
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.1/2, since in this regime there are, on average, many w
ers between each pair of persistent clusters. Therelevant
walkers for this argument~those which are turning persiste
sites in neighboring clusters nonpersistent! are uncorrelated
since their separations, of orderLp , are much larger than th
typical separationLw of neighboring walkers. On this bas
we expect the asymptotic scaling functionf (x) to be expo-
nential for allu.1/2 ~i.e., q.qc). The data forq58 ~Fig.
7! andq54 ~Fig. 9! are consistent with an exponential for
for g(x)5*x

` f (x), although the scaling is not perfect an
there is a small upturn in the scaling function at small scal
variable forq54. We attribute these features to an imperfe
separation of length scales on the time scales achieved in
simulations and conjecture that the true scaling function
exponential for allu.1/2.

The caseu,1/2 is more tricky. In this case the persiste
clusters outnumber the walkers. The scaling functionf (x) is
clearlynot a simple exponential, though it seems~Fig. 11! to
have an exponential tail. There is a small-argument singu
ity of the form f (x);x2t, with t52(12u). This is related
to the fractal dimensiondf5122u of the persistent sites
df5t21. Note that the borderlineu51/2 between the two
regimes occurs atdf50. The existence of a small-x singu-
larity for u,1/2 raises the possibility of an alternative sc
nario for u.1/2, in which the x2t singularity, with t
52(12u), persists foru.1/2, where it becomes an inte
grable singularity. The small-x singularity in g(x) would
then take the form of a cusp:g(x)5g(0)2Ax2u211••• .
We have not been able to rule out this scenario from the d
but think it unlikely for the reasons given elsewhere in th
paper. Further insight could be obtained if it were possible
perform an expansion around the solubleq5` limit to first
order in 1/q, but we leave this as a challenge for the futu

We conclude by discussing briefly the possibility of t
existence of these two qualitatively different regimes in s
tial dimensiond>2. First we generalize the result~8!, relat-
ing df and u, to any dimension. Starting from Eq.~7!, the
resultF(x);x22u follows generally, and the number of pe
sistent sites within a distanceR of a given site is estimated a
*0

Rr d21drr 22u;Rdf , where df5d22u. Generalizing still
further, if the coarsening exponent isf, rather than 1/2, the
result is

df5d2u/f ~17!

~thed52 version of this result is given in@16#, based on the
same reasoning!. Clearly this result requiresu<df, sincedf
cannot be negative. If this inequality is violated, as in the
Potts model withu.1/2, the persistent sites no longer ha
a fractal structure but become pointlike objects, with me
density;t2u!t2df;Lc

2d , whereLc;tf is the coarsening
length scale. Cases whereu,df are easy to find: e.g., in th
coarsening of the 2D Ising model@4#, the 2D diffusion equa-
tion @5#, or the time-dependent Ginzburg-Landau equation
2D. These all exhibit fractal persistent structures with
expected fractal dimension@16,18#. It would be interesting to
look for examples, in addition to the 1D Potts model, whe
one can haveu.df.

Note added in proof.Tam @19# have recently investigate
an experimental system, namely a coarsening tw
dimensional soap froth, for which the inequality, discussed
k-
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the end of Sec. V, holds. For this systemd52, f5 1
2 , and

u.1.3. They find that, in the scaling regime, a decreas
fraction of cells have persistent cores, and that the aver
core size is constant. The mean spacing between such
increases asLp;tu/2 i.e., it is larger than the coarsenin
length scalet1/2. All this is very similar to thed51 Potts
model results foru.1

2, and is in accord with the genera
scenario outlined in this paper. We thank Andrew Rutenb
and Ben Vollmayr-Lee for bringing this work to our atten
tion.
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APPENDIX

In this appendix we compute the probability that a clus
of initial size l 0 survives to timet and the mean size o
surviving clusters for the processA1A→A.

First note that initially there is a random walker at ea
end of the domain. At each time step the walkers move
dependently left or right with probability 1/2, so we can tre
each walker independently. Consider, therefore, a sin
walker moving at discrete time steps on a discrete 1D latt
starting, at timet50, at positionr. Let the ‘‘origin’’ be the
point r 50, and letPr(t) be the probability that the walke
has not yet reached the origin at timet. Clearly,

P1~ t !5
1

2
P2~ t21!,

Pr~ t !5
1

2
@Pr 21~ t21!

1Pr 11~ t21!#, r>2. ~A1!

We are interested only in the limitt→`. In this limit, we
know from standard random walk theory that everyPr(t)
decays liket21/2, with anr-dependent amplitude. To leadin
order in t21/2, therefore, thet dependence drops out of Eq
~A1!, which then become equations for the amplitudes.
inspection, the solution in this regime is

Pr~ t !5rP1~ t !. ~A2!

Now consider a walker starting immediately to the rig
of a cluster ofl 0 persistent sites. The probability that aftert
steps the walker has jumped over exactlyr of these~making
them nonpersistent! is Pr 11(t)2Pr(t)5P1(t), where the fi-
nal result follows from Eq.~A2!, to leading order for larget.
The same result holds for a walker starting immediately
the left of the cluster. The probability thatl sites remain
persistent after timet is P1(t)2 times the number of ways o
partitioning the cluster of lengthl 0 into three sections, with
the central section of lengthl ~and zero lengths are allowe
for the outer sections!. This number isl 02 l 11. So the prob-
ability of the cluster surviving and having lengthl is
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pl 0
~ l ,t !5~ l 02 l 11!P1~ t !2, ~A3!

a generalization of Eq.~12! to the discrete system.
The survival probability of the cluster is

psurv~ t !5(
l 51

l 0

pl 0
~ l ,t !5

1

2
l 0~ l 011!P1~ t !2, ~A4!
ys

y,

r,
,

.

while the mean cluster size is

^ l &`5

(
l 51

l 0

lpl 0
~ l ,t !

(
l 51

l 0

pl 0
~ l ,t !

5
~ l 012!

3
. ~A5!
ev.

s.

ys.
.

int

ev.
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