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Asymptotic properties of a reversibleA¿B^C „static… reaction-diffusion process
with initially separated reactants

Misha Sinder and Joshua Pelleg
Department of Materials Engineering, Ben Gurion University of the Negev, Beer Sheva 84105, Israel

~Received 10 April 2000!

The asymptotic properties of the reaction front formed in a reversible reaction-diffusion processA
1B↔C ~static! with initially separated reactants are investigated. The case of arbitrary nonzero values of the
diffusion constantsDA andDB and initial concentrationsa0 andb0 of the reactantsA andB is considered. The
system is studied in the limit oft→` andg→0, wheret andg are the time and the backward reaction rate
constant, respectively. The dynamics of the reaction front is described as a crossover between the ‘‘irrevers-
ible’’ regime at timest!g21 and the ‘‘reversible’’ regime at timest@g21. The general properties of the
crossover are studied with the help of an extended scaling approach formulated in this work. On the basis of
the mean-field equations the analytical solutions in the reversible regimet@g21 inside the reaction zone are
discussed. It is shown that in the immobile reaction zone the reaction rate profile has two distinct maxima. This
profile differs drastically from the usual single-maximum reaction rate profile inherent in the mobile reaction
zone. The two-hump reaction zone profile is the result of the influence ofC on the reaction rate in the
reversible regime. Numerical computation of the mean-field kinetics equations supports the results of the
asymptotic consideration.

PACS number~s!: 82.20.Wt, 82.20.Mj, 05.40.2a
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I. INTRODUCTION

The properties of the reaction front created by the ir
versible reactionA1B→C with initially separated reactant
have attracted great interest in the last decade@1–42#. The
reaction front is a simple example of pattern formati
@43,44#, which has been considered from different points
view, including experimental@2,3,6,17,27,28–31#.

The standard approach to the problem is to study kin
equations for the local concentrationsrA(x,t), rB(x,t), and
rC(x,t), containing the macroscopic reaction rateR(x,t) @1#.
Various techniques have been used to study these equa
at the asymptotic long-time limit for the cases where
space dimensiond.dc52, when the mean-field expressio
R}rArB is valid, and ford<dc , when the explicit form ofR
is unknown. These techniques are renormalization gr
analysis@18,19,24#, the scaling ansatz@1,21#, the quasista-
tionary approximation@11,14#, and the approach develope
by Koza @25#.

Using the scaling ansatz@1#, the reaction-diffusion system
inside the reaction zone may be represented in the form

rA~x,t !5hAt2gASAS x2xf~ t !

w~ t ! D , ~1!

rB~x,t !5hBt2gBSBS x2xf~ t !

w~ t ! D , ~2!

rC~x,t !5hCt2gCSCS x2xf~ t !

w~ t ! D , ~3!

R~x,t !5hRt2gRSRS x2xf~ t !

w~ t ! D , ~4!
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whereSA , SB , SC , and SR are some scaling functions,xf
}t1/2 is the point where the reaction rateR(x,t) has a maxi-
mum value,w(t)}ta!t1/2 is the width of the reaction zone
hA , hB , hC , andhR are some parameters independent ox
and t, and the exponentsa, gA , gB , gC , andgR are some
positive constants. The values ofa5 1

6 , gA5gB5 1
3 , gC

50, andgR5 2
3 were obtained in the mean-field approxim

tion for nonzero diffusion constantsDA , DB , and DC
@1,22,42#. For nonzero values ofDA , DB , andDC and the
initial concentrationsa0 and b0 , the magnitudes ofa, gA ,
gB , gC , andgR , and the form ofSA , SB , SC , andSR are
independent of the above-mentioned constantsh
@1,4,18,19,25,42#. The situation is different if even one of th
diffusion constants ofA, B, or C equals zero and must b
considered as a special class@12,26#. It should be noted tha
the dependence of the system properties on the diffus
constantsDA , DB , andDC is not symmetric. The reaction
front properties such asw, xf , R(xf ,t), R(t), rA(x,t), and
rB(x,t) are independent of the diffusion constant ofC for
nonzero diffusion constants ofA and B @R(t) is the global
reaction rate ofC production, which is determined a
*Rr(x,t)dx#. These properties essentially change if one
the diffusion constants ofA or B equals zero@12,22,26#. In
the case of immobileC and nonzero diffusion constants ofA
and B, only the C profile is changed in comparison to th
case whenC is mobile@42#, i.e., rC;t1/3 (gC52 1

3 ) for the
immobile reaction zone, whilerC;const (gC50) for the
mobile reaction zone.

In the quasistationary approach@11,14#, two time scales
are considered for the reaction front dynamics, namely,tJ
}@d(ln J)/dt#21}t andtF}w2/D}t2a. D is one of the non-
zero diffusion constantsDA or DB . The time scaletJ deter-
mines the change in the diffusive flowsJ5JA5JB of the
reactantsA and B toward the reaction zone. The time sca
tF is the equilibration time of the reaction front. From the
definitions it follows thattF /tJ→0 ast→`, for a, 1

2 . This
3340 ©2000 The American Physical Society
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means that the reaction in the reaction zone quickly c
verges to the flows of the reactants and the asymptotic
pressions forrA and rB inside the reaction zone may b
analyzed by simple quasistatic equations@11#. Time in these
equations is included only as a parameter through the ti
dependent boundary flowsJA5JB5J. The above analysis
can be performed only for nonzero values ofDA andDB .

The asymptotic properties of the system outside the re
tion zone were considered by Koza through the quasistat
ary approximation@25#. Several quantities were determine
analytically as a function of the external parametersDA ,
DB , a0 , and b0 . In particular, the existence of long-tim
limits of xf(t), J(t), and R(t) was shown, i.e., ast→`,
xf(t)/At→Cf , J(t)At→CJ , andR(t)At→CJ . The value of
Cf can be computed from the equations

FS 2Cf

2ADA
D 5

a0ADA

b0ADB

FS Cf

2ADB
D , ~5!

F~x![@12erf~x!#exp~x2!, ~6!

where erf(x)[2p21/2*0
x exp(2h2)dh is the error function.

CJ can be calculated from the expressions

CA5a0 /@erf~Cf /2ADA!11#, ~7!

CB52b0 /@erf~Cf /2ADB!21#, ~8!

CJ5CAADA /p exp~2Cf
2/4DA!

5CBADB /p exp~2Cf
2/4DB!. ~9!

The constantsCA and CB control the forms ofrA and rB
outside the reaction zone. Forx!xf2w,

rA~x,t !5a02CA@erf~x/A4DAt !11#, ~10!

and forx@xf1w,

rB~x,t !5b01CB@erf~x/A4DBt !21#. ~11!

These properties change essentially if one of the diffus
constants ofA or B equals zero@12,26#. In this case the
quasisatic approximation is not valid and the basic appro
for analysis is the scaling ansatz~1!–~4! in conjunction with
heuristic assumptions related to the reactant profiles out
the reaction zone.

Many publications deal with the irreversible reactionA
1B→C; however, chemical reactions are reversible at s
ficiently large time. The reversible reaction-diffusion syste
A1B↔C with initially separated reactants was discussed
Refs. @13,41,42# for long timest→` and sufficiently small
g, where g is the backward reaction rate constant. It w
shown that the dynamics of the reaction front can be p
sented as a crossover between the ‘‘irreversible’’ regime
times gt!1 and the ‘‘reversible’’ regime at timesgt@1
@13#. In the ‘‘irreversible’’ regime, the front dynamics is th
same as in the irreversible reaction-diffusion systemA1B
→C. In the ‘‘reversible’’ regime, a local equilibrium at th
reaction front exists, and only the diffusion process gove
the dynamics. It was shown that near the reaction zone
concentrations ofA, B, andC may be expressed in the form
-
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of Eqs. ~1!–~4! with the exponentsgA , gB , gC , and gR
equal to zero, whereas the reaction front widthw, given by
w;t1/2, is independent of the space dimension@13#.

In Ref. @41# the refined rate ofC production Rr(x,t),
including forward and backward reactions, was studied
the basis of the mean-field equations. The study was done
the specific case of equal diffusion constants ofA, B, andC
and equal initial concentrations of the reactants. It w
shown that the reversible regime (gt@1) can be character
ized by scaling the local rate ofC production asRr local
;t21, and by scaling the global rate ofC production as
Rrglobal;t21/2. The general case of arbitrary nonzero diff
sion constants and of arbitrary initial reactant concentrati
was considered in Ref.@42#. The asymptotic properties of th
crossover from the irreversible (gt!1) to the reversible
(gt@1) regime were discussed fort→` and g→0. It was
shown that through this crossover the macroscopic prope
of the reaction front are unchanged. These properties are
global rate ofC productionRr(t), the motion of the reaction
zone centerxf(t), and the concentration profiles of the com
ponents outside the reaction front. The analytical express
for these quantities are the same as in the irreversible reg
and are presented in Eqs.~5!–~11! ~replacingR by Rr!. The
profile of C is given by the analytical expressions

rC~x,t !5H CC1@erf~x/A4DCt !11#, x!xf2w, ~12!

2CC2@erf~x/A4DCt !21#, x@xf1w. ~13!

The constantsCC1 andCC2 are determined by

CC15CJAp/4DCFS Cf

2ADC
D ,

CC25CJAp/4DCFS 2Cf

2ADC
D . ~14!

All these expressions are true if some of the natural
sumptions are valid@42#. A most important assumption re
lates to the type of dependencew5w(t,g). This dependence
is assumed to be a monotonic link of two regions
gt;1: w;ta at times gt!1 and w;Atgb at times gt
@1, whereb is some positive constant. This assumption f
lows from the requirement that the ratiotF /tJ;w2(t)/Dt
→0 as t→` and g→0 and it is essential in order that th
quasistaic equations can be used for arbitrary values ofgt. It
should be emphasized that, as in Ref.@25#, the assumptions
do not restrict the form ofR, and therefore the results are tru
also for the case ofd<dc , when the mean-field expressio
for R is not valid.

The results of the heuristic arguments were tested in R
@42# by computing the mean-field kinetic equations. In pa
ticular, the expressions forrA , rB , rC , and Rr inside the
reaction zone in the reversible regimegt@1 for g→0 were
obtained analytically. They have the form of Eqs.~1!–~4!
with the exponentsgA , gB , andgC equal to zero,gRr

51,

w;Agt, hA;hB;hR;g1/2, andhC;g0.
The analysis in Ref.@42# was performed in the framewor

of the quasistatic approximation, which can be used only
nonzero diffusion constants ofA, B, andC. WhenDC50, the
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quasistatic approximation fails and the problem relates
sentially to a different class, requiring a different techniq
for analysis. The scaling approach is an appropriate te
nique for this special case ofDC50. The central theme o
our work is the extension of this approach to the revers
regime and the crossover from the irreversible to the rev
ible regime. By this extended scaling approach
asymptotic properties of the reversibleA1B↔C ~static!
reaction-diffusion process with initially separated reacta
are studied fort→` andg→0 assumingDC50, DA.0, and
DB.0.

In Sec. II the change in the dynamics of the system w
DC.0 in the limit DC→0 is presented. The general beha
ior of the system is studied in Sec. III through the extend
scaling ansatz. Section IV is devoted to the analytical a
numerical analysis of the mean-field kinetic equations. S
tion V summarizes the results of our work.

II. THE C PROFILE OUTSIDE THE REACTION ZONE
IN THE LIMIT DC\0

Consider macroscopic properties describing Eqs.~5!–~14!
for some definite positive values ofDA , DB , a0 , and b0 ,
andDC→0. The values ofxf(t), Rr(t), J(t), rA , andrB do
not depend onDC and therefore expressions~5!–~11! do not
vary when the diffusion constantDC goes to zero. This in-
dicates that the macroscopic properties mentioned do
change through the crossover between the irreversible
the reversible regime, as in the case of nonzeroDC @42#. The
numerical simulation of the mean-field equations in Sec.
confirms this conjecture.

DC appears only in Eqs.~12!–~14! and therefore only the
variation ofrC with DC→0 will be considered. Assume tha
CfÞ0 or more specificallyCf.0, i.e., the reaction zone as
ymptotically moves to the right. Taking into account th
lim F(x)→2 exp(x2)→` for x→2` and limF(x)
→1/(2xAp) for x→1`, we obtain forx@xf1w and x
,0 rC(x,t)→0 and for 0,x!xf2w rC(x,t)→c0
52CJ /Cf . At Cf50, the reaction zone is asymptotical
immobile. From Eq. ~14! it follows that CC15CC2

5CJAp/4DC and asDC→0 rC(x,t)→0 for x@xf1w and
for x!xf2w.

The expressionc0Cf52CJ is the same as that forb0 for
the case ofDB→0 (b0Cf52CJ) @26# and has the sam
physical interpretation. c0 is the concentration level ofC
produced on the movable reaction front. The total amoun
C produced by timet is asymptotically equal to*0

t JA(t)dt
5*0

t JB(t)dt'2CJAt. This number may be estimated als
as *2`

1`rC(x,t)dx'c0xf'c0CfAt, which leads to c0Cf

52CJ .
Thus it can be seen that the two cases of the mobile

immobile reaction zones correspond to essentially differ
C profiles outside the reaction zone. Consequently, these
cases belong to two different classes, which will be cons
ered separately. Note that the above results coincide with
known reaction zone properties in the irreversible regi
gt!1 @12,22#.

As indicated above, theC profile in the limitDC→0 for a
mobile reaction front has a steplike form with infinite grad
ent at the pointx50. This profile is a result of the fact tha
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reaction in this region was ignored. This is true atDC.0;
however, for the caseDC50 the reaction must be taken int
account. In the irreversible regimegt!1 at the early time
period, when the reaction zone is close to the pointx
50, C production is concentrated in the reaction zone wit
finite width that includes the pointx50. From the movemen
of the reaction zone it follows that the level ofrC gently
decreases fromc0 to zero. For the long-time limitt→`
(gt!1) the reaction rate becomes negligibly small and theC
profile is independent of time in this region. In the reversib
regimegt@1 the situation is more complex. Because of t
reversible reactionA1B↔C, continuous exchange betwee
the mobile componentB and the immobile componentC
occurs. In the regionx.0 the C component disappear
through the reactionA1B←C by producingB. ThusB dif-
fuses into the regionx,0, interacting withA by the reaction
A1B→C, and producingC. In this manner the componen
C is transferred fromx.0 to x,0 and a continuous profile
of C is produced. This process may be referred to as effec
diffusion of the componentC or as the distinctive reaction
zone structure related to a first order reversible reaction.
analytical description of the reaction zone in the mean-fi
approximation for the reversible regime is discussed in
Appendix.

III. EXTENDED SCALING ANSATZ AND COUNTERPART
OF QUASISTATIC EQUATIONS

The reversible reaction-diffusion systemA1B↔C
~static! is described by the following equations@13#:

]rA

]t
5DA

]2rA

]x2 2R1grC ,

]rB

]t
5DB

]2rB

]x2 2R1grC , ~15!

]rC

]t
51R2grC ,

with the initial state given by

rA~x,t50!5a0H~2x!,

rB~x,t50!5b0H~1x!, rC~x,t50!50, ~16!

whereH(x) is the Heaviside step function. Let us study t
long-time behaviort→` of the system in the reaction zon
region ux2xf u<A4DAt,A4DBt assuming thatg→0. The
boundary conditions of the components will be formulated
accordance with their macroscopic distribution outside
reaction zone obtained in Sec. II.

The well-known scaling approach@1,26# can be applied in
the irreversible regimegt!1. In this regime the termgrC
can be canceled in Eqs.~15!. Assume that the scaling form
of Eqs.~1!–~4! are valid; then the following evaluations ca
be written: ]rA /]t}t2gA2a21/2(CfÞ0) or ]rA /]t
}t2gA21(Cf50) and DA]2rA /]x2}t2gA22a. Taking into
account thata, 1

2 , it can be seen that in the limitt→` the
term ]rA /]t is small compared toDA]2rA /]x2. The same
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procedure can be performed forrB also, and therefore Eqs
~15! in ux2xf u<A4DAt,A4DBt can be simplified to

05DA

]2rA

]x2 2R,

05DB

]2rB

]x2 2R, ~17!

]rC

]t
51R,

with boundary conditions

DA]rA /]x→2JA~ t !, rB→0,

rC→c0 ~CfÞ0! or rC→0 ~Cf50!, x→2`,
~18a!

rA→0, DB]rB /]x→JB~ t !, rC→0, x→1`.
~18b!

HereJA(t)5JB(t)5J(t)}t21/2 @25#.
Equations~17! with the boundary conditions~18! are the

counterpart of the quasistatic approximation equations@42#
for the case of nonzeroDC in the irreversible regimegt
!1. The following relations for the scaling exponents can
found from Eqs.~17! and ~18!:

gA5gB5 1
2 2a, gR5 1

2 1a, gC50 ~CfÞ0!,

gC52 1
2 1a ~Cf50!. ~19!

Note that, ifDC.0, gC50 @42#, and the value ofgC is the
same as in the mobile reaction zone, but different from t
in the immobile reaction zoneCf50.

Consider now the reversible regimet→`, gt@1. In this
regime the reaction rateRr[R2grC'0 in the zero approxi-
mation @41# and the concentration profiles can be describ
by

052R1grC ,

]rA

]t
1

]rC

]t
5DA

]2rA

]x2 , ~20!

]rB

]t
1

]rC

]t
5DB

]2rB

]x2 .

The reaction rateRr can be calculated as a first approxim
tion by substituting the solutions obtained from Eqs.~20!
into any one of the original Eqs.~15! @41#.

To extend the scaling approach to the reversible regi
assume that the scaling forms~1!–~4! obtained in Ref.@42#
in the quasistatic approximation for the reversible regimt
→`, g→0, and gt@1 are valid also in our case for th
immobile reaction productC. Consequently, the following
scaling relations may be assumed:w;t0.5gb, hA;gfA,
hB;gfB, hC;gfC, and hR;gfR ~gA5gB5gC50, gRr

51!.
e

t

d

e,

Evaluating]2rA /]x2, ]rA /]t, etc. in the same manner a
in the irreversible regime, the simplified equations in t
region ux2xf u<A4DAt,A4DBt are obtained as

052R1grC ,

]rC

]t
5DA

]2rA

]x2 , ~21!

]rC

]t
5DB

]2rB

]x2 ,

with the boundary conditions of Eqs.~18!. The relations be-
tween the scaling exponents may be obtained from Eqs.~21!
and the boundary conditions~18! as

fA5b, fB5b, fRr
52b,

fC50 ~CfÞ0! or fC52b ~Cf50!. ~22!

The difference between the case ofDC.0 and our case
DC50 is related only to the asymptotically immobile rea
tion zone situationCf50, i.e., fC52b if DC50 andfC
50 if DC.0. For a mobile reaction zone the scaling exp
nents are the same either forDC.0 or for DC50, but the
equations for these two cases are different.

The general physical reason for the formation of the we
defined thin reaction zone in both the irreversible and reve
ible regimes is the small value of the nondimensional ra
w(g,t)/2ADt, whereD is one of the nonzero diffusion con
stantsDA or DB . With this general feature in mind, th
scaling relations in the irreversiblegt!1 and the reversible
gt@1 regimes may be extended to the region of arbitr
gt;1 ~t→`, g→0! by scaling to the nondimensional rati
p5w(g,t)/2ADt→0. Suppose that, as in the quasistationa
case@42#, the dependencew5w(g,t) links two parts mono-
tonically at gt;1, namely,w;ta at times gt!1 and w
;Atgb at timesgt@1. Thus the scaling relations may b
written as

rA~x,t !5hAp2xASAS x2xf~ t !

w~g,t ! D , ~23!

rB~x,t !5hBp2xBSBS x2xf~ t !

w~g,t ! D , ~24!

rC~x,t !5hCp2xCSCS x2xf~ t !

w~g,t ! D , ~25!

Rr5hRr
t21p2xRrSRrS x2xf~ t !

w~g,t ! D . ~26!

The form of Eq.~26! follows from the diffusionlike char-
acter of Eqs.~15!. Indeed, bearing in mind that Eqs.~23!–
~26! hold in the irreversible regime, the following though
are proposed. By taking into account Eq.~25! we have
Rr(x,t)5]rC /]t;](ln w)/]t, and consequently in the irre
versible regime it can be shown that forw;ta @1,8,40# and
for w;ta(ln t)d @23,24# ~d is a positive constant! the factor
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;t21 appears. Note that in the case of the Sinai disor
model w;(ln t)2 @37# and ;(t ln t)21 replaces the facto
;t21.

The simplified equations can be obtained by evaluat
]2rA /]x2,]rA /]t, etc. in the same way as in the irreversib
and reversible regimes. The equations and boundary co
tions obtained coincide with Eqs.~17! and onlyR has to be
replaced byRr5R2rCg. The relations between the scalin
exponents follow from these equations and are given by

xA51, xB51, xRr
521,

xC50 ~CfÞ0! and xC52 ~Cf50!. ~27!

Taking into account the fact that generalized scaling is t
either for gt!1 or for gt@1, the following summaries o
Eqs.~19!, ~22!, and Eqs.~27! can be obtained:

gA /~0.52a!52fA /b5xA51,

gB /~0.52a!52fB /b5xB51,

gC /~0.52a!52fC /b5xC50 ~CfÞ0! or 21~Cf50!,

~gRr
21!/~0.52a!52fRr

/b5xRr
521. ~28!

These relations reflect the fact that the dependence of
reaction front widthw(g,t) on g andt controls the characte
of the complete reaction-diffusion process, i.e., the mag
tudes of all the exponents. For the irreversible regime th
values are determined bya and for the reversible regime b
b. In the generalized scaling expression Eqs.~23!–~26! the
dependence ofw(g,t) on g and t is not indicated, and be
cause of this the exponents are determined uniquely.

Thus we can see that the conditionp5w(g,t)/2ADt→0
for t→` and g→0 is sufficient to obtain the simplified
equations for the irreversible and reversible regimes and
the crossover between them@Eqs.~17! and ~21! and modifi-
cations of Eq.~17!#. For the mobile componentsA and B
with nonzero diffusion constants, these equations are
same as in the case ofDC.0, i.e., the derivative time term
are neglected in the first and second of Eqs.~15!. For the
immobile componentC the termDC]2rC /]x2 is canceled
and the term]rC /]t substitutes it. This term can be imag
ined to be different for the mobile and immobile reacti
zones. As a consequence the scaling relations are differe
these two cases. This can be seen directly by transformin
a coordinate system that is moving with the reaction zo
x85(x2xf)2(dxf /dt)t, t85t,

]rC

]t
5

]rC

]t8
1

dxf

dt

]rC

]x8
. ~29!

In the case of a moving reaction zone the second term
dominant, while for an immobile reaction zonedxf /dt50
the first term becomes essential. Consequently, in the
case CfÞ0 and a quasistatic equation with the tim
dependent parameterdxf /dt5v f(t);t21/2 is obtained, i.e.,
v f(t)]rC /]x52Rr . This equation, and therefore the fu
system, have quasistatic character in the moving reac
r

g

di-

e

he
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or

e

in
to

e,

is

st

n

zone case. In the second caseCf50, the initial form of the
equation does not change and it is given by]rC /]t5Rr .
Thus we can see that the simplified kinetic equations
indicative of the specific features of the asymptotically im
mobile reaction.

One can arrive at the same conclusion from the sca
exponents. Furthermore, taking into account the scaling
ponents for the caseDC.0, it may be concluded that only
the caseCf50 and DC50 relates to a different specifi
class. The three other cases~CfÞ0, DC50; Cf50, DC
.0; andCfÞ0, DC.0! relate to the same class.

IV. MEAN-FIELD APPROXIMATION: ASYMPTOTIC
SOLUTIONS AND NUMERICAL SIMULATION

Assume that the mean-field approximation expressionR
5krArB is true. From this relation the following values o
the exponents may be calculated.

~a! In the irreversible regime, fromR5krArB we have
gA1gB5gR and taking into account Eqs.~19! the following
values can be obtained:a5 1

6 , gA5gB5 1
3 , gC50 (Cf

Þ0) or gC52 1
3 (Cf50), in accordance with Refs.@1,42#.

~b! In the reversible regime, from the equationgrC
5krArB it follows that fA1fB5fC11 and with expres-
sions ~22!, for CfÞ0 we obtainb5 1

2 , fA5fB5 1
2 , fRr

52 1
2 , fC50. It Cf50 thenb5 1

3 , fA5fB5 1
3 , fC5fRr

52 1
3 .

On the basis of Eqs.~21! and~18! and appropriate scaling
expressions given by Eqs.~1!–~4! the concentration profiles
and reaction rate distribution can be calculated fort→` and
g→0 in the reversible regimegt@1. For the asymptotically
mobile reaction zoneCfÞ0 we have

rA~x,t !5A~2gc0 /k!~DB /DA! f A~j/w1!, ~30!

rB~x,t !5A~2gc0 /k!~DA /DB! f B~j/w1!, ~31!

rC~x,t !52c0f A~j/w1! f B~j/w1!5c0f C~j/w1!, ~32!

Rr~x,t !5~c0 /t ! f Rr
~j/w1!. ~33!

Herej[x2xf , w152A(gtDADB)/(kCJCf),

f A~y![exp~2y2!/Ap@11erf~y!#,

f B~y![y1exp~2y2!/Ap@11erf~y!#,

f Rr
~y![2y@ f A~y!1y fA8 ~y!12 f A~y! f A8 ~y!#.

In the limit of large values ofy, f A(y)→exp(2y2)/2Ap,
f B(y)→y, f Rr

(y)→y3 exp(2y2)/Ap as y→1`; and f A(y)

→2y, f B(y)→21/(2y), f Rr
(y)→3/(2y2) as y→2`.

Note that decay off Rr
(y) depends on direction: fory→

1`, f Rr
(y);exp(2y2), while for y→2`, f Rr

(y);y22.

For the asymptotically immobile reaction zoneCf50 and
we have
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rA~x,t !5~CJ /DA!A3 ~gDADB!/~2CJk!@ f u~x/w2!2~x/w2!#,

~34!

rB~x,t !5~CJ /DB!A3 ~gDADB!/~2CJk!@ f u~x/w2!1~x/w2!#,

~35!

rC~x,t !5~CJ/2!A3 ~2CJk!/~gDADB!@ f u
2~x/w2!2~x/w2!2#,

~36!

Rr~x,t !5~CJ/2t !A3 ~2CJk!/~gDADB! f u9~x/w2!. ~37!

Here w252At(gDADB/2kCJ)
1/3. f u(z) is the solution of

the equationf u91z@ f u
22z2)] 850 with boundary conditions

f u8(z50)50 and f u(z→`)5z. For z,0 f u(z)[ f u(2z).
For z@1 f u(z);z11/(2z).

The solutions for the asymptotically mobile and asym
totically immobile reaction zones are shown in Figs. 1~a! and
1~b!, respectively. The profiles of theA, B, and C compo-
nents and the production rateRr in the mobile reaction zone
shown in Fig. 1~a!, clearly indicate that in the reversibl
regime the production ofC is concentrated near the reactio
front center, as in the irreversible regime. For the immob
reaction zone situation, shown in Fig. 1~b!, the reaction rate
profile has a characteristic two-maximum form. It is dras
cally different from the mobile reaction zone picture, a
from the immobile reaction zone case in the irreversible
gime. TheC concentration in the center of the reaction zo
is constant, because of the reversible character of the r
tion, and this constant concentration level penetrates in

FIG. 1. The form ofA, B, C, andRr profiles calculated in the
framework of the mean-field approximation in the reversible regi
gt@1. ~a! Asymptotically mobile reaction zoneCf.0 case de-
scribed by Eqs.~30!–~33!; and ~b! asymptotically immobile reac-
tion zone caseCf50 described by Eqs.~34!–~37!. 12@ f u(z)2z#
; f A , 22@ f u(z)1z#; f B , 32@ f u

2(z)2z2#; f C , 42 f u9
(z)

; f Rr . f u(z) was computed numerically. Functions and coor
natez are given in dimensionless units.
-

e

-

-

c-
o

directions. The immobileC component concentrates near t
reaction zone center and suppresses additionalC production,
namely, the production rateRr equals zero in the reactio
zone center. Far from the center the reaction rate is a
small, because of the absence of the reactantsA andB. In the
irreversible regime@12,22# all reaction front characteristics
excluding theC profile, are the same, regardless if the m
bile or immobile reaction zone is considered.

Note that theRr profile described by Eqs.~37! is sym-
metrical and independent of the relation betweenDA and
DB . This is a result of the even character of the functi
f u(z).

As mentioned in Sec. II, the distinctive reaction zo
structure is formed near thex50 region in the case of a
mobile reaction zone in the reversible regime. Nearx50 the
asymptotic solution can be obtained~see the Appendix! as
shown below:

rA~x,t !'rA~0,t !5a02CA , ~38!

rB~x,t !5@gc0 /~a02CA!#0.5@11erf~x/w3!#, ~39!

rC~x,t !5c00.5@11erf~x/w3!#, ~40!

Rr~x,t !52c0~1/t !~1/2Ap!~x/w!exp~2x2/w3
2!. ~41!

Herew352A(gDBt)/@k(a02CA)#.
This solution describes two simultaneous processes,~a!

the diffusion ofB and ~b! its exchange withC. Note that in
Eqs. ~38!–~41! g→0, w3;Ag→0 are assumed, and th
gradient ofA nearx50 is not taken into account.

To test the asymptotic properties of the reaction-diffus
processA1B↔C, Eqs.~15! and ~16! in the mean-field ap-
proximation were solved numerically by an exact enume
tion method@5,12,41,45,46#. A one-dimensional discrete lat
tice is considered. In the beginning the diffusion part
calculated and after this step the reaction is considered.
reaction step is calculated on the basis of Eqs.~15! without
the diffusion terms. The local reaction rate is calculated fr
Rr local( j )[Rr( j ), wherej is a discrete spatial point. The tim
step equals 1. The constantsk50.1 andg51024,1025 were
used.

The results of the simulation confirm that the gene
properties of the crossover are the same as in the caseDC
.0, i.e., the macroscopic properties of the reaction fr
~such as the global rate ofC production, the motion of the
reaction zone center, and the concentration profiles of
components outside the reaction front! are unchanged@42#.
In particular, there were no changes in the global r
Rr(t);n21/2 and the coordinate of the reaction zone cen
xf(t);n11/2. The crossovers of the local rate ofC produc-
tion Rr(x,t) and the width of the reaction zonew are asso-
ciated with a change in the exponents, from;n22/3 to ;n21

and from ;n11/6 to ;n11/2, respectively. The monotonic
growth w5w(g,n) supports the assumption p
5w(g,t)/2ADt→0, which is valid in the case of the mean
field approximation.

In Figs. 2 and 3 the results of the numerical calculation
the reaction rate profileRr(x,t) for Cf.0 (a052b051.0,
DA54DB) and forCf50 (a052b051.0, DA50.25D) are
shown, respectively. For comparison the asymptotic

e
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lutions Eq.~33! and~41! ~mobile reaction zone! and Eq.~37!
~immobile reaction zone! are also presented.

The simulation data of Figs. 2~b! and 2~c! fit the curves
obtained from Eq.~33! and Eq.~41! rather well. The data of
Fig. 2~c!, show some asymmetry. This asymmetry is rela
to the finite gradient ofA, which was neglected in the calcu
lations of Eqs.~38!–~41!.

In Fig. 3 two maxima in the profile ofRr exist. The de-

FIG. 2. Simulated profile ofRr( j ,n) for mobile reaction zone
case Cf.0 at time n5106 ~k50.1, g51024, DA54DB , a0

52b0!. Here j is a discrete space step number. General view
Rr( j ,n); ~b! Rr( j ,n) profile inside reaction zonex;xf fitted by the
asymptotic solution Eq.~33!; ~c! Rr( j ,n) profile nearx;0 fitted by
Eq. ~41!.
d

viation in the two maxima is associated with the asympto
character of the solution~37!, which is true only for suffi-
ciently small values ofg and large values oft. Indeed, for
DAÞDB theC distribution for short timest!tc;k21, when
the reaction may be neglected, is asymmetrical@12#. In the
irreversible regimetc;k21!t!g21, the reaction rate pro-
file is symmetrical@1,22#, independent of the diffusion con
stant ratio. TheC profile in this regime may be considered
the sum of a short-time asymmetrical distribution part a
the symmetricalC distribution that is produced in the irre
versible regime. With the elapse of time, the profile becom
more and more symmetric. After the crossover to the reve
ible regime at timesgt@1, C start to influence the reactio
rateRr(t), and the residual asymmetry in theC distribution
leads to asymmetry in theRr(x,t) profile. The accurate sym
metricalRr(x,t) profile may be obtained only in the limitt
→` andg→0 or if DA5DB , when no short-time asymme
try exists. Simulations of different ratios ofDA /DB and dif-
ferent values ofg confirm our conclusions. In addition to thi
asymmetrical memory effect, it was also observed t
Rr(x,t) in the region nearx50 takes a negative value durin
the time of the crossover, and its value approaches zero f
the negative side. Further investigation is required to de
mine the nature of this effect.

Thus, the simulation indicates that in the case of the
ymptotically immobile reaction zone the behavior of th
reaction-diffusion systemA1B↔C in the reversible regime
is influenced by the earlier states of the system. In particu
theC distribution obtained for short times, when the reacti
may be neglected, andC distributions in the irreversible re
gime influence the reaction rateRr(x,t) profile in the revers-
ible regime. Consequently, the solutions presented by E
~37! are true only in the limitst→` andg→0. The investi-
gation of the memory effect will be reported elsewhere.

V. SUMMARY

~1! The scaling approach extended to the case of the
versible regime (gt@1) and to the crossover from the irre

f

FIG. 3. Simulated profileRr( j ,n) for immobile reaction zone
caseCf50 at time n5106 ~k50.1, g51025, DA50.25DB , a0

52b0!. Here j is a discrete space step number. The profile ins
the reaction zone fitted by the asymptotic solution Eq.~37!, which
is shown in Fig. 1~b!.
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versible to the reversible regime~arbitrary values ofgt! is
formulated. The main assumption for its application is th
the dependencew5w(g,t) may be imagined as a monoton
link at gt;1 between two parts,w;ta at timesgt!1 and
w;Atgb at timesgt@1. Some additional scaling exponen
and the relations between them are introduced.

~2! In the framework of this extended scaling approa
the diffusion-reaction systemA1B↔C ~static! with initially
separated reactants is investigated. Simplified kinetic eq
tions, the counterpart of the quasistatic equations of the c
DC.0, are obtained. It is shown that for a mobile reacti
zone the system is described by quasistatic equations
depend on time through the boundary currents and the ve
ity of the reaction zone centerv5v f(t). For the immobile
reaction zone the system of equations is nonquasistati
general analysis of these equations and the respective bo
ary conditions shows that the casesDC.0 andDC50 fall
into two different classes only for the case of the immo
reaction zone. For the mobile reaction zone both casesDC
.0 andDC50 belong to the same class.

~3! Asymptotic analysis of the equations in the mean-fi
approximation inside the reaction zone in the reversible
gime confirms the results of the general consideration.
the mobile reaction zone the component and reaction
profiles are qualitatively similar to those for theDC.0 case.
The reaction rate profile has a characteristic single maxim
near the reaction zone center. For the asymptotically imm
bile zone a distinctive two-hump profile ofRr(x,t) is ob-
tained. This profile is associated with the influence ofC on
the reaction rateRr(x,t) in the reversible regime.

~4! It is shown that in the reversible regime, for the ca
of a mobile reaction zone, a second distinct reaction zon
formed near the pointx50. In this reaction zone through th
exchange ofC andB effective diffusion of the nonmobileC
component occurs. This reaction zone structure is relate
that of a first order reversible reaction.

~5! Numerical simulation of the complete system
mean-field equations confirms the results of the asympt
analysis. At the same time, deviations from the symmetr
limiting solutions are observed. For the case of the immob
reaction zone, the deviations are related to the effect of
short-time asymmetric distribution ofC ~for DAÞDB! on
Rr(x,t).

~6! Similar to the caseDC.0, the caseDC50 is also
characterized by conservation of the macroscopic prope
through the crossover from the irreversible to the revers
regime. This occurs despite the fact that the casesDC50 and
DC.0 for the immobile reaction zone belong to differe
classes.
.
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APPENDIX: CALCULATION OF THE REACTION ZONE
STRUCTURE NEAR xÄ0

FOR CfÌ0 IN THE REVERSIBLE REGIME

For the long-time regimet→`, the concentration ofA in
the regionx!xf2w considerably exceeds the concentrati
of B. Consequently, the influence of the reactionA1B↔C
on theA concentration in this region may be neglected a
the A profile is described by Eq.~10!. Near the pointx50,
the A concentration is approximately constant and equ
a02CA . With this conjecture Eqs.~20! are reduced to a firs
order reversible reaction-diffusion problem, which is d
scribed by the following equations:

krArB5grC ,

rA5a02CA , ~A1!

]rC

]t
1

]rB

]t
5DB

]2rB

x2 .

The boundary conditions are

rB→0, rC→0 for x→2`, ~A2a!

rB→gc0 /k~a02CA!, rC→c0 for x→1`.
~A2b!

Equations~A1! are equivalent to the standard diffusio
equation with an effective diffusivityDeff5DB /@11k(a0
2CA)/g#'DBg/k(a02CA). Its solution with the boundary con
ditions of Eq.~A2! is given by

rB~x,t !5@gc0 /~a02CA!#0.5@11erf~x/w3!#, ~A3!

rC~x,t !5c00.5@11erf~x/w3!#, ~A4!

wherew352ADefft52A(gDBt)/@k(a02CA)#. The reaction
rate is computed from

Rr~x,t !5]rC /]t52c0~1/t !~1/2Ap!~x/w3!exp~2x2/w3
2!.

~A5!

It should be noted thatRr(x,t),0 for x.0 and Rr(x,t)
.0 for x,0. This may be interpreted as theC component
disappearing in the regionx.0, producingB. This B crosses
to the regionx,0, where it undergoes an inverse transiti
to C.

Expressions~A3!–~A5! can also be obtained in the frame
work of the extended scaling approach described in Sec
The magnitudes of the scaling exponents areb5 1

2 , fA
5fC50, fB51, fRr

52 1
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