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Growth with surface curvature on quenched potentials
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A discrete growth model driven by the Laplacian of the surface curvature in quenched random media is
discussed. The interface widil at the saturated regime obeys scalivg-L“ with a«~2.3, whereL is the
system size. Starting from an initial sine wave condition of a selected wavelength, we measure an autocorre-
lation function, and obtain the dynamic critical exponest3.1. The model is expected to be described by the
quenched Mullins-Herring equations.

PACS numbeis): 05.40—a, 47.55.Mh, 68.35.Fx

Kinetic roughening of driven interface in quenched ran-which depends on both space and time. Here, we focus on
dom media has attracted very much attention recddflylt  the effect of the quenched disorder, which is frozen in the
is related through various mapping to many other physicamedium.
phenomena such as the immiscible displacement of fluids in One of the simple equations for the interface roughening
porous medid?2], the domain walls in magnetic systefi, in quenched random media is the quenched Edwards-
flux movement in a superconductef], and the invasion of Wilkinson (QEW) equation
liquid in porous medid5]. When an interface in disordered
media is driven by an external forde, the motion of it ah(x,t)
shows a pinning-depinning transition. The quenched disorder at
generates random pinning forces effectively. If the driving
forceF is sufficiently weak compared to the random pinningwhere F is the external driving force andy(x,h) is the
force, the interface is pinned by the disorderFlis strong quenched random potential satisfying the relation
enough, the interface moves indefinitely with an average ve¢(x,h) n(x’,h’"))=2D §(x—x')d(h—h’). Many studies
locity v. At F¢, which is the critical forcep(t) decreases are devoted to the QEW equation and the related models
following a power law of time and approaches zero. [9-15. One of them is the linear-interface modgliM )

The roughness of the interface is an interesting quantity if9,10,15. Paczusket al. studied the LIM with driving force
this kind of growth phenomena. In a finite system of lateral[10]. Here, the model is described briefly. Each site has a
sizeL, the surface widttw, which is the standard deviation random noisey(x,h) to represent quenched random pinning
of the height, scales d§] forces and there is a linear configurational tefigg, ¢~ V2h,

whereh is the local height. Thus the local total force

=V2V2h+ n(x,h)+F, (2)

L2%g(t/L?) ,
WZ(L,t)N tZB, t<|_z (1) Ftot(xat):VZV h(X,t)+77(X,h) (3)
L%, t>L7 is calculated and the height of the site that has the maximum

total force is advanced by one unit at each time. So the
where the scaling functiog(x) is x?# for x<1 and constant model is driven by the extremal dynamics. It is generally
for x>1. The exponentsy, 8, andz are called the rough- believed that the model is expected to follow the QEW equa-
ness, the growth, and the dynamic exponents, respectivel§ion.
They are connected by the relatia8= «. Recently a more As pointed out beforgl6], if the surface current is driven
general scaling form ofVis suggested for the self-organized by the differences in the surface chemical potential and the
critical models to explain other correlation length that re-chemical potential is proportional to the surface curvature,
flects the amount of self-organization that has taken placene has to replacg?h by —V*h in the QEW equation. So it
[7]. would be interesting to consider a quenched Mullins-Herring
There are some trials to classify the surface roughnessQMH) equation[17]
with each universality class corresponding to a particular
continuum growth equation for the coarse-grained height ah(x,t)
variablesh(x,t), which describes the growing interface as a ot
function of the lateral surface coordinateand timet. For
example, the model of random deposition with diffusion toThe equation could be relevant to the dynamics of the liquid
the local height minimd6] is known to belong to the Ed- in porous media.
wards and Wilkinson(EW) universality, described by the Here we consider a discrete growth model, which is ex-
EW equation[8]. In this case the noise is a thermal noise, pected to follow the QMH equation. In one substrate dimen-
sion, ~2.3 is obtained. We also measure the dynamic ex-
ponentz independently using the relaxation function method
*Electronic address: jmkim@physics.soongsil.ac.kr [18], and findz~3.1.

=—p,V*+ 5(x,h)+F. (4)
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FIG. 2. The scaling collapse of the surface width as a function
FIG. 1. The plot ofW%(L) at the saturated regime as a function Of time for the system size=16, 32, 64, 128, and 256 witk

of L in log-log plot with »,=0.5 for the system sizds=16, 32, 64, —2-3, 2=3.1. The plot ofW*(L,t) againstt in logarithmic scales

128, and 256. The guideline is far=2.3. for the system size@insed.

We introduce a discrete model to mimic the QMH equa-width becomes saturated up to time The saturated surface
tion. At each site, the random quenched noigec,h) is  heighthy(x,t) is defined a(x,t+tg) —h(x,ts). The surface
given with the uniform distribution betweenl and 1. Start-  width W(t) obtained fromhy(x,t) also satisfies the power
ing from initial flat surface, the local total force law behavior W(t)~tPs. In simulation, we wait a long

4 enough time until the width is saturated. The saturated sur-
FiolX,1)=—14V"h+ 7(x,h(x,1)) ®  face configuration is chosen as the initial configuration. The

is calculated and then the height of the maximum total forc«%ﬁ'gg:izgr%'r tm]eeS?:]uE;ed;utrr]:zcgelzggteg;ee gtog:zotreig asa

site is advanced by one unit. We have carried out extensiv: : . .
simulations for this growth model at one substrate dimen-ghown in @ log-log plot. The straight line through the data

sion. Since one height step is advanced at each trial, th%OIntS indicates that

average surface heighh(x,t)) is treated as timé Starting

from a flat interface, the entire process is subject to the pe- Bs=0.75+0.01. 7

riodic boundary condition. The simulations are carried out

for the system sizek =16, 32, 64, 128, and 256, and the

data are averaged over 400 configurations. To ohtaand !N comparison with the data from the saturated initial condi-

B, the time-dependent interface widtf(L ,t) are monitored.  tion in Fig. 3, the plot of surface width as a fupctlgn of time

As usual, the surface widti(t) increases as$? for early ~ in Fig. 2 is curved fort<L” The value ofg; is different

times and eventually saturates when the parallel correlatioffom that of 3. As pointed out by Re{.7], for the generically

t12 is of the order of the lateral system sizg19]. critical modeld[20], the saturate@ is the same ag. How-
For the roughness exponemtdescribing the saturation of €Ver, for the self-organized critical modef, is usually dif-

the interface fluctuation, we use the relatiof(L)~L* in  ferent fromp.

the steady-state reginte-L2 Since the value of is around The value ofa is measured accurately from the saturated

three, it takes a long time to arrive at the saturated regimesurface width ana can be obtained from the data collapse of

This forced us to restrict our simulation system sized to

=256 ind=1+1. As shown in Fig. 1, from the log-log plot 6

of W(L) and sizeL, we get a nice straight line with 5t e
@=2.3+0.1, 6) 4t S

44

To obtain the collapse of the data, we resdaléy L with } 37 <<<<'<

a=2.3 andt by L? for various values otz In Fig. 2, the o 2r <<<<'

rescaled data of different system sizes are collapsed into a X 1| <<<"

curve for a specific valueg=3.1. In general8 is obtained - <<<"

from the slope of the straight line fit through the data points 0r <

W(L,t) in log-log plot fort<L? The data collapse is not at <f.<<'

perfect for the regime, where the line through the data points «°

is not straight. Through the relatiowV(t)~t?, we can ‘2_; -1 0 1 ) 3

roughly estimate8=0.8~0.9. Note that the slope varies
with time. Even for large system site=8192, we could not
get an accurate value ¢f directly from InW(t)-Int plot. FIG. 3. W2(t) from the saturated surface height as a function of

Again, we try to determingg from the saturated surface time t in logarithmic scales fol.=256. The guideline is fo,
width. Start from flat initial condition and wait until the =0.75.

log,t
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TABLE I. Exponents of the model.

1.0
0.8 logt Exponents
0.6 012 3 456 a BS z

3; ' 2.3+0.1 0.75:0.01 3.2-0.1

& 04
02|

. wherer is the relaxation time. The characteristic time of the
001 — NCasN relaxation function depends on the selected wavelehgth
02 . . . . . the initial fluctuation. We expect that the relaxation time is
7 6 5 4 3 2 -1 0 proportional td 2. So, the normalized relaxation function fol-
log,, (1)

lows the scaling form

FIG. 4. The data collapse of the relaxation functions for wave- ,
lengths| =32, 64, 128, and 256 wita=3.1. The curves oR(t) R(t, 1)~ f(t/17). (12
against in logarithmic scales, from the left, represent fer32, 64,

128, and 256 in the inset. We measure the relaxation functions in our model for vari-

ous wavelengthsl. The normalized relaxation function

the scaling plot. Here, we use the relaxation function metho@9@inst Irt are shown in the inset of Fig. 4 for the wave-

[18] to measurez independently. The method is described '€ngths! =16, 32, 64, and 128. Wf try to rescale the time
here briefly. A sine wave axes with the characteristic time-1%. All curves are excel-

lently collapsed into an universal curve witkr 3.1 as shown

h(x,0)=C sin(2ax/1) (8) in Fig. 4. The values of the exponents are summarized in
’ Table I.
is prepared for the initial condition, whei@ and| are the We study a discrete growth model in quenched random

amplitude and the wavelength, respectively. The surface ipotential that is expected to follow the quenched Mullins-
allowed to evolve following the growth rule of the model. Herring equation.a~2.3 and8,~0.75 are obtained from
We consider an autocorrelation functi@ft,l) of the height the saturated regime. The relaxation function measurement
also allows us to find the dynamic exponeant3.1. It is
C(t,1)=(h(x,00h(x,t)), (9) interesting that the values of the exponents satisfy the rela-
tion a/z= B very well. The value ofr is close to 7/3, which
to characterize the relaxation process of the initial conditioncan be obtained from the power counting of the equation.
The normalized relaxation functiof®(t,|) of C are defined There have been many studies on interface in quenched ran-
as dom media. However, theories, simulations, and experiments
are not in good agreement yet. We cannot say anything con-
R(t,1)=C(t,1)/C(0]). (100 clusive on the question of universality because of computer
. - ) limitations and the lack of analytic tools. Experiments, ana-
In the long-time limit, the surface height does not have thy4ic cajculation of the exponents for the QMH equation, and

correlation with the initial condition such th® becomes o gdy of the discrete model in higher dimensions are
zero.R shows how the initial fluctuation relaxes with time. required[21].

In general, the relaxation function decays exponentially
This work was supported by the KRF1999-015-
R(t,1)~e 9lV7O], (11)  DPO0090.
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