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Unusual dynamical scaling in the spatial distribution of persistent sites
in one-dimensional Potts models
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The distributionn(k,t) of the interval size& between clusters of persistent sites in the dynamical evolution
of the one-dimensionai-state Potts model is studied using a combination of numerical simulations, scaling
arguments, and exact analysis. It is shown to have the scaling fofkgt)=t"2%f(k/t?), with z
=max(1/20), whered(q) is the persistence exponent which describes the fragtigh~t~ ¢ of sites which
have not changed their state up to tim&Vhen 6>1/2, the scaling length’ for the interval-size distribution
is larger than the coarsening length saaléthat characterizes spatial correlations of the Potts variables.

PACS numbgs): 05.50:+q, 05.40--a, 82.20.Mj, 05.70.Ln

[. INTRODUCTION of persistent sites decays with time according Rgt)
~t~ % the persistent clusters shrink in size and number with
The discovery of persistence has recently generated co corresponding growth in the size of the nonpersistent re-
siderable interest in understanding the statistics of firstgions.
passage problems in spatially extended nonequilibrium sys- Recently, Manoj and RayMR) [13] have studied such
tems, both theoretically and experimentally. The definition ofSPatially extended systems in one dimens(bB) within the
persistence is as follows. Lef(x,t) be a stochastic variable context of theA+A—0 reaction diffusion model, which is

fluctuating in space and time according to some dynamicSduivalent to the 1D Ising model. They found that the length
The persistence probability is simply the probabilRyt) scale which characterizes the interval sizes between persis-

. o : tent clusterapparentlyhas a different time dependence from
that at a fixed point in space, thg quantity $gifx, t) the length scale characterizing the walker separati@ns
_<¢(X't.)>] c_ioes not change up to timeln manﬁyes_ystems spin correlations, in the Ising representajicand futhermore
of physical interest a power law decay(t)~t " is 0b-  gooms 1o depend on the initial walker density. If true, this
served, where) is the persistence exponent and is, in geNeqyit would be surprising. Naively, one would expect the
eral, nontrivial. The nontriviality of¢ emerges as a conse- jnitial walker density to be irrelevant to the asymptotic dy-
quence of the coupling of the field(x,t) to its neighbors,  namics and the coarsening length scale, set by the mean dis-
since such coupling implies that the stochastic process at @nce between walkers, to be the relevant length scale for all
fixed point in space and time is non-Markovian. spatial correlations. We shall show that the former expecta-

Persistence phenomena have been widely studied in reion is correct, but the latter, in general, is not.
cent yearg1-12]. Theoretical and computational studies in-  In this paper we generalize, and reinterpret, this study in
clude spin systems in or@,3] and higher{4] dimensions, the context of theg-state Potts model, which hagdistinct
diffusion fields[5], fluctuating interface§6], phase-ordering but equivalent ordered phases. The¢- A—0 model corre-
dynamics[7], and reaction-diffusion systerm{8]. Experi- sponds to thej=2 Potts model, i.e., the Ising model, with
mental studies include the coarsening dynamics of breatthe walkers identified as the domain walls between up and
figures[9], soap froth§10], and twisted nematic liquid crys- down Ising spins. In theg-state Potts model the random
tals [11]. Persistence in nonequilibrium critical phenomenawalkers represent domain walls between Potts states. At each
has also been studied in the context of the global order paime step, every walker hops randomly left or right. Persis-
rameterM(t) (e.g., the total magnetization of a ferromag- tent Potts sites are those at which the Potts state has never
neY, regarded as a stochastic procgka). changed, i.e., sites which have never been crossed by a

In the present work we consider spatially extended syswalker. If two walkers occupy the same site, they eitbea-
tems with a nonequilibrium fieldb(x,t), which takes dis- lesce with probability (q—2)/(g—1), or annihilate with
crete values, at each lattice skeThe field then evolves in probability 1/@—1), these numbers being the probabilities
time t through interactions with its neighbors. The persis-that the states on the farther sides of the walkers are the same
tence probability at timeis defined as the fraction of sites in (annihilation or different (coalescenge The persistence
which the stochastic fieleb(x,t) did not change its value in probability (the fraction of sites that have never been jumped
the time interva[ 0,t]. The physical interpretation ab(x,t) over by a walker decays as a power of time, with a
could be, for example, the coarsening spin field in the Ising;-dependent exponen®(t) ~t~ %@,
model after being quenched to low temperature from an ini- Among the questions which emerge naturally in such a
tial high temperature, the sign of a diffusion field starting study are the following(i) What is the dominant length scale
from a random initial configuration, or the sign of the height,in the problem, as far as the persistent structures are con-
relative to the mean height, of a fluctuating interface. As thecerned?ii) What is the nature of the spatial distribution of
stochastic field evolves in time, such systems develop rethe persistent siteq#i) What is the average size of a persis-
gions of persistent and nonpersistent sites. Since the numbgamt cluster?
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An important point to make at the outset concerns thewvherel(t) =t is the “characteristic” length scale at tinte
different length scales associated with the walkers and witfiA dynamical exponent is conventionally defined via(t)

the persistent sites. The walker density decays d$ for ~t12, rather thart?. Here we are following the notation of
any g, so the mean distance between walkers grows aMR.]
L, (t)~tY2 The density of persistent sites decays a4 so The rationale for the scaling forrf2) is as follows. The

the mean distance between these sites grO\MSpas)~t9. number of nonpersistent sit@ger sitg is given by

This simple observation immediately suggests that the spatial

structure of the persistent sites fér-1/2, wherel ; is the -

larger length scale, will be very different from wheh Q(t)=k21 kn(k,1). ©)
<1/2, whereL,, is the larger length. This is precisely what

we find: the characteristic length scalg,;, controlling the Byt since the number of persistent siteer sitg, P(t), de-
distribution of theintervals between clusters of persistent cays to zero a®(t)~t~ ¢, and P(t)+Q(t)=1, it follows
sites, is given by, =max(L,,,Lp). For the Ising case stud- that Q(t)—1 for t—o. Converting the sunf3) to an inte-
ied earlier{ 13], one hag3] #=3/8, which is “close” to 1/2.  gral, with a lower limit zero(valid ast—c provided the
We believe that the proximity of these two exponents is re{ntegral convergeswe see that the prefactor 2 in Eq. (2)
sponsible for the apparently nonuniversal behavior in thes precisely what is needed to satisfy the required condition

Ising system reported in MR. Q(t)—const fort—o.
Derridaet al.[3] have obtained an exact expressionfor  Consider next the numbe¥(t) of persistent clusters per
for 1D Potts models with arbitrarg: site. Since the number of clusters is equal to the number of
2 intervals,N is given by
T —1(2_q) &
q)=-s+—|cos | — o
8 2 2
" V24 Ne(t)= 3 n(k.1). @

The value of g corresponding to6=1/2 is q.=2/1
+/2 cos(/5m/4)]=2.705B . . ., so6(q)>1/2 for all inte- Converting the sum to an integrédith a lower limit zerg,
ger q=3. Note that the probabilistic algorithm for imple- using Eg.(2), and assuming the integral converges gives
menting the Potts model through the annihilation or coalesN.~t~% Thus the mean distance between persistent clusters,
cence of random walkefglomain wall$ allowsqto be areal i.e., the mean interval size, increaseg?as
number,q=2, while an equivalent Ising spin representation Is this reasonable? Let us recall that there are two length
(see Sec. IY of the Potts persistence problem even allowsscales in the systen,,~t? the mean distance between
1<g<2! By this means we can explore a rangedodbove  walkers, ande~t9, the mean distance between persistent
and below 1/2. sites. To make further progress we make the following two

Our main result is that the scale length controlling theassumptions, both of which are confirmed by our numerical
distribution of interval sizes between persistent clusters istudies, by exact results fay=c«, and by heuristic argu-
given bytY2 when §<1/2, but byt’ when §>1/2. We find ments to be expounded beloi) The mean cluster size
no evidence for any dependence of the asymptotic scalingends to a constant far—c, and ii) the length scald;,
distribution on the initial walker densitfother than through =t that controls the interval size distribution is tlaeger of
nonuniversal amplitudes Ly andL,, i.e.,z=max (1/20).

This paper is organized in the following manner. In Sec. From assumptiotti) we deduce thaN.~t~ %, i.e.,z=#6,
Il ' we outline a scaling phenomenology within which the which is consistent with assumptidii) provided 6>1/2.
above questions can be addressed. In Sec. Ill we give exagyhat if §<1/2? Then we still requirdN.~t~?, but nowz
results for theq=o Potts model. Finally, in Sec. IV, we =1/2, so the resulN.~t~%, derived from Eq.(4), breaks
present extensive numerical simulations for ¢hetate Potts  down. Going back to Eq4), we infer that this breakdown
model which confirm our predictions based on general scalrequires that the conversion of the sum to an integral be
ing arguments and the exact largeesults. Section V con- invalid—the sum must have its dominant contribution frem

cludes with a discussion and summary of the results. of order unity, rather thak of ordert?. This in turn requires
that the scaling functiorf(x) in Eq. (2) have a singular
Il. SCALING PHENOMENOLOGY smallx limit of the form [13]
The basic scaling phenomenology was introduced by f(x)~x~7, x—0, (5)

Manoj and Ray, although we will adopt a slightly different

notation. We are interested in the distribution of the sizes ofvith 1<7<2. Using this form in Eq(2), with z=1/2, and
the intervals between persistent sites. We define an intervalnserting the result into Eq4), givesN,~t~ (=72 Com-
sizek as the number afionpersistensites between two con- paring this withN.~t~? fixes the value ofr:

secutive persistent sites. If the interval size is zero, the sites

belong to the samelusterof persistent sites, and we hence- T=2(1-0), 6<1/2. (6)
forth consider only intervals of nonzero size. We define

n(k,t) to be the number of intervalger site of sizek at We first present a heuristic argument for the result
time t. A natural dynamical scaling assumption is =max(1/26). Consider first the casg>1/2. In this regime,

the distance between clusters is much greater that the dis-
n(k,t)=t"2%f (k/t?), 2 tance between walkers; i.e., there are, on average, many
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Clearly this result only makes sense < 1/2, sinced;

Quoo oocmastsonconoiocommons Sp— P ——— cannot be negative. This suggesdis=0 for 6=1/2, corre-
sponding to pointlike objects, i.e., isolated finite clusters. For
g=o°, for example, wher@=1, we find that there is typi-
Q=B oo o 0000 ¢ 5 R KO R A X RO PSR R YK, XTI cally one cluster of persistent sites, with a fixed mean size
per scale length. ,~t.

We now present a heuristic argument in support of our
e - aroros R X P claim that the mean cluster sizg) approaches a constant as
t—oo for all values of. The initial steps of the argument
follow the approach of MR. The total number of clusters per
e el site can be written as

Ne(t)=P(t) = Py(t), (©)

q=3/2 Eo 5 ) O OO BB T € XD CHIER

whereP, (1) is the fraction of walker sites which have never

0 50000 been visited by a walker, i.e., the persistence probability for
qalker sites. Such sites form “spacers” between each pair of
persistent Potts states in a cluster, there being exactly one
more persistent Potts site than persistent walker site in each

FIG. 1. Snapshots showing the relative densities of persiste
sites(0) and random walkersX) for variousg, at timet=10*. The
Ising representation was used to generateqthé/2 data, with the

Potts representation used for the otheralues. cluster. The mean cluster size is

. . -1
(~1t77Y?) random walkers between each consecutive pair of ()= PO _ 1o Pu(t) 10
persistent clusters, as illustrated in Fig. 1. However, walkers N¢(t) P(t) '

separated by distances large comparetifoare essentially

uncorrelated, because any correlations are mediated by thg§e expect, on universality grounds, that the exponents de-
random walkers, and correlations between walkers decay oscribing the decay oP(t) and P,(t) should be the same
the length scalé'. Therefore one expects the intervals be-(i.e., ¢), but the(nonuniversal amplitudes will be different,
tween clusters, measured on the sdéleto be independent je., P(t)—At % while P, (t)—A,t %, with A,<A. Insert-
random variables and the interval size distribution to scaléng these forms in Eq(10) gives the limiting value of the
with this length. This argument also suggests that the locamean cluster size ad),.=(1—A,/A)"*. This number is

tions of the clusters as a function of position on the latticenonuniversal and is determined by the initial distribution of
are described by a Poisson process; i.e., the interval sizgyster sizes.

distribution is an exponentiah(k,t) = (k)exp(—k/(k)), with
(k)~1?, for 6>1/2. These expectations are borne out by our
numerical studies.

For #<1/2, the opposite is true: there are many clusters Many of the general features of the dynamics 6or 1/2
between each pair of walkefsee theq=23/2 snapshot in e exemplified by thej—co limit, for which the walker
Fig. 1). The largest length scale is set by the walker spacingdynamics reduces t&+A—A; i.e., the walkers always ag-
L, ~t2 and the interval size distribution will scale with this gregate on contact. At=0 all sites are persistent. The ran-
length. On smaller scales, there will be residual structure iRjom walkers initially present divide the sites into clusters of
the cluster distribution left from an earlier epoch when thepersistent sites. Clearly no cluster can increase in size. Con-
number of walkers was larger. Indeed, on these smallegider a cluster of initial sizé,. We first calculate the prob-
scales the persistent sites form a fractal [4et-16. Con-  gpjlity densityp, (1,t) that the cluster survives to tinteand
sider two sites separated by a distanceThe probability has sizd. The k(oay point is that, foA+A— A dynamics, we

P2(r.t) thatbothare persistent has the scaling form need only consider the two walkers on either side of the
initial cluster, since subsequent coalescence processes do not
affect the random walk dynamics of these two walkers. The

) o . cluster and the two walkers can therefore be treated in isola-
whereF (x) —const forx—c, since forr>t"the sites are {jgn.

uncl?zrrelated. The residual structure remaining on scales  por simplicity we begin by treating the continuum limit in
<t however, means that if the first site is persistentyyhich the walkers are regarded as continuous-time random

which occurs with probability of order’, the probability  \alkers on a continuous space. This should be correct in the
that the second one is also persistent depends only Bilis  |imjt |,>1, an assertion we can subsequently test. Let the

implies F(x)~x"?’ for x—0. The number of persistent ends of the initial clustefand the two walkejsbe located at
sites within a distanc® of a given persistent site can there- y—q andx=1,. Each walker obeys an equation of the form

Ill. EXACT RESULTS FOR A+A—A

P,(r,t)=t 2F(r/t*?), (7)

fore be estimated aggdrr ~2’~R%, where dx/dt=¢(t), where &(t) is a Gaussian white noise with
mean zero and correlatdé(t) £(t'))=25(t—t"). We first
d;=1-20 (8)  write down the probability distributio®, (x, ,t) of the right-

most excursiorx,, up to timet, of the left walker. An el-
is the fractal dimension of the persistent set. ementary calculation gives
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2

1 2 Since the initial clusters used in tlgg= simulations are
Jmt 4t

. (11)  quite small(2 or 4), the continuum limit is not expected to be
quantitatively correct. To conclude this section, therefore, we

. . . ~_ quote the asymptotic mean cluster size for clusters of arbi-

For the cluster to survive, we require<lo, so in the limit  trary initial sizel,. The details are given in the Appendix:

t>1 the exponential factor in Eq11) can be dropped. The the result is(l)..=(I,+2)/3, which generalizes the con-

probability distributionP|(x; ,t) of the leftmost excursion of  tinuum result(l).,.=1,/3.

the right walker(from its initial positior) is given by a simi-

lar expression. Clearly=I1,—x,—X, is the residual size of IV. NUMERICAL SIMULATIONS

the cluster at time, wherel<0 means the cluster has dis-

appeared. The probability densipy,(1,t) that the clusterhas | et ys recall the zero-temperature coarsening dynamics of

Pr(xr 7t) =

survived and has sizeis therefore given, fot>13, by the 1D g-state Potts model, starting from a random initial
configuration. To maximize the speed of the program, we
lo=1 dx [lo=!dx, adopt two-sublattice parallel updating. The zero-temperature
P, (1 t)= - —=0(lo=1=x—=x%) dynamics proceeds as follows: in each time step every spin
o VatJo at on one of the sublattices changes its color to that of one of its
(lo—1) two neighbors with equal probability, the two sublattices be-

. (12 ing updated alternately. The dynamics of such systems can
equivalently be formulated in terms of the motions of the
domain walls as a reaction-diffusion model. The domain
walls can be considered as random walkers performing inde-
pendent random walks. Whenever two walkers meet, they
o (lg—1) 12 annihilate A+A—0) with probgbility 1/g—1) or aggre-
Peur (|0,t):f Odl 0 -0 (13) gate A+A—A), to become a single walker, with probabil-
v 0 mt 2t ity (q—2)/(g—1). The persistence is the probability that a
fixed point in space has not been traversed by any random
Immediately we see that the mean interval between surwalker. Forq=2, the particles only annihilate and hence this
viving clusters grows as[=t?, sinced(q=)=1], which is equivalent to the Glauber model, whereas in thex
is much larger than the mean interval between walkerslimit the walkers only aggregate.

7t

The probability pgy,,(lo,t) that the cluster survives until
timet is given by

which grows ag'’?. This algorithm is, however, restricted to modeliggtate
The mean length of surviving clusters, of given initial size Potts models witly=2, sinceq<2 generates negative prob-
[, in thet—oo limit is abilities, while the general resuft) allows any reag=1. In
order to simulate values ofin the interval (1,2) we can map
27t (o (lg—1) 1 the Potts modelas far as persistence properties are con-
<|>oo:|—2 . dit ——=3lo. (14 cerned onto an Ising representation with a fractiory 1of
0

the sites initially pointing up, and initially persistent, while
If the initial clusters have a distribution of sizes, a straight—tﬂz ?ﬁi\lxgrﬁsl?;;}gﬁig())nsﬁgsttﬁgg fé?%gggr:zg E:g rfr:setecrz:seeof
forward calculation givegl)..=(15)o/3(Ig)o, Where(:--)o q>2 (q<2) [17]. The domain walls between the up and
indicates an average over this distribution, while the fractiory spins behave as random walkers, annihilating each
of clusters which survive igl o)ol2mt. other on contact with probability 1. As far as the persistence
~ The above calculations demonstrate that the mean clust@f concerned, the dynamics of the Potts and Ising models are
size approaches a constant at late times and that the SCQSmpletely equivalenitL7]. Forq>2, results obtained from
length for the sizes of the intervals between clusters grows asyth types of simulation are entirely consistent.
t, and not as the naive scaling lengitf associated with the  The numerical simulations are performed on a 1D lattice
underlying domain wall coarsening. In fact we can calculateyt gize 2x 106f with periodic boundary conditions. The Ising
the interval-size distribution(k,t) explicitly for this model. spins, or Potts variables, occupy the odd sites of the lattice,
First recall that the surviving clusters are separated, at latgnijle the random walkers are restricted to even-numbered
times, by many {-t*%) walkers. The fate of a given cluster sjtes. Therefore the effective size of the lattice, in terms of
depends only on the nearest walker on either side. The MQsing or Potts spins, is £0Each walker jumps to an adjacent
tion of these walkers is uncorrelated with that of the walkersayen-numbered site with equal probability, turning any per-
bordering other clusters, because the correlation length fagistent site it hops over into a nonpersistent site. The posi-
walkers grows only as'“ Therefore we can assume, in the tions of all walkers are updated simultaneously at each
scaling limitk—ce, t—oe, with k/t fixed, that clusters sur- Mmonte Carlo step. The initial configurations are chosen to
vive independentlywith probability I5/27rt (where we have eliminate the possibility of any “crossover” of random
specialized to initial clusters of fixed sitg). The probabil- walkers when they jump. This can be done by placing them
ity distribution of the interval siz&k between neighboring only on sites whose positions on the lattice are of the form
clusters is therefore exponential, with meég=2mxt/13, 4k, wherek is an integer. The walkers then occupy subsets
while n(k,t)=(k) 2exp(—k/(k)), which has the scaling of the sites & and &+ 2 alternately.
form (2) with z=1. This exponential form is in excellent For the Potts simulationsg>2), the lattice is initially
agreement with simulation data presented in Sec. IV. completely persistent. The random walkers are periodically
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25 . . TABLE I. Average cluster size at late timed).., for various
values ofg and various initial cluster sizédg, where P or | indicate
Q= - :oj whether Potts or Ising representations were employed. In all cases
L the data were averaged over times between 1000 and 9000 Monte
L Carlo steps.
] 2 F - - i
7 q lo (1)
g
é’ 0 2(P) 1.330+0.003
= 4(P) 1.998+0.006
s 5l | 8 2(P) 1.367+0.002
2(1) 1.333+0.005
— 4(1) 2.018-0.013
4 2(P) 1.3945+0.0007
4P) 2.152+0.001
1 : : w w 4(1) 2.089+0.004
0 2000 4000 6000 8000 10000 15 A1) 25880+ 0.0002

Time (Monte Carlo steps)
8(1) 4.572+0.002

FIG. 2. Mean cluster size as a function of time fpr~ and
initial cluster sized,=2 and 4.

We now discuss the numerical results for the-«
model. In Fig. 2 we plot the mean cluster size against time

laid down, in clusters of uniform initial sizk,. The walkers oo . :
: S for initial cluster sizes of 2 and 4. The numerical results are
then execute random walks, aggregating or annihilating ac-

. . summarized in Table I. The numerics clearly support the
cording to the prescribed probabilitiesy<{2)/(q—1) and : . . X .
1(q— % respepctively. Thg simulatio?s{ar)e (gerfo)rmed forexact results given in Sec. I[and derived in the Appendix

initial cluster sizes of 2 and 4. The values @tthosen are glsu SEtgr('g‘lsz)g Inna(r)]:ggr’<t|()>oicr§/((als?tr igégﬂ\:\é hgrilaor:]si;gec;ﬂg'alform
g=<, 8, and 4, for which the corresponding valuegdare ' 9 y 9

B(c)=1, 6(8)~0.7942, andd(4)=0.6315. (16) for q==, we plot, in Fig. 3,tl(k,t) againstk/t for t

For q<2 the Ising representation is employed, in Which:500’ 1000, 2000, 4000, 8000, for initial cluster size 2,
; . g o . ’ where we have user= 6(«)=1 for q=. Excellent data
persistent sitegup sping are periodically laid down on the collapse occurs in agreement with the dynamic scaling form
lattice, with a fraction Id of all sites persistent, and the (16)
domain walls execute random walks annihilating according IH Sec. Il we argued that the scaling functiofx) in (2)

to A+A—0. The valueq=3/2 was chosen, for whicl should be a simple exponential, which implies tgéx) in
=0.2350. The simulations were performed for initial cIusterEq. (16) is also a simple exponential. To test this prediction,

sizes 4 and 8. The Ising simulations were also rungfer4 we plot Irfti(k.)] againstk/t in Fig. 4. The data lie on the

and 8. The results for scaling functions are consistent W'thexpected straight line except at the latest times, where the

Lhuemi))%trtso?itligg L:tsthgnséfgf;:jcségftﬂioso::;ggs t&;hgigallEEV|atlons from the line are due to statistical noise. Very
g g ) ! Pr&imilar results are obtained for initial cluster size 4, confirm-
sented in Figs. 3—9 were generated from the Potts runs. A : . S A
i . . ing that the scaling functiof(x) is independent of the initial
the simulationgPotts and Isingwere run for 10 000 Monte ;
W{ilker density.

Carlo steps, and the results averaged over 30 independen

runs. 1
The simulations investigate the limiting values of the av-
erage sizes of the persistent clusters and the distributior | ~ d=«L=2 | — abred
n(k,t) of intervals between persistent clusters with emphasis 4 g = $=2000 |
on its dynamic scaling form. While the first of these lends —— t=4000
itself readily to direct measurement, the dynamic scaling — -~ 1=8000
form for n(k,t) manifests itself most clearly in the data
through a study of thécomplement of thecumulative dis- i
tribution. We define )
I(k,t)= >, n(k',t). (15) 04
k' =k
Inserting the scaling forni2) and converting the sum to an 0.2 .
integral in the scaling limik— o, t—oo, with k/t* fixed but
arbitrary, gives
0 |
10

I(k,t)=t_2ZJ' dk’n(k',t)=t_zf dxf(x)=t *g(k/t?). kit
k kit?
(16 FIG. 3. Scaling plot fog=-ce, for initial cluster sizd ,=2.
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0 ; T 0.6 T T
q=oo,l,=2 — t=500 —— t=500
.......... t=1000 t=1000
- - - t=2000 - - - t=2000
— — t=4000
—— t=4
— - — t=8000 - _:_8888
-5} A 1 — i
= — =
= % 2
= W e
L L
- o,
10 I R 1 1
-15 L 1 - 1
0 5 10 10 20
kit kit

FIG. 4. Same as Fig. 3, but presented as a log-linear plot to  F|G, 6. Scaling plot fog==8 and initial cluster sizé,= 2, with
reveal the exponential form of the scaling function. z=6(8)=0.7942.

I.n Fig.. 5 the mean cluster_ sj;e is plotteql against time forapparent deviation from the dynamic scaling fofh6). We
various finite values ofj and initial cluster sizéo. The nu-  pelieve that this deviation reflects the proximity of the length
merical results indicate that the average cluster size tends toQ:aIest~t°-63 andL,,~tY2 which are not sufficiently well
a constantsee Table)lin all cases, as expected on the basisgenarated on the time scales achievable in the simulation,
of the heuristic argument in Sec. Il. Fq=8, 6(q)=0.79  anq would disappear for asymptotically large times. For ex-
>1/2 and the dominant length scale is still determined by th%mple, L. /L,~t91315-3 26 att=8000, while the corre-
mean distance between persistent clusters. We therefore aébondingp rago is about 14 fogy=8 and 90 forq=c. A
ticipate a scaling form of the kind given by EQL6) with 2 gimjlar effect may explain the apparent deviations from uni-
= 6(8). Thescaling plot presented in Fig. 6 shows good dataersgjity (e.g., an apparent dependencezobn the initial
collapse with this value af, while Fig. 7 indicates thay(x)  alker density in the q=2 simulations of MR. In this case
and, thereforef (x) are again simple exponentials. The data9:3/8, and Lp/LW~t*1’8~0.31 att=12000, the largest
collapse is not as good as fqr=c, which we attribute t0 @  time reached by the MR simulations. So in this case also
poorer separation of the length scalgsandL,, at the time  there is not a strong separation of length scales at the times
scales available. This problem becomes more acuteqfor achieved in the simulation@ point recently emphasized by
=4 (see the discussion belpw Manoj and Ray[15]).

Forg=4, 6(0)=0.63>1/2, so we plot(Fig. 8) t*I (k,t) Figure 9 gives the log-linear plot fay=4. Again, the
againstk/t* with z=6(4). This time the scaling collapse is data are consistent with an exponential scaling function, ex-
definitely not as good as fay=% andq=8, reflecting an cept at small scaling variable where there is a perceptible

deviation from a straight line. In this region, however, the
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FIG. 5. Mean cluster size as a function of time for various
values ofq and various initial cluster sizes. The Potts representation FIG. 7. Same as Fig. 6, but presented as a log-linear plot to
was used fog>2. reveal the underlying exponential form.
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FIG. 8. Same as Fig. 6, but for=4, with z= 6(4)=0.6315. FIG. 10. Same as Fig. 6, but fgr=3/2, withz=1/2.

data also do not scale at all well eith@ee inset in Fig. ®  namic scaling form. Apart from a change of scale, very simi-
which may be another manifestation of the poor separatiofar results are obtained fbg=8, supporting the universality
of length scales: the scaling limit requirkes>o, t—oo with of the scaling function, i.e., the independenceg@X) from
k/t? fixed. In particular the conditiork>L,,~t*? which  the initial walker density. We choosg=3/2 rather tham
should be satisfied for good scaling, is violated at the smal=2 in order that the length scalés andL,, be reasonably
values ofk/t* where the upturn in the data occurs. We will well separated at late timed:,/L,~t %%%~0.09 att
return to this point in the Discussion. =8000.

To investigate the spatial distribution of the sites in the Figure 10 reveals a pronounced upturn at srkalhich
regime #<1/2 we studyg=3/2, for which#(q)=0.235. In  can be seen more clearly in the log-linear plot of Fig. 11 and
Fig. 5 we show that the mean cluster size is a constant faits inset, suggesting a divergence for-0. This is, in fact,
initial cluster sizes of 4 and 8. In the regin®<1/2 the expected from the analysis of Sec. Il, which predicts, dor
density of the persistent sites decays more rapidly than that 1/2, f(x)~x"" for x—0, with 7=2(1—0); i.e., 7 is in
of the walkers. The dominant length scale is therefore nahe range X 7<2. The scaling functiorg(x) is given by
longer given by the persistence Ienglp~t", but is given  g(x)=[rdyf(y)~x (1 for x—0, ie., g(x)~x 1729
instead by the mean separatibg~t*? of the the walkers. =x"%, whered;=1-24 is the fractal dimension of the
Hence we expect asymptotic dynamic scaling of the formsyersistent set on scales smaller thgn[Eq. (8)]. According
(2) and(16) with z=1/2. In Fig. 10 we plot*? (k,t) against  to this prediction, the product:~2%g(x) should approach a
k/tY2 for an initial cluster sizdy=4. The numerical results constant at smalk. This product is shown in Fig. 12. The
give excellent data collapse, supporting the proposed dysmallk divergence has clearly been removed, the function
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FIG. 9. Same as Fig. 8, but presented as a log-linear plot to test FIG. 11. Same as Fig. 7, but for=3/2 and withz=1/2. The
the predicted exponential form @f(x). The inset is an expanded inset shows an expanded version of the extreme left of the plot and
version of the extreme left of the plot. suggests a singularity for smadk= k/t*2,
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FIG. 12. Same data as Fig. 10, but replotted with ordinate FIG. 13. Scaling function folqg=8, showing equivalence of
tY k/tY?]1 2% (k,t) to show the smalk behavior k=k/t¥?) more  reaction-diffusion“Potts” ) and Ising(“randomized Ising’) repre-
clearly. sentations, withe= 0(8), where the axes argt’l (k,t) andk/qt*

for the Ising data. The Ising data for periodic initial conditions

approaching a constant at smallas predictedthe erratic  (“periodic Ising”) has the same functional form but a different
behavior at very smak is due to statistical noise amplitude.

For q=3/2 all of the numerical simulations have been
performed using the Ising representation, with periodic ini-simulations we keep track of all persistent sites, while in the
tial conditions in which clusters df, “up spins” are placed Ising simulation we track the persistence of the spins initially
at uniform intervals in a “down spin” background, and oc- “up.” The interval sizes(between persistent clustgrare
cupy a fraction 1d of the sites. Foig>2, the Potts repre- then naturally larger by a factar in the Ising simulations
sentation has mainly been used, but we expect all universatlative to the Potts simulations. Figure 13 shows both scal-
properties, such as exponents and scaling functions, to be theg functions in log-linear form, fot=10* with this factor
same for the two representations. This expectation is coref g scaled oufi.e., qt?l(k,t) is plotted againsk/qt* for
firmed by the results fof(q) and the scaling functiog(x). these dath The data overlap almost perfectly. The Ising data
In order to obtain aprecise correspondence between the for a periodic initial condition are consistent with the same
Ising and the Potts representations, however, it is necessaggaling function(exponential, but with a different ampli-
to run the Ising simulations with random initial conditions, tude.
rather than periodic initial conditions which we have mostly
employed, and to scale the axes appropriately with ac- V. DISCUSSION AND SUMMARY
count for the different interval sizes in the two cases. This is
because the reaction-diffusion representation of the Potts In this paper we have investigated the nature of persistent
model, in which walkers annihilate or coalesce with prob-structures in the coarsening dynamics of 1D Potts models. A
abilities which depend oq, is only an exact representation if central concept has been the existence of two characteristic
the Potts states occur in a completely random sequence. THRNgth scales, the mean separatign-t*2 of domain walls
is not true for the periodic initial conditions employed in the (or “walkers”) and the “persistence length,~t?, which
Ising representation, whose correlations spoil the exact comeasures the mean separation of persistent sites or clusters.
respondence between Ising and Potts simulations. Our exXhe focus of our attention has been the distribution function
pectation, then, is that the Ising representation with random(k,t) for the number of intervalgbetween clusters of per-
and periodic initial conditions should give the saswaling  Sistent siteg of length k. This distribution has the scaling
functions as the reaction-diffusion implementation of the form (2), with characteristic length scal&, which is the
Potts model, but nonuniversal amplitudes will be differentlarger of L,, and L, i.e., z=max(1/2¢). Within the 1D
for the periodic initial conditions. Potts model both regimes<1/2 and6>1/2 can be accessed

In order to test the exact equivalence between randorhy varying the number of Potts statgs From the general
Ising and Potts simulations we plot, in Fig. 13, the results forresult, Eqg.(1), we see tha¥(q) is a monotonically increas-
the g=8 model using the Pottgeaction-diffusion method. ing function with q.=2.7053 ... marking the boundary
The lattice is initially all persistent and the initial cluster size between the two regimes.
is |[o=2. This corresponds to a sequence of pairs of Potts The regime#>1/2 is conceptually simpler. Thg=c
states in which the members of a pair are in same state, blimit can been solved exactl{Sec. Ill), and results for the
there are no correlations between pééscept that neighbor- long-time limit of the mean cluster size obtained. The fact
ing pairs must be in different state§he random initial con- that the locations of the surviving clusters are statistically
ditions for the Ising simulation are generated from the Pottsndependent in the scaling regime leads to the result that the
initial state by setting all pairs in Potts state “I8ay) to be  scaling functionf(x) in Eq. (2) is a simple exponential. We
up spins and all other pairs to be down spins. In the Potthave argued that the same result should hold for éall
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>1/2, since in this regime there are, on average, many walkthe end of Sec. V, holds. For this systetw2, ¢=3, and

ers between each pair of persistent clusters. fiddevant  6#=1.3. They find that, in the scaling regime, a decreasing
walkers for this argumerithose which are turning persistent fraction of cells have persistent cores, and that the average
sites in neighboring clusters nonpersisjemnte uncorrelated core size is constant. The mean spacing between such cells
since their separations, of ordeg, are much larger than the increases at ~t%2 je., it is larger than the coarsening
typical separatior.,, of neighboring walkers. On this basis length scalet!’?. All this is very similar to thed=1 Potts

we expect the asymptotic scaling functibfx) to be expo- model results ford>3, and is in accord with the general
nential for all 9>1/2 (i.e., g>q.). The data foq=8 (Fig. =~ scenario outlined in this paper. We thank Andrew Rutenberg
7) andg=4 (Fig. 9 are consistent with an exponential form and Ben Vollmayr-Lee for bringing this work to our atten-
for g(x)= [y f(x), although the scaling is not perfect and tion.

there is a small upturn in the scaling function at small scaling

variablg forg=4. We attribute thesg features to an _impen_‘ect ACKNOWLEDGMENT

separation of length scales on the time scales achieved in the

simulations and conjecture that the true scaling function is This work was supported by EPSROK).

exponential for allg>1/2.

The cased<<1/2 is more tricky. In this case the persistent
clusters outnumber the walkers. The scaling funcfigx) is
clearlynota simple exponential, though it seeifs$g. 11 to In this appendix we compute the probability that a cluster
have an exponential tail. There is a small-argument singulamf initial size |, survives to timet and the mean size of
ity of the form f(x)~x"7, with 7=2(1—6). This is related  surviving clusters for the procegs+ A—A.
to the fractal dimensiom;=1—26 of the persistent sites: First note that initially there is a random walker at each
d¢i=7—1. Note that the borderliné=1/2 between the two end of the domain. At each time step the walkers move in-
regimes occurs ad;=0. The existence of a smallsingu-  dependently left or right with probability 1/2, so we can treat
larity for #<<1/2 raises the possibility of an alternative sce-each walker independently. Consider, therefore, a single
nario for ¥>1/2, in which thex™ 7 singularity, with =  walker moving at discrete time steps on a discrete 1D lattice,
=2(1-0), persists for9>1/2, where it becomes an inte- starting, at timet=0, at positionr. Let the “origin” be the
grable singularity. The smak- singularity in g(x) would  pointr=0, and letP.(t) be the probability that the walker
then take the form of a cusg(x)=g(0)—Ax?’"1+....  has not yet reached the origin at tiheClearly,

We have not been able to rule out this scenario from the data,

but think it unlikely for the reasons given elsewhere in this

paper. Further insight could be obtained if it were possible to Py(t)= E P,(t—1)

perform an expansion around the soluffe oo limit to first 2 ’

order in 164, but we leave this as a challenge for the future.

We conclude by discussing briefly the possibility of the
existence of these two qualitatively different regimes in spa-
tial dimensiond=2. First we generalize the res(8), relat-
ing d; and 6, to any dimension. Starting from Eg7), the
resultF (x) ~x~2¢ follows generally, and the number of per-
sistent sites within a distané®of a given site is estimated as
JRrd=drr~20~R%, where d;=d—26. Generalizing still We are interested only in the limit—o. In this limit, we
further, if the coarsening exponentds rather than 1/2, the know from standard random walk theory that evéty(t)
result is decays liket ~ Y2, with anr-dependent amplitude. To leading

order int~ %2, therefore, the dependence drops out of Egs.
di=d—6/¢ (17 (A1), which then become equations for the amplitudes. By
inspection, the solution in this regime is
(thed=2 version of this result is given ifl6], based on the
same reasoningClearly this result require8<dd, sinced;
cannot be negative. If this inequality is violated, as in the 1D P (t)=rPy(1). (A2)
Potts model withd>1/2, the persistent sites no longer have
a fractal structure but become pointlike objects, with mean Now consider a walker starting immediately to the right
density~t*9<t*d¢~Lgd, whereL .~t? is the coarsening of a cluster ofl, persistent sites. The probability that after
length scale. Cases wheflecd¢ are easy to find: e.g., in the steps the walker has jumped over exactlyf these(making
coarsening of the 2D Ising modet], the 2D diffusion equa- them nonpersistents P, , ;(t) — P,(t) = Py(t), where the fi-
tion [5], or the time-dependent Ginzburg-Landau equation iral result follows from Eq(A2), to leading order for large
2D. These all exhibit fractal persistent structures with theThe same result holds for a walker starting immediately to
expected fractal dimensidi6,18. It would be interesting to  the left of the cluster. The probability thatsites remain
look for examples, in addition to the 1D Potts model, wherepersistent after timeis P,(t)? times the number of ways of
one can have>dd¢. partitioning the cluster of length, into three sections, with

Note added in proofTam[19] have recently investigated the central section of length(and zero lengths are allowed
an experimental system, namely a coarsening twofor the outer sectionsThis numberidy,—I+1. So the prob-
dimensional soap froth, for which the inequality, discussed aability of the cluster surviving and having lengtlis

APPENDIX

1
Pi(t) =3[P 1(t—1)

+P, 4 (t—1)], r=2. (A1)
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p|0(l,t)=(lo—l+1)P1(t)2, (A3) while the mean cluster size is
a generalization of Eq.12) to the discrete system. o
The survival probability of the cluster is 2 Ip|0(l 1)
=1 (Ig+2)
lo <I>°°: To = 3 . (AS)
1
Peur (1= 2 Pio(LD=5lollo+ DPL(D?, () 2, Pl
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