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Generalization of Noseand NoseHoover isothermal dynamics
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The infinitely many possible isothermal dynamics based on” NogkNoseHoover methods are investi-
gated. Their properties and criteria for selecting different isothermal dynamics determined by various scaling
functions of the thermostat variable involved in the generalized Nostamiltonian[J. Jellinek and R. S.

Berry, Phys. Rev. /38, 3069(1988] are tested with molecular dynamics simulations, and examined analyti-
cally. It is shown that time scaling is related to the scaling of the momenta. It is demonstrated that, for practical
realizations, the entire generalization of the Nékmver method reduces to only two momentum scaling
functionsh andu, with a functionv defining the “potential energy” of the thermostat. The most general form

of the generalized Nosdoover (GNH) equations of motion is established. It enables correct calculations of
both static and dynamic equilibrium quantities. GNH equations Wwitts®, u=s?, andv ~Ins are studied in

detail. With such a choice of the functions the extended Nésever(ENH) equations are expected to produce
more chaotic phase-space dynamics than the NH equations. This is illustrated by thermalization of a one
dimensional harmonic oscillator. For a system away from equilibrium the ENH thermostat is not able to
provide dynamics consistent with the target temperature, and, thus, the GNH approach reduces to the original
NoseHoover thermostat. A simple modification of the ENH equations is proposed which makes the ENH
thermostat also applicable to nonequilibrium states.

PACS numbegps): 05.10—a, 05.20.Jj, 02.70.Ns, 05.70.Ln

[. INTRODUCTION the literature[12—17. The many alternative constant tem-
perature dynamics techniques proposed create the impression
During the last 25 years molecular dynamid4D) simu- f[hat we have at h_and a large number of_powerful tools to
lations at other than ordinary isoenegetic conditions havévestigate dynamical models, and that with these tools we
become possiblgl—4]. Many methods for performing cal- have cor_1$|derably extended our c_apablhty to simulate not
culations at different thermodynamic conditiosuch as only static but also transport and time-dependent properties

constant temperature or constant presshexe been devel- of different dynamical systems.

. . . . : Among the various proposals, an approach by Jellinek
oped, extending molecular dynamics simulations to various, . Berry[12] appears to be the most comprehensive. Jell-

ensembles(for a review, see, for instance, Reftb,6). inek and Berry proposed a generalization of the Neagil-
Among these methods calculations at constant temperatut@ oo 'y proposeda g ) .
Onian involving multiplicative scaling of coordinates, mo-

are particularly useful, and so have attracted considerable . R
attention. Continuous interest in this subject is driven by ap_menta, and time. They concluded that there exist infinitely

plications in the area of nonequilibrium simulations. In these mﬁi% d(l)f;(;reesr;” Tﬁéml';gnfg; ;%?nﬁggévﬁlzgﬁlt:rﬁgﬁrg@?
heat production in the system requires a thermostattin P prop y

mechanism to achieve steady-state conditiahg]. amics. These proposed generalized dynamics have not been

Among the many approaches to achieving constant tem@xploned in practical applications, and the criteria for select-

perature conditions, one of the most important was inventet r?eforr:sglr:;evr\]/o?/kpzt?efrgytnsatrgI(f:iﬁ Rﬁge QOt been established.
by Nose[9,10]. It is based on extending the space of the P P gap.

coordinates and momenta of the real particles by adding agnén5gzg\v,gm;vigivfesii?\rcze.gg{égz %Oizg:?czd\xgtzﬁgiv
extra “virtual” variable along with its conjugate momentum. 9 9 y :

A specific Hamiltonian is proposed in which the extra de—tﬂgt trhoe grlfurgsb ((a)rf ?r:egﬁlgzgﬁ(ﬁ?om:mg?g?an; Wur}{ghsgtﬁfess
grees of freedom act as a heat bath for the real particle prop q :

which guarantees that the equations of motion of the result- hus our freedom to select a method for generating isother-

ing “extended” system generate time averages that arénallnd)g:aimIl(:lstlr?eallflg's(g:ﬁjIIWSE&oover aoproaches are
equivalent to the canonical ensemble averages. : PP

Hoover [11] reformulated and simplified the extended briefly introduced. Their generalizations are presented in

system method, making it more useful for implementation inSec.' . Imphcaﬂpns of the position and momentum spglmg
MD calculations. In both approaches a major advance wadre _lnvestlgated n Secs. IV and V ' respgc'uvely_. Additional
achieved by showing that the canonical distribution of par_scalmg of the virtual momenta is considered in Sec. VI.

ticle positions and momenta can be generated with smoott?qu"ibriym and nonequilibrium pr_operties .Of the ge_neral-
deterministic, and time-reversible trajectories. At present th 7ed NoseHoover scheme are studied and discussed in Secs.

NoseHoover approach is a primary tool for performing con- Il and VIIl. Conclusions are drawn in Sec. IX.

Is_,'t[)a_nt temperature calculations both at and away from equi- Il. NOSE AND NOSE-HOOVER DYNAMICS
ibrium.

Many modifications and generalizations based on the In the Noseapproach{9,10] a physical system ofl par-
Noses Hamiltonian and Hoover's scheme were proposed irticles with momentap’ =(p;,ps, - - . py) and coordinates
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q'=(9;.dz, - - - 0y) in a fixed volumeV’, and potential In practical realizations, No& scheme in the phase
energyU (q'), is considered. An additional degree of free- SPace of virtual variables is so cumbersofmeinly due to a
doms’ is introduced and two phase spaces, or systems, af@nphysical time scaling involved in)ithat calculations of

defined: the extended virtual systerimed variables T’ time-correlation functions with this scheme are hardly fea-
=(q',p',s',P.), and the extended physical system sible. This difficulty is avoided by transforming Hamiltonian

equations of motion id"’ space into non-Hamiltonian equa-
tions of motion inI" space, employing the scaling relation
BEq. (1)] between both spacd40,11]. The resulting equa-

(unprimed variablesl'=(q,p,s,Ps), whereP/ is the conju-
gate momentum of’. (Note that previously the virtual sys-

tem has most commonly been characterized by unprime S .
tions of motion in the extended physical space allow one to

variables) The physical systemq(p) is a subsystem of the te directlv the phvsical dinat d ¢
extended physical system. The relationship between the wfdropagate directly the physical coordinates and momenta.
Hoover pointed out that for the thermostatting mechanism

phase spacenprimed and primed variableis defined as only the product ofs and Py is significant. Defining¢

q=q', p=p'ls’, s=s', Pg=Pl/s', dt=dt'/s, =sP,/Q, he transformed the equations of motion into a
(1) closed set of equations in the,,{) space,

and the following Hamiltonian is postulated for the extended doi _ pi 6
virtual system: dt m’ ©)
N 12 12
r_ P , PS dp| oU
HN—;l gz HUa)+ 2Q+ngIns’. ) Eaa e T @)
The parameteg is essentially equal to the number of degrees ¢ 1 p?
of freedom of the physical systemm is the mass of the — = —(2 —'—ng>, (8)
particle,Q is a parameter which acts as an effective “mass” dt QT m

for the motion ofs, k is Boltzmann’s constant, antlis the ) o )

temperature. In the extended virtual system the total energy/ith the subsidiary equation fcg

is conserved and we have a situation resembling traditional d

(E,V,N) microcanonical MD simulations. If we assume the _S_Sg (9)
quasiergodic hypothesis, then time averages along the trajec- dt ’

tory determined by the equations of motion are equal to en-

semble averages in the microcanonical ensemble, with thwhich is not needed to compute the trajectories of fthe
partition function interacting particles. A conserved quantity for this system is

1 P 1
2~ | api[ as [ o' [ daati-B). @ Y=2 So+U@+5Qe%+gkTIns  (10)

The essence of Noseapproach is a simple relation between which is not a Hamiltonian. The set of the equations of mo-
the microcanonical partition function of the extended virtualtion (6)—(9) defines “NoseHoover” (NH) dynamics. As

system and the canonical partition function of the physicalvas shown by Hoovdrl 1], these equations generate the sta-

system,Z.., tionary phase-space density
zM=£|f dpf dgexd —H(p,q)/kT|=CZ., (4) Foexd — —| 3 p_i2+u(q)+1Q§z 11)
N! c kT\ 4 2m 2 ’

_ 2 . . . .
whereH =2pi/2m+U(q) is a Hamiltonian for the physical i satisfies the continuity equation for the probability
system, anC(T,Q,E,N) is a constant. This relation forces yengity functionF. Conservation of canonical distribution

the time averages of any quantity which is a function of 49 is’a necessary, but not sufficient, condition for establish-
p'/s” andq’ along the trajectory determined by the equationsiy the equivalence of time averages generated by the non-
of motion to be exactly those of the canonical ensemble:  amijtonian dynamics to corresponding canonical ensemble
1 averages$8]. In the NH approach such an equivalence can be
2 Y At afvd o — el ql)y — established via the extended phase space of virtual variables
fim t’jo Alp'/s’,a)dr" =(A(P'/s",0")) .= (AP.A)e- in three separate conceptual st¢pg,18,19. The first step

(5)  establishes amnsemble-ensembtelation [i.e., the second

equality in relation(5)], by exploiting relation(4) between

(---), and(---). denote the microcanonical ensemble av-canonical and microcanonical partition functions. The sec-
erage in the extended virtual system and the canonical emnd step establishes ansemble-dynamicselation in the
semble average in the physical system, respectively. Thphase space of the virtual variables based on the von
Hamiltonian dynamics in the extended virtual space generNeumann—Birkhoff theoremi20] which justifies the use of
ates fluctuations of the kinetic and potential energies in théhe ensemble average instead of the time average. In the third
physical system, in accordance with canonical distributionstep thedynamics-dynamiclation between the primed and
of the (p,q) -variables at the fixed temperatufe unprimed dynamics$or equations of motionis achieved us-

t'—oo
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ing the scaling relatior{1) and demonstrates that the time =s'2, f(s’)=1, u(s’)=1, andv(s')=glns’ give better

propagators of the two dynamics are equivaleit,18|. mixing of phase-space trajectories in systems with a few de-
It is worth noting that transformatiofl), consisting of the  grees of freedom.

virtual momentum and nonphysical time scaling, can be per- The relation between virtual and physical spat@sbe-

formed not in one but in two stages. If in the first stage onlytween unprimed and primed variables defined as

time scaling is performed, the resulting equations become

real or physical time equations of motion of the virtual vari- 4 =¢; f;, dt=dt’/w,

ables @’,p’,P,s’). Then it can be readily demonstrated

17
that such equations of motion can be directly derived from a . . . . .
particular Hamiltonian which is the constrained Néamil- Wwherew is a real nonvanishing differentiable function it

tonian,H =0, multiplied by thes’ variable. This particular prnzggxeiscﬂgn%;f;%%gs I?‘agiégltzegggomﬂﬁ:ﬁqvvgt'gglf
Hamiltonian,H;,=s"H},, was discovered by Dettmarig] pny bace,

. . C li No: NH ics:
(see alsd22]), and avoids the time transformation involved generalized Nosetoover (GNH) dynamics
in a derivation of the NH equations from NoseHamil-

pi=pi/h;, s=s', Ps=Plu,

; o ; dogi fiwp  1dfi w
tonian. The Hamiltonian of Dettmann can be considered as E=_~E+ FE@PSQ‘ , (18
an intermediate step in the dynamics-dynamics relation be- ! !
tween the Nosend NH dynamics, or as an alternative and do. fwou  1dh
simpler means of deriving NH dynamics. The Ndseover api __hwod 1 dh ﬂp P (19
scheme solved the problem of performing MD simulations at dt hi 99, h; dsuQ ="’
constant temperature, and has become a standard simulation
method. ds_w 20
dt uQ '
IIl. GENERALIZATIONS OF NOSE 'S ISOTHERMAL
DYNAMICS dPy w » p? 1 dh; »d ouU 1 df Tdv
Jellinek and Berryj12] demonstrated that Nosedynam- dt ul 4 mh ds Vg  ds ds 21

ics is not unique. In fact, there exist many other different

dynamics which are defined by tgeneralizedNoseHamil- The equivalence between the above GNH dynamics and ca-

tonian, nonical ensemble averages of physical quantities can be es-
p'? p’2 tablished in the same way as for the NH dynamics—by using
Hov=> =——>—+U(f(s')q")+ 5———=+kTo(s'),  the ensemble-ensemble, ensemble-dynamics, and dynamics-
T 2mhi(s’) 2u(s")Q 12 dynamics relation$12,18. In accordance with these three

steps the GNH equations of motidh8)—(21) generate the
canonical distribution for the physical phase-space variables
or time averages calculated along trajectories generated by

differentiable functions ofs’. For h(s')=s’, f(s')=1, he GNH ) val h ical bl
u(s')=1, andv(s’)=glIns’, the original NoseHamiltonian ;Veeragesequatlons are equivalent to the canonical ensemble

is recovered. The generalized Hamiltonian equations of mo= ; . .
g d It is worth mentioning that, parallel to NH dynamics, an

whereh;(s’), fi(s’), u(s’), andv(s’) are real nonvanishing

tion are “intermediate” Hamiltonian can be found which avoids the
do/ p/ unphysical _time scgling in de_riving t_he GNH dy_namics from

T T (13)  the generalized Nosdamiltonian. This Hamiltonian has the

mh form Hgp=WHg,, and requires the additional condition
, Hsa=0. The implications of the various scaling functions
dﬁ: N (14)  involved in the GNH dynamics are the subject of the next
dt’ gy’ sections.
ds’  Pg 15 IV. SCALING OF PARTICLE POSITIONS
T 20!

v v Let us first assume that for each particlef;=f and h;
dP; pi,z dh. oU P;z du dv =h. Furthermore, in order to concentrate on th}ecg_ling
——= — — —+ -~ ——kT——. (16) Problem and to make our considerations more specific, let us
dt" 9 mh>ds’ 4gs’" u°Qds ds further assumé=s? andf=s and, similarly to the NH dy-

) o ) ) namics,u=1, w=s, andv=glns. For such a form of the
The generalized Hamiltonian makes it possible to search f°§caling functions the GNH equations read,

equations of motions able to mimic, both adequately and

more efficiently, not only the equilibrium but also the time- dg; pi

dependent properties of a given physical system. To our E=a+§qi, (22)
knowledge this possibility has not been explored in the lit-

erature in any systematic way. We are aware of only a few do. JU

applications of particular generalized isothermal dynamics. @i _ ——2p;, (23)
Winkler [15], for example, argued that the casbés’) dt o] '
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where P;/Q has been replaced h§ The equation for the 0.00 NH ‘ s
variables is, just as in the case of the NH dynamics, the : AN v

subsidiary equation. The conserved quantity here has exactl

the same form as that in E¢L0). (Note that a similar situ- b
ation can be achieved witiny h=sf, andf=s', wherel is ]
a real numbej. It is also easy to check that the canonical A
phase-space density given in Efjl) is a stationary solution

of the continuity equation for the probability density in the —_ Q2 . . . . . . . . .
phase space of the above GNH equations. Thus the necessa 0 400 800
condition to simulate canonical ensemble averages is ful-

filled. t

In order to study properties of the GNH equations, we
first consider a system of particles in an external potential
o(X,Y,2) =b(x“+y*+2z")/ k which localizes the particles in 0.01
the spacelIn such a system there are no complications from
the periodic boundaries due to the position dependent force:
present in EqS22) and(23)]. This external potential mimics
a cubic container confining the system of interacting par-
ticles. The effective volume of this container is controlled by
the parametersg andb. In our calculationsx=12. Three
different values ob were used. The system used in the simu-
lations consists oN=108 WCA particles interacting with a 0.00
pairwise  Lennard-Jones  potential (r)=4e[(o/r)*?
—(o/r)®], truncated and shifted at its minimumo = 2%/5,
The temperatur@,=0.722 was used as the target tempera-
ture.

In all our work conventional reduced units are used: the QA_.
length in o, the energy ine, and the temperature ig/kg; v
the time unit iso\m/e. The Q parameter is in the Lennard-
Jones unitg. The equations of motion were solved using the —0Q.01 -+ T T T
classic fourth-order Runge-Kutta method, with a time step of 0 1000 2000
At=0.001. t

First, the NH dynamics has been used to equilibrate the
system at given conditions,x(b,Q,To,N). Next, starting FIG. 1. (A) Deviations of the average kinetic temperature from
from the well equilibrated state, long runs have been pere target temperaturd,=0.722 as a function of accumulated
formed with the NH and GNH dynamics. In the case of thesimulation time t, in the system oN=108 WCA particles in ex-

NH dynamics usually less thenx210* time steps were suf- ternal potential(see the description in the téxtThe four curves
ficient to achieve the target temperature. In contrast, evern)—(d) were obtained at different system and dynamics conditions
after hundreds of thousands of time stép®re than an order (b,Q) under the GNH dynamics in which the particle position scal-
of magnitude longer than usually is needed in MD simula-ing was exploitedEgs. (22)—(25)]. The corresponding four curves
tions) the average kinetic temperature produced by the GNHbbtained under the NH dynamics are indistinguishable, and on the
dynamics was still different froriT,. This rather disappoint- scale of the graph are seen as a zero deviation on a straightBine.
ing result is shown in Fig. 1. In the figure deviations of the Example of a realization of the condition @) —Ko) = —3V(P)
average kinetic temperature frohy are shown for three dif- [see Eq(26)]. The horizontal line is the sum of the curves. Data are
ferent effective densities which are determined by the exterffom & continuation of the simulation which produced cufgein

nal potential withb=10"%, 10°°, and 10°. The data ob-

tained for differeniQ’s are also demonstrated. The results in = ggome explanation of this problem can be deduced directly

Fig. 1 clearly indicate that, in contrast to the correct averaggrom the form of the GNH equations of motion. As one can
temperature produced by the NH dynamics, the GNH dynote, Eq.(24) has the form

namics produces an average ‘“temperature” which changes o
_contlnuously in time with charact_erlsnc oscillations depend- Q-2 =2(K—Kg)+3VP, (26)
ing upon the system and dynamics parameters. dt

<T>—To

V/N

B

3000
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dynamics is not able to reproduce correctly the system’s
physical quantities such as the one-particle ACF.

On the basis of the above results we can conclude that the
GNH dynamics in the form given by Eq&2)—(25) cannot
guarantee that the target temperature will be achieved in a
system of interacting particles in the external field. Further-
more, some unphysicdbscillatory behavior of calculated
quantities can occur. Let us note that the above consider-
ations and conclusions also remain valid for the whole class
of GNH dynamics defined by the=sf, w=s, and f=¢'
functions.

Next we considered an infinite periodic system used in the
computer simulations. First we applied the NH equations to a
system of 108 WCA patrticles in periodic boundary condi-
tions in the solid statéan initial configuration was the face-
centered-cubic lattice, and was a cubg Simulations were
7 performed at several different stat€y(V) conditions. Usu-

0.05 0.10 ally fewer than 5< 10* time steps were sufficient to establish
t the desired temperature, and obtain correct values of physical
quantities such as the energy or pressure.

FIG. 2. Mean square displacement in the system of WCA par- Application of Egs.(22—(25) to the well equilibrated
ticles in the external potential N=108,T,=0.722,Q=1,b  WCA solid, at any of the considered state conditions, led
=109 calculated with the NH and GNH dynamit22)—(25). The ~ quickly to a significant changes in the monitored instanta-
inset shows a differenceA¢) between the mean square displace- Neous physical quantities, and the desired value of the aver-
ments obtained with these dynamisslid line). Dashed line shows age kinetic temperatur@s well as other physical quantitjes
the corresponding difference\() between the velocity autocorre- was not achieved, even after long-time simulations. The cal-
lation functions. culations were repeated for a system of 256 Lennard-Jones
(LJ) particles. The results were similar to that for the WCA
system. In Fig. 3 the evolution of the instantaneous tempera-
ture, generated by the NH and GNH equations, in the LJ
system is shown at two thermodynamic statdg=(0.43,
N/V=1.00) and [o=0.63,N/V=1.00). After the reduced
time periods of 40, the temperatuiig was switched from

0.005 -

0.003 -

0.001 -

-0.001 T T T T
0.0 0.1 0.2t0.3 0.4

oo
=
=

whereK denotes instantaneous kinetic energy,represents
the average kinetic enerdgorresponding to the given tem-
peratureT,), andV is a volume. As we consider a system in
an external potentiaR represents here instantaneous differ-

ence bet.Wee” the external press(mh_aae to the_external forge 0.43 to 0.63, or vice versa. An initial state point was from a
f':md the internal pressufdgg to the mterpartlcle forcgsand well equlibrated, with the NH dynamics, fcc solid &

in acc_ordance.wnh the virial theorem its average has_ to be. 0.43[Figs. 38 and 3b)], and atT,=0.63[Fig. 3(c)]. It

zero (irrespective of the form of interparticle interactions .« heen checked f@ e (0.05,50) that the results shown in
[6]. Equation(26) indicates that the dynamid£qs. (22— Fig 3 are fairly insensitive to a particular value of tfe
(25)] does not guarantee that the separate relai®)s=0  parameter. It is obvious from the figure that the GNH dy-
and(K)=K, can be achieved. Instead, it indicates that thehamics produces incorrect and history-dependent results, and
more general condition 2K)—Ko) = —3V(P) will be real-  (T)=T,. The pressure and the total potential energy display
ized. With this condition, however, the GNH dynamics cansimilar an unphysical behavior, and are strongly correlated
produce different dynamical states which do not necessarilwith the temperature.

give correct averages of the physical quantities. This prob- However, the GNH dynamics seems to be established in
lem is illustrated in Figs. (B) and 2. Figure (B) shows conceptually consistent steps incorporating the ensemble-
results of a very long run, which was a continuation of theensemble, ensemble-dynamics, and dynamics-dynamics rela-
simulation producing the curvé&) in Fig. 1(A). The two  tions. So, what is incorrect? To find the reason for the failure
curves in the figure, representing P)/N and deviations of  of the GNH approach, let us note that the volukffein the

the average kinetic temperature, clearly demonstrate that thgrtual space canndas usually be fixed because, otherwise,
desired physical conditiond)=0 and(K)=K, can never one would obtain the incorrectly established ensemble-
be achieved in the system. Figure 2 shows the differencensemble relation. The ensemble-ensemble relation is based
between the autocorrelation functiof/CF’s) obtained with  on the simple proportionality relation between the microca-
the GNH and NH dynamics. For short-time periods, considnonical partition function of the extended virtual system and
ered in the figure, the mean square displacement and ththe canonical partition function of the physical systga).
velocity ACF’s calculated with the NH method are, as ex-(4)]. To derive this relation one has to change the variables
pected, smooth and monotonic functions of time. As the ac¢(from primed to unprimedin accordance with the scaling
curacy of the ACF's at short-time periods is very high, therelations(1) or (12), and integrate over the variab$g12].
same results should be obtained from the GNH schemedowever, for a fixed volume in virtual space the scaling of
However, as is clearly visible in Fig. 2, the results are sig-virtual particle positions causes the integration limits of the
nificantly different. The apparent artificial oscillations pro- physical positions to beconmgedependent, and consequently
duced by the GNH dynamics indicate unequivocally that thighe integration over the variable which is necessary to
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the position transformatiog=q’ f(s), the integration limits

of the physicallunprimed positions become fixed and tise
integration can be formally performed, establishing the de-
sired ensemble-ensemble relation. However, the problem
with this interpretation is that, except in the trivial case
wheref(s) is constant, contrary to the case of any microca-
nonical ensemble considered in the framework of statistical
mechanics, the volume of the system in the virtual space is
not fixed but varies as a reaction to thgariable “motion.”
Thus the volume of the virtual system is no longer a fixed
parameter but becomesvariable which has a close parallel

to the situation in isothermal-isobaric dynami&. In the
isothermal-isobaric dynamics the time dependent volume
and its conjugate momentum are explicitly present in the
equations of motion for the extended virtual system. In the
case considered here, the volume, which is implicitly time
dependent through thevariable, is not included in the gen-
eralized Hamiltonian or in the derived equations of motion.
Consequently it is not a surprise that the dynamics based on
the generalized Hamiltonian yields unphysical behavior.

It is worth adding that, from a formal point of view, con-
sidering a system with a volume which scales with an
s-dependent function, one also encounters a very basic prob-
lem of classical mechanics in which the canonical coordi-
nates are not all independent but are connected through equa-
tions of nonholonomic constraints. As there is no
straightforward approach available to deal with the nonholo-
nomic constraints, usually each case must be tackled indi-
vidually [23]. Thus, before considering the dynamics-
ensemble and dynamics-dynamics relations, one should first
determine the appropriate Lagrange equations for the system
in the virtual space which takes into account the nonholo-
nomic constraints connected with varyisglependent vol-
ume. Obviously, such equations, if determined, would be in
general different from the GNH scheme.

On the basis of the above results and discussion, we con-
clude that, not only the special case given by Eg8)—(25),
but any GNH dynamics which involves position scaling
functions, is expected to produce noncanonical averages, and
cannot guarantee that the target temperature will be achieved
in the system. In accordance with this conclusion, the GNH
equations of motioril8)—(21), reduce to the following form:

FIG. 3. Evolution of the instantaneous temperatilirén the
Lennard-Jones systenNE 256, N/V=1.00,Q=1) obtained from
the NH dynamicga), and from the GNH dynamic&) and(c), at
two temperature3,=0.43 and 0.63indicated as the dashed lines
An initial state point was from a well equilibrate@vith the NH
dynamic$ fcc solid. At a reduced timé=40 the temperaturd,
was changed to 0.6@0 0.43 in(c)], and att=80 it was switched
back to 0.43to 0.63 in(c)].

obtain the canonical distribution, cannot be performed prior
to the integration over the positiorias far as the scaling
functionsf; are not constants

Hence the only possiblity is to assume that the volume of
the virtual system scales with tHefunction, V' =V/f°(s),
whereD is the dimensionality of the systefi8]. (In gen-
eral, if f; were different, a “volume” accessible to each
virtual particle would be different and would vary according

dg; wp;
at hm’ (27)

dp; woU 1 dh w

E:_h_i&_qi_h_igu_stpi’ (28)
ds_w 29
dt ugrs (29

dPy w p? 1 dh dv

@ ul X mhds <Tas) (30

to changes of thé; function) In this case, after performing where we set all the irrelevant constaffits 1.
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V. TIME SCALING TABLE I. The properties of the WCA fluid calculated under the

. . o . GNH dynamics with different time scaling functions=s' [Egs.
' The time Scallng, e?(pIICItly rgpresented in the GNH equa'(3l)_(34)] (N=108,T,=0.722,0=0.8442, and)=0.5). The col-
tions through the scaling functiom, has been considered as ymns from left to right: the time scaling function, average kinetic
a totally independent procedure, not related to the variablesmperature, total potential energy per particle, pressure, diffusion
transformations between physical and virtual systemgoefficient from Eq.(35), and diffusion coefficient from Eq36).
[18,15. Nose[5] pointed out that this is true only for static The last two rows represent the data obtained under the specially
quantities. For dynamic quantities he postulated that th@repared GNH dynamics in whigts' =) was close to unity.
force derived from the potential should be identical with that

in Newton’s equation, and consequently the following rela-I (T) (U) (P) Dv Dr
tions are requiredw f; /h;=1. In this section we show that
this requirement is a sufficient condition but not a necessar 0.7220 0.7163) 6.3245) 0.039 0.039
one, and demonstrate, based on statistical mechanical argt- 0.722Q1) 0.7143) 6.3306) 0046  0.035
ments, why the time scaling is not an independent transfor? 0.72202) 0.71@5) 6.3287) 0.061 0.027
mation. 6 0.7221) 0.7148) 6.321) 0.083 0.021
Let us first briefly discuss the static quantities. To find and® 0.722@5)  0.7166)  6.3276)  0.039  0.040
exploit any potential advantages of the time scaling extr& 0.722q1)  0.7173)  6.3306)  0.039  0.039

flexibility of the GNH equations of motion, we performed

MD simulations of the WCA fluid with periodic boundary ) )
conditions at the state poinf§,=0.722, ande=0.8442 cases the fastest convergence was achieved with the NH dy-

(which corresponds, roughly to the triple point of the namics (=1). Thus the extra flexibility coming from the

Lennard-Jones liquid The chosen system is an inherently time scaling does not seem to lead to any practical advan-

mixing system and is often used as a reference state for ted89eS. _ _ . _
ing MD procedures. Let us now consider results for dynamic quantities. Figure

In the simulations presented in this section the foIIowing4(a) clearly shows that the velocity autocorrelation function
form of the scaling functions was chosemv(s)=s, u(s)  Co(D)=(P()p(0))/3, depends strongly on the particular
=1, hi(s)=s, andv(s)=glIns, wherel is a real number form of the time scaling function. Also the mean square dis-
g=n+1—1, andn is a number of the degrees of freedom of placemen{Fig. 4(b)] depends significantly oh In the last
the physical system. With these scaling functions the GNHWo columns in Table |, the self-diffusion coefficients calcu-
equations of motions are equivalent to those discussed bfited from the Green-Kubo relation,

Jellinek (see Egs(40) in Ref.[18]) and read

D,= | c,(badt, 35
dg; s'p v fo »(1) (35)
at s m 3D
and from the mean square displacement-ate,
dp; s (au 1 ) 32
T T el aa T A FsPifs 1
de st Q D, =5-((a(t)—=a(0)?, (30
ds 1 |
azas Ps. (33 are shown. Within the statistical uncertainties, both of the
autocorrelation functions must produce the same diffusion
dp. ¢ p? coefficientD,=D, . As one can see comparing the first row
d_tszg( E E—kTg). (34 with the last two rows in Table I, the consistent results can
I

be obtained not only fot=1 but also with the dynamics
defined byl #1.

An explanation of this problem can be obtained by fol-
owing the method by Evans and Holid@0] to show the
thermodynamic equivalence of the NH and Newtonian equi-
librium time correlation functions. Using their approach, let
Calculations performed with differehigave correct aver- C(tn), Cltenn) denote equilibrium time correlation func-

tions of the extensive phase variablasand B with zero

age kinetic temperature equal to the target temperafyre . . i
As one can see in Table |, other static quantities, like the"ean computed under Newtonian and GNH dynamics, re

total energy and pressure, also depend very little on the pa%p;ggvsgﬁ;dheerig'ﬁtehrzndcifefe?g;\'(\:gﬁn t}ggNﬁ(ece nctag Ezv\?tsc:lr;—
ticular value ofl. Thus, in accordance with the theoretical g ’

predictions, the GNH equations of motion with different time ian and GNH Liouvillean320]
scaling functions produce the same averages of static quan-

The WCA fluid used in the simulations consisted MNf
=108 particles, and the simulations were carried out for hali
a million time steps. In the calculatiolg3=0.5 was used as
an optimalQ-parameter valuéthis value was established in
preliminary simulations with the NH thermoskat

| |
tities. However, the various alternative dynamical proce- ALz(S——1>E pii+ 3_1)2 Fii
dures, defined by different differ considerably in the con- S i ag; \'s i Ip;
vergence rates of calculated quantities. The convergence of |

7 . . . . S Jd .d .d
static quantities to their correct final values becomes increas- —i= 2 pi— +{—+5— (37)
ingly sluggish asl deviates from unity. In all the studied s T Tap Cag Tos’
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but the first two integrals will be of order /of C(ty) only

if the condition(s' "1)=1 is obeyed. This is just the condi-
tion which must be satisfied if dynamic quantities are to be
correctly determinedsee the data in the last two rows in
Table |). Obviously this condition is exactly obeyedli 1.

For | #1, incorporating the constraints' *)=1 into the
equations of motion is rather a hopeless task. Thus, use of
any GNH dynamics with# 1 would in practice usually re-
quire, at any state point, a long additional preliminary nu-
merical search for the appropriate conditigre., an initial
point in {q,p,s,¢}), which gives(s' ~1)=1. (For larger sys-
tems of at least a few hundred particles, the constraint can be
well approximated by the more manageable conditish

Cu(t)

‘0%.0' 01 02 03 04 05 =1). Furthermore, in any practi_ca_l realization the _condition
t can be obeyed only with some finite accuracy, which means
that calculated dynamical quantities will inevitably be only

approximate, and therefore unreliable to some exi&z# the
data represented by the dashed line in Fig.ld4 this sense
any practical realization with# 1 is incorrect.

The above reasoning can be extended to any time and
momentum scaling functions and, hence, we come to the
important conclusion that the time scalingnist an indepen-
dent procedure. The time scaling functisnmust obey the
conditions(w/h;)=1. Although these conditions are suffi-
cient for calculations of the equilibrium time correlation
functions, the difficulty in incorporating them into the equa-
tions of motion means that in practianly the choicew
=h; can be considered, which is consistent with Nese-
quirement.

An important consequence of the latter condition is that
all h; functions have to be the same. Thus, the GNH equa-
tions of motion(27)—(30) further reduce their generality to
the following form:

FIG. 4. Velocity autocorrelation functior(g), and mean square

displacementgb), of the WCA fluid obtained under the GNH dy- dai  pi 39
namics[Egs. (31)—(34)], with different time scaling functionsv dt m’ (39)
=s' (I=1 corresponds to the NH dynamics; fior 1, the average
of s'=! was greater than 1)2Dashed curves represent the data dp; U 1dhPg
obtained under the specially prepared GNH dynamicas, labeled by E: 9 uds —Pi, (40)
I°, in which the resulting time average sf ' was very close to g udsQ
unity ((s'"1)~1.03,1=6).
ds h Pg @1
whereF,= —dU/dq;, and{=P¢/Q. The last two terms can dt uQ’
be ignored in further considerations, since phase variables of
interest will not usually have any explicit dependence ugon dP; h{1dh piz dv
ands. The first three terms give gt _uln &Z m KTas/ (42
[
AC(t)= J'td7< A(7—t) i_l) B’(T)> The above equations, comprising three functibns, andu
0 S and a single paramet&), are the most general form of the
. | GNH equations of motion that are able to generate correctly
+J' d7'< A(T—t)(s——l>B”(7)> both static and dynamic properties of a system at equilib-
0 S rium.
t I
—f d7< A(T—t)g—B"'(T)>, (39 VI. SCALING OF VIRTUAL MOMENTUM
0 S

Scaling of theP{ variable has also been considered as an
whereB’, B”, andB” are new extensive variables resulting additional transformation generating canonical dynamics in
from transformation of the variabl8 under the operators physical spac¢15,24,18. It can be shown, however, that
Sipidloq;, =iFidlop;, and 2;p,d/dp;, respectively. As this transformation always leads to the same form of equa-
(£871=0 and{s' ! is intensive, the last integral is of or- tions of motion. Instead of the transformati®y=P¢/u let
der 1N of C(ty) [20]. Also s'/s—1 is an intensive variable us consider the more general relatiBg= P./V, whereV is
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some real differentiable function af (in general different dp Ju
from u). With this relation the GNH equations are i ﬁ—q—épi ; (49
I
dgi pi do
o m “3 Eae (50)
dp; U 1dhVPg d 1 2
—_— = — — — — y 44 g _ pi 2e0 2
dt dg; udsu Qp' (44) 5—5(2 E—ng)e +el%, (51
ds EE Ps (45) where nowg=n—e€. To derive these equations of motion

from the GNH equation$39)—(42) the following substitu-
tions have been made:=alns, {=aQ Ps* ?1 and
e=(a—9—1)/a, and theQ parameter has been replaced by

dP; hu/1dh p? do _ _
dt —uvinds 2 el + e ]—}) Ps, (460  Q/a. In the following we will denote Eqs48)—(51) as ex-
: tended NH(ENH) equations. The ENH equations can be
shown to have the phase-space distribution
where
1 p? 1
du hV PS . dV hV PS fco(exi__{z _|+U(q)+_Q§2672eo'+kTa_ ,
Uzd—s?a, V=£?6 kT T~ 2m 2
(52)
With the new variableP =VP/u, the above equations be- 414 the conserved quantity of this system is
come independent @7 and are exactly the same as the GNH
equationg39)—(42). pi2 1
Y= S FU@+ 5Q%e *+gkTo.  (53)
I

VIl. EQUILIBRIUM PROPERTIES OF GNH DYNAMICS

The ENH scheme depends only on two paramefiegs, Q,

Any practical realization of the GNH equations requwesand ¢) and is very similar to the NH approack<0). In

specification of three functiorts u, andv. It is worth stress- ricular. it the frictional force term of the form
ing that these functions are not arbitrary real differentiablg”articu'ar, 1t possesses the frictional force term of the 1o

functions ofs. The ensemble-ensemble relation, discussed ¢p common to all deterministic computationally useful ap-
above in Sec. Il, requires, e.g., that the following conditionpro""cheS to thermomechani@. [Note that the GNH equa-

must be obeyed by these functioit<]: ti9n§ (39)—(42) can also be converted to the form with the
friction force term—¢p but at the expense of a more com-
u(v=b) plex form for the thermostatting part of the equatigriscan
ﬁh3’\‘(v‘1)~exp(— H(p,q)/kT), (47)  be also readily implemented in an existing MD code.
v (U

A special casee=0.5, has been considered by Winkler
etal. [23] (note that in our notationc=2% and ¢
=2p,/Q), and recommended as more nonlinear than the
SRR » . NH equations. The authors argued that their extension was
of the equatiorHg, —E=0). The above condition consid- gpe 1o produce trajectories that were sufficiently chaotic to
erably limits the number of possible forms of thal, andv  ¢gjculate average properties of canonical ensemble, even for
functions. For example, a logarithmic form of thefunction 5 small number of degrees of freedom, such as a one-

implies a power form of théh function, and, vice versa a gimensional harmonic oscillator or a single particle confined
powerh function implies a logarithmie function. Ifv isto jn the double-well potential.

wherev’, andv ~* denotedv/ds and the function inverse to
v, respectively(the functions are taken at a single solutign

be a linear function of, then theh function has to be an |t is natural to expect that the ENH equations can produce
exponential, and if is to be an exponential thenhas to be  eyen more chaotic behavior if an optimal value of the param-
a linear function. etere is applied. It is readily shown, for instance, that in the

~ In searching for possible advantages of the GNH dynamegase of a harmonic oscillator, the ENH thermostat produces
ics we limit our further considerations to only one set oftajrly chaotic trajectories for a range efand Q values for

functions obeying cond|t|orQ47)1.? That is, we consider the \hich the position and momentum distribution functions are
casev=glIns, h=s% andu=s" which seems to be the ¢|ose to the exact values. Also, changes in the initial condi-
most reasonable and promising for practical applicationsgons have no appreciable effect on the results. Examination
a,9 are real numbers ang=(n—1)a+1+39. Fora=1  of the first few moments of the position and momentum dis-
and 9=0 the equations are the NH equations, and the casgjpution functions showed that the best performance has

a=2, 9=0 was considered by Winkl¢d5]. been achieved for 0<1e<0.4 and 0.00&£Q<0.1, and an
A valuable feature of this set of functions is that the re-example is shown in Fig. 5.
sulting GNH equations can be converted to the form The apparent ability of the ENH equations to thermalize
even such “pathological” systems as a one-dimensional har-
ﬂ _bi (48) monic oscillator allows us to consider the ENH thermostat as
dt m’ an effective and alternative method to other thermostatting
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4.0 — schemeq14,13,16,17 which have been proposed to deal

T . with small or stiff systems, for which the NH and Gaussian
thermostats fail. We also stress that, among these schemes,
the ENH method is the only one which is Hamiltonian based.
Furthermore, if the constant of motion is to be monitored
(which is a rather common procedure in MD simulatipns
the ENH approach will require the least number of thermo-
statting equationséi.e., two).

We add that in the above WCA-fluid case, at the Lennard-
Jones triple point state, which is a system with good mixing,
we noted only a marginal improvement over the NH dynam-
ics in the convergence rate of the calculated quantities if the
ENH dynamics were used with Gle<0.3.

2.0

-4 -2 0 2 4 VIIl. NONEQUILIBRIUM PROPERTIES OF
q GNH DYNAMICS

Among the desirable properties of any thermostat the im-
portant property is its applicability away from equilibrium.
In order to test the applicability of the GNH dynamics away
(b) from equilibrium, we considered a WCA fluid subject to a

1 Couette shear strain rate field. The equations of motion were
0.3 ; the following thermostatting Slloso-named because of its
1 close relationship to the Dolls tensor algorithequations

[7]

0.4 ]

0.2

P(q)

dg; p;
] F_ E+X’yyi ) (54)

0.1 1

dp; U

a:—a—qi—x)’pi,—fpi- (59

—4 —2 0 R 4 In these equationp; are the peculiar momenta of partidle
q X is the unit vector in the direction, andy is the imposed

strain rate. The thermostatting mechanism, represented by
was driven by the ENH thermostgqgs.(50) and(51)]. The
0.4 state point simulated were, as previously=0.722 andg
(c) =0.8442. The simulated WCA fluid consisted Nf=108
] particles, and calculations were performed at the reduced
0.3 1 shear ratey=1. Calculations performed with different val-

i ues of the parameterrevealed that direct application of the
ENH thermostat withe# 0 causes similar problems to those
observed recently in the case of the Nétmover chain
(NHC) thermostat$25,26. Thus, we have to conclude that
the ENH thermostat, in the above form, is not able to give
dynamics consistent with the desired target temperature for a
] system out of equilibrium.

0.0 - This unacceptable feature of the ENH thermostat is also
T4 -2 0 2 4 expected for other forms of the GNH equatiofi®., for
other sets oh, v, andu functiong. Taking into account the
p results of this section and previous sections, one may con-
clude that the generalization of Nodgamiltonian (12),
which provides the Hamiltonian basis for the GNH dynamics
reduces in practical realizations to the original Nétamil-
tonian and the NH scheme.

FIG. 5. (a) Density plot of a harmonic oscillatorm{=1, © V\(g aIsp note that in parallel to NHC thermostats, a simple
=1, kT=1) obtained under the ENH dynamicse=0.2, Q modification of the ENchermostéEqs.(SO) and(51)], can
=0.01). (b) and (c) show (dot9 the corresponding position and P& Proposedsee below which enables both steady-state
momentum distribution functions, respectively. The data were ob@Verages and time correlation functions to be obtained cor-

tained from simulations made up o0’ fourth-order Runge- ~ rectly for nonequilibrium states. .
Kutta time steps of length 0.001. The initial condition were Following the reasoning and results obtained for the

{a,p,0,¢}={1,1,0,1. The solid lines in(b) and (c) are the exact ~modified NHC dynamicq26], we consider the following
results. modified ENH thermostat:

0.2

P(p)

0.1
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tional scaling of the momentum of the virtual varialgte-
—ng) >+ ¢({—B)?, (56)  casionally exploited to derive different forms of extended
dynamics is irrelevant and leads to the equations of motion
which can always be converted to the GNH equations. Thus,
—=(¢—B. (57)  the entire generalization of the NH dynamics is, in fact, re-
dt duced toonly two momentum scaling functiorisandu, and
to a form of thes-variable “potential energy” functiorn.

The remaining three functiortsu, andv involved in the
GNH dynamics still offer considerable freedom in selecting
the most appropriate and efficient canonical dynamics for a
iven physical system. These functions are, however, not
ndependent, and only sets of functions obeying the
ensemble-ensemble conditidd7) need to be considered.

rium, ({)=0, so that the modified ENH equations reduce tory, g . :

: o e number of such distinct sets which are computationally
the ENH equations Thus thg modified ENH approach can useful is expected to be very small. The set consisting of
be considered as an extension of the NH scheme. Just asE

ibrium it ﬁ dvant 7 tiati I_:larithmic and power functions was studied in detail as a
equiibrium 1t can ofier Some advantages in INvestigations Ofy, promising generalization of the NH dynamics for MD
small or stiff nonequilibrium systems.

simulations. With this choice of function the GNH scheme
becomes very similar to the NH approach but with coupled
IX. CONCLUSIONS and more nonlinear thermostatting parts of the equations.

In this work we have demonstrated that any freedom off Nese ENH equationg48—(51) are expected to produce
choice in the selection of the isothermal dynamics scheme@0reé chaotic phase-space dynamics than the NH equations.
based on the generalized Nosemiltonian is largely illu- We have demonstrated that the ENH dynamics exhibits ca-
sory. We show that the scaling of particle positions with nonical distribution for a o.ne'—dlmensmnal harmor]lc oscilla-
functions is trivial. All position scaling functions have to be tor- To our knowledge this is the only Hamiltonian based
a single constant if canonical averages are to be produceddynamics which possesses such a property.

If only static quantities are of interest, then time scaling Direct application of the GNH thermostat to study non-
can be considered as an additional procedure to define difduilibrium problems can be problematic, and in general will
ferent generalized Noddoover dynamics. However, no ad- I_ead to incorrect resul_ts_. In this context the entire generaliza-
vantage of using such dynamics for calculating static propfion reduces to the original NH approach, which can be con-
erties has been found. In all studied cases, the dynamics wiffidered as a fairly unique scheme. However, it has been also
different time scaling functions displayed worse convergencélémonstrated that, as for the NHC thermostats, a simple
rate of calculated quantities than the NH dynamics. modification of the ENH equations is possible, which makes

Calculations of equilibrium time correlation functions the GNH approach also applicable away from equilibrium.
showed that the time scaling it an independent proce-
dure. Calculations of dynamic quantities require that the av-
erage of the ratio of time and momentum scaling functions
has to be equal to unitfw/h)=1. In practical realizations This work was supported by the Polish Committee for
only the exactly obeyed constraint, i.&v=h should to be Scientific ResearchKBN) Grant No. 8T11F01214. We
used. would like to thank Professor W.G. Hoover for reading the

The most general form of the GNH equations has beemanuscript, and for helpful comments. We thank Professor
established, given in Eq$39)—(42), which enables the cor- D. M. Heyes for useful remarks and suggestions. Part of the
rect calculation of both static and dynamic quantities of acalculations were performed at the Pozr@amputer and
system at equilibrium. It has also been shown that the addiNetworking Center.

This differs from the original ENH thermostat only in the
appearance of a constaBt Repeating our calculations with
this modified ENH thermostat, we verified that, as lond3as
was close tq¢) and 0.k €< 0.3, the SLLOD equations pro-
duced results totally consistent with those computed with the
Gaussian and NH thermosta7,26. (Note that, in equilib-
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