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Master equation approach to synchronization in diffusion-coupled nonlinear oscillators

William Vance and John Ross
Department of Chemistry, Stanford University, Stanford, California 94305
(Received 24 February 2000

We study the influence of internal fluctuations on phase synchronization in oscillatory reaction-diffusion
systems through a master equation approach. In the limit of large system size, the probability density is
analyzed by means of the eikonal approximation. This approximation yields a Hamilton-Jacobi equation for the
stochastic potential, which may be reduced to coupled nonlinear diffusion equations for the phase of oscillation
and(conjugaté “momentum.” We give explicit expressions for the coefficients of these equations in terms of
averages over the deterministic periodic orbit. For one-dimensional systems, we obtain an explicit solution for
the stationary stochastic potential: the width in phase, which is defined as the root mean square fluctuation in
phase, characterizes the roughness of phase locking, and diverges with the systeacsizeling to a power
law w~L?, with a=1/2. To study higher-dimensional systems, we show that the eikonal approximations of
the diffusion-coupled oscillator problem and the Kardar-Parisi-Zh@®R)Z) equation(in the limit of small
noise intensity are equivalent. The KPZ equation governs some forms of surface growth, and the height of a
growing front corresponds to the pha&be 27 periodicity in phase is ignoredn the diffusion-coupled
oscillator problem. From the equivalence, we obtain the result that spatially synchronized states may exist only
in systems with a spatial dimension greater than or equal to 3; for dimensions 1 and 2, a “rough” state exists
in which the width(in phase diverges algebraically with the system size> 0.

PACS numbds): 05.40—a, 05.45.Xt

[. INTRODUCTION scribes the effects of internal fluctuations. Recent simula-
tions [14] of the master equation for one-dimensional
Much attention has been given to the problem of main-oscillatory reaction-diffusion systems near a Hopf bifurca-
taining long-range order in systems governed by short-ranggon support these results. These simulations show that the
interactiong 1—4]. Of particular concern from chemical and homogeneous synchronized state, which is a stable solution
biological points of view are large populations of self- for the deterministic system, is destroyed by internal fluctua-
oscillatory systems coupled through diffusion. These arise aons as the size of the system is increased.
models for oscillating chemical reactions,1,3], and for We study the influence of internal fluctuations on syn-
pacemakers in the description of cardiovascular, respiratonghronization in diffusively coupled oscillators at a mesos-
and circadian rhythm§6,7]. Many ecological systems also copic level using a master equation approach. Our work
exhibit population cycles, and are synchronized over largenakes explicit the connection between this description of
distanceg8]. In the absence of noise, the evolution of theseoscillatory systems and the KPZ equation. Using a WKB
systemg(for a slow spatial variation of the phase of the os-approximatiorf15-19 of the probability density, and apply-
cillators) may be described by an equation for the phase ofng the method of multiple time scales, we derive a reduced
oscillation—a nonlinear phase diffusion equat[&pl]. This  set of (Hamiltonian coupled nonlinear diffusion equations
equation has stable synchronous oscillatory solutions as wefibr the phase and the(conjugate “momentum.” This pro-
as a variety of other solutions, such as periodic wave traing;edure yields explicit expressions for the coefficients in
“target patterns,” and spiral wavd4,3,9. It is of consider- terms of averages over the deterministic periodic orbit. As-
able interest to know whether such states are preserved in tlseciated with these equations is a Hamilton-Jacobi equation
presence of either internal or external ndias the size of the for the leading term in the WKB approximation, which is the
system becomes arbitrarily langé-or the case of a spatially stochastic potential for the phase. For the stationary state of
synchronized state, this question was partially answered bgne-dimensional systems, we obtain an exact solution for the
Grinsteinet al. [10], who argued that stable spatially coher- stochastic potential. For higher-dimensional systems we uti-
ent oscillations do not occur id-dimensional,(external lize the equivalence of the stochastmhasé potential and
noisy oscillatory systems witd<2. They used the connec- the potential for the KPZ equation in the limit of weak noise.
tion between the “phase-only” approximation of the noisy Using this correspondence we apply results from the exten-
Ginzburg-Landau equation, which is used to model the onsetive literature on kinetic roughenirid3] (of growing inter-
of oscillations in spatially distributed systems, with the faces for the KPZ equation to the problem of the influence
Kardar-Parisi-Zhan¢KPZ) equation, which is a noise-driven of internal fluctuations on spatial synchronizatigmhe in-
nonlinear diffusion equation that governs some types of surfluence of fluctuations on plane waves and other solutions to
face growth[11-13. The phase of oscillators at a given the nonlinear phase equation can also be studied using our
spatial point corresponds to the height of a growing interfaceéeduced Hamilton-Jacobi equations with appropriate bound-
of the KPZ equation(ignoring the periodicity of the phase ary conditions.
variable. Their simulations usingnoiseless cellular au- The consequences for synchronization in reaction-
tomata also suggest that the KPZ equation correctly dediffusion systems follow from the above equivalence be-
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tween the eikonal approximations of the coupled oscillatotthe diffusion coefficients or slow spatial variation of concen-
and KPZ equations. The conditions under which coherenceations (with diffusion coefficients of ordinary magnitude
of a growing interface can be sustained were studied extelWith this supposition, the structure of the limit cycle in in-
sively for the KPZ equation. For dimensions less than ordividual cells is only slightly perturbed by neighboring cells.
equal to a “critical dimensiond.=2, spatial synchroniza- We take as variables the numbers of partid¥s,} within
tion cannot be maintained. A “rough” state exists in which cells, and assume that they define a Markov process, where
fluctuations in the phasé diverge algebraically with the labels the cell andx the species. These random variables
system sizd., <[9(X)_§]2>1/2~|_a, with «>0. That is, the change as a result of chemical reactions, which are modeled
difference in phase between two points separated by a digs jump Markov processes, and diffusion, which is modeled
tancel is typically of orderL® (the 27 periodicity of the ~as a random walk between adjacent cells. This leads to a
phase is ignored For a system witl=3, a smooth spatially multivariate master equation for the probability distribution
synchronized state exista 0 for a sufficiently small value P{Xa}1):
of the coefficient of the nonlinear term of the phase-diffusion p
equation. In this case, the two-point correlations in phase ~_ _ o, _
decay asymptotically like #~2 in space and 1¥#~22 in dt ; Er (WX =2, = X P(Xra ™ vpad)
time. In dimensiord= 3, there is a phase transition in which 5
a smooth state exists for values of the coupling stremgth _ Ya
below a critical numbeg* and a “rough” state exists for W"(X’HX’+V")P]+€§ 2d % [(Krat1)
values greater thag* . (The coupling strength is a function
of all the parameters in the phase-diffusion equation. XP(Xrat 1X(r4 20~ 1) = XraP], @

In Sec. Il we outline the master equation description of
reaction-diffusion systems, and introduce the WKB approxiyhere the transition probability per unit time for theh
mation of the probability density. This leads to a classicaleaction is taken to be
Hamiltonian system, from which the leading order term in
the WKB expansion, the stochastic potential or eikonal, may X!
be obtained by integration of an associated Lagrangian along s re)
classical trajectories. In Sec. Ill we specialize to systems of W, (X, — X, + yp)zkpAvl 2 pa];[ Ky v )
oscillators weakly coupled through diffusion, and apply the e pal
method of multiple time scales to the above Hamiltonian
system. The terms of leading order in this expansion produce The stoichiometric coefficient oX,, in the pth chemical
a reduced Hamilton-Jacobi equation for two field variablesfeaction isv,, ; the order of thepth reaction with respect to
the phase and its conjugate “momentum.” In Sec. IV weX, is v,,; the kinetic coefficient of theth reaction isk,, .
derive solutions to this equation, and discuss the approximatghe jump frequencyD,, of speciesa is related to Fick's
solution to the full problem. Section V treats the equivalenceyiffusion coefficienteD, by
of the reduced system to the eikonal approximation of the
Kardar-Parisi-Zhang equation. We also quote some results

2

for the KPZ equation that apply to the problem of phase eD, ,

synchronization of coupled oscillators. In Sec. VI we discuss 2d 1"~ €D, 3
our results, potential applications, and directions for further

work.

wherel is the characteristic length of a céfl=AV. In Eq.

(3) we assume that the diffusion term is a small perturbation,
and scale the diffusion coefficient by a small parameter
Alternatively, for diffusion coefficients of ordinary magni-

A. Reaction-diffusion master equation tude, this assumption is equivalent to slow spatial variation
. . g . i I 71/2
Internal fluctuations in nonequilibrium systems are mostof concentrations with a wavelength of order™=.

simply treated by appealing to a mesoscopic level of descrip-

tion that regards reactions and diffusion as Markovian pro- B. WKB approximation of the master equation

cesses. Using jump processes to model reactions and a ran- . ,

dom walk to model diffusion, a reaction-diffusion master Ve consideAV as a large parameter, since a large num-
equation can be constructé2d,17). In general, this equation P€r of particles are contained within a cell, and wifteto

is intractable; but with the introduction of a WKB approxi- '€ading order as an asymptotic WKB form

mation of the probability density15—19, much progress _ —AV S({X; it

can be made in obtaining solutions. We give a brief outline P({Xra} ) =K (xrq )oY Xk, @

of this approach.

We divide the system into macroscopically small cells;wherex,,=X,,/AV is the concentration of a species. In the
each cell oscillates in time according to an homogeneoufollowing, we are concerned with, the stochastic potential
limit cycle solution, and exchanges matter with neighboring(also referred to as the nonequilibrium potentiahd neglect
cells through diffusion. We assume a weak coupling, i.e., thehe prefactoK. Substituting Eq(4) into Eqg. (1), to leading
diffusion terms are small compared to the reaction termsorder we obtain the eikonal equation for the stochastic po-
This assumption may be interpreted as either small values fdential,

IIl. MASTER EQUATION DESCRIPTION
OF DIFFUSION-COUPLED OSCILLATORS
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S (action stochastic potential. These expressions give the sto-
€X 2 Ix VB | T chastic potential for any phase profile in terms of an integral
B 0% of the Lagrangian along a deterministic path.

9S 9S For small values of the diffusion termg<1, a cell is
FeX, — D X, exp{ - —) —1} only slightly perturbed by neighboring cells through diffu-
a 27 Xra  IX(r+a)a sion, and the oscillation within the cell remains close to that
oS of the unperturbed system. The evolution of concentrations
=H {Xm},[—’ , (5  within a cell may then be described in terms of its phase. We
MXra expect the phase to increase approximately linearly with

where w,(x)=W,(X)/AV. This is a Hamilion-Jacobi T and a|so|_ to e¥ﬁ've on a .Z'OWtF'me Scat'.e ?“‘ihto .Wteak
equation for the actio® of an auxiliary system with coordi- fusive coupling. These considerations motivate the intro-
duction of the method of multiple time scales in which the

natesx,, and conjugate “momentap,,= dS/dx,, . Hamil- lution i d to d d infinitel i
ton’s equations of motion for these variables take the stanz0'ution 1S assumed fo depend upon infinitely many time

N P . : ;
dard forms[21 scalesTi'— €'t, |—1,.2,' e T dgﬂnes a long time scale be-
21] cause it is not negligible whetris of order 1£'. Even though
X, OH t and r; are treated as independent variables, this is only an
g ap =E W, (X)) Vo €X Eﬁl PrgVpp artifice that eliminates fast oscillatory motion and allows us
rap to construct equations of motion on slow time scales. We use
) the time scales to keep the perturbation expansion uniformly
+ e —{Xr ol —EXP(— Prot P(r-1)a) vglid (this is_equivalent to the elimination of-secular teyms
2 First the variablex,, andp,, are expanded iR,
—eXP = Prat Pir+1)e)] T X1 -1)a Xro=XO+exB .. )
XexXp =P -1)at Pra) TX(r+1)a o
Pro=0+ep;/+---, 9
Xexq_p(r+1)a+pra)}v (6)
Pra JH IW ,(X;) and each term in the expansions is regarded as dependent on
gt ax :Z X ex;{ 2 prﬁypﬂ) - 1} an infinite number of time scales. In the expansion for the
fe P re A momentum, we take the zeroth order term to be zero; this

B choice insures that the zeroth order tex{f) is a solution to
+ ef{[exq ~PratPr-1)a)— 1] the determllnlstlc equat!otvxl_hlch we will take to _be the limit
cycle solution. The derivative with respect to time becomes

+[exq_pra+p(r+l)a)_l]}- (7)
d J J

The actionS is given by the integral of the Lagrangian qi ﬁ+€¥+ cee (10
associated with the Hamiltoniad along classical trajecto- 0 1
ries, i.e. solutions to Eqg6) and (7). Boundary conditions
for these equations are determined by the structure of the Substituting these expansions into E¢®. and (7), and
fluctuations. The quasistationary probability distribution farcollecting like powers ofe, we obtain a hierarchy of equa-
from the deterministic state is formed by occasional largdions. At each order in the hierarchy we demand that the
fluctuations. These fluctuations follow with overwhelming solution be periodic in the fast timg, at each spatial posi-
probability trajectories given by the solutions to Hamilton’s tion r; this condition will determine the evolution on slow
equations(on the unstable manifoldprojected onto thex  time scales. At zeroth order we have
coordinate$18,19. In the following we concentrate on fluc-
tuations away from the synchronized solution of the deter- ox(©)

ra

ministic system. = (0)
310 ;W’J(X )V pa- (11

Ill. REDUCED SYSTEM: NONLINEAR PHASE

AND MOMENTUM DIFFUSION EQUATIONS This is the deterministic system without diffusion, and de-

A. Method of multiple time scales scribes the evolution of the average numbers of species. We

In this section we apply the many variable version of thelake the deterministic limit cycle as the solution P ; we

0 _ .
method of multiple time scald@2] to Hamilton’s equations assume from Eq(9) that pg=0. The dependence of this
(6) and (7). We expand the time derivatives as well as theSolution on slow timesr;-., and the spatial coordinateis

dependent variables in powers of the small paramet&his  incorporated into a phase varialte( 7,7, . . .):
allows us to separate the fast time scale on which oscillations
occur from slow time scales on which diffusion occurs, and XS%):XEIO)(TOJF 0,). (12)

to derive a reduceHamiltonian system for the phase and
conjugate momentum. In the Appendix we derive a corre-
sponding reduced Hamilton-Jacobi equation for the reducedt first order we have



3306 WILLIAM VANCE AND JOHN ROSS PRE 62

(0) B. Nonlinear phase and momentum diffusion equations
oy M) )
grg e = g VpaXy g After much simplification, the solvability conditions for
Egs. (13) and (16) may be reduced to coupled nonlinear
d phase and momentum diffusion equations:
_ 0 0 1
- O’)_nxlga)—i_ ;} Wp(xl('a)) Vpapﬁﬁ)ypﬁ

J
5 a—TQZCla-FCsza‘l‘ C3(V0)2, (17)
o 1
T IR I T
J
—a=-c,V2a+2c;V-(ave). (18
(97'1

d ow (x(o))
1 P\ ra
—pH4 > LT

(W_
Gro Pl 2 v =0. (14)

In the above simplification, we have changed the discrete
spatial coordinate, subscript to a continuous variable; ac-
cordingly, we write 6(r,7;) and a(r,7;). The constants

. Th(_a left hand _si(_JIe_ of Eq(13), _equated to 2€r0, is the c1,C,, andcs have simple expressions as averages over the
linearized deterministic system; it has a periodic solutionyatarministic limit cycle:

and is, to within a factor of the amplitude, the velocity
(91 970)xO(7o+ 6,). Equation(14) is the adjoint of the lin- ¢1=[v(70).BO( o))t 70) .. (19
earized deterministic equation; from Floquet theory it also 0
has a periodic solution, . For a given spatial position the

scalar product of these periodic solutions is a constant on the ¢,=| v(70),D x\% (20)
fast time scale 7o: 2, v,(7o+ 6,)(9/d10)XD(7o+ 6,) 2 O o |
= const(this may be shown by taking the time derivative of °
the product and using the governing equatjoiige take the 2.(0)
constant to be unity. The general solution to Egl) that is ca=| v(7o),D I°X (21)
periodic in 7, may then be written as the product of and RNz N
an amplitude that is dependent on the slow times as well as 0
ont. where the matrixB is
M—q Tiy - ) U(To+ ;). 15
ra (71 )Va(To r) (15 BaB(X(O)):Ep: WP(XS?I)) VpaVpg (22)

Substituting this form obﬁ) into Eq. (13) and requiring
that solutions be periodic iny, we obtain a solvability con-
dition for x{X). This condition is the orthogonality of the
right han.d side oi Eq(13) to the solutionv, to the adjoint (a.b], ifTodroa( ro)-b(7o). 23
equation:fd7yRv=0. We refer the reader to Rd23] and ° Tolo
to our previous work on the stochastic potential for time
periodically forced limit cycleg24] for details. We note that the matriB is positive definite, and therefore

The evolution of the amplituda, may similarly be ob- ¢,>0. Also, if the matrix of diffusion coefficient® is, or is
tained from the solvability condition faia 7, periodic solu-  sufficiently close to, diagonal with equal elements, tlign
tion) p!?). From the second order term in the hierarchy of>0 (this follows fromv- 9x(®/d7y=1).
equations, the equation fqnﬁi) is The deterministic system is recovered from EdS) and
(18) for a,=0, and is a nonlinear phase diffusion equation,
which is equivalent to the Burgers equation. Kuramfotd

and the scalar product is defined as

i (2)+2 &WP(XEO))V 2 discussed how the coefficierd, may become negative,
J7g Pra 0B OX, ppPrp which causes a loss of stability of uniform oscillations. We
©) ) see that this can only occur if the diffusion matrix is suffi-
_ i (1) _ E 2 W, (%) 2 (1) ciently far from a diagonal matrix with identical elements. In
oon P24 Xy VosPrp the following we assume that coherent oscillations in the
deterministic equation are stable, i.e;>0. We also note
ﬂsz(XEO)) (1) ) that the coefficientc,; characterizes diffusion of the phase
N Tax ox. B VeyPry along the limit cycle in a homogeneous oscillatory system

Puﬁv'y (7Xa(9XB r’B Py ) . ) L. .
[25]. In this case the diffusion coefficient for the phase is

D, N N N proportional toc; and inversely proportional to the system
+ 7{Zp$a)_pgr11)a_pEr)ﬂ)a}- (16)  size.

Using the solution, of Eq¥8) and(9), and averaging the
Hamilton-Jacobi equatiofb) over the fast timery, we derive
At this order, the equation fox(® is not needed for our the following reduced Hamilton-Jacobi equations in the Ap-
approximation. pendix:
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d synchronized states. From E@28) and the appropriate
S~ H(ba)=- j drHy(6,a), (24 boundary conditions, we write the stochastic potential for the
! stationary distribution as

5S1[6(1)] 1 [
;H—U):a(r), (25 Slmiclf_wdrlf dra?. (30)

where the reduced stochastic potential is defined througive note that the potential increases along classical mechani-
S;=AVSe (the overbar denotes averaging ovgj and cal trajectories away from the synchronized state.
An explicit expression for the unstable manif@ado(r))
1 ) ) is obtained from the Hamiltonian-Jacobi equati@8). The
Hi=a| 5cia+cVad+ca(Vo)T). (26)  action is independent of time, if H=0 for a(¢)=0
(which gives the deterministic systenand for

Relation (25) expresses the momentuanas the functional 5
derivative ofS; with respect tod. It is easily verified that a(0)=— —[c,V260+c4(V ). (31)
Hamilton’s equations that correspond kb, are Eq.(17) C1

equal todH,/da and Eq.(18) equal to— sH/56. ) . o )
Putting this expression into E¢L7) for 6 yields the macro-

scopic nonlinear phase diffusion equation with time re-
IV. SOLUTIONS FOR THE STOCHASTIC POTENTIAL versed, i.e.,r;— — 71. That is, most probable fluctuational
A. Solution to d-dimensional systems trajectories that start from the vicinity of the synchronized
. . . . . state and arrive at a givefi(r) are time-reversed determin-
terTrhe?aStitgr?hi?ws?ecr&?e;‘“?ri;a:u;ri]liea:c’lIgl\lz:lllsrjs?cg(ljnrx:?he;r:i::rgi‘c'ﬂC paths. This important property of coupled oscillator sys-
P y ltems does not hold for typicaldimensional system@vhich

system. The total denvaqve with respectp OT the action 15¢k detailed balangd19]. This property of time reversibil-
S, (the reduced stochastic potentialong classical trajecto- ity also occurs in periodically forcethomogeneoysoscilla-

ries, i.e., solutions to Eq$17) and(18), is tory systemg 24]
ds, 4, J» 8S, 96(r) Using the above result that the amplituales proportional

d rT _, (27)  to the velocity in the deterministic phase equation, we write
0T (1) om the probability density in terms of deterministic paths:
which is the LagrangianC corresponding to the reduced tf
Hamiltonian: P[00]~exp< —ef drlf dr a?( 0))

ds, a0 1 5 2

= — == = de (= J

an dr H1+aarl chf dras=L. (28 ~ex;{?fo drlf df[a—ﬁﬂdel(f,ﬁ) ) (32

1

That is,S; is the action evaluated along a classical dynami'wheree is the solution to the deterministic equation:
cal trajectory. For general time-dependent distributions, the det q '
classical trajectories are not known, and the equations must P

be numerically integrated. For the stationary distribution, the —— Oger=CpV 2 Ogert C3(V Oge) > (33
projection of a trajectory onto the coordinates is the path !

followed with overwhelming probability away from the de-
terministic solution; it is the most probable or optimal fluc-

tuational path. In this case, the boundary conditions for Egs.

The solution to this equation may be explicitly written as

(17) and(18) follow from physical considerations: for times Ouel Y, 71) = gln[w(r,rl)],

far in the past,7;— —, the system is near the spatially Cs

synchronized stat&(r)=const. The paths followed away (34)
from this state lie on its unstable manifo(th the Hamil- o dZ (r—0)?% cs

tonian system w(r, )= et R g, PolO]-

Referring to the definition o6, (see the Appendixand

relation (4), we may express the probability distribution in gxcept for one-dimensional systems, these equations must be
terms ofS;: evaluated numerically.

PLO(r), T ]~exp{—eSy[ O(r), 7]} (29 B. Explicit stationary solution for one-dimensional systems

In summary, the main results of perturbation theory are the Ford=1 a stationary solution of E¢24) for the reduced
reduced Hamilton’s equations and the relation for the stostochastic potential is

chastic potential in terms of a Lagrangian. These equations

may be used to study probability densities for other states. Slzgf dr(V 6)2, (35)
We restrict our attention to the stationary distribution for C1
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which may be verified using Eq$28) and (25). From Eq.  wheret, is the crossover time at which the width changes
(29 we obtain a Gaussian stationary probability distributionfrom a time-dependent value to a time independsatura-

tion) value. The exponent characterizes the roughness of a
front. For one-dimensional systems, the exact solufieaq.

(40)] shows that the local slop&h follow a Gaussian dis-
tribution, random and uncorrelated. The front is obtained by
This solution is independent af, the coefficient of the non- summing these local random slopes, which produces a ran-
linear term, and is a solution of the linear Hamilton-Jacobidom walk. Hence it follows that in one-dimensional systems
equation[i.e., of Eq.(24), with the nonlinear term omittdd ~ «=1/2, the random walk exponent. For short times the width
It follows from the form of the above solution th&t¢ is an ~ increases as a power of time, and may be characterized by a
independent random variable, and that the phaperforms ~ growth exponenj:
a random walk.(Corresponding to a random walk in one

dimension is a roughness exponentacf 1/2).

. (36)

P[0]~exr{—ez—ij dr(V )2

w~tf  [t<ty]. (42)

With the use of scaling arguments, it can be shown mhat
V. RELATION OF THE REDUCED EQUATION =1/3. We refer the reader to the literature for other scaling
TO THE KPZ EQUATION relations[12,13.
Unlike the one-dimensional case, exact solutions do not
exist for higher-dimensional systems, and numerical methods
The most general form of an equation describing thenave been used to determine scaling exponents.dFa,
grOWth of a noise driven interface is the Kardar-PariSi-Zhang’ecent numerical So|utior{§_3] of the Fokker-Planck equa-

A. Kardar-Parisi-Zhang equation

(KPZ) equation[11-13 tion give the following values=0.36 and@=0.22. There-
Jh N fore, as in one dimension, only a rough state exists. d~or
— =pV?h+=(Vh)2+ 7, (377 =2 the scaling exponents exhibit two different values de-
ot 2 pending on the coupling strength, which is defined through

g°=\2C/2v3. The weak coupling regime occurs fgr g*;
whereh is the height of a growing interface. The driving the exponents are described by linear theary: (2—d)/2
noise ,, which may be thermal in origin, is considered to be and 8= (2—d)/4. Since the exponents are less than zero, the
Gaussian with{7)=0, and & function correlated in space front is flat. The strong coupling regime occurs fprg*;
and time: the exponents are positive, and hence the front is rough. For
d=3 the critical value at which a phase transition occurs is
(n(r,O)n(r',t"))=Ca(r—r")s(t—t"). (38)  g*=32. The approximate values for the exponents are

. o L . =0.3 andp=0.18.
That is, the KPZ equation is the deterministic nonlinear

phase diffusion equatiofEq. (17), with a=0] driven with
white noise. The noise causes an initially flat front to - ) .
roughen and display a self-affine structure. A measure of this The probability densityp for the KPZ equation obeys a
roughening is the width Fokker-Planck equatiofi2,13
+ c f d >
5| dr—p.

L o ap 1)
WZ(L,t)=<L‘dfodr(h—h)2>, (39 E:_fdr%{ sh?

(43)
\(,avtze(;(;?]cl)stethaevgggigzzr:/g: tshzfmsg)lzge, and the angular braCkl':or small values of the noise streng@) we assume an
Both transient and stationary scaling relations have beeaﬁ1Sympt0tlc WKB form for the probability densigy.
investigated for the KPZ equation. In the following, we re- s
call some of these resulf§2,13. An exact solution for the p[h]~exp{ C
stationary probability density only exists for one-
dimensional systems, and is

B. Eikonal approximation of the KPZ equation

A
vV2h+§(Vh)2

p

: (44)

Substituting this into the Fokker-Planck equation, and col-
lecting leading order terms, we obtain the following eikonal
(40) approximation:

P[h]~exp[— %f dr(Vh)2

A
vV2h+§(Vh)2

s 1
R g2
as may be verified using the Fokker-Planck equdfinrSec. ot _f dr[ &t 2 § } (45)
B, Eqg. (43)]. We note that this solution is of the same form

as that for the density of the phase in one dimensionah comparison with Eq(24) shows that the above eikonal

diffusion-coupled oscillatorgEq. (36)]. approximation for the KPZ equation is equivalent to our re-
For long times, the width of a front saturates at a valueduced Hamilton-Jacobi description for diffusion-coupled os-
that depends on the system slze cillators. After changing the time variabte=c, 7, we have

the following correspondence:=c,/c,, N/2=c3/c,, and
w~L* [t>t], 41) C=1le.
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C. Results for synchronization of diffusion-coupled oscillators  scribe fluctuations in homogeneously forag@mogeneouys

From the above correspondence between 2. and oscillatory system$24] should help resolve this problem.

(45), the results outlined for the KPZ equation apply directly
to the diffusion-coupled oscillator problem. In fewer than ACKNOWLEDGMENTS
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homogeneous oscillations are stable for the deterministic APPENDIX
system. The desynchronization of phase over large spatial
scales may be characterized by a roughness expenght A reduced Hamilton-JacohiHJ) equation is associated

root mean square deviation in phase scales with the length afith Eqgs.(17) and(18). To derive this from the original HJ

the system ad.®. An exact solution exists fod=1, and equation[Eq. (5)], we substitute the expansion for the solu-
gives a roughness exponent @f=1/2. In d=3, weak and tion[Eq.(8)] into the Hamiltonian, and average over the fast
strong scaling regimes are separated by a critical value of thiéme 7. First we write the potential in terms of the phase and

coupling strengtty, where time,
2¢,C3 S{6,},1)=SUxO 7o+ 6) +exP+- -1 t), (A1)
= . 46
ecg (46) which gives the following partial derivative with respect to
time:

From the results for the KPZ equation, we observe that de-
synchronization typically occurs in three-dimensional sys-
tems, in which the value o (diffusion coefficients or in-
verse spatial scales small(such thatg>g* =32). We note

38({0 } t)=£S({X(O)+ .. } t)
at el ot '

ici - - IS 9
that smgll values of the cqefﬁmeml,.whlch characterizes +Z _[XE?X)JFGX%)JFO(Gz)]
phase diffusion along the limit cycle in a homogeneous sys- Ta OXpq Ot
tem, may partially cancel the effect e&f on the coupling 5
strength. That is, for systems with small phase diffusion co- - _H+ Ez a,| 1+ evrex®+0(e?) |.
:

efficients (xc,), desynchronization of the phase occurs on
longer spatial scale~ e '~c;*. Larger values ofe in-

crease coupling between oscillators, and inhibit phase desyn- (A2)
chronization. Then, expanding the time using multiple time scales and av-
eraging over the fast time,, we obtain, to second order &
VI. DISCUSSION
. . . . aS({6:},t)  aS({6,},1)
We have described the influence of internal fluctuations ({9;} +e ;I;Tr} +0(€?)
0 1

on diffusion-coupled oscillatory systems. Using the eikonal

approximation and the method of multiple time scales, we _

reduced a master equation description to a Hamilton-Jacobi =—H+ 52 ar( 1+e ) ;

equation for the stochastic potential of the phase. This sim- ' To

plification of the evolution equations allowed us to obtain an _

exact solution for the stochastic potential of one-dimensionayvhere the overbar denotes the average ovey:f

systems and, in general, to relate the reduced Hamilton=(1/To) fd7of. After simplification, we have the explicit

Jacobi equation to the eikonal approximation of the Kpzform of the reduced Hamilton-Jacobi equation:

equation(a noise driven nonlinear diffusion equation which 9

Qescrlbes some typgs of interface growilmportant r_esults —S=— 62 Hi({o:}.{a}) (A3)

include the destruction of homogeneous synchronized solu- Ity r

tions ford=1 and 2, which are stable in the deterministic 1

system, and the presence of a critical system length below I 2 2

which oscillations are spatially synchronized b+ 3. Hi=a 3C1a TV 0+ (V.07 (A4)
An important area for investigation is the influence of . . .

internal fluctuations on periodically forced oscillatory We note thatd, and a, are not conjugate variables since

reaction-diffusion systems. Work on homogeneously forcedS/d6,= €a, . Also, the right hand side of EJA3) has a

deterministic systems has shown mode-locked spatial pagum over the discrete index [In Eq. (A4), we have taken

terns[26_3q_ Such mode-locked patterns may serve as Comthe limit of small cell Iengthl and introduced continuous

putational device$31,32. Whether these structures persist derivatives| These deficiencies may be remedied by scaling

with internal fluctuations is an open question. Using thethe potential'S;=AV Y e. The Hamilton-Jacobi equation for

methods of the present paper along with those used to dé&, is given by Eq.(24).

J
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