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We study the dynamics of a carrier, which performs a biased motion under the influence of an external field
E, in an environment which is modeled by dynamic percolation and created by hard-core particles. The
particles move randomly on a simple cubic lattice, constrained by hard-core exclusion, and they spontaneously
annihilate and reappear at some prescribed rates. We determine the density profiles of the “environment”
particles, as seen from the stationary moving carrier, and calculate its terminal v&g@sy/the function of
the applied field and other system parameters. For sufficiently small driving forces the force exerted on the
carrier by the “environment” particles shows a viscouslike behavior. An analog Stokes formula for such
dynamic percolative environments and the corresponding friction coefficient are derived. We show that the
density profile of the environment particles is strongly inhomogeneous: In front of the stationary moving
carrier the density is higher than the average densitywhile past the carrier the local density is lower than
Ps-

PACS numbes): 05.40—a, 05.60-k, 02.50-r, 47.40.Nm

[. INTRODUCTION complexed nonstoichiometrically with the ionic salt NaSCN,
the Na ions are largely tetrahedrally coordinated by poly-
The percolation concept has turned out to be very usefutther oxygenes, but at the same time that s hop from
for understanding transport and conduction processes in @ne fourfold coordination site to another, the oxygens them-
wide range of disordered media, as exemplified by ionic conselves, along with the polymeric backbone, undergo large-
duction in polymeric, amorphous, or glassy ceramic electroamplitude wagging and even diffusive motipt0—12.
lytes, diffusion in biological tissues, and permeability of dis-  Clearly, all the above mentioned examples involve two
ordered membrand4-3|. characteristic time scales; one which describes the typical
Most of the situations discussed in Refé—3| pertain, time 7 between two successive hops of the carrier, and an-
however, to systems with “frozen” disorder; that is, the ran- other associated with a typical renewal tirde of the envi-
dom environment in which a given transport process takesonment itself; the latter is the time needed for the host me-
place does not change in time. This is certainly the case idium to reorganize itself and thereby provide a new set of
many instances, but it is not true in general. As a matter ofwvailable pathways for transport. Consequently, the static
fact, there are many experimental systems in which the statigercolation picture applies only when the characteristic time
percolation picture does not apply, since the structure of the* becomes infinitely large. For a finite" dynamic perco-
host material undergoes essential structural reorganizationation has to be considered, and one encounters quite a dif-
on a time scale comparable to that at which the transpotfierent behavior when compared to the random environments
itself occurs. A few stray examples of such systems includevith quenched disorder. As a result, one observes an Ohmic-

certain biomembrandg], solid protonic conductors], oil-  type or Stokes-type linear velocity-force relation for the car-
continuous microemulsion$—9|, and polymer electrolytes rier's terminal velocities as a function of the applied field, in
[10-12. contrast to the threshold behavior predicted by the static per-

More specifically, ionic transport across a biomembranecolation theory. However, the prefactor in the linear
such as, e.g. gramicidiA; occurs by the motion of ions velocity-force relation may depend in a nontrivial way on the
through molecular channels along which they encounter posystem’s parameters, and this dependence consitutes the
tential barriers that fluctuate in time. The fluctuations of po-main challenge for the theoretical analysis here. On the other
tential barriers may significantly hinder the transport, andhand, we note that in the above mentioned examples of the
constitute an important transport-controlling fadi}. Inthe  dynamic percolative environments quite different physical
case of protonic conduction by the Grotthus mecharSijn  processes are responsible for the time evolution of the host
site-to-site motion of carriers occurs only between thosenedium. Consequently, one expects that the prefactor in the
neighboring HO or NH; groups that have a favorable rela- Stokes-type velocity-force relation should also be dependent
tive orientation; thermally activated rotation of these groupson the precise mechanism which underlies the temporal re-
is the structural host-reorganization process interacting witlorganization of the environment.
the carrier motion. Similarly, within oil-continuous micro-  Theoretical modeling of dynamic percolative environ-
emulsions, the charge transport proceeds by charge beingents has followed several avenues, which differ mostly in
transfered from one water globule to another, as globulehow the time evolution of the disorder is constrained. Is it
approach each other in their Brownian mot[@+-9]. Finally, = constrained(a) by conservation laws ofb) by spatial and
in polymer electrolytes, such as, e.g., polyethylene oxidgemporal correlations in the renewal events? Early models of
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dynamic percolationi13,14 described the random environ- relations and conservation of the number of the water glob-
ment within the framework of a standard bond-percolationules involved, the conductivity depends, hence, on the rate of
model, in which the strength of each bond fluctuates in timecluster rearrangement. Finally, a similar problem of carrier
between zero and a finite value. The dynamics of the hodiffusion in an environment created by mobile hard-core
medium in these modelgl3,14 was accounted for by a lattice-gas particles was analyzed in Rg#2] by using the
series of instantaneous renewal events. These events wefeveloped dynamic bond percolation theory of Réfs3]
assumed to occur at random times, chosen from a renewand[14].
time distribution. In the renewal process the positions of all In this paper we propose a generalized model of dynamic
unblocked bonds are reassigned, such that after each renevgrcolation which shares common features with bond-
event a carrier “sees” a newly defined network. This ap-fluctuating models of Ref$13-17,19,20as well as models
proach is thus characterized bygkobal dynamical disorder involving mobile blockers of Refd.21,22. The system we
without global conservation laws and correlations, since th&onsider consists of a host lattice, which here is a regular
entire set of random hopping rates is simultaneously renewegtbic lattice whose sites support at most a single occupancy,
independently of the previous history. Another model charhard-core “environment” particles, and a single hard-core
acterized by alocal dynamical disordemwas proposed in carrier particle. The environment particles move on the lat-
Refs.[15] and[16], and subsequently generalized to the non-tice by performing a random hopping between the neighbor-
Markovian case in Ref17]. This model appears to be simi- ing lattice sites, which is constrained by the hard-core inter-
lar to the previous one, except that here the hopping rates a¢tions, and may disappear from and reappeanewal
different sites fluctuatendependentlyf each other. That is, Processeson the empty sites of the lattice with some pre-
individual bonds, rather than the whole lattice change in thécribed rates.In turn, the carrier particle is always present
renewal events. To describe the dynamical behavior in th€n the lattice, i.e., it cannot disappear spontaneously, and is
local dynamical disordercase, a dynamical mean-field subject to a constant external forEe Hence the carrier per-
theory was proposeld 5,16], based on the effective medium forms a biased random walk, which is constrained by the
approximation introduced for the analysis of random walkshard-core interactions with the environment particles, and
on lattices with static disorddrl8], and generalized to in- probes the response of the percolative environment to the
clude the possibility of multistate transformations of theinternal perturbancy or, in other words, the frictional proper-
dynamicallyrandom mediuni19]. More recently, several ties of such a dynamical environment.
exactly solvable one-dimensional models wglbbal andlo- An important aspect of our model, which makes it differ-
cal dynamical disorder were discussggi]. ent from the previously proposed models of dynamic perco-
In the second approach, which emerged within the contextation, is that we include the hard-core interaction between
of the ionic conductivity in superionic solids, the dynamical environment particles and the carrier molecule, such that the
percolative environment was considered as a multicompolatter may influence the dynamics of the environment. This
nent mixture of mobile species in which one or several neufesults, as we proceed to show, in the emergence of compli-
tral components block the carrier compongti]. In particu-  cated density profiles of the environment particles around the
lar, such a situation can be observed in a superionicarrier. These profiles, as well as the terminal velo¥ityof
conductorB” alumina, doped with two different ionic spe- the carrier, are determined here explicitly, in terms of an
cies(e.g., Nd and B&"), where small N4 ions are rather approximate approach of Ref23], which is based on the
mobile, while the larger B4 ions move essentially slower decoupling of the carrier-particle-particle correlation func-
and temporarily block the Naions. Contrary to the previous tions into the product of pairwise correlations. We show that
line of thought, the dynamics of such a percolative environthe environment particles tend to accumulate in front of the
ment has essential correlations, generated by hard-core egriven carrier, creating a sort of “traffic jam,” which im-
clusion interactions between the species involved; moreovepedes its motion. Thus the density profiles around the carrier
it obeys the conservation law—the total number of the parare highly asymmetric: the local density of the environment
ticles involved is conserved. In Ref21], the frequency- particles in front of the carrier is higher than the average, and
dependent ionic conductivity of the light species was anaapproaches the average value as an exponential function of
lyzed combining a continuous time random walk approactihe distance from the carrier. The characteristic length and
for the dynamical problem with an effective medium ap-amplitude of the density relaxation function are calculated
proximation describing the frozen environment of slow spe-explicitly. On the other hand, past the carrier the local den-
cies. Next, as an explanation of the sharp increase of electrsity is lower than the average: We show that, depending on
cal conductivity transition in water-in-oil microemulsions whether the number of particles in the percolative environ-
when the volume fraction of water is increased toward a
certain threshold value, in RefsZ] and[8] it was proposed
that the charge carriers are not trapped in the finite Water iyye hasten to remark that diffusive processes, of course, also
clust_ers, but ra’Fher a charge on a water globule can propaggigyyit in a certain renewal of the environment; however, diffusive
by either hopping to a neighboring globule, when they apocesses, as compared to the spontaneous creation and annihilation
proach each other, or via the diffusion of the host globul€f particles, have completelely different underlying physics and in-
itself. This picture was interpreted in terms of a model simi-fiyence the evolution of the system in a completely different fash-
lar to that employed in Ref21], with the only difference jon, as we proceed to show. Following the terminology of Refs.
being that here the “blockers” of Ref21] play the role of [13-17,19,2) we thus choose here to distinguish between diffu-
the transient charge carriers. In the model of REf$.and  sive and creation-annihilation processes, referring to the latter as the
[8], in which the host dynamics is influenced by spatial cor-renewal processes.
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ment is explicitly conserved or not, the local density past the E
carrier may tend to the average value either as an exponentic »
or even as amlgebraicfunction of the distance, revealing in
the latter case especially strong memory effects and strong
correlations between the particle distribution in the environ-
ment and the carrier position. Further on, we find that the
terminal velocity of the carrier particle depends explicitly on
the excess density in the “jammed” region in front of the
carrier, as well as on the environment particle density past

the carrier. Both, in turn, are dependent on the magnitude o 4
the velocity, as well as on the rate of the renewal processe: o7 ==
and the rate at which the environment particles can diffuse 1

away from the carrier. The interplay between the jamming
effect of the environment, produced by the carrier particle,
and the rate of its homogenization due to diffusive smooth-
ening and renewal processes, manifests itself as a mediun
induced frictional force exerted on the carrier, whose magni-
tude depends on the carrier velocity. As a consequence o
such a nonlinear coupling, in the general cdse,, for arbi-
trary rates of the renewal and diffusive procegs¥s can be
found only implicitly, as the solution of a nonlinear equation
relating V. to the system parameters. This equation simpli-
fies considerably in the limit of small applied external fields

E, and we find that the force-velocity relation to the field
becomes linear. This implies that the frictional force exerted G, 1. A generalized model of dynamic percolation. Grey
on the carrier particle by the environmentviscous This  spheres denote the hard-core “environment” particles, which per-
linear force'Vel()City relation can be therefore interpreted a%orm symmetric random hopping among the sites of a simple cubic
the analog of the Stokes formula for the dynamic percolativeattice, and can be spontaneously annihilated and created. The
environment under study; in this case, the carrier velocity isighter sphere is the carrier, which performs a biased random walk
calculated explicitly as well as the corresponding friction co-gue to an external fiel&, consrained by hard-core exclusion with
efficient. In turn, this enables us to estimate the self-diffusionhe environment particles.

coefficient of the carrier in the absence of an external field;

we show that when only a diffusive rearrangement of theny, which is given implicitly as the solution of a transcen-
percolative environment is allowed, while the renewal pro-jantg| equation defining the general force-velocity relation
cesses are suppressed, the general expression for the diffg; the dynamic percolative environment under study. In Sec.

sion coefficient reduces to the one obtained previously iRy e derive explicit asymptotic results for the carrier termi-
Refs.[24] and[25]. We note that the result of Ref®24] and . o . =
nal velocity in the limit of small applied external fiel&sand

25] is known to serve as a very good approximation for the .
gehg-diffusion coefficient in hard¥c%re IattFi)Ee gades). obtain the analog of the Stokes formula for such a percola-

We finally remark that a qualitatively similar physical ef- tive environment; here we also present explicit results for the

fect was predicted recently for a different model system infriction coefficient of the host medium and for the self-

. . . iffusion coefficient of the carrier in the absence of an exter-
volving a charged particle moving at a constant speed %al field. The asymptotic behavior of the density profiles of

small distance above the surface of an incompressible, infl'fhe environment particles around the carrier is discussed in
nitely deep liquid. It was shown in Ref§27,28 that the P

: . : . . Sec. VI. Finally, we conclude in Sec. VII with a brief sum-
interactions between the moving particle and the fluid moI-mary and discussion of our results
ecules induce an effective frictional force exerted on the par- '
ticle, producing a local distortion of the liquid interface, a
bump, which travels together with the particle and effec- Il. MODEL
tively increases its mass. The mass of the bump, which is . ) )
analogous to the jammed region appearing in our model, The modelfor dynamic percolation we study here consists
itself depends on the particle’s velocity, resulting in a non-of a three-dimensional simple cubic lattice of spacinghe
linear coupling between the medium-induced frictional forcesites of which are partially occupied by identical hard-core
exerted on the particle and its veloc[§7,28. environment particles and a single, hard-core, carrier particle
The paper is structured as follows: In Sec. Il we formulate(see Fig. 1 For both types of particles the hard-core inter-
the model and introduce basic notations. In Sec. Il we writeactions prevent multiple occupancy of the lattice sites; that
down the dynamical equations which govern the time evoluiS, no two environment particles or a “carrier” particle and
tion of the environment particles and of the carrier. Sectior®h environment particle can simultaneously occupy the same
IV is devoted to an analytical solution of these evolutionSite, and particles cannot pass through each other.
equations in the limit—oo; here we also present some gen-  The occupation of the lattice sites by the environment
eral results on the shape of the density profiles around Barticles is characterized by the time-dependent occupation

stationary moving carrier, and on the carrier terminal veloc-variable n(F), r being the lattice vector of the site in ques-
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tion. This variable assumes two values: where g is the reciprocal temperature, (or €,) stand for
six unit lattice vectorsy, u={=*1,+2,*3}, connecting the
. 1 ifthe siter is occupied carrier position with six neighboring lattice sites; and
7(r)= @ (E- éy) denotes the scalar product. We adopt the convention

0 ifthe siter is empty. that =1 corresponds ta- X, =2 corresponds tatY, and

he following d . fth ) +3 corresponds ta=Z. The jump is actually fulfilled when
Next we assume the following dynamics of the environmenty,o 506t |attice site is vacant. Otherwise, as mentioned

particles: The particles can spontaneously disappear from thg, e “the carrier remains at its position. For simplicity we

lattice, and may reappear at random positions and randorisq;me in what follows that the external field is oriented
time moments, which is reminiscent of the host medium dy-

namics stipulated in Ref$13-17,19,20 We refer to these zilc()ggo t(;])e XN(;)gSallgo t?r?atp%srlt![\r/\ee ggg%'aor;’f ?rl:ghtrgr]gtion
two pr nerall renewal pr . In ition, A~ - . . )
O Processes generaty as renewa’ processes additio fobabilities as in Eq(2), the detailed balance is naturally

the environment particles move randomly within the latticeP

by performing nearest-neighbor random walks constrainetﬁ’reserved'
by the hard-core interactions, which is the main feature of
the approach in Ref§21,22. We stipulate that any of the
environment particles waits a tim&r, which has an expo-

nential probability distribgtipp_ with a meam*., and then Let P(R.,7;t) denote the joint probability that at a mo-
cho_oses from a feV\_/ po_55|b|I|t|_eQa) qllsappearlng from the mentt the carrier occupies positidﬁC and all environment
lattice at rateg, which is realized instantaneously, () . . . . - fu
attempting to hop, at a raté6, onto one of six neighboring Paticles are in configuratiop={x(r);. Next, letz"* de-
sites. The hop is actually fulfilled if the target site is not NOt€ part|cle' conflggratlons obtalneq fromby EXEha”Q'”g
occupied at this time moment by any other particle; otherthe occupation variables of the sitesand r+e;, ie.
wise, the particle attempting to hop remains at its initial po-7(r)— 5(r +e,), and»" be the configuration obtained from
sition, and(c) particles may reappear on amgcantlattice  ,, py changing the occupation of the siteas 7(r)«1

site with ratef. - n(F). Clearly, the first type of process appears due to ran-

Note. that the numbgr of particles is not.exphcnly €O 4om hops of the environment particles, while the second one
served in such a dynamical model of the environment, whm%ﬂe

“'stems from the renewal processes, i.e. random creation and
occurs because of the presence of the renewal processes;

articles diffusion, conversely, conserves the particles num: hihilation of the environment particles. Then, summing up
P . Y, ! par - all possible events which can result in the configuration
ber. However, in the absence of attractive particle-particle -

interactions and external perturbances, the particle distribdRe:7) or change this configuration for any other, we find

tion on the lattice is uniform, and the average occupatiorin@t the temporal evolution of the system under study is gov-
erned by the following master equation:

IlI. EVOLUTION EQUATIONS

p(t)= r;(F) of the lattice tends, as—«, to a constant value,
ps=f/(f+g). This relation can be thought of as the Lang-
muir adsorption isotherrf29]. N
Hence the limitrg;— (or, |—0) corresponds to the HP(Re,mit)=
ordinary site percolation model with immobile blocked sites.
The limit f,g—0, (7¢;,7an—>), While keeping the ratio ) 1 )
f/g fixed, f/g=ps/(1—ps), corresponds to a typical hard- ~P(R., 7))} += >, p (11— 7n(Ry))
core lattice gas with the number of particles conserved. T
At time t=0 we introduce at the origin of the lattice an
extra particle, the carrier, whose role is to probe the response
of the environment modeled by dynamic percolation to an

| . N
— 2> 2 {PR.7")
67" & i4R-e; R ¢

XP(Re—€,,7it)— (1— 7(R.+€;))

external perturbance. We stipulate that only the carrier out of X P(R;, n;t)}+% E {@—7(r))

all participating particles cannot disappear from the system, T" r#R;

and, moreover, that its motion is biased by some external oA .o

constant force. As a physical realization, we envisage that XP(Rg,7"t) = n(r)P(Rg, 7;t)}

the carrier is charged, while all other particles are neutral, ¢

alnd the system is exposed .to c0n§tan'F exte.rnal electric field +— E {n(NP(Re, 731)

E. The dynamics of the carrier particle is defined as follows: T" r#Rg

We suppose that the waiting time between successive jumps R .

of the carrier also has an exponential distribution with a —(1=n(r)P(Re, 7} ()

mean valuer, which may in general be different from the
corresponding waiting time of the environment particles. At-

tempting to hop, the carrier first chooses a hop direction witH\IOFe that the terms n the f_|r$BeconcI Ime_of Eq. (3) de-_
robabilities sc_nbe randqm hopping motion of the environment pamcles
P (biased motion of the carrigin terms of the Kawasaki-type
B - -
/ EV ex;{E(E-ev)

particle-vacancy exchanges, while the terms in the third and
2) fourth lines account for the Glauber-type decay and creation
of the environment particles.

3

pﬂ=exr{§(ﬁ-éM)
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A. Mean velocity of the carrier and correlation functions evaluate the equation governing the time evolution of the
pair correlation functions. Multiplying both sides of E@®)

by n(ﬁc) and summing over all configurationé((,n), we
find thatk(X;t) obeys

From Eq.(3) we can readily compute the velocity of the
carrier. Multiplying both sides of Eq(3) by (R.-€,), and

summing over all possible configurationéc(, 7), we find
that the carrier’'s mean velocity.(t), defined as

- I - f+ -
— IKOGO= = 2 (V,= 855,V k(N0 - ( *g) K(X;t)
Ve(t)= g7 (Re-€1), @ . T
f 1 -
obeys t—+- > 2 p.(A-n(Re+e,))
T I Rc,yl
o - - - .
Ve(O=—{pa(1—k(ey;t)—p-1(1—k(e-1;O))}, (5 XV, n(Re+NP(Re, 7;1), 9
wherek(X;t) stands for the carrier-environment particle pairwhereV , denotes an ascending finite difference operator of
correlation function the form
k(N;t)= R.+N)P(R., 7:t). 6 . .. .
(X50) RE 7(Re+X)P(Rg, ;1) (6) V)= 1(+6,)—1(5), 10
In other wordsk():;t) can be thought of as the density dis- d
tribution of the environment particles, as seen from a carrief”
which moves with velocity/(t).
HenceV.(t) depends explicitly on the local density of the 1. ifthe siter =1"
environment particles in the immediate vicinity of the car- - =1 (12)
rier. Note that if the environment is perfectly homogeneous, ’ 0, otherwise.

i.e., if for any N the density profile is constank():;t)
=ps, Which immediately implies a decoupling between
7(Re+X) and P(R., 7;t) in Eq. (6), then from Eq.(5) we
obtain a trivial mean-field-type result

The Kronekers term 5;,(;” signifies that the evolution of the

pair correlations, Eq(9), proceeds differently at large sepa-
rations and at the immediate vicinity of the carrier. This
o stems from the asymmetric hopping rules of the carrier par-
VO=(p,— P-1)(1=p9)—, (7) ticle defined by Eq(2).
Note next that the contribution in the second line in Eq.
which states that the frequency of jumps of the carrier par§9), which is associated with the biased diffusion of the car-

ticles (1) is renormalized only by a factor-p,, which rier, appears to be nonIinc_ear with respect to th_e occup_ation
gives the fraction of successful jumps. numbers, such that the pair correlation function is effectively

The salient feature of our model is that there are essentidiouPled to the evolution of the third-order correlations of the

backflow effects. The carrier effectively perturbs the spatiaf®™
distribution of the environment particles, so that stationary
density profiles emerge. This can be contrasted with the ear-
lier dynamic percolation mode[43—-17,19—-22in which the T(X,e,:)= 2, p(Re+N)n(R.+€,)P(R., 7:t).
carrier had no impact on the embedding medium, and hence Re

there was no rearrengement of the host medium around the (12)

carrier particle. As a consequenké;t) # ps, andk(x;t)

approache?S only at infinite separations from the carrier, That is, Eq.(9) is not closed with respect to the pair corre-
i.e., when|\|— . Therefore, we rewrite E@5) in the form  |ations but rather represents a first equation in the infinite
o hierachy of coupled equations for higher-order correlation
Vc(t)ZV(co)— _{pl(k(él;t)_Ps)_p—l(ps_ k(é_l;t))}, TUI’.]C.tIOI’]S.. One faces, therefore,_the prpblem of _solvmg an
T infinite hierarchy of coupled differential equations, and
(8 needs to resort to an approximate closure scheme.

which explicitly shows the deviation of the mean velocity of
the carrier from the mean-field-type result in E@) due to C. Decoupling approximation

the formation of the density profiles. ) . ]
Here we resort to the simplest nontrivial closure approxi-

mation, based on the decoupling of the third-order correla-
tion functions into the product of pair correlations. More

From Eq.(5) it follows that in order to obtaiVc(t), it precisely, we assume that fare,, the third-order correla-
suffices to computek(e~4;t). Consequently, we have to tion fulfills

B. Evolution equations of the pair correlation functions
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S 7 3 2 = R I - . f
2 7R+ X) 7(Ret€,)P(Re, 7it) ok(e, )= —C+A(KE,D+—, (16
Re.7 67* T*
~ > 77(I526+X)P(F§C,n;t)) where v={*1,+2,+3}. The operatord and coefficients
Re.7 A,(t) are given explicitly by
x| > n(Re+6,)P(Re,7it) (13) = 6(f+9)
i c v ¢ ) ng AM(I)VM— | (17)
or, in other words, and

*

2 (Rt N) n(Ret€,)P(Re, ) =K(N;t)k(€, ;). AAt)EH%pAl—k(émt)), 18

R
(14
. . where V,, has been defined previously in EQLO): u=
;Tes?fgr% X'ﬂ:}gtg:josmuL%éTsEg"gi;\fez acl;;erzrii?rl ?j?pfﬂlsoigﬁdin{i 1,+2,+3}. It is important to emphasize that all coeffi-
ying cients A, (t)=A,(E,V.;t), i.e., are functions of both the

hard-core lattice gases, and was shown to provide quite agpplied field and the carrier velocity.

accurate description of both dynamical and stationary-state :
. o e . Now several comments about Eq45) and (16) are in
behaviors. The decoupling in E@L4) was first infroduced in order. First of all, let us note that E(L6) represents, from a

Ref.[23] to determine the properties of a driven carrier dif- mathematical point of view, the boundary conditions for the

fusion in a one-dimensional hard-core lattice gas with a Conrgeneral evolution equatiofi5), imposed on the sites in the
served number of particles, i.e., without an exchange of parz

> . . . ; . .~ immediate vicinity of the carrier. Equationd5) and (16)
ticles with the reservoir. Extensive numerical S'mUIat'OnShave a different form. since in the immediate vicinity of the
performed in Ref[23] demonstrated that such a decoupling ' Y

is quite a plausible approximation for the model under studycarrier its asymmetric hopping rules perturb essentially the
Moreover, a rigorous probabilistic analysis of R¢80] environment particle dynamics. Equatidi) and(16) pos-

showed that for this model the results based on the decod > Some intrinsic symmetries and hence the number of in-

. : dependent parameters can be reduced. That is, reversing the
pling scheme in Eq(14) are exact. Furthermore, the same ¢4 :

. : , .e. changinde— — E, leads to the mere replacement of
closure procedure was recently applied to study spreading of ™ _ S N )

a hard-core lattice gas from a reservoir attached to one of th&(€1;t) by k(e_y;t) but does not affeck(e, ;t) with v=

lattice sited31]. Again, a very good agreement between thel *2,% 3}, which implies that

analytical results and the numerical data was found. Next,

the decoupling in Eq(14) was used in a recent analysis of a k(ep;t)(—E)=k(e_1;t)(E) and
biased carrier dynamics in a one-dimensional model of an ) R
adsorbed monolayer in contact with a vapor pH&, i.e., k(e,;t)(—E)=k(e,;t)(E) for v={x2,+3}. (19

a one-dimensional version of the model to be studied here.
Also in this case, excellent agreement was observed betwedn addition, since the transition probabilities in Eg) obey
the analytical predictions and the Monte Carlo simulations
data[32]. We now show that the approximate closure of the P2=P-2=P3=P-3;, (20)
hierarchy of the evolution equations in Ed4) allows us to )
reproduce, in the limif,g=0 andf/g=const, the results of ©ne evidently has that
Refs.[24] and[25], which are knowr(see, e.g., Ref26]) to . . . .
provide a very good approximation for the carrier diffusion k(ey;t)=k(e_z;t)=k(es;t)=k(e_s;t), (21)
coefficient in three-dimensional hard-core lattice gases with
an arbitrary particle density. We therefore expect that such and, by symmetry,
closure scheme will render a plausible description of the car-
rier dynamics in a three-dimensional generalized dynamic Ax()=A_5(t) =As(t)=A_5(1), (22)
percolation model. We base our further analysis on this ap- . o )
proximation. which somewhaF simplifies Eq$15) and (;6). Finally, we '
Making use of Eq(14), we find from Eq.(9) that the pair note tha_t, despite the facft that by using the decoupling
correlations obey the equation s_cheme in Eq(14) we effet_:tlvely cI0f5e the system_ of equa-
tions on the level of the pair correlations, the solution of Egs.
R | f (15) and(16) still poses serious technical difficulties. That is,
ak(N;t)= —*Lk()\;t)+ - (150  these equations are strongly nonlinear with respect to the
67 T carrier velocity, which introduces a gradient term on the
which h_o?d.s for all lattice gites.except for Ehose at the irpme-lrgg{nr’]?nddS(deeepg;ézebivﬁlslg;? r;ne ?ﬁgtl\?gﬁ ;grot? ?hzagnf/(i)rr(;i-
diate vicinity of the carrier, i.e., for alh except forh  ment particle densities in the immediate vicinity of the car-
={0,e.1,e+,,e+3}, While at the sites adjacent to the carrier rier. Below we discuss a solution to this nonlinear problem,
one has focusing on the limit—oe.
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IV. SOLUTION OF THE DECOUPLED EVOLUTION A. Formal expression for the density profiles in the dynamic
EQUATIONS IN THE STATIONARY STATE percolative environment as seen from the stationary

. o . moving carrier
Consider the limitt—o, and suppose that the density g

profiles and the stationary velocity of the carrier have non- The general solution of Eq$25) and (26) can be most

trivial stationary values conveniently obtained by introducing the generating function
k(N)=lim k(X;t), Ve=lmV,(t), and A,=lim A (t). H(wy wo,wa)= X h(O)wiwhiwg®, (30
t—o t—oo t—oo N1.n2.N3
(23

wherenq, n,, andn; are the components of the vector
Next define the local deviations &f(X) from the unper- X=e;n;+e,n,+esn;. Multiplying both sides of Eqs(25)
turbed density as and(26) by w}*w,2w5? and performing summation, we then
R R find thatH(w,,w5,ws) is given explicitly by
h(N)=k(\)—ps. (24)
H(wy,wp,w3)
Choosingh(0)=0, we obtain the fundamental system of

equations > (AW =Dh(e,) +pd A, A )Wy
_ — |- ,
which holds forx#{0,e. ;,€.,,€. 3}, while for the special 31)
sites adjacent to the carrier, i.e. far={0,e.,6.,,6.3},
one has an expression which allows us to determine the stationary
density profiles as seen from the carrier which moves with a
('EJFAV)h(éV) +po(A,—A_,)=0. (26) constant velocity/,. .

Inversion of the generating function defined by Egl)

. . e then yields, after rather lengthy but straightforward calcula-
Equations(25) and (26) determine the spatial distribution of tions, the following explicit result for the local deviation

the deviation from the unperturbed densityin the station- .
ary state. Note also that inpvirtue of the ss;/ﬁrimetry relations infrom the unperturbed density:
Egs. (21) and (22), h(es,)=h(e+3) and A,=A_,=A . R
=A_;. ’ ’ h(>\)=a‘1|2 Ah(e,)V_,—ps(A1—A_y)

The method for solving the coupled nonlinear equations !
(5), (25), and(26) is as follows: We first solve these equa- .
tions, supposing that the carrier stationary velocity is a given X(Vy— V—l)} F(N), (32)
parameter, or, in other words, assuming thaentering Eqgs.
(25) and(26) are known. In doing so, we obtaf(\) in the

parametrized form whereF (X) is given by

, B, L [AL\MP e VALA_,
h(X)=h(X\;AL1,A). (27) F(N) = A, JO & | 2——X
Then, substituting particular values={e. ;,.,,€.3} into A, A,
Eq. (27), and making use of the definition &, in Eq. (18), Xln,| 2—=%]ln | 2—=xdX (33
we find a system of three linear equations with three un-
knowns of the form and
67 . 6(f+09) 6(f+9)
AV:1+ vpv(l_ps_h(ev;AiliAZ))i (28) a:EV AV+ | :A1+A_1+4A2+ | )

(39)

wherev={=*1,2}, which will allow us to define alA, [and . e

2 o _ o Consequently, the particle density distribution, as seen from
hence, aIIh(eV)] explicitly. Fmally, subst_ltutmg the results nq carrier moving with a constant veloci., obeys
into Eq. (5), which can be written down in terms &f, as

k(X)=psta?
v (A—A_,) (29)
Y X[z A&,V = p)(A1—A_,)

we arrive at a closed-form equation determining the station- R
ary velocity implicitly. X(Vqi— V_l)} F(N), (35
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where we have to determine three yet unknown parameters 67* detC
A1, A_y, andA,. ) A,=1+-p, 1_Ps_Ps(A1_A71)d 3k (36)
To determine these parameters, in E§2) we set\ e
=e,, N\=e_,, and \=&,, which results in the system of
three closed-form equations determining the unknown func- - ) ) )
tionsA,, v={*1,2 whereC is a square matrix of the third order defined as
|
AV _F(e)—a A ViF(ey) A2V _oF(ey)
AlV_iF(e.)) AViF(e )—a AV F(ey) |, (37)
ALV _1F(ep) ALVIF(&) AV _oF(e)—a

while €, stands for the matrix obtained frof@ by replacing  Implicitly as the solution of equation
the vth column by a column vecto((Vl—V_l)F(év)),,. o
Equation(35), together with the definition of the coefficients Ve=—(p1—p_1)(1—py)
A, , constitutes the first general result of our analysis defin- T
ing the density distribution in the percolative environment 67 p,detC,—p_,detC , -1
under study. X1 1+ pg——— —
Ir detC

. (39

B. General force-velocity relation

Substituting Eqs(32) and(37) into Eq.(29), we find that whereC, andC_, are the following square matrices of the
the stationary velocity of the carrier particle is definedthird order:

(Vi—V_)F(e))  A_,V,F(e) AV _,F(e)
Ci=| (Vi-V_pF(e_y)) A ViF(e_p)—a AV _,F(e_y) (39)
(Vi—V_)F(e) A ViF(e) AV ,F(e)—a

and

AV _Fe)—a (Vi—V_F(e) AV _,F(e)
C,=| AV F(e1) (Vi-V_pDF(e;) AV F(ep) |. (40)
A1V71F(éz) (Vl_vfl)F(éz) A2V72F(é2)_01

Equation(38) represents our second principal result defining 1 )
the force-velocity relation in the dynamic percolative envi- P1=g =5 TO(EY), (41)
ronment for an arbitrary field and arbitrary rates of the dif-

fusive and renewal processes. we find thatV,, defined by Eq(29), follows

o - -
V. CARRIER VELOCITY IN THE LIMIT OF SMALL Ve~ g A0BE(1=ps)—(h(e) ~h(e-1)}. (42
APPLIED FIELD E, FRICTION COEFFICIENT T
AND CARRIER DIFFUSIVITY IN DYNAMIC
PERCOLATIVE ENVIRONMENT On the other hand, Eq32) entails that
We now consider the case when the applied external field - - 20ps(1—pg)T*
E is small. Expanding the transition probabilitips andp_; h(e;) —h(e_;)= I (agL(2Agarg) — Ag)+ szTIBE

in the Taylor series up to the first order in powers of the
external field, i.e., +0(E?), (43
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where 15 . . :

* &/8q

r
Ap=limg_oA,=1+ F(l_pS) (44

and

1+T (1_ps)+f+g)’ (45)

|7 |

ag= |imEﬁoa= 6

while

-1

£(X)E+f:e‘tlg(xt)(lo(xt)—Iz(xt))dt}

={P(0;3x)—P(2e;;3x)} 1, (46)

P(r; &) being the generating function,
FIG. 2. The ratio of the overall friction coefficient and the
- . mean-field friction vs the creation rate for three different values of
P(r ?f)EZO Pi(r)é, (47)  the mean density.. The upper curve corresponds ig=0.9, the
= intermediate curve tp,=0.7, and the lower curve to;=0.5. The
diffusion times of the carrier and of the “environment” particles
are taken equal to each other 7, and the lattice spacinigis set
equal to unity.

+ oo

of the probabilitij(F) that a walker starting at the origin
and performing a Polya random walk on the sites of a three
dimensional cubic lattice will arrive on thjeh step to the site

with the lattice vectoF_[S]. _ . _ Next consider some analytical estimates. We start with
Consequently, we find that in the limit of a small applied the situation in which diffusion of the environment particles

field E the force-velocity relation in Eq(38) attains the s suppressed, i.e. whér=0. In this case, we obtain
physically meaningful form of the Stokes formua= ¢V,

which signifies that the frictional force exerted on the carrier {coop 2ps
by the environment particles igscous The effective friction o = 2 ' (50)
coefficient{ is the sum of two terms, (1—ps)(§£(y)—l)
={o+ , 48
g gO gcoop ( ) where
where the first term represents a mean-field-type regpult B
=67/B0?(1—ps) [see Eq.(7)], and the second oné.qop 21 7 (f+g) 51)
obeys ) R G )
_ 12ps7* Suppose first thatps is small, ps<1. Then y~1/3(1
gcoop_ (49)

+7/7*(f+g)), and we can distinguish between two situa-
tions: whenr<(f+g)/7*, i.e. when the carrier moves faster
The second contribution has a more complicated origin, anthan the environment reorganizes itself, and the opposite
is associated with the cooperative behavior—formation of aimit 7> (f+g)/7*, when the environment changes very
inhomogeneous stationary particle distribution around theapidly compared to the motion of the carrier. In the former
carrier moving with constant velocity.. Needless to say, case we find thaty~1/3, which vyields {cq0p/l0
such an effect cannot be observed within the framework of=2p./(6£(1/3)—1), L£(1/3)=0.7942, while in the latter
previous models of dynamic percolation, since there the carease we havey~7*/37(f+g) and {coop/{o~=ps7 /37(f
rier does not influence the host medium dynamig8—  +g). Note that in both cases the rafjg,,p/{o appears to be
17,19-22. small, which signifies that at small densitips the mean-
Let us now compare the relative importance of two con-field friction dominates. Such a result is consistent with the
tributions, i.e.,{o and{¢q0p, to the overall friction. In Fig. 2 behavior depicted in Fig. 2 and is not counterintuitive, of
we plot the ratiol/{, versus the creation ratefor three  course, since in the absence of particle diffusion, which ef-
different values of the densitps, ps=0.9, 0.7, and 0.5, fectively couples the density evolution at different lattice
while the annihilation rate is prescribed by the relatipn sites, no significant cooperative behavior can emerge at small
=f(1-ps)/ps. This figure shows that the cooperative be-densities. On the other hand, at relatively high densjies
havior clearly dominates at small and modeffagehich also  ~1 and7/(1—pg)> 7 /(f +g)> 7, when the carrier moves
entails small values af), while for largerf, when{/{,tends at a much faster rate than that at which the host medium
to 1, the mean-field behavior becomes most important. Theeorganizes itself, we find thal.,,p/{o~ 7" /37(f+g)>1.
cooperative behavior also appears to be more pronounced ahis result stems from the circumstance that in sufficiently
larger densitiegy . dense environments modeled by dynamic percolation, a

B2 (1—ps)(aoL(2Ag] ag) —Ag) |
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highly inhomogeneous density profile emerges even in the 1 . . .
absence of particle diffusion. Here, on the one hand, the
carrier significantly perturbs the particle density in its imme- C/CNK
diate vicinity. On the other hand, the density perturbance
created by the carrier does not shift the global balance be:
tween creation and annihilation events, i.e., the mean particle 0.9 -
density is still equal tgpg, as we set out to show in what
follows. The latter constraint then induces the appearance o
essential correlations in particle distribution, and hence, the
appearance of cooperative behavior.

Let us consider the opposite case when the renewal pro 08 \
cesses are not allowed, which means that the particle numbe
is conserved and local density in the percolative environment
evolves only due to particle diffusion. In this case we find

0.7 1 1 Il 1
gcoop_ 27 ps 0 2 4 f 6 8 10

. (52)
o (I7+7(1—pg))(B6L(113)—1)

FIG. 3. The ratio of the overall friction coefficient and the fric-

Here the raticaf /¢, can be large, and the “cooperative” tion coefficient in the conserved particle number case vs the cre-
friction dominaclgg the mean-field' one whén<7*(3p ation rate for three different values of the mean denpity The
S

—1), which occurs at sufficiently high densities and in theUPPE" Curve corresponds =05, the intermediate curve oy
=0.7, and the lower curve tp,=0.9. Diffusion times arer=7*

limit when the carrier moves at a much faster rate than that at 111
which the environment reorganizes itself. Otherwise, the '
mean-field friction prevails. ) o
To estimate the carrier particle diffusion coefficient  Strongly deviates from the unity with the growth of the cre-
we assume the validity of the Einstein relation, i8D.  ation rate. The overall friction also falls off when the density
=¢~1. We find that, in the general case, the carrier diffusion'ncreases. . o _
coefficientD,, reads Finally, in the absence of particle diffusidfiuctuating-
site percolatiop our result for the carrier particle diffusion

coefficient reduces to

2(1_ 5) 2 s *
D=2 GTP [1— ﬁ’: (aoc(zAO/ao)—l
_ 0'2(1_ps)
N 7'*(3Ps_1)) 1] 53 Dger:T{l_ZPSM[(l_Ps)‘F(f"'g)T/T*]ﬁ(y)
I '

+3ps— 1)1} (55
In the particular case of a conserved particle number, when
f,g—0 but their ratiof/g is kept fixed,f/g=p</(1—py),

; ) Note, however, that this result only applies when bioémd
the latter equation reduces to the classical result

g are larger than zero, such that the renewal processes take
place. In fact, the underlying decoupling scheme is only
plausible in this case. Similar to the approximate theories in
Refs.[24] and[25], our approach predicts that in the absence
of the renewal processeéBR®" vanishes only whemps—1,

2
D(’:‘KZU (1_ps) [ 1_ ZPST*

= = (6Aoc(1/3)— 1

7.*(3 _1) -1 . . . .
+ +) ' (54) which is an incorrect behavior.
obtained earlier in Ref$24] and[25] by different analytical VI. ASYMPTOTIC BEHAVIOR OF THE DENSITY
techniques. The result in E¢p4) is known to be exact in the PROFILES AT LARGE DISTANCES IN FRONT OF
limits ps<1 andps~1, and serves as a very good approxi- AND PAST THE CARRIER
mation for the self-diffusion coefficient in hard-core lattice — The density profiles at large separations in front of and
gases of arbitrary densif6]. past the carrier can be readily deduced from the asymptotical

It also seems interesting to analyze how the random anngepayior of the following generating function:
hilation and creation of particles can modify the self-
diffusion coefficient compared to the situation when the par-
ticle number is conserved. In Fig. 3 we plot the radi/D, .
(=¢l¢nk) versus the creation rafdor three different values N(Wl)En ;w h(ny,n;=0n3=0)w;". (56)
of the densityps, ps=0.9, 0.7 and 0.5. Again, the value of '
the annihilation ratey is prescribed by the relatiog=f (1
—ps) ps. Figure 3 shows that renewal processes considernversion of Eq.(31), with respect to the symmetric coordi-
ably affect the friction coefficient, and that the ragt{yx  natesn, andns, then yields

+ oo
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() = (Arh(€1) +ps(A;—A_1)(W;—1)+(A_jh(e 1)~ p(A;—A_1))(w; '~ 1)
! Ct’_A]_WIl_A_lWl
” 2A 4Azh(e = 2A
Xf exd —x]I3 _12 x | dx+ 2_1( 2 f exd —x]lg _12 X
0 a_Aj_Wl _A_1W1 a_A]_Wl _A_]_Wl 0 a—Alwl _A_1W1
2A, 2A,
X1 = x| —lg - X | |dx. (57
(X_A]_Wl _A*lWl a_AlWl _A,]_Wl

We note now thatN(w,) is a holomorphic function in the
region W, <w;<W,, where

W _a—4A, \/ a—4A,\% A -

" 2A 2A_, A, (58)
and

_a—4A2+\/ a—4A\%2 A -

We= 2A_, 2A_, | Ay (59

As a consequence, the asymptotic behaviorh¢h,,n,
=0,n3=0) in the limit ny—o (n;— —) is controlled by
the behavior ofN(w;) in the vicinity of wi=W, (w;

=W),) (see, for example, the analysis of the generating func

tion singularities developed in Rdf33)).

A. Asymptotics of the density profiles at large separations
in front of the carrier

- al2—2A, \/ al2—2A,\% A, 64

A =In A,]_ + A,]_ —E ( )
and
| Aah(ED T pAr—A- )W, —1)
47TA2
(A_1h<é_1>—ps<A1—A_1)(wg1—1)}
+ >0,
47TA2

(65

which signifies that the density of the environment particles
in front of the carrier is higher than the average valyand
approachegg at large separations from the carrier as an
exponential function of the distance.

B. Asymptotics of the density profiles at large separations
past the carrier

Consider first the asymptotic behavior of the density dis-

tribution of the “environment” particles at large separations

in front of the carrier. Using the fact that

| ext—xmoty0aa00-1000ax 60
is a regular function wheg— 1/2, while
fm—|2d1|<1) 61
. exi —x]l5(yx)dx——In 1=2y)’ (61)
we find that
Ny | A€ Tp( A=A )W, —1)
(Wl)wlﬂwz 4mA,
+(A1h<él)—ps<A1—A1>)<w;1—1>}
47TA2
X In(W,—wy). (62

Then, (cf. Ref.[33]) we obtain the asymptotical result

+

K
h(n1,0,0)~nlﬂoon—le*n1/)\+, (63

where

We next consider the asymptotic behavior of the environ-
ment particle density profiles past the carrier particle, which
turn out to be very different depending on whether the dy-
namics of the percolative environment obeys the strict con-
servation of the environment particle number or (tbe re-
newal processes are suppressed or allpw€he sketch of
this behavior is presented in Fig. 4.

(a) Nonconserved particle numben the case when par-
ticles may disappear and reappear on the lattice, one has that
the root)/;<1. We then find, following essentially the same
lines as in Sec. VIA that

(Ath(e)+pg(Ar—A_ )W —1)

N(wy) ~

wi— Wy 47TA2
+(A,1h<é,1>—ps<A1—Afl>)<vwl—1)
4’7TA2
X | ! ) 66
n W) (66)

Hence, in the nonconserved case, the approach to the unper-
turbed valuepg is also exponential when,— —<, and fol-
lows

K_e_‘nl‘/)‘fy
]

(67)

hnl,O,O

n1—>7:>c
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0.7 - - - - - - host medium evolves only due to diffusion, while creation
and annihilation of particles are completely suppressed. In
08¢ ] this case, in which the particles number is explicitly con-

served, one has that, for arbitrary values of the field and
particle average density, the rogt;=1 and, consequently,
the form of the generating function are qualitatively different
from that in Eqs.(62) and (66),

0.5+ 4

04} -

=3
=
03 . -
CPN limit ™™ (Aih(e;) —A_jh(e_1)) (2ps(Ar—A_1))
i N(wy) ~
02t N A7A, 47A,
l*)
01} _
X(w;—1 In< ) 71
0 ' \ ' ' L L L ) Wl_l ( )
20 45 10 5 0 5 10 15 20

Equation (71) implies that in the limit when the particle
FIG. 4. A sketch of the asymptotic density profiles in front of number is conserved, the large-asymptotic behavior of
and past the stationary moving carrier. The abbreviation CPN, o, is described by an algebraic function of with a
stands for the “conserved particle number.” The two solid lines in logarithmic correction; that is,
the A\>0 and\ <0 domains denote exponential profiles, E@S)
and (67). The dashed line in the domalk< 0 stands for the alge- K In(|n |)
braic law[Eq. (72)]. S

o (72)

hnl,O,ON

where
whereK _ is an n;-independent constant. Remarkably, the
_, [ al2=2A, \/ al2—2A,\? A, power-law decay of the correlations implies the existence of
A_=In A, - A, - E (68) quasi-long-range order in the percolative environment past
the carrier. In the conserved case the mixing of the three-

and dimensional percolative environment is not very efficient,
and there are considerable memory effects—the host me-
| (Ash(e) +pg(A—A_1))(Wy—1) dium remembers the passage of the carrier on large space
= AnA, and time scales.

(A_;h(e_1)—ps(A—A_))Wit— 1)} VII. CONCLUSIONS
+

4mhA; To conclude, we analytically studied the dynamics of a

<0, (69)  carrier driven by an external field in a three-dimensional
environment modeled by dynamic percolation on a cubic lat-

which implies that the particle density past the carrier istice partially filled with mobile, hard-core “environment”
lower than the average. Note that, in the general crse, particles which can spontaneously disappear and reappear
<\_, which means that the depleted region past the carrieffenewal processgsin the system with some prescribed
is more extended in space than the traffic-jam-like region iffates. Our analytical approach was based on the master equa-
front of the carrier. The density profiles are therefore asymtion, describing the time evolution of the system, which al-
metric with respect to the origim;=0. Since creation of lowed us to evaluate a system of coupled dynamical equa-
partides is favoredsuppressedin dep|eted(jammed re- tlons-for the C-arrler VelOCIty and. a hlerarChy of correlation
gions, while annihilation is suppressédvored, one might functions. We invoked an approximate closure scheme based
expect that this will shift the overall density in the system,On the decomposition of the third-order correlation functions,
i.e. the average density of the environment particles will dif-which was first introduced in Refi23] for a related model of
fer from ps. Interestingly, the overall deviation, i.e. the sum @ driven carrier dynamics in a one-dimensional lattice gas
of local deviations over the volume of the system, of theWith conserved particle number. Within the framework of
density of the environment particles from the average valudhis approximation, we derived a system of coupled,

ps, appears to be equal exactly to zero, discrete-space equations describing the evolution of the den-
sity profiles of the environment, as seen from the moving
H(w;=1w,=1w;=1)=0, (70) carrier, and its velocity/,. We showed tha¥/. depends on

the density of the environment particles in front of and past
and hence, the driven carrier does not perturb the globahe carrier. Both densities depend on the magnitude of the
balance between creation and annihilation of the environvelocity, as well as on the rate of the renewal and diffusive
ment particles. This is not, however, arpriori evident re- processes. As a consequence of such a nonlinear coupling, in
sult in view of the asymmetry of the density profiles. the general casg.e. for an arbitrary driving field and arbi-

(b) Conserved particle numbeFinally, we turn to the trary rates of renewal and diffusive proce9s&s was found

analysis of the shape of the density profiles of the percolativenly implicitly, as the solution of a nonlinear equation relat-
environment past the carrier in the particular limit when theing its value to the system parameters. This equation, which
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defines the force-velocity relation for the dynamic percola-coefficient were calculated explicitly. In addition, we deter-
tion under study, simplifies considerably in the limit of small mined the self-diffusion coefficient of the carrier in the ab-
applied fieldE. We found that in this limit it attains the sence of the field, and showed that it reduces to the well-
physically meaningful form of the Stokes formula, which known result of Refs[24] and[25] in the limit when the
implies, in particular, that the frictional force exerted on theparticle number is conserved. Furthermore, we found that the
carrier by the environment modeled by dynamic percolatiordensity profile around the carrier becomes strongly inhomo-
is viscous In this limit, the carrier velocity and the friction geneous.
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