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Asymptotic properties of a reversible A+B«—C (static) reaction-diffusion process
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The asymptotic properties of the reaction front formed in a reversible reaction-diffusion précess
+ B« C (statig with initially separated reactants are investigated. The case of arbitrary nonzero values of the
diffusion constant® , andDg and initial concentrationg, andb, of the reactanté andB is considered. The
system is studied in the limit df—% andg—0, wheret andg are the time and the backward reaction rate
constant, respectively. The dynamics of the reaction front is described as a crossover between the “irrevers-
ible” regime at timest<g~! and the “reversible” regime at times>g~ 1. The general properties of the
crossover are studied with the help of an extended scaling approach formulated in this work. On the basis of
the mean-field equations the analytical solutions in the reversible regirge?® inside the reaction zone are
discussed. It is shown that in the immobile reaction zone the reaction rate profile has two distinct maxima. This
profile differs drastically from the usual single-maximum reaction rate profile inherent in the mobile reaction
zone. The two-hump reaction zone profile is the result of the influenc€ oh the reaction rate in the
reversible regime. Numerical computation of the mean-field kinetics equations supports the results of the
asymptotic consideration.

PACS numbses): 82.20.Wt, 82.20.Mj, 05.46-a

[. INTRODUCTION whereS,, Sg, Sc, and Sg are some scaling functiong;
«t2 s the point where the reaction raéx,t) has a maxi-
The properties of the reaction front created by the irre-mum valuew(t)=t*<t'2is the width of the reaction zone,
versible reactiorA+B— C with initially separated reactants 7a. 78 7c. andng are some parameters independer of
have attracted great interest in the last dedddes?. The  andt, and the exponents, ya, vg, ¥c. andyg are some
reaction front is a simple example of pattern formationPOSitive constants. The values of=5, Ya=78=3, 7c
[43,44), which has been considered from different points of =0, andygr=73 were obtained in the mean-field approxima-
view, including experimentd2,3,6,17,27,28—31 tion for nonzero diffusion constant®,, Dg, and D¢
The standard approach to the problem is to study kineti¢1:22,42. For nonzero values dd», Dg, andD¢ and the
equations for the local concentratiopg(x,t), pg(x,t), and initial concentrationsa, andb,, the magnitudes of, y,,
pe(x,t), containing the macroscopic reaction refex,t) [1]. 78 Yc» @ndyg, and the form ofS,, Sg, Sc, andSg are
Various techniques have been used to study these equatiofiéleépendent — of the —above-mentioned constants
at the asymptotic long-time limit for the cases where thd1:4,18,19,25,4R The situation is different if even one of the
space dimensiod>d.=2, when the mean-field expression dlffus_|on constants 0?_3\, B, or C equals zero and must be
R papg is valid, and ford<d., when the explicit form oR considered as a special cld42,26. It shogld be noted _that.
is unknown. These techniques are renormalization grouf® dependence of the system properties on the diffusion
analysis[18,19,24, the scaling ansatfl,21], the quasista- constantsDA., Dg, andD¢ is not symmetric. The reaction
tionary approximatiori11,14), and the approach developed front properties such as, x;, R(x¢.t), R(t), pa(x,t), and
by Koza[25]. pe(x,t) are independent of the diffusion constant@ffor
Using the scaling ansafz], the reaction-diffusion system Nnonzero diffusion constants & and B [R(t) is the global

inside the reaction zone may be represented in the form reaction rate ofC production, which is determined as
JR/(x,t)dx]. These properties essentially change if one of

X—xq(1) the diffusion constants oA or B equals zerd12,22,2§. In
—Xq )

paXt)= nAtVASA(W (1)  the case of immobil€ and nonzero diffusion constants Af

and B, only the C profile is changed in comparison to the
case wherC is mobile[42], i.e., pc~t3 (yc=—13) for the
(x—xf(t)> immobile reaction zone, while-~const (yo=0) for the
pe(X,t)=ngt” "8Sg| ————|, (2 mobile reaction zone.
w(t) In the quasistationary approa¢hl,14], two time scales
are considered for the reaction front dynamics, namely,
- X—X;(t) «[d(In J)/dt] tct and rrrw?/D=t2®. D is one of the non-
pc(X,t)= nct YCSC(TU)v (3)  zero diffusion constant® , or Dg. The time scaler, deter-
mines the change in the diffusive flowls=J,=Jg of the
reactantsA and B toward the reaction zone. The time scale
ROt = nRtyRSR(X_Xf(t))’ @ F is the equilibration time of the reaction front. Flrom these
w(t) definitions it follows thatrg / 7;— 0 ast— o, for a<3. This
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means that the reaction in the reaction zone quickly conef Egs. (1)—(4) with the exponentsy,, yg, vc, and yr
verges to the flows of the reactants and the asymptotic exequal to zero, whereas the reaction front widthgiven by
pressions forp, and pg inside the reaction zone may be w~t'2 is independent of the space dimensjas].

analyzed by simple quasistatic equatiphg]. Time in these

In Ref. [41] the refined rate ofC production R,(x,t),

equations is included only as a parameter through the timancluding forward and backward reactions, was studied on
dependent boundary flow$,=Jg=J. The above analysis the basis of the mean-field equations. The study was done for

can be performed only for nonzero valuesipyf andDyg .

the specific case of equal diffusion constant\pB, andC

The asymptotic properties of the system outside the reacand equal initial concentrations of the reactants. It was
tion zone were considered by Koza through the quasistatiorshown that the reversible regimgté>1) can be character-
ary approximatio{25]. Several quantities were determined ized by scaling the local rate of production asR;gcal

analytically as a function of the external parametBrg,

~t~1, and by scaling the global rate & production as

Dg, a3, andbg. In particular, the existence of long-time R,g,obarvt*”z. The general case of arbitrary nonzero diffu-

limits of x¢(t), J(t), and R(t) was shown, i.e., ag— o,
x;(1)/\t—Cs, J(t) Vt—C;, andR(t) Vt—C;. The value of
C; can be computed from the equations

—Cq apVDa Cs )
)] = ()] , 5
2JD,] byyDs |2\Dg ®
O (x)=[1—erf(x)]exp(x?), (6)

where erfg)=27"Y2[§ exp(— 77)d7 is the error function.
C; can be calculated from the expressions

Ca=ag/[erf(Ci/2\D ) +11], 7

Cg=—bp/[erf(C{/2\Dg)—1], (8)
Cy=Cp\Dalmexp —C2/4D )

=Cg\Dg/mexp — C?/4Dg). 9)

The constant<, and Cg control the forms ofp, and pg
outside the reaction zone. FREX;—Ww,

pa(X,t)=ag— Ca[erf(x/\4D at) + 1], (10
and forx>x;+w,
pe(X,t)=bg+ Cg[erf(x/y4Dgt) —1]. (11

sion constants and of arbitrary initial reactant concentrations
was considered in Reff42]. The asymptotic properties of the
crossover from the irreversibleg{<1) to the reversible
(gt>1) regime were discussed for-~ andg—0. It was
shown that through this crossover the macroscopic properties
of the reaction front are unchanged. These properties are the
global rate ofC productionR,(t), the motion of the reaction
zone centek;(t), and the concentration profiles of the com-
ponents outside the reaction front. The analytical expressions
for these quantities are the same as in the irreversible regime
and are presented in Eq%)—(11) (replacingR by R;). The
profile of C is given by the analytical expressions

Ccqlerf(x/\4Dct) + 117, (12
—Cgolerf(x/\4D¢ct)—1], x>x+w. (13

X<<X;—W,
pC(th) =

The constant€.; andCc, are determined by

Cc]_:CJ\ 7T/4DC(I)

cf)
2D/’

CCZZCJ\ ’7T/4DC(I)

(14

_Cf

2D/’
All these expressions are true if some of the natural as-

sumptions are valid42]. A most important assumption re-

These properties change essentially if one of the diffusiont€s t0 the type of dependenee=w(t,g). This dependence

constants ofA or B equals zerd12,26. In this case the _
guasisatic approximation is not valid and the basic approacﬁtwl-

for analysis is the scaling ansdt®—(4) in conjunction with

is assumed to be a monotonic link of two regions at
w~t? at timesgt<1l andw~tg? at timesgt
>1, whereg is some positive constant. This assumption fol-

heuristic assumptions related to the reactant profiles outsid@Wws from the requirement that the ratig /7,~w?(t)/Dt

the reaction zone.
Many publications deal with the irreversible reactién

—0 ast—o andg—0 and it is essential in order that the
quasistaic equations can be used for arbitrary valueg. of

+B—C; however, chemical reactions are reversible at sufShould be emphasized that, as in Réb], the assumptions
ficiently large time. The reversible reaction-diffusion systemdo not restrict the form oR, and therefore the results are true

A+ B« C with initially separated reactants was discussed ir@iso for the case ofi<d., when the mean-field expression

Refs.[13,41,43 for long timest—cc and sufficiently small

g, whereg is the backward reaction rate constant. It was

for Ris not valid.
The results of the heuristic arguments were tested in Ref.

shown that the dynamics of the reaction front can be prel42] by computing the mean-field kinetic equations. In par-
sented as a crossover between the “irreversible” regime alicular, the expressions fgsa, pg, pc, andR; inside the

times gt<1 and the ‘“reversible” regime at timegt>1

reaction zone in the reversible regige>1 for g—0 were

[13]. In the “irreversible” regime, the front dynamics is the Obtained analytically. They have the form of Ed$)—(4)

same as in the irreversible reaction-diffusion systmB

with the exponentsy,, vg, and yc equal to zeroyr =1,

—C. In the “reversible” regime, a local equilibrium at the w~gt, 7a~ 7g~ 7r~9*2 and c~g°.

reaction front exists, and only the diffusion process governs The analysis in Ref42] was performed in the framework
the dynamics. It was shown that near the reaction zone thef the quasistatic approximation, which can be used only for
concentrations oA, B, andC may be expressed in the form nonzero diffusion constants & B, andC. WhenD~=0, the
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quasistatic approximation fails and the problem relates eseaction in this region was ignored. This is truelx>0;
sentially to a different class, requiring a different techniquehowever, for the casB =0 the reaction must be taken into
for analysis. The scaling approach is an appropriate techaccount. In the irreversible reginig<1 at the early time
nique for this special case @:=0. The central theme of period, when the reaction zone is close to the point
our work is the extension of this approach to the reversible=0, C production is concentrated in the reaction zone with a
regime and the crossover from the irreversible to the reversfinite width that includes the point=0. From the movement
ible regime. By this extended scaling approach theof the reaction zone it follows that the level pf gently
asymptotic properties of the reversibke+B—C (stati9  decreases front, to zero. For the long-time limit— o
reaction-diffusion process with initially separated reactant§gt<1) the reaction rate becomes negligibly small andGhe
are studied fot— andg—0 assumindc=0,D,>0, and  profile is independent of time in this region. In the reversible
Dg>0. regimegt>1 the situation is more complex. Because of the
In Sec. Il the change in the dynamics of the system withreversible reactio+ B« C, continuous exchange between
Dc>0 in the limitDc—0 is presented. The general behav-the mobile componenB and the immobile componer@
ior of the system is studied in Sec. lll through the extendedbccurs. In the regiorx>0 the C component disappears
scaling ansatz. Section IV is devoted to the analytical andhrough the reactiod+ B« C by producingB. ThusB dif-
numerical analysis of the mean-field kinetic equations. Secfuses into the regior<0, interacting withA by the reaction
tion V summarizes the results of our work. A+B—C, and producingC. In this manner the component
C is transferred fromx>0 to x<<0 and a continuous profile
of Cis produced. This process may be referred to as effective
ll. THE C PROFILE OUTSIDE THE REACTION ZONE diffusion of the componen€ or as the distinctive reaction
IN THE LIMIT Dc—0 zone structure related to a first order reversible reaction. The
analytical description of the reaction zone in the mean-field

Consider macroscopic properties describing &5s-(14) approximation for the reversible regime is discussed in the

for some definite positive values &5, Dg, ag, andbg,

andD-—0. The values ok;(t), R,(t), J(t), pa, andpg do Appendix.

not depend o and therefore expressiofs)—(11) do not

vary when the diffusion constam goes to zero. This in- !l EXTENDED SCALING ANSATZ AND COUNTERPART
dicates that the macroscopic properties mentioned do not OF QUASISTATIC EQUATIONS

change through the crossover between the irreversible and The reversible reaction-diffusion syster+ B« C
the reversible regime, as in the case of nonizgd42]. The (statig is described by the following equatiofs3]:
numerical simulation of the mean-field equations in Sec. Ill
confirms this conjecture. Ipa Ppa

D¢ appears only in Eq$12)—(14) and therefore only the e DAW_ R+gpc,
variation ofpc with Dc— 0 will be considered. Assume that
C:#0 or more specificallfC;>0, i.e., the reaction zone as-

ymptotically moves to the right. Taking into account that %:D &ZPB_R+ (15)
lim ®(x)—2 expd—  for x—— and limd(x) at o ax 9pc.

—1/(2x\7r) for x—+o, we obtain forx>x;+w and x

<0 pc(x,t)—0 and for O<x<x;—wW pc(X,t)—Cq dpc

=2C;/C. At C;=0, the reaction zone is asymptotically TZJ“R_QPC’

immobile. From Eg. (14) it follows that C¢1=Cc,
=C,ym/4D¢ and asDc—0 pc(x,t)—0 for x>x;+w and  with the initial state given by

for x<<x;—w.
The expressior,C;=2C; is the same as that fd, for pa(X,t=0)=agH(—Xx),
the case ofDg—0 (byC;=2C;) [26] and has the same
physical interpretation. ¢, is the concentration level of pe(X,t=0)=bgH(+x), pc(x,t=0)=0, (16)

produced on the movable reaction front. The total amount of
C produced by time is asymptotically equal tdJa(7)d7  whereH(x) is the Heaviside step function. Let us study the
=IBJB(7-)d7~2CJ\ﬁ. This number may be estimated also long-time behaviot—« of the system in the reaction zone
as [1Zpc(x,t)dx=cox;=~coCs\t, which leads toc,C;  region |x—xg|<\4Dt,\/4Dgt assuming thatg—0. The
=2C;. boundary conditions of the components will be formulated in
Thus it can be seen that the two cases of the mobile angdccordance with their macroscopic distribution outside the
immobile reaction zones correspond to essentially differenteaction zone obtained in Sec. Il.
C profiles outside the reaction zone. Consequently, these two The well-known scaling approagt,26] can be applied in
cases belong to two different classes, which will be considthe irreversible regimgt<1. In this regime the terngpc
ered separately. Note that the above results coincide with thean be canceled in Eg€l5). Assume that the scaling forms
known reaction zone properties in the irreversible regimeof Egs.(1)—(4) are valid; then the following evaluations can
gt<1[12,27. be written: dpa/dtoect™ YAV Ci#£0)  or  dpplot
As indicated above, the profile in the limitDc—0 fora =t~ "2"(C;=0) and Dad?pa/dx?xt™7A~2%, Taking into
mobile reaction front has a steplike form with infinite gradi- account thatv<<3, it can be seen that in the limit-o the
ent at the poink=0. This profile is a result of the fact that term dp,/dt is small compared t® ,d%pa/dx?. The same
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procedure can be performed fpg also, and therefore Egs.

(15 in |x—X;|=< 4D t,y4Dgt can be simplified to

7®pa
0=Dy—7—R,

#*pe
0=Dg— >R, 17

dpc
ZCo 4R,
ot

with boundary conditions

Dadpaldx——Ja(t), pg—0,

pc—Co (C;#0) or pc—0 (C;=0),

X— —®,
(183

pa—0, Dgdpgl/dx—JIg(t), X— + 0.
(18b

pc—0,

HereJA(t) =Jg(t) =J(t) <t~ 2 [25].

Equations(17) with the boundary condition€l8) are the
counterpart of the quasistatic approximation equatiety
for the case of nonzer®. in the irreversible regimeyt

<1. The following relations for the scaling exponents can b

found from Eqs.(17) and(18):

Ya=vs=:—a, yYr=3+ta, yc=0 (Ci#0),

yc=—3+a (Ci=0). 19

Note that, ifD>0, yc=0 [42], and the value ofy. is the

same as in the mobile reaction zone, but different from tha

in the immobile reaction zon€;=0.
Consider now the reversible reginieso, gt>1. In this
regime the reaction raf®, =R—gpc~0 in the zero approxi-
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Evaluatinga®pa/dx?, dpaldt, etc. in the same manner as
in the irreversible regime, the simplified equations in the

region|x—x;|< 4D t,y4Dgt are obtained as

0=—-R+ dpc,
dpc pa
DA @
e _p, Oh
ot B ox?

with the boundary conditions of Eg&lL8). The relations be-
tween the scaling exponents may be obtained from &43.
and the boundary conditior(48) as

A=B, $e=pB, dr=—58,

$c=0 (C(#0) or ¢pc=—p (C;=0).
The difference between the case®§>0 and our case
D=0 is related only to the asymptotically immobile reac-
tion zone situatiorC;=0, i.e., ¢c=—B if Dc=0 and ¢¢
=0 if D>0. For a mobile reaction zone the scaling expo-
nents are the same either @:>0 or for D=0, but the
equations for these two cases are different.
€ The general physical reason for the formation of the well-
defined thin reaction zone in both the irreversible and revers-
ible regimes is the small value of the nondimensional ratio
w(g,t)/2./Dt, whereD is one of the nonzero diffusion con-
stantsD, or Dg. With this general feature in mind, the
scaling relations in the irreversibtgt<<1 and the reversible
gt>1 regimes may be extended to the region of arbitrary
t~1 (t—, g—0) by scaling to the nondimensional ratio
p=w(g,t)/2{/Dt—0. Suppose that, as in the quasistationary
case[42], the dependence=w(g,t) links two parts mono-
tonically at gt~1, namely,w~t® at timesgt<1l andw

(22

mation[41] and the concentration profiles can be described™ Vtg” at timesgt>1. Thus the scaling relations may be

by
0=-R+gpc,
dpa  Ipc Fpa
ot Tt Pag (20
dps  dpc P ps

ot gt B oxZ

The reaction rat&k, can be calculated as a first approxima-

tion by substituting the solutions obtained from E@20)
into any one of the original Eq$15) [41].

To extend the scaling approach to the reversible regime,

assume that the scaling fornis)—(4) obtained in Ref[42]

written as
_ X—X¢(t)
pA(Xit): 7/Ap XASA W(g,t) )1 (23)
X=X¢(t)
pB(Xlt):ﬂBp_XBSB W(g,t) )l (24)
_ X—Xg(t)
pC(Xit):nCp XCSC( W(g,t) ’ (25)
- t
R,= nth_lp_XRrSRr(%gf(t))>. (26)

The form of Eq.(26) follows from the diffusionlike char-

in the quasistatic approximation for the reversible regime acter of Egs(15). Indeed, bearing in mind that Eq&3)—
—, g—0, andgt>1 are valid also in our case for the (26) hold in the irreversible regime, the following thoughts

immobile reaction produc€C. Consequently, the following
scaling relations may be assumedv~t%g?, 7,~g?s,
78~9%, nc~9’c, and 7r~g’R (ya=7vs=7rc=0, YR,
=1).

are proposed. By taking into account E@®5 we have
R, (x,t)=dpc/dt~ad(Inw)/dt, and consequently in the irre-
versible regime it can be shown that fer-t* [1,8,40 and
for w~t*(Int)° [23,24 (S is a positive constahthe factor



3344 MISHA SINDER AND JOSHUA PELLEG PRE 62

~t~! appears. Note that in the case of the Sinai disorderone case. In the second ca3g=0, the initial form of the

model w~(Int)? [37] and ~(tInt)~? replaces the factor equation does not change and it is given dpg/dt=R,

~t" Thus we can see that the simplified kinetic equatlons are

The simplified equations can be obtained by evaluatingndicative of the specific features of the asymptotically im-

?pal 9x2,0paldt, etc. in the same way as in the irreversible mobile reaction.

and reversible regimes. The equations and boundary condi- One can arrive at the same conclusion from the scaling

tions obtained coincide with Eq§l7) and onlyR has to be exponents. Furthermore, taking into account the scaling ex-

replaced byR,=R—pcg. The relations between the scaling ponents for the casBc>0, it may be concluded that only

exponents follow from these equations and are given by the caseC;=0 and D-=0 relates to a different specific
class. The three other cas€S;#0, D-=0; C;=0, D¢

xa=1, x=1, xg=-1, >0; andC;#0, D>0) relate to the same class.

xc=0 (C¢#0) and xc=— (Ct=0). (27
IV. MEAN-FIELD APPROXIMATION: ASYMPTOTIC

Taking into account the fact that generalized scaling is true SOLUTIONS AND NUMERICAL SIMULATION
either forgt<1 or for gt>1, the following summaries of

A hat th -fiel i i
Egs.(19), (22, and Eqs(27) can be obtained: ssume that the mean-field approximation expres$ton

=Kkpppg Is true. From this relation the following values of
the exponents may be calculated.

Yal(0.5-a)=—dal B=xa=1, (@) In the irreversible regime, fronrR=Kkp,pg We have

vat ¥g= yr and taking into account Eg&l9) the following

ve/(0.5~a)=—¢g/B=xp=1, values can be obtained:a=3%, ya=vs=3%, yc=0 (C{

#0) or yc=—3 (C¢=0), in accordance with Ref§1,42].

¥cl(0.5-a)=—¢c/B=xc=0 (C;#0) or —1(C¢=0), (b) In the reversible regime, from the equati@pc

=Kkpppg it follows that g+ pg= ¢>C+ 1 and with expres—
(yr,=D/(0.5~a)=—¢gr IB=xr =~ 1. (28)  sions (22), for C;#0 we obtainB=3%, ¢p=dg=3, bR,
=—3, ¢c=0. It C{=0 thenB=3, ¢p=chg=3, Pc= PR,
These relations reflect the fact that the dependence of the — 1
reaction front WidthN(g,t) ong a_mdt controls t.he character ~ On the basis of Eq¢21) and(18) and appropriate scaling
of the complete reaction-diffusion process, i.e., the magniexpressions given by Eqél)—(4) the concentration profiles
tudes of all the exponents. For the irreversible regime thesgnd reaction rate distribution can be calculatedtferc and
values are determined hy and for the reversible regime by g—0 in the reversible regimgt>1. For the asymptotically

B. In the generalized scaling expression E@3)—(26) the  mobile reaction zon€#0 we have
dependence ofv(g,t) on g andt is not indicated, and be-

cause of this the exponents are determined uniquely.
Thus we can see that the conditiprs w(g,t)/2/Dt—0
for t—o and g—0 is sufficient to obtain the simplified

pa(X,t)=1/(2gCo/K)(Dg/D ) fa(élWy), (30)

equations for the irreversible and reversible regimes and for pe(X,)=1(29¢co/k)(Da/Dg)fa(£/W1), (31
the crossover between thdfags.(17) and(21) and modifi-

cations of Eq.(17)]. For the mobile component4 and B pc(X, 1) =2¢of a(&/wy) Fg(é/Wq) =Cof c(é/wWy), (32
with nonzero diffusion constants, these equations are the

same as in the case bBfz>0, i.e., the derivative time terms Rr(X't)=(Co/t)fR,(§/W1)- (33

are neglected in the first and second of Ed®). For the
immobile componenC the termDcd’pc/dx? is canceled
and the termipc/dt substitutes it. This term can be imag-
ined to be different for the mobile and immobile reaction

Here é=x—x¢, Wy =2(gtDsDg)/(KC,Cy),

zones. As a consequence the scaling relations are different in fa(y)=exp(—y?)/a[ 1+erf(y)],
these two cases. This can be seen directly by transforming to
a coordinate system that is moving with the reaction zone, fa(y)=y+exp —yd)/Ja[1+erf(y)],
X'=(x—x¢)— (dx¢ /dt)t, t'=t,

dpc _dpc , dx dpc fr (Y)=—YLfa(Y) +YTA(Y) +2 fa(Y) FA(Y)].

ot ot Tat ax (29

In the limit of Iarge values ofy, fA(y)—expyd)/2\m,

In the case of a moving reaction zone the second term ig,(y)—y, f R (y)—y3 exp(~yA)/\Jm asy— +o; and f(y)
dominant, while for an immobile reaction zomk; /dt=0 2
the first term becomes essential. Conse Y B(y)—> 1(2y), Tr(y)—3/(2y) as y——c.

quently, in the first
case C;#0 and a quasistatic equation with the time- NOt€ that decay offg (y) depends on direction: foy—>
dependent parametelx; /dt=v(t)~t 2 is obtained, i.e., t%*, fr(y)~exp(= 2) while for y——ce, fg (y)~y~?
vi(t)dpc/ox=—R,. This equation, and therefore the full For the asymptotically immobile reaction zox =0 and
system, have quasistatic character in the moving reactiowe have
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directions. The immobil€ component concentrates near the
reaction zone center and suppresses additiGraioduction,
namely, the production ratR, equals zero in the reaction
zone center. Far from the center the reaction rate is also
small, because of the absence of the reactarisdB. In the
irreversible regimd 12,22 all reaction front characteristics,
excluding theC profile, are the same, regardless if the mo-
bile or immobile reaction zone is considered.
Note that theR, profile described by Eq937) is sym-
metrical and independent of the relation betwdgg and
z Dg. This is a result of the even character of the function
fu(2).
2r (b) As mentioned in Sec. Il, the distinctive reaction zone
2 structure is formed near the=0 region in the case of a
mobile reaction zone in the reversible regime. Neal0 the
asymptotic solution can be obtainésee the Appendixas
1 3 4 shown below:

JofsJorSrs

pa(X,1)=~pa(0t)=ay—Cp, (39)

dimensionless units

0 . , pe(x,t)=[gco/(a9—Cn)]0.51+erf(x/w3)], (39

z pc(X,t)=cp0.9 1+ erf(x/w3)], (40

FIG. 1. The form ofA, B, C, andR, profiles calculated in the
framework of the mean-field approxin;aft)ion in the reversible regime Rr(X,1) = = Cof 1/t)(1/2\/;)(xlw)exq B XZ/W32)' (42)
gt>1. (a) Asymptotically mobile reaction zon€;>0 case de-
scribed by Eqs(30)—(33); and (b) asymptotically immobile reac- Hereyv3=2\/(gDBt)/[k_(ao—CA)]..
tion zone cas€;=0 described by Eq¥34)—(37). 1—[f,(2)—z] This solution describes two simultaneous proceséas,
~fa, 2-[f(2)+2Z]~fs, B3—[f2(2)—2]~fc, 4—f,@  the diffusion ofB and(b) its exchange wittC. Note that in
~frr. fu(2) was computed numerically. Functions and coordi- Eqs. (38)—(41) g—0, ws~+\g—0 are assumed, and the
natez are given in dimensionless units. gradient ofA nearx=0 is not taken into account.
To test the asymptotic properties of the reaction-diffusion
pA(X,t)Z(CJ/DA)Q{/(g DADg)/(2C,K)[ f4(X/Wy) — (x/W,)], prOC_ES$+ B~ C, Egs.(15 and (16) in the mean-field ap-
(34) proximation were solved numenca_lly by an exact enumera-
tion method[5,12,41,45,46 A one-dimensional discrete lat-
pa(X,t)=(C;3/Dg)3/(gDAD )/ (2C;K)[ f4(X/W,) + (X/W5)], tice is considered. In.the beginning Fhe .diffusiqn part is
(35) calculated and after this step the reaction is considered. The
reaction step is calculated on the basis of Ed5) without
pe(x,1)=(C4/2)3/(2Ck)/(gDAD)[ F2(x/W,) — (X/W,)?], the diffusion terms. The local reaction rate is calculated from
(36) Riocal(i)=R;(j), wherej is a discrete spatial point. The time
step equals 1. The constaikis 0.1 andg=104,10"° were
R (x,t)=(C4/2t)3/(2C;k)/(gDADg) f!(X/W,). (37)  used.
The results of the simulation confirm that the general
Here w,=2./t(gDaDg/2kC;)*3.  f,(2) is the solution of properties of the crossover are the same as in the Dase
the equationf/,+z[ f2—z%)]"=0 with boundary conditions >0, i.e., the macroscopic properties of the reaction front
f(z=0)=0 and f (z—»)=z. For z<0 f,(z2)=f,(—2). (such as the global rate & production, the motion of the
Forz>1 f(2)~z+ 1/(22). reaction zone center, and the concentration profiles of the
The solutions for the asymptotically mobile and asymp-components outside the reaction froate unchange42].
totically immobile reaction zones are shown in Fige)lnd  In particular, there were no changes in the global rate
1(b), respectively. The profiles of tha, B, and C compo- R,(t)~n~'2 and the coordinate of the reaction zone center
nents and the production rai in the mobile reaction zone, X:(t)~n*Y2 The crossovers of the local rate 6fproduc-
shown in Fig. 1a), clearly indicate that in the reversible tion R.(x,t) and the width of the reaction zowe are asso-
regime the production of is concentrated near the reaction ciated with a change in the exponents, from™~#3to ~n~*
front center, as in the irreversible regime. For the immobileand from ~n*¥® to ~n**2 respectively. The monotonic
reaction zone situation, shown in Figb], the reaction rate growth w=w(g,n) supports the assumption p
profile has a characteristic two-maximum form. It is drasti- =w(g,t)/2y/Dt—0, which is valid in the case of the mean-
cally different from the mobile reaction zone picture, andfield approximation.
from the immobile reaction zone case in the irreversible re- In Figs. 2 and 3 the results of the numerical calculation of
gime. TheC concentration in the center of the reaction zonethe reaction rate profil&,(x,t) for C;>0 (ag=2by=1.0,
is constant, because of the reversible character of the reaD,=4Dg) and forC;=0 (ag=2by=1.0,D,=0.2D) are
tion, and this constant concentration level penetrates in twehown, respectively. For comparison the asymptotic so-
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FIG. 2. Simulated profile oR,(j,n) for mobile reaction zone

case C;>0 at time n=10° (k=0.1, g=10"%, D,=4Dg, a,

=2by). Herej is a discrete space step number. General view o

R.(j,n); (b) R.(j,n) profile inside reaction zone~ x; fitted by the
asymptotic solution Eq.33); (c) R;(j,n) profile nearx~ 0 fitted by
Eq. (42).

lutions Eq.(33) and(41) (mobile reaction zoneand Eq.(37)
(immaobile reaction zoneare also presented.
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=} simulation

fitted by Eq. (37 )

6
2.0x10°

1.6x10°

FIG. 3. Simulated profileR,(j,n) for immobile reaction zone
caseC;=0 at timen=1CF (k=0.1, g=10"% D,=0.2Dy, a,
=2bg). Herej is a discrete space step number. The profile inside
the reaction zone fitted by the asymptotic solution &7), which
is shown in Fig. 1b).

viation in the two maxima is associated with the asymptotic
character of the solutiof37), which is true only for suffi-
ciently small values ofj and large values of. Indeed, for

D A# Dy the C distribution for short times<t.~k ™%, when

the reaction may be neglected, is asymmetrjdal. In the
irreversible regime .~k <t<g™!, the reaction rate pro-
file is symmetrical1,22], independent of the diffusion con-
stant ratio. TheC profile in this regime may be considered as
the sum of a short-time asymmetrical distribution part and
the symmetricalC distribution that is produced in the irre-
versible regime. With the elapse of time, the profile becomes
more and more symmetric. After the crossover to the revers-
ible regime at timegt>1, C start to influence the reaction
rate R, (t), and the residual asymmetry in ti@edistribution
leads to asymmetry in th,(x,t) profile. The accurate sym-
metrical R,(x,t) profile may be obtained only in the limit
—o0 andg—0 or if Do=Dg, when no short-time asymme-
try exists. Simulations of different ratios &f,/Dg and dif-
ferent values ofj confirm our conclusions. In addition to this
asymmetrical memory effect, it was also observed that
R, (x,t) in the region neax=0 takes a negative value during
the time of the crossover, and its value approaches zero from
the negative side. Further investigation is required to deter-
mine the nature of this effect.

Thus, the simulation indicates that in the case of the as-
fymptotically immobile reaction zone the behavior of the
reaction-diffusion systerA+ B+« C in the reversible regime
is influenced by the earlier states of the system. In particular,
the C distribution obtained for short times, when the reaction
may be neglected, and distributions in the irreversible re-
gime influence the reaction rai(x,t) profile in the revers-
ible regime. Consequently, the solutions presented by Egs.
(37) are true only in the limits—~ andg—0. The investi-

The simulation data of Figs.(B) and Zc) fit the curves
obtained from Eq(33) and Eq.(41) rather well. The data o
Fig. 2(c), show some asymmetry. This asymmetry is related
to the finite gradient oA, which was neglected in the calcu-
lations of Eqs(38)—(41).

In Fig. 3 two maxima in the profile oR, exist. The de-

f gation of the memory effect will be reported elsewhere.

V. SUMMARY

(1) The scaling approach extended to the case of the re-
versible regime @t>1) and to the crossover from the irre-
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versible to the reversible regim@rbitrary values ofgt) is APPENDIX: CALCULATION OF THE REACTION ZONE
formulated. The main assumption for its application is that STRUCTURE NEAR x=0
the dependence=w(g,t) may be imagined as a monotonic FOR C¢>0 IN THE REVERSIBLE REGIME
link at gt~1 between two partsy~t* at timesgt<1 and
w~/tg” at timesgt>1. Some additional scaling exponents
and the relations between them are introduced.

(2) In the framework of this extended scaling approach
the diffusion-reaction syste+ B« C (statig with initially

For the long-time regimé—oe, the concentration oA\ in
the regionx<x;—w considerably exceeds the concentration
of B. Consequently, the influence of the reactidf B« C
on theA concentration in this region may be neglected and
the A profile is described by Eq10). Near the poinx=0,

tions, the counterpart of the quasistatic equations of the cagge A concentration is approximately constant and equals

i . ; -~ ao— Ca . With this conjecture Eqg20) are reduced to a first
Dc>0, are obtalngd. It is _shown that fqr a T“Ob"e rt_aact|ono der reversible reaction-diffusion problem, which is de-
zone the system is described by quasistatic equations thg fibed by the followind equations:
depend on time through the boundary currents and the veloc- y g€q ’

ity of the reaction zone center=v(t). For the immobile Kpape=9dpc,

reaction zone the system of equations is nonquasistatic. A

general analysis of these equations and the respective bound- pa=ay—Cha, (A1)
ary conditions shows that the cadggs>0 andD.=0 fall

into two different classes only for the case of the immoble dpc  Jdpg #pg

reaction zone. For the mobile reaction zone both céxes 5t Tt TPe 2

>0 andD-=0 belong to the same class.
(3) Asymptotic analysis of the equations in the mean-fieldThe boundary conditions are
approximation inside the reaction zone in the reversible re-

gime confirms the results of the general consideration. For pg—0, pc—0 for x——oo, (A23)
the mobile reaction zone the component and reaction rate Ik c ¢
profiles are qualitatively similar to those for tBe->0 case. Pe—9Co/k(@=Cp), pc—Co fOr x— oo,

The reaction rate profile has a characteristic single maximum (A2b)
near the reaction zone center. For the asymptotically immo- Equations(A1) are equivalent to the standard diffusion
bile zone a distinctive two-hump profile @t(x,t) is ob-  equation with an effective diffusivityD .4=Dg/[1+k(ag
tained. This profile is associated with the influencelobn  _c,)/g]~Dgg/k(a,—C,). Its solution with the boundary con-

the reaction raté,(x,t) in the reversible regime. ditions of Eq.(A2) is given by
(4) It is shown that in the reversible regime, for the case
of a mobile reaction zone, a second distinct reaction zone is pe(X,1)=[gco/(ao—Ca)]0.9 1 +erf(x/w3)], (A3)
formed near the point=0. In this reaction zone through the
exchange ofc andB effective diffusion of the nonmobil€ pc(X,t)=co0.9 1+ erf(x/ws)], (A4)

component occurs. This reaction zone structure is related to :
that of a first order reversible reaction. wherews=2Dt=21(gDgt)/[k(ao~ Ca)]. The reaction

(5) Numerical simulation of the complete system of rate is computed from
mean-field equations confirms the results of the asymptoti _ — 2y 2
analysis. At the same time, deviations from the symmetricaTQr(X't) dpclt Co(l/t)(1/2\/;)(X/W3)EX[I XTws").
limiting solutions are observed. For the case of the immobile (AS)
reaction zone, the deviations are related to the effect of th& should be noted thaR,(x,t)<0 for x>0 and R,(x,t)
short-time asymmetric distribution o€ (for Dp#Dg) on >0 for x<<0. This may be interpreted as tli2component
R, (x,1). disappearing in the regiox>0, producingB. This B crosses
(6) Similar to the caséD->0, the caseD.=0 is also to the regionx<<0, where it undergoes an inverse transition
characterized by conservation of the macroscopic propertie® C.
through the crossover from the irreversible to the reversible ExpressiongA3)—(A5) can also be obtained in the frame-
regime. This occurs despite the fact that the c@ses 0 and  work of the extended scaling approach described in Sec. Il.
Dc>0 for the immobile reaction zone belong to different The magnitudes of the scaling exponents @e 3, ¢a

classes. =¢c=0, pg=1, pg = 3.
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