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Master equation approach to synchronization in diffusion-coupled nonlinear oscillators

William Vance and John Ross
Department of Chemistry, Stanford University, Stanford, California 94305

~Received 24 February 2000!

We study the influence of internal fluctuations on phase synchronization in oscillatory reaction-diffusion
systems through a master equation approach. In the limit of large system size, the probability density is
analyzed by means of the eikonal approximation. This approximation yields a Hamilton-Jacobi equation for the
stochastic potential, which may be reduced to coupled nonlinear diffusion equations for the phase of oscillation
and~conjugate! ‘‘momentum.’’ We give explicit expressions for the coefficients of these equations in terms of
averages over the deterministic periodic orbit. For one-dimensional systems, we obtain an explicit solution for
the stationary stochastic potential: the width in phase, which is defined as the root mean square fluctuation in
phase, characterizes the roughness of phase locking, and diverges with the system sizeL according to a power
law w;La, with a51/2. To study higher-dimensional systems, we show that the eikonal approximations of
the diffusion-coupled oscillator problem and the Kardar-Parisi-Zhang~KPZ! equation~in the limit of small
noise intensity! are equivalent. The KPZ equation governs some forms of surface growth, and the height of a
growing front corresponds to the phase~the 2p periodicity in phase is ignored! in the diffusion-coupled
oscillator problem. From the equivalence, we obtain the result that spatially synchronized states may exist only
in systems with a spatial dimension greater than or equal to 3; for dimensions 1 and 2, a ‘‘rough’’ state exists
in which the width~in phase! diverges algebraically with the system size,a.0.

PACS number~s!: 05.40.2a, 05.45.Xt
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I. INTRODUCTION

Much attention has been given to the problem of ma
taining long-range order in systems governed by short-ra
interactions@1–4#. Of particular concern from chemical an
biological points of view are large populations of se
oscillatory systems coupled through diffusion. These arise
models for oscillating chemical reactions@5,1,3#, and for
pacemakers in the description of cardiovascular, respirat
and circadian rhythms@6,7#. Many ecological systems als
exhibit population cycles, and are synchronized over la
distances@8#. In the absence of noise, the evolution of the
systems~for a slow spatial variation of the phase of the o
cillators! may be described by an equation for the phase
oscillation—a nonlinear phase diffusion equation@5,1#. This
equation has stable synchronous oscillatory solutions as
as a variety of other solutions, such as periodic wave tra
‘‘target patterns,’’ and spiral waves@1,3,9#. It is of consider-
able interest to know whether such states are preserved i
presence of either internal or external noise~as the size of the
system becomes arbitrarily large!. For the case of a spatiall
synchronized state, this question was partially answered
Grinsteinet al. @10#, who argued that stable spatially cohe
ent oscillations do not occur ind-dimensional,~external!
noisy oscillatory systems withd<2. They used the connec
tion between the ‘‘phase-only’’ approximation of the noi
Ginzburg-Landau equation, which is used to model the on
of oscillations in spatially distributed systems, with th
Kardar-Parisi-Zhang~KPZ! equation, which is a noise-drive
nonlinear diffusion equation that governs some types of s
face growth@11–13#. The phase of oscillators at a give
spatial point corresponds to the height of a growing interf
of the KPZ equation~ignoring the periodicity of the phas
variable!. Their simulations using~noiseless! cellular au-
tomata also suggest that the KPZ equation correctly
PRE 621063-651X/2000/62~3!/3303~8!/$15.00
-
e

as

y,

e
e
-
f

ell
s,

the

by

et

r-

e

e-

scribes the effects of internal fluctuations. Recent simu
tions @14# of the master equation for one-dimension
oscillatory reaction-diffusion systems near a Hopf bifurc
tion support these results. These simulations show that
homogeneous synchronized state, which is a stable solu
for the deterministic system, is destroyed by internal fluct
tions as the size of the system is increased.

We study the influence of internal fluctuations on sy
chronization in diffusively coupled oscillators at a meso
copic level using a master equation approach. Our w
makes explicit the connection between this description
oscillatory systems and the KPZ equation. Using a WK
approximation@15–19# of the probability density, and apply
ing the method of multiple time scales, we derive a reduc
set of ~Hamiltonian! coupled nonlinear diffusion equation
for the phaseu and the~conjugate! ‘‘momentum.’’ This pro-
cedure yields explicit expressions for the coefficients
terms of averages over the deterministic periodic orbit. A
sociated with these equations is a Hamilton-Jacobi equa
for the leading term in the WKB approximation, which is th
stochastic potential for the phase. For the stationary stat
one-dimensional systems, we obtain an exact solution for
stochastic potential. For higher-dimensional systems we
lize the equivalence of the stochastic~phase! potential and
the potential for the KPZ equation in the limit of weak nois
Using this correspondence we apply results from the ex
sive literature on kinetic roughening@13# ~of growing inter-
faces! for the KPZ equation to the problem of the influen
of internal fluctuations on spatial synchronization.~The in-
fluence of fluctuations on plane waves and other solution
the nonlinear phase equation can also be studied using
reduced Hamilton-Jacobi equations with appropriate bou
ary conditions.!

The consequences for synchronization in reacti
diffusion systems follow from the above equivalence b
3303 ©2000 The American Physical Society
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3304 PRE 62WILLIAM VANCE AND JOHN ROSS
tween the eikonal approximations of the coupled oscilla
and KPZ equations. The conditions under which cohere
of a growing interface can be sustained were studied ex
sively for the KPZ equation. For dimensions less than
equal to a ‘‘critical dimension’’dc52, spatial synchroniza
tion cannot be maintained. A ‘‘rough’’ state exists in whic
fluctuations in the phaseu diverge algebraically with the
system sizeL, ^@u(x)2 ū #2&1/2;La, with a.0. That is, the
difference in phase between two points separated by a
tanceL is typically of orderLa ~the 2p periodicity of the
phase is ignored!. For a system withd>3, a smooth spatially
synchronized state exists (a,0 for a sufficiently small value
of the coefficient of the nonlinear term of the phase-diffus
equation!. In this case, the two-point correlations in pha
decay asymptotically like 1/r d22 in space and 1/t (d22)/2 in
time. In dimensiond53, there is a phase transition in whic
a smooth state exists for values of the coupling strengtg
below a critical numberg* and a ‘‘rough’’ state exists for
values greater thang* . ~The coupling strengthg is a function
of all the parameters in the phase-diffusion equation.!

In Sec. II we outline the master equation description
reaction-diffusion systems, and introduce the WKB appro
mation of the probability density. This leads to a classi
Hamiltonian system, from which the leading order term
the WKB expansion, the stochastic potential or eikonal, m
be obtained by integration of an associated Lagrangian a
classical trajectories. In Sec. III we specialize to systems
oscillators weakly coupled through diffusion, and apply t
method of multiple time scales to the above Hamilton
system. The terms of leading order in this expansion prod
a reduced Hamilton-Jacobi equation for two field variabl
the phase and its conjugate ‘‘momentum.’’ In Sec. IV w
derive solutions to this equation, and discuss the approxim
solution to the full problem. Section V treats the equivalen
of the reduced system to the eikonal approximation of
Kardar-Parisi-Zhang equation. We also quote some res
for the KPZ equation that apply to the problem of pha
synchronization of coupled oscillators. In Sec. VI we discu
our results, potential applications, and directions for furt
work.

II. MASTER EQUATION DESCRIPTION
OF DIFFUSION-COUPLED OSCILLATORS

A. Reaction-diffusion master equation

Internal fluctuations in nonequilibrium systems are m
simply treated by appealing to a mesoscopic level of desc
tion that regards reactions and diffusion as Markovian p
cesses. Using jump processes to model reactions and a
dom walk to model diffusion, a reaction-diffusion mast
equation can be constructed@20,17#. In general, this equation
is intractable; but with the introduction of a WKB approx
mation of the probability density@15–19#, much progress
can be made in obtaining solutions. We give a brief outl
of this approach.

We divide the system into macroscopically small ce
each cell oscillates in time according to an homogene
limit cycle solution, and exchanges matter with neighbor
cells through diffusion. We assume a weak coupling, i.e.,
diffusion terms are small compared to the reaction ter
This assumption may be interpreted as either small values
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the diffusion coefficients or slow spatial variation of conce
trations~with diffusion coefficients of ordinary magnitude!.
With this supposition, the structure of the limit cycle in in
dividual cells is only slightly perturbed by neighboring cell
We take as variables the numbers of particles$Xra% within
cells, and assume that they define a Markov process, wher
labels the cell anda the species. These random variabl
change as a result of chemical reactions, which are mod
as jump Markov processes, and diffusion, which is mode
as a random walk between adjacent cells. This leads
multivariate master equation for the probability distributio
P($Xra%,t):

dP

dt
5(

r
(

r
@Wr~Xr2nr→Xr !P~$Xra2nra%!

2Wr~Xr→Xr1nr!P#1e(
a

D̃a

2d (
r ,a

@~Xra11!

3P~Xra11,X(r1a)a21!2XraP#, ~1!

where the transition probability per unit time for therth
reaction is taken to be

Wr~Xr→Xr1nr!5krDV12San̄ra)
a

~Xra!!

~Xra2 n̄ra!!
. ~2!

The stoichiometric coefficient ofXa in the rth chemical
reaction isnra ; the order of therth reaction with respect to
Xa is n̄ra ; the kinetic coefficient of therth reaction iskr .
The jump frequencyeD̃a of speciesa is related to Fick’s
diffusion coefficienteDa by

eD̃a

2d
l 2;eDa , ~3!

where l is the characteristic length of a celll d5DV. In Eq.
~3! we assume that the diffusion term is a small perturbati
and scale the diffusion coefficient by a small parametere.
Alternatively, for diffusion coefficients of ordinary magn
tude, this assumption is equivalent to slow spatial variat
of concentrations with a wavelength of ordere21/2.

B. WKB approximation of the master equation

We considerDV as a large parameter, since a large nu
ber of particles are contained within a cell, and writeP to
leading order as an asymptotic WKB form

P~$Xra%,t !5K~xra ,t !e2DV S($xra%,t), ~4!

wherexra5Xra /DV is the concentration of a species. In th
following, we are concerned withS, the stochastic potentia
~also referred to as the nonequilibrium potential!, and neglect
the prefactorK. Substituting Eq.~4! into Eq. ~1!, to leading
order we obtain the eikonal equation for the stochastic
tential,
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2
]S

]t
5(

r
(

r
wr~xr !FexpS (

b

]S

]xrb
nrbD 21G

1e(
a

D̃a

2 (
r ,a

xraFexpS 2
]S

]xra
1

]S

]x(r1a)a
D21G

[HS $xra%,H ]S

]xra
J D , ~5!

where wr(xr)5Wr(Xr)/DV. This is a Hamilton-Jacob
equation for the actionSof an auxiliary system with coordi
natesxra and conjugate ‘‘momenta’’pra5]S/]xra . Hamil-
ton’s equations of motion for these variables take the s
dard forms@21#

]xra

]t
5

]H

]pra
5(

r
wr~xr !nra expS (

b
prbnrbD

1e
D̃a

2
$xra@2exp~2pra1p(r 21)a!

2exp~2pra1p(r 11)a!] 1x(r 21)a

3exp~2p(r 21)a1pra!1x(r 11)a

3exp~2p(r 11)a1pra!%, ~6!

]pra

]t
52

]H

]xra
5(

r

]wr~xr !

]xra
FexpS (

b
prbnrbD 21G

1e
D̃a

2
$@exp~2pra1p(r 21)a!21#

1@exp~2pra1p(r 11)a!21#%. ~7!

The actionS is given by the integral of the Lagrangia
associated with the HamiltonianH along classical trajecto
ries, i.e. solutions to Eqs.~6! and ~7!. Boundary conditions
for these equations are determined by the structure of
fluctuations. The quasistationary probability distribution
from the deterministic state is formed by occasional la
fluctuations. These fluctuations follow with overwhelmin
probability trajectories given by the solutions to Hamilton
equations~on the unstable manifold! projected onto thex
coordinates@18,19#. In the following we concentrate on fluc
tuations away from the synchronized solution of the de
ministic system.

III. REDUCED SYSTEM: NONLINEAR PHASE
AND MOMENTUM DIFFUSION EQUATIONS

A. Method of multiple time scales

In this section we apply the many variable version of t
method of multiple time scales@22# to Hamilton’s equations
~6! and ~7!. We expand the time derivatives as well as t
dependent variables in powers of the small parametere. This
allows us to separate the fast time scale on which oscillat
occur from slow time scales on which diffusion occurs, a
to derive a reduced~Hamiltonian! system for the phase an
conjugate momentum. In the Appendix we derive a cor
sponding reduced Hamilton-Jacobi equation for the redu
n-

e
r
e

r-

s
d

-
d

~action! stochastic potential. These expressions give the
chastic potential for any phase profile in terms of an integ
of the Lagrangian along a deterministic path.

For small values of the diffusion terms,e!1, a cell is
only slightly perturbed by neighboring cells through diffu
sion, and the oscillation within the cell remains close to th
of the unperturbed system. The evolution of concentrati
within a cell may then be described in terms of its phase.
expect the phase to increase approximately linearly w
time, and also to evolve on a slow time scale due to we
diffusive coupling. These considerations motivate the int
duction of the method of multiple time scales in which t
solution is assumed to depend upon infinitely many ti
scalest i5e i t, i 51,2, . . . ; t i defines a long time scale be
cause it is not negligible whent is of order 1/e i . Even though
t andt i are treated as independent variables, this is only
artifice that eliminates fast oscillatory motion and allows
to construct equations of motion on slow time scales. We
the time scales to keep the perturbation expansion unifor
valid ~this is equivalent to the elimination of secular term!.
First the variablesxra andpra are expanded ine,

xra5xra
(0)1exra

(1)1•••, ~8!

pra501epra
(1)1•••, ~9!

and each term in the expansions is regarded as depende
an infinite number of time scalest i . In the expansion for the
momentum, we take the zeroth order term to be zero;
choice insures that the zeroth order termxra

(0) is a solution to
the deterministic equation~which we will take to be the limit
cycle solution!. The derivative with respect to time becom

d

dt
5

]

]t0
1e

]

]t1
1•••. ~10!

Substituting these expansions into Eqs.~6! and ~7!, and
collecting like powers ofe, we obtain a hierarchy of equa
tions. At each order in the hierarchy we demand that
solution be periodic in the fast timet0 at each spatial posi
tion r; this condition will determine the evolution on slow
time scales. At zeroth order we have

]xra
(0)

]t0
5(

r
wr~x(0)!nra . ~11!

This is the deterministic system without diffusion, and d
scribes the evolution of the average numbers of species.
take the deterministic limit cycle as the solution forxra

(0) ; we
assume from Eq.~9! that prb

(0)50. The dependence of thi
solution on slow timest i .0 and the spatial coordinater is
incorporated into a phase variableu r(t1 ,t2 , . . . ):

xra
(0)5xa

(0)~t01u r !. ~12!

At first order we have
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]

]t0
xra

(1)2(
r,b

]wr~xra
(0)!

]xb
nraxrb

(1)

52
]

]t1
xra

(0)1(
r,b

wr~xra
(0)!nraprb

(1)nrb

1
D̃a

2
$22xra

(0)1x(r 21)a
(0) 1x(r 11)a

(0) %, ~13!

]

]t0
pra

(1)1(
r,b

]wr~xra
(0)!

]xa
nrbprb

(1)50. ~14!

The left hand side of Eq.~13!, equated to zero, is th
linearized deterministic system; it has a periodic soluti
and is, to within a factor of the amplitude, the veloci
(]/]t0)xa

(0)(t01u r). Equation~14! is the adjoint of the lin-
earized deterministic equation; from Floquet theory it a
has a periodic solutionya . For a given spatial positionr, the
scalar product of these periodic solutions is a constant on
fast time scale t0 : (aya(t01u r)(]/]t0)xa

(0)(t01u r)
5const~this may be shown by taking the time derivative
the product and using the governing equations!. We take the
constant to be unity. The general solution to Eq.~14! that is
periodic int0 may then be written as the product ofya and
an amplitude that is dependent on the slow times as we
on r:

pra
(1)5ar~t1 , . . . !ya~t01u r !. ~15!

Substituting this form ofpra
(1) into Eq. ~13! and requiring

that solutions be periodic int0, we obtain a solvability con-
dition for xra

(1) . This condition is the orthogonality of th
right hand side of Eq.~13! to the solutionya to the adjoint
equation:*dt0Ry50. We refer the reader to Ref.@23# and
to our previous work on the stochastic potential for tim
periodically forced limit cycles@24# for details.

The evolution of the amplitudear may similarly be ob-
tained from the solvability condition for~a t0 periodic solu-
tion! pra

(2) . From the second order term in the hierarchy
equations, the equation forpra

(2) is

]

]t0
pra

(2)1(
r,b

]wr~xr
(0)!

]xa
nrbprb

(2)

52
]

]t1
prb

(1)2
1

2 (
r

]wr~xr
(0)!

]xa
S (

b
nrbprb

(1)D 2

2 (
r,b,g

]2wr~xr
(0)!

]xa]xb
xrb

(1)nrgprg
(1)

1
D̃a

2
$2pra

(1)2p(r 21)a
(1) 2p(r 11)a

(1) %. ~16!

At this order, the equation forx(2) is not needed for our
approximation.
,

o

he

as

f

B. Nonlinear phase and momentum diffusion equations

After much simplification, the solvability conditions fo
Eqs. ~13! and ~16! may be reduced to coupled nonline
phase and momentum diffusion equations:

]

]t1
u5c1a1c2¹2u1c3~“u!2, ~17!

]

]t1
a52c2¹2a12c3“•~a“u!. ~18!

In the above simplification, we have changed the discr
spatial coordinate, subscriptr, to a continuous variable; ac
cordingly, we write u(r ,t1) and a(r ,t1). The constants
c1 ,c2, andc3 have simple expressions as averages over
deterministic limit cycle:

c15@y~t0!,B„x(0)~t0!…y~t0!#T0
, ~19!

c25Fy~t0!,D
]x(0)

]t0
G

T0

~20!

c35F y~t0!,D
]2x(0)

]t0
2 G

T0

, ~21!

where the matrixB is

Bab~x(0)!5(
r

wr~xra
(0)!nranrb , ~22!

and the scalar product is defined as

@a,b#T0
5

1

T0
E

0

T0
dt0a~t0!•b~t0!. ~23!

We note that the matrixB is positive definite, and therefor
c1.0. Also, if the matrix of diffusion coefficientsD is, or is
sufficiently close to, diagonal with equal elements, thenc2
.0 ~this follows fromy•]x(0)/]t051).

The deterministic system is recovered from Eqs.~17! and
~18! for ar50, and is a nonlinear phase diffusion equatio
which is equivalent to the Burgers equation. Kuramoto@1#
discussed how the coefficientc2 may become negative
which causes a loss of stability of uniform oscillations. W
see that this can only occur if the diffusion matrix is suf
ciently far from a diagonal matrix with identical elements.
the following we assume that coherent oscillations in
deterministic equation are stable, i.e.,c2.0. We also note
that the coefficientc1 characterizes diffusion of the phas
along the limit cycle in a homogeneous oscillatory syst
@25#. In this case the diffusion coefficient for the phase
proportional toc1 and inversely proportional to the syste
size.

Using the solution, of Eqs.~8! and~9!, and averaging the
Hamilton-Jacobi equation~5! over the fast timet0, we derive
the following reduced Hamilton-Jacobi equations in the A
pendix:
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]

]t1
S152H~u,a!52E dr H1~u,a!, ~24!

dS1@u~r !#

du~r !
5a~r !, ~25!

where the reduced stochastic potential is defined thro
S15DVS̄/e ~the overbar denotes averaging overt0) and

H15aS 1

2
c1a1c2¹2u1c3~“u!2D . ~26!

Relation ~25! expresses the momentuma as the functional
derivative ofS1 with respect tou. It is easily verified that
Hamilton’s equations that correspond toH1 are Eq. ~17!
equal todH1 /da and Eq.~18! equal to2dH1 /du.

IV. SOLUTIONS FOR THE STOCHASTIC POTENTIAL

A. Solution to d-dimensional systems

The stochastic potential has the following convenient
terpretation in terms of the auxiliary classical mechani
system. The total derivative with respect tot1 of the action
S1 ~the reduced stochastic potential! along classical trajecto
ries, i.e., solutions to Eqs.~17! and ~18!, is

dS1

dt1
5

]S1

]t1
1E dr

dS1

du~r !

]u~r !

]t1
, ~27!

which is the LagrangianL corresponding to the reduce
Hamiltonian:

dS1

dt1
5E drF2H11a

]u

]t1
G5

1

2
c1E dr a2[L. ~28!

That is,S1 is the action evaluated along a classical dyna
cal trajectory. For general time-dependent distributions,
classical trajectories are not known, and the equations m
be numerically integrated. For the stationary distribution,
projection of a trajectory onto thex coordinates is the path
followed with overwhelming probability away from the de
terministic solution; it is the most probable or optimal flu
tuational path. In this case, the boundary conditions for E
~17! and~18! follow from physical considerations: for time
far in the past,t1→2`, the system is near the spatial
synchronized stateu(r )5const. The paths followed awa
from this state lie on its unstable manifold~in the Hamil-
tonian system!.

Referring to the definition ofS1 ~see the Appendix! and
relation ~4!, we may express the probability distribution
terms ofS1:

P@u~r !,t1#;exp$2eS1@u~r !,t1#%. ~29!

In summary, the main results of perturbation theory are
reduced Hamilton’s equations and the relation for the s
chastic potential in terms of a Lagrangian. These equat
may be used to study probability densities for other sta
We restrict our attention to the stationary distribution f
h

-
l

i-
e
st
e

s.

e
-

ns
s.

synchronized states. From Eq.~28! and the appropriate
boundary conditions, we write the stochastic potential for
stationary distribution as

S1'
1

2
c1E

2`

t f
dt1E dr a2. ~30!

We note that the potential increases along classical mech
cal trajectories away from the synchronized state.

An explicit expression for the unstable manifolda„u(r )…
is obtained from the Hamiltonian-Jacobi equation~28!. The
action is independent of timet1, if H50 for a(u)50
~which gives the deterministic system!, and for

a~u!52
2

c1
@c2¹2u1c3„“u!2]. ~31!

Putting this expression into Eq.~17! for u yields the macro-
scopic nonlinear phase diffusion equation with time
versed, i.e.,t1→2t1. That is, most probable fluctuationa
trajectories that start from the vicinity of the synchroniz
state and arrive at a givenu(r ) are time-reversed determin
istic paths. This important property of coupled oscillator sy
tems does not hold for typicaln-dimensional systems~which
lack detailed balance! @19#. This property of time reversibil-
ity also occurs in periodically forced~homogeneous! oscilla-
tory systems@24#.

Using the above result that the amplitudea is proportional
to the velocity in the deterministic phase equation, we wr
the probability density in terms of deterministic paths:

P@u0#;expS 2eE
2`

t f
dt1E dr a2~u! D

;expS 4e

c1
2E0

`

dt1E drF ]

]t1
udet~r ,t1!G2D , ~32!

whereudet is the solution to the deterministic equation:

]

]t1
udet5c2¹2udet1c3~“udet!

2. ~33!

The solution to this equation may be explicitly written as

udet~r ,t1!5
c2

c3
ln@w~r ,t1!#,

~34!

w~r ,t1!5E
2`

` dz

A4pc2t1

expF2
~r 2z!2

4c2t1
1

c3

c2
u0~z!G .

Except for one-dimensional systems, these equations mu
evaluated numerically.

B. Explicit stationary solution for one-dimensional systems

For d51 a stationary solution of Eq.~24! for the reduced
stochastic potential is

S15
c2

c1
E dr~“u!2, ~35!
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which may be verified using Eqs.~28! and ~25!. From Eq.
~29! we obtain a Gaussian stationary probability distributi

P@u#;expF2e
c2

c1
E dr~“u!2G . ~36!

This solution is independent ofc3, the coefficient of the non-
linear term, and is a solution of the linear Hamilton-Jaco
equation@i.e., of Eq.~24!, with the nonlinear term omitted#.
It follows from the form of the above solution that“u is an
independent random variable, and that the phaseu performs
a random walk.~Corresponding to a random walk in on
dimension is a roughness exponent ofa51/2).

V. RELATION OF THE REDUCED EQUATION
TO THE KPZ EQUATION

A. Kardar-Parisi-Zhang equation

The most general form of an equation describing
growth of a noise driven interface is the Kardar-Parisi-Zha
~KPZ! equation@11–13#

]h

]t
5n¹2h1

l

2
~“h!21h, ~37!

where h is the height of a growing interface. The drivin
noiseh, which may be thermal in origin, is considered to
Gaussian witĥ h&50, andd function correlated in spac
and time:

^h~r ,t !h~r 8,t8!&5Cd~r 2r 8!d~ t2t8!. ~38!

That is, the KPZ equation is the deterministic nonline
phase diffusion equation@Eq. ~17!, with a50# driven with
white noise. The noise causes an initially flat front
roughen and display a self-affine structure. A measure of
roughening is the width

w2~L,t !5K L2dE
0

L

dr~h2h̄!2L , ~39!

whered is the dimension of the space, and the angular bra
ets denote averaging over samples.

Both transient and stationary scaling relations have b
investigated for the KPZ equation. In the following, we r
call some of these results@12,13#. An exact solution for the
stationary probability density only exists for on
dimensional systems, and is

P@h#;expF2
n

CE dr~“h!2G , ~40!

as may be verified using the Fokker-Planck equation@in Sec.
B, Eq. ~43!#. We note that this solution is of the same for
as that for the density of the phase in one dimensio
diffusion-coupled oscillators@Eq. ~36!#.

For long times, the width of a front saturates at a va
that depends on the system sizeL,

w;La @ t@t3#, ~41!
i

e
g

r

is

k-

n

al

e

where t3 is the crossover time at which the width chang
from a time-dependent value to a time independent~satura-
tion! value. The exponenta characterizes the roughness of
front. For one-dimensional systems, the exact solution@Eq.
~40!# shows that the local slopes“h follow a Gaussian dis-
tribution, random and uncorrelated. The front is obtained
summing these local random slopes, which produces a
dom walk. Hence it follows that in one-dimensional syste
a51/2, the random walk exponent. For short times the wi
increases as a power of time, and may be characterized
growth exponentb:

w;tb @ t!t3#. ~42!

With the use of scaling arguments, it can be shown thab
51/3. We refer the reader to the literature for other scal
relations@12,13#.

Unlike the one-dimensional case, exact solutions do
exist for higher-dimensional systems, and numerical meth
have been used to determine scaling exponents. Ford52,
recent numerical solutions@13# of the Fokker-Planck equa
tion give the following values:a50.36 andb50.22. There-
fore, as in one dimension, only a rough state exists. Fod
.2 the scaling exponents exhibit two different values d
pending on the coupling strength, which is defined throu
g2[l2C/2n3. The weak coupling regime occurs forg,g* ;
the exponents are described by linear theory:a5(22d)/2
andb5(22d)/4. Since the exponents are less than zero,
front is flat. The strong coupling regime occurs forg.g* ;
the exponents are positive, and hence the front is rough.
d53 the critical value at which a phase transition occurs
g* 532. The approximate values for the exponents area
50.3 andb50.18.

B. Eikonal approximation of the KPZ equation

The probability densityp for the KPZ equation obeys a
Fokker-Planck equation@12,13#

]p

]t
52E dr

d

dh H Fn¹2h1
l

2
~“h!2GpJ 1

C

2E dr
d2

dh2
p.

~43!

For small values of the noise strengthC, we assume an
asymptotic WKB form for the probability densityp:

p@h#;expF2
s

CG . ~44!

Substituting this into the Fokker-Planck equation, and c
lecting leading order terms, we obtain the following eikon
approximation:

2
]s

]t
5E drH Fn¹2h1

l

2
~“h!2Gj1

1

2
j2J . ~45!

A comparison with Eq.~24! shows that the above eikona
approximation for the KPZ equation is equivalent to our
duced Hamilton-Jacobi description for diffusion-coupled o
cillators. After changing the time variablet5c1t1, we have
the following correspondence:n5c2 /c1 , l/25c3 /c1, and
C51/e.
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C. Results for synchronization of diffusion-coupled oscillators

From the above correspondence between Eqs.~24! and
~45!, the results outlined for the KPZ equation apply direc
to the diffusion-coupled oscillator problem. In fewer tha
three spatial dimensions mesoscopic scale internal fluc
tions have a profound effect on macroscopic dynamics: o
a rough or spatially desynchronized state exists, even tho
homogeneous oscillations are stable for the determin
system. The desynchronization of phase over large sp
scales may be characterized by a roughness exponenta; the
root mean square deviation in phase scales with the leng
the system asLa. An exact solution exists ford51, and
gives a roughness exponent ofa51/2. In d53, weak and
strong scaling regimes are separated by a critical value o
coupling strengthg, where

g5
2c1c3

2

ec2
2

. ~46!

From the results for the KPZ equation, we observe that
synchronization typically occurs in three-dimensional s
tems, in which the value ofe ~diffusion coefficients or in-
verse spatial scale! is small~such thatg.g* 532). We note
that small values of the coefficientc1, which characterizes
phase diffusion along the limit cycle in a homogeneous s
tem, may partially cancel the effect ofe on the coupling
strength. That is, for systems with small phase diffusion
efficients (}c1), desynchronization of the phase occurs
longer spatial scalesl 2;e21;c1

21. Larger values ofe in-
crease coupling between oscillators, and inhibit phase de
chronization.

VI. DISCUSSION

We have described the influence of internal fluctuatio
on diffusion-coupled oscillatory systems. Using the eiko
approximation and the method of multiple time scales,
reduced a master equation description to a Hamilton-Ja
equation for the stochastic potential of the phase. This s
plification of the evolution equations allowed us to obtain
exact solution for the stochastic potential of one-dimensio
systems and, in general, to relate the reduced Hamil
Jacobi equation to the eikonal approximation of the K
equation~a noise driven nonlinear diffusion equation whic
describes some types of interface growth!. Important results
include the destruction of homogeneous synchronized s
tions for d51 and 2, which are stable in the determinis
system, and the presence of a critical system length be
which oscillations are spatially synchronized ford53.

An important area for investigation is the influence
internal fluctuations on periodically forced oscillato
reaction-diffusion systems. Work on homogeneously forc
deterministic systems has shown mode-locked spatial
terns@26–30#. Such mode-locked patterns may serve as co
putational devices@31,32#. Whether these structures pers
with internal fluctuations is an open question. Using t
methods of the present paper along with those used to
a-
ly
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scribe fluctuations in homogeneously forced~homogeneous!
oscillatory systems@24# should help resolve this problem.
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APPENDIX

A reduced Hamilton-Jacobi~HJ! equation is associate
with Eqs.~17! and ~18!. To derive this from the original HJ
equation,@Eq. ~5!#, we substitute the expansion for the sol
tion @Eq. ~8!# into the Hamiltonian, and average over the fa
time t0. First we write the potential in terms of the phase a
time,

S~$u r%,t !5S„$x(0)~t01u r !1ex(1)1•••%,t…, ~A1!

which gives the following partial derivative with respect
time:

]

]t
S~$u r%,t !5

]

]t
S~$x(0)1•••%,t !

1(
r ,a

]S

]xra

]

]t
@xra

(0)1exra
(1)1O~e2!#

52H1e(
r

ar S 11ey
]

]t
x(1)1O~e2! D .

~A2!

Then, expanding the time using multiple time scales and
eraging over the fast timet0, we obtain, to second order ine,

]S~$u r%,t !

]t0
1e

]S~$u r%,t !

]t1
1O~e2!

52H̄1e(
r

arS 11eFv,
]

]t0
x(1)G

T0

D ,

where the overbar denotes the average overt0 : f̄
5(1/T0)*dt0f . After simplification, we have the explici
form of the reduced Hamilton-Jacobi equation:

]

]t1
S̄52e(

r
H1~$u r%,$ar%! ~A3!

H15ar S 1

2
c1ar1c2¹2u r1c3~“u r !

2D . ~A4!

We note thatu r and ar are not conjugate variables sinc
]S̄/]u r5ear . Also, the right hand side of Eq.~A3! has a
sum over the discrete indexr. @In Eq. ~A4!, we have taken
the limit of small cell lengthl and introduced continuou
derivatives.# These deficiencies may be remedied by scal
the potential:S15DVS̄/e. The Hamilton-Jacobi equation fo
S1 is given by Eq.~24!.
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