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Scaling of avalanche queues in directed dissipative sandpiles
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Using numerical simulations and analytical methods we study a two-dimensional directed sandpile automa-
ton with nonconservative random defe@tencentratiort) and varying driving rate. The automaton is driven
only at the top row and driving rate is measured by the number of added particles per time step of avalanche
evolution. The probability distribution of duration of elementary avalanches at zero driving rate is exactly
given by P,(t,c)=t~32exgtIn(1—c)]. For driving rates in the interval-9r<1 the avalanches are queuing
one after another, increasing the periods of noninterrupted activity of the automaton. Recognizing the prob-
ability P, as a distribution of service time of jobs arriving at a server with frequentlye model represents
an example of the clag€,1,Gl/~,1) server queue in the queue theory. We study scaling properties of the
busy period and dissipated energy of sequences of noninterrupted activity. In theliiend varying linear
system sizeL<1/c we find that at driving rates<L ~'? the distributions of duration and energy of the
avalanche queues are characterized by a multifractal scaling and we determine the corresponding spectral
functions. FoiL>1/c increasing the driving rate somewhat compensates for the energy losses at defects above
the liner ~ \/c. The scaling exponents of the distributions in this region of phase diagram vary approximately
linearly with the driving rate. Using properties of recurrent states and the probability theory we determine
analytically the exact upper bound of the probability distribution of busy periods. In the case of conservative
dynamicsc=0 the probability of a continuous flow increasesFgse)~r? for small driving rates.

PACS numbe(s): 05.65+b, 64.60.Ht, 45.70.Ht, 02.50.Hb

I. INTRODUCTION The presence of nonconservative defects in Dhar—
Ramaswamy automaton leads to a subcritical behd®ipr
In the past decade the sandpile type of cellular automata The behavior of driven dynamical systems at finite driv-
played a special role in understanding self-organized criticaling rates (>0) represents an important subject both for
ity in nonlinear dynamical system$or a recent review see theoretical and practical reasons. A finite driving rate may
Ref.[1]). In sandpile automata the properties of the dynam-appear either as a control parameter set from outside, or as a
ics, which are essential for the occurrence of self-organizeg@robability distribution originating from another coupled sto-
critical states, can be monitored in a direct manner. Aparthastic process. In practice, the systems are driven by an
from the relaxation rules, these are the following propertiesexternal field, which oscillates with a finite frequency. Ex-
type of driving and time-scale separation; conservation lavamples are Barkhausen noig, integrate and fire oscilla-
of the dynamics; direction of mass flow; and role of bound-tors[7], granular material in rotating druni8], etc. Queuing
aries. In addition, the Abelian nature of the toppling rules injobs at a servef9], e.g., in teletraffic, is an example where
some sandpile automata enabled derivation of certain exatite frequency of arriving jobs is given by a random process.
results[2,3], in contrast to other dynamical systems where Theoretically at finite driving rates>0 the probability
such calculations are not available. Numerous sandpile modhat a new avalanche starts before the previous one has
els, both deterministic and stochasfid, are shown to ex- stopped increases with increasingThis obviously leads to
hibit dynamic critical states in the limit of “infinitely slow”  different statistics of avalanches, where an avalanche is un-
driving (i.e., at zero driving rate=0). In this limit a new  derstood to represent a noninterrupted activity of the system.
avalanche is initiated only after the previous one hagor large driving rates a continuous flgan avalanche that
stopped, thus the time-scale separation is exactly observedever stops is expected in sandpiles. Similarly, a single
On the time scale of perturbations, the avalanche evolution ispanning cluster may occur in driven disordered systems.
seen as occurring instantly. The existence of the criticallherefore, a time-scale separation becomes less and less ap-
states in the case of directed Abelian sandpile automaton @arent with increasing. In addition, by increasing driving
zero driving rate has been proved exactly by Dhar and Rarates, the local driving loses its strict sense. Thus fast driven
maswamy{2]. At this point it is interesting to mention that sandpiles are placed between strictly local driving, where the
the model studied in Ref2] is characterized by local driving system is driven at a singleandon) site, and global driving,
and deterministic conservative dynamics. The automatowhere the same perturbation applies to all sites in the system.
with conservative stochastic dynamics, on the other handThe role of the conservation la@onservation of number of
has been shown to belong to another universality dids grains in the interior of the systenis also expected to be
changed at finite driving rates. In the—0 limit, locally
driven nonconservative systems appear to be subcrjiCal
*Electronic address: Bosilika. Tadic@ijs.si whereas when the driving is global the critical states may
"Electronic address: priezzvb@thsuni.jinr.ru appear even if the dynamics is dissipatitd,7]. So far nei-
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ther an exact theory nor a renormalization-group analysis ofE,1,G1/%,1), which is studied as a model in the analysis of
fast driven critical systems has been done. A general quesarious applied problems, e.g., in telecommunications, insur-
tion concerning the existence of critical states at finite driv-ance, etc. These analogies are made clear by noticing that the
ing rates and universal scaling properties of the system in thgvalanches of a directed sandpile model have the correspond-
limit of large distances and long times remains to be aning terms in the language of the queue theory as follaiys:
swered. elementary avalanche—customer) duration of elementary
Recently two numerical simulations elucidated certain im-5y5janche—service timéii ) driving rate—frequency of ar-

portant properties of sandpiles at finite driving rates. In &qyals of customers(iv) number of elementary avalanches
one-dimensional ricepile model Corral and PaczUsk]  qeyisting at a given moment of time—number of working

; ; - %ervers;(v) duration of a combined avalanche—busy period.
noninterrupted periods of activity and have shown that theserhe notationE,1,G1/»,1) means that we deal with custom-

; 1 —0.20 ;
avalanches diverge at ratesro(L) ~L for a givenL. ers arriving by one and being served by one. The Id&er

The rational behind this conclusion is that an ever-runningmeans that the arrival times are generated by a Bernoull
avalanche occurs for driving rates-1/t),, where (t . L
v . ving (t)o, where (t)o process with the distribution Prabék)=p*(1—p);k

~L%2~7 s the average duration of avalanches in zero driv _

ing rate[12]. In another example Barrat, Vespignani, and%o’l’2 T ;p>Q. T_he symbolG1/e means Fhat the service
Zapperi[13] have shown that in a two-dimensional symmet-t'm_es are |dent|cal_ md_ependently distribut@dl.d.) r_andom

ric Abelian sandpile model mixing of time scales at finite variables and the infinite number of servers provides a non-

driving rates leads to correlations that appear to violate théestricted number of customers that can be served simulta-
fluctuation-dissipation theorem. neously. Despite much literature devoted to this suljeft

In this work we study a simple two-dimensional model most of papers focus on the distributioncpf, the number of
with strictly directed flow of grains and deterministic top- working servers at a given moment of time. The importance
pling rules. We add particlesnly at the top rowwith driving  of the tail behavior of the busy period distribution for fluid
rater. The driving rater is defined as a number of added queues in telecommunications, generalized processor shar-
particles per time step of avalanche evolution. We consideing, and other applications was recently pointed out in Ref.
both conservative and nonconservative dynamics. A fractiofil6]. Here we concentrate on some other properties of the
of sitesc are considered to be annealed nonconservative dejueue: the scaling behavior of the busy period and dissipated
fects. By toppling at a defect site two grains are lost, thusenergy distribution.
affecting the propagation of avalanche below that . Given the duration of elementary avalanches in &g,
Whenc=0 the dynamics is strictly conservative. In the e may conclude that the directed sandpile modelrferl
=0 limit and c=0 the model has been exactly solved by ygpresents a special case of the queue theory with the power-
Dhar and Ramaswan{p]. The critical states were shown to |5, gistribution of the service time with the exponent
consist of he|ght$1=0_ and_h=1 oceurring with equal prob- . =38/2—1=1/2. This implies that the average service time
ability 1/2 at each lattice site. The duration of an avalanche '?)er customer diverge)— . In practice, service times are

given by the probability distribution for large restricted to finite values, which correspond to the power-law

P,(t)~t32 (1)  distribution with 1<v<2 [16]. This may explain why the
gueue with the distribution of the type given in Ed) has

In the presence of nonconservative defects it has been showot been studied so far. In our model a finite average dura-

[5,15] that the screening of the power-law distribution in Eq.tion of elementary avalancheg)<c is achieved in two

(1) occurs as cases:(a) In the case of distribution in Eqd) when the

system sizd_ is finite, hence the distribution is truncated at

t=L; (b) In the case of finite dissipatioo>0, where the

distribution in Eq.(2) has a characteristic durati@i<e for

Pi(t)~t Pexp —t/&); ¢&~1lc. 2)

In this paper we will refer to the distributions in Eq4) and .
(2) as Srtl)obability distributions oélementar}avalar?ches, to all finite c values(see Refs[S,15] and below.
be distinguished from theombinedavalanches, which occur _ FOr @ finitel we find a continuous flow phasg) for low
at finite driving rates and which consist of a series of elemendiSSipation and large driving rates, and three regions with
tary avalanches. Up to relatively high driving rates1 the  Intermittent _behawor of av_alanche queues. Th_ese are regions
model has the property of successive elementary avalanch#dth subcritical (S), nonuniversalN), and multifractal(M)
run one after the other, in contrast to cases studied in Ref§ehavior, shown schematically on the phase diagram in Fig.
[12,13, where merging of avalanches may occur at any finitel. When the length separatiars¢ holds, we find a line in
r. After an elementary avalanche is over the system is chaithe (r,c) plane where loss of particles on defects in the in-
acterized by statistically unchanged distribution of heightsterior of the pile becomes “compensated” by fast adding of
owing to a weak correlation between the avalanches in thearticles from outside. In the region above the compensation
recurrent states. A finite probability of avalanche collision,line the avalanche queues exhibit a scaling behavior with the
which accelerates flow of grains, occurs in this model onlyscaling exponents depending on the driving rate: The slopes
for r>1. Here we restrict the study to the casel, where decrease, whereas the fractal dimensions increase with driv-
the formation of avalanche queues is a dominant phenoming rate. Cutoffs with a stretch-exponential behavior appear.
enon that determines the scaling properties of the system. In the limit c—0 and when the system site<¢ is varied

The problem of avalanche queue in our model can banultifractal scaling properties describe the scaled distribu-
regarded as an example of the server qu@jef the class tions, rather than a simple finite-size scaling.
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FIG. 1. Schematic phase diagram for a finite system &ize
Cross-hatched area represents a crossover region betgvekn
(right) and £&>L (left). Regions with distinct behavior of the ava-
lanche queues are shown: subcriti€dl, nonuniversalN), multi- —
fractal scaling regioriM), and flow phaséF). Solid line represents o
the compensation line. Transition to the flow phase is marked by
(¢©) for c=0 and by dotted line for smati>0. In the origin @)
only single Dhar-Ramaswamy avalanches occur. (a)

In general, the distributions of combined avalanches are
characterized by a scaling function of two arguments of the
form

P(X,F,Lo)~X"™XP(XL_ *X,rL¥?), (3)

where X represents either duratidror number of topplings
[17] n and L,=min{¢L}. The corresponding fractal dimen-
sionsDy are defined by

(X),~7Px, (4

where the average is taken over all combined avalanches of &
selected length” measured along the direction of transport.
Using analogy to the queue theory and the properties of
the recurrent states we were able to derive an exact upper
limit of the distributions of busy periods and to discuss the
limit L—oo. We also derived the expression for the probabil-
ity of continuous flow in the conservative limit.
The paper is organized as follows: In Sec. Il we define the
model and consider the case of conservative dynamics by ®
numerical simulations on finite lattice. In Sec. Il we present . )
results of simulations in the case of finite concentration of G- 2 (Top) Growth of a combined avalanche in the case of
nonconservative defects. In Sec. IV we present details of thgonservative dynamicsce0) for driving rate r=0.05 andL

. . =100. Nine fronts of active site&ark are visible.(Bottom) A
analytical results. The paper contains a short summary of the . . N _
results and discussion in Sec. V cqmplete comblned. gvalanche in thg case of dissipative dynamics

T with ¢=0.02 and driving rate =0.5. Different shades of gray cor-
respond to distinct toppling waves.

II. MULTIFRACTAL QUEUES OF DHAR-RAMASWAMY

AVALANCHES (i,j) occurs deterministically whenevé(i,j)=h.=2, and

two grains are transferred downward, i.e.,
The sandpile automaton model introduced by Dhar and

Ramaswamy represents an example of a self-organized criti-  h(i,j)—h(i,j)—2; h(i+1j.)—h(i+1j.)+1, (5
cality with exact solution in the limit of zero driving raf&]. ) . ) )

In this section we consider the same model at finite drivingVnere (+1,) represents two downward neighboring sites
rates O<r<1. The dynamic rules of the model are summa-t© the site (,j). _ _
rized as followg2]: We consider a two-dimensional square The probability dlstr|but0|on of duration of avalanches in
lattice oriented downward, with a dynamic variable-heightzero driving rateP,(t)~t™ " P(tL~Y) with 7-?:3/2 given in
h(i,j) associated at each site. Grains are added at the tdpg. (1) becomes exact at largg2]. In addition the dynamic
row only, and mass flow is only down. The toppling at a siteexponentz®=1. This implies that the average duratitn,
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FIG. 3. Double logarithmic plot of the integrated probability FIG. 4. Same as Fig. 3 but for the integrated distribution of
distribution of duration(busy periods P(t,L) of queues of Dhar— number of topplinggmass D(n,L) vs mass (number of grains
Ramaswamy avalanches vs duratiprmeasured in Monte Carlo Shown are only curves for =96, 192, and 384(Inse) Spectral

steps(MCS’s). Fixed driving rater =0.05 and various lattice sizes function®,(«,) VS @,. Xq=0.97+0.02, L,=2.15+0.05.
L=24, 48, 96, 192, and 384 are usébhse) Multifractal spectral

function®,(«;) vs «; obtained from the data in main figure accord-

! / In this section we perform numerical simulations for
ing to Eq.(6) usingXy=1, Ly=2.

r>0 and finite lattice sizek. The limit L—« will be dis-
f cussed in Sec. IV. In Figs. 3 and 4 are shown the integrated
oo probability distributions of duratiof(t’=t,L) and number
the d|str|but|orl.i)(s,L). of topplingsD(n’=n,L) for fixed driving rater =0.05 and
=4/3 and the fractal dimension arious lattice sizek. It should be noted that both slopes and
=3/2. N umber of toppled grains at eacheytoffs of these distributions appear to be different compared
active site is two, then the distribution of the number ofts ones of the elementary avalanches. In particular, slopes
toppled grains within an avalanciiin) is described by the - gecrease with (see a more detailed discussion in Seg. Il
same exponents, i.er,=4/3 andD,=3/2 at zero driving  For instance at=0.05 we findr,=0.4 andr,=0.3, in the
rate. . o steep part, ane,=0.31 andr,=0.2 in the flat part near the

A finite driving rater>0 is implemented as follows. An  oioff. A cutoff in the probability distribution of durations
avalanche is started from the'top' and at ea}ch step Qf. th&ppearicf. Fig. 3. The characteristic jump at=L is related
avalanche progress a new particle is added with probability to the conditional probability: an activity lasts longer than
at a random site at first row. We also consider a deterministic i

addition of particles, i.e., we add a particle at regular inter-s_t?_ps_r?]nly i thedprecedmg ""{ﬁ'?‘”‘?hes_'s nlott_short_er thl‘t"‘r.]
vals At. Both approaches lead to the same results when the ~ 1€ Jump decreases with increasing fattice size. 1t 1S
statistics is high enough. An added particle may trigger Jnteresting that these distributions cannot be scaled according
new elementary avalanche before the previous one stopd® @ Simple finite-size scalingvith new exponents as one
thus making a pattern of active sites distributed over thén@y naively expect. Instead, we find that a multifractal scal-
lattice. A snapshot of growth of a combined avalanche witind applies according to the law

marked active sites is shown in Fig.(®p). A combined

avalanchgavalanche queues thus determined by a nonin- L\ @x(ax) log(X/Xo)
terrupted activity on the lattice and it stops when no more P(X,L,r):( ) ; =

ax=r————, (6)
active sites occur. Then a new avalanche is started. It should log(L/Lo)
be noted that whem>0 the number of added grains is

~LY2 . Similarly, the area enclosed by the boundary o
an avalanche is given by
~5775D(sL~P5), where 72
DY=3/2. Note that the n

L_O b
higher than the number of combined avalanches. Anothewhere, as beforeX stands fort or n. The corresponding

important remark is that the repeated toppling at a site magpectral functionsb,(«;) and ®,(«,) are determined nu-
occur as soon as>0. This leads to the inequalityn)

merically forr=0.05 and shown in the insets to Figs. 3 and
>(s), and thusD,,>Dg, andz>1. The numerical simula- 4, respectively. The spectrum depends on the driving rate.

tions confirm these conclusiorisee below. Typically, we  For driving rates close to the line~L Y2 extremely large

consider 2 10° combined avalanches at each driving rateavalanches may appear and the scaling fits fail. The origin of
and lattice size. Periodic boundary conditions are applied imultifractality in the queues of Dhar—Ramaswamy ava-
the perpendicular direction. lanches can be found in the fact that an unrestricted multiple
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FIG. 5. Attempted finite-size scaling fit of the data from Figs. 3
and 4 for the distribution of avalanche duratimight) and mass 60
(left).
50

toppling at each site may occur, and that a toppling at a giver
site releases a local avalanche which propagates from the
site downward.

For comparison we show how a finite-size scaling fit of
the data fails. In Fig. 5 we present an attempt of scaling
collapse of the data shown in Figs. 3 and 4 above, according
to the formulaP(X,L)=L"*P(XL~Px). Note that the best
collapse of the tails of distributions are obtained by fixing the
fractal dimensions aB;=1.20 andD,=1.75, which corre-
spond toay at the shoulder of the spectrud,(«;) and
d,.(ap), respectively. Fixing a smalldtargen value for the
fractal dimension leads to systematic shifts of the distribu- FIG. 6. Sandpile noise(t)—number of active sites at time
tion tails to the right(left) with increasingL. The best fit  plotted against tim& (MCS) (lower panel and its Fourier spectrum
shown in Fig. 5 is obtained fok=0.35, which satisfies (top panel for fixed driving rate r=0.33. Dissipation rate
(within numerical accuragythe scaling relation\=z(7;  ¢=0.01 andL=128. Shaded area shown in the lower panel is an
—1)=D,(7,—1) with 7x—1 determined at the flat part of example of unit signal, corresponding to a combined avalanche.
the distribution. However, as Fig. 5 shows, fixibg andA
leads to the systematic shifts of the “horizontal” part of the competition between dissipation and driving rate leads to
distributions to the right with decreasirtg Fixing the eXpo-  new phenomena.
nents independently from the scaling relation results in |n Fig. 2 (bottom an example of a combined avalanche is
crossing of the lines for different values. shown forc=0.02 and driving rate =0.5. It is remarkable

For driving rateg >L "~ "2 an ever-running avalanche may that the number of topplings per site decreases with distance
occur, representing a continuous activity on the lattice. Thgrom the top. Intermittency of the dynamics as well as the
flow phase can be characterized by an average number gtcurrence of the long-range correlations can be seen by di-
topplings per site, which is expected to have a nontrilial rect examination of the recorded activity of the systeft)
dependence. The probability of occurrence of the flow phasgt each time step. For the server queue the quanfity is

i | M
A | Y

in the limit L — <o will be discussed in Sec. IV. interesting as the measure of the energy, which is dissipated
by the server at a given moment of timén Fig. 6 we show
1. NONUNIVERSALITY IN DISSIPATIVE DYNAMICS an example of the recorded signal for a certain choice of

parameters, ¢, andL corresponding to the regidiN) of the

In the presence of dissipative defectsO the distribution  phase diagranicf. Fig. 1). A combined avalanche on this
of elementary avalanches, which is given in E2), appears recording is represented by a set of peaks between two con-
to have a finite characteristic lengék<oc. Thus the average secutive drops of the signal to the base line. The Fourier
duration at zero driving rate is finitt)o<<c. Precise value spectrum of the signashown on top panel in Fig.)&xhib-
of the average duration is controlled by an external paramits a power-law behavior. The sloge=0.9 weakly increases
eter probability of dissipatior, and not by system size,  with driving rater.
provided thatL>¢. The screening lengtl~ 1/c was first The scaling properties of the distributions of avalanche
estimated numerically in Ref5]. A more precise analytical queues depend on the mutual ratio of the driving and dissi-
expression can be derivédee below and Ref15]) asé ™! pation rates. In particular, the scaling function in E8@)
~ —In(1—c). Here we perform numerical simulations in the exhibits a nontrivial dependence on both arguments
casel > ¢ at driving rates 8<r<1. In this range of driving =t&~ ! andy=r &2 [Another suitable choice of variables
rates we expect the role of lattice size in the analysis of Seavould be ¢c,rt*?).] In Fig. 7 we show the distribution of
Il to be replaced by the characteristic lengthln addition, the avalanche madslissipated energyn for fixed c=0.01
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FIG. 7. Distribution of avalanche maBgn,r) vs mass (num- 0 ‘ ‘ . i ‘ i ‘
ber of graing shown in double logarithmic scale for fixed dissipa- 0 0.1 0.2 0.3 0.4 0.5
tion rate c=0.01 andL=192 and for various driving rates Driving Rate [MCS™']
=0.021, 0.041, 0.083, 0.125, 0.166, 0.25, and @l88 to right). . .
(Insed Average masgtop), area(middle), and duratior(bottom of FIG. 8. (Lower panel Various scaling exponents of the ava-

combined avalanches plotted against driving rate (M&Sfor lanche queues plotted against driving rate for fixed dissipation
fixed c=0.01 andL=192. At each point average is taken over ¢=0.01 andL=192. (*) indicates the productgm;—1)~D(,
2x10° combined avalanches. Fitting curves{n)=167  —1)~D(7s—1)~1.1(r,—1). Also shown are linear fits of the
X exp(11.4129), and(t)=23Xx exp(9.614). data.(Top panel Amplitudesé, (upper curvgand¢, defined in Eq.

(7) vs driving rate.(Lines) fit curves satisfying Eq(8) with B,
and various driving rates. In general, the cutoffs of the =6.29+0.46 andB,=4.5+0.51.
distributions increase and slopes decrease with increased
driving ratesr. More detailed analysis of the slopes ShOWSlength of series. A precisedependence of the exponents in
that for the range of values of driving rates the scaling bethe case of avalanche queues requires additional work and
havior of the distributions can be described by the scalingyill be given elsewhere.
exponents which depend on the driving rate. The slopes of The opposite effects on the exponents are obtained by
various distributions and the corresponding fractal dimenincreasing concentration of defeatsat a fixed driving rate.
sions, which are defined in E¢4), are shown against the |n particular, the slopes of the distributions increase and frac-
driving rate in Fig. 8. The dissipation rate is fixed @t tal dimensions decrease wiicreasingconcentration of de-
=0.01. Note thatr, in Fig. 8 represents a slope of the dis- fects in a limited rang@19].
tribution of the largest linear length reached in a combined An exact expression for the scaling functi@{x,y) in
avalanche. For a range of values of driving rates the scalingq. (3) cannot be guessed. It appears that the cut of the
exponents decrease and the fractal dimensions increase wilirfaceP(x,y) atr = const for well balanced values ofand
r, while the scaling relations between various exponents arg can be approximated by a stretch-exponential function, so
found to be satisfied within numerical error bars. The variathat we have
tion of the scaling exponents can be approximated by a linear
dependence aof. It is interesting to note that a qualitatively P(X,c,r)=X"Oexgd — X7/ &x(r)]. (7)
similar behavior, linear variation of the scaling exponents
with driving rate, has been measured experimentally in thédere X stands forn or t, and we findo,=1.14+0.04 and
case of Barkhausen noise in driven disordered ferromagnets,= 1.28+0.06, for the distribution of energy and duration,
[6]. Our present analysis suggests that such behavior can bespectively. The amplitudeéy(r) can be fitted(see top
related to an interplay of driving rate and dissipation at depanel of Fig. 8 by the following function of driving rate:
fects, and that it applies more universally. Dependence of the
fractal dimensiongand of the slope exponents via scaling Ex(r)=Ax(c)exdrBy(c)], (8)
relationg of the avalanche queues on driving ratean be
linked to ther dependence of the average length of the queuéor a fixed dissipation rate.
(N)=1+r(t)o. It has been shown recenfly8] that the frac- The observed parameter dependence of the probability
tal spectrum of the series of elementary signals in the case @fistributions is also reflected in the behavior of the average
transit times in the ricepile model varies as a power of theduration and energy of combined avalanches. Notice that the
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average duratiofit) represents the average busy period of a  10* .
server in the queue theory. Beside the average duration ;
we also compute the average values of number of topplings s
(energy (n) and area(s) (total number of distinct sitgs
affected by the processing of a combined avalanche. Thes
average values are shown versus the inset to Fig. 7 for
c=0.01. The valuegt) and(n) increase with driving rate
faster than an exponential function. Fitting the data in the

Y e
wp 10
{

1

inset to Fig. 7 we find 10 ¢ 3
(X)=aox exax(c)r], €) 135 i 1
10* | 3

where X=n,t and we estimater=1.2+0.1. Note that, in :
contrast to durations and energies, the average area of a 1¢° [
avalanche is bounded by the number of cells in the systen’

(s)=<L?2
As already mentioned above, for a given dissipation cate 10 |
andL> ¢ a driving rater o(c) exists such that fast addition of ;
grains compensates the losses in the bulk. In fact along ai 10’ 4
extremal line i ‘ ‘ ‘ ‘
-2 0 2 4 6 8

’f_, 1/2_K

FIG. 9. Finite-size scaling plot of the average duratjon(top)

. . and masgn) (bottom according to Eq(11). Data are taken for
the coherence length remains constant. The existence of the, ¢ off:<=>0.(01 0?125 0'013 and %(.02) such thatl =192 is

compensation line Eq10) can be demonstrated by_conS|d-. satisfied. Note that the exponents are exact and the fitted value
ering sets of data for average durations and energies against 1 14 within numerical error bars.

driving rater, obtained for different characteristic lengéh

~1/c. These data can be scaled according to the following IV. ANALYTICAL RESULTS

scaling form

10°
10 ¢

ro(c)~ké ¥2=i\c (10)

We start the analytical description of the model with the
<x>§7DX(27TX)=g(rgz(Zfrt)_K)_ (11) a_ssumption that individual gvalarjches, which form a com-
bined avalanche, are statistically independent. By the defini-
tion of the model, each toppling in a single avalanche occurs
The corresponding scaling fits for the two casést and later than those in the previous avalanches, so that the indi-
X=n are shown in Fig. 9. Notice that the respective expo-idual avalanches never intersect in the space-time points.
nentsD,(2—7,)=1 and z(2—7)=1/2 are exact values, Nevertheless, the next avalanche is sensitive to the configu-
thus leaving only one parameter, namelyto be determined ration of occupation numbers left by the previous ava-
by the fitting procedure. This is an advantage of having théanches. In this way the individual avalanches are dependent
exact solution for the elementary avalanch2s From the on preceding avalanches. On the other hand, it is known
best fit we findk=1.14+0.1 in the given range of values of from Abelian properties of the directed sandpile mods|
Cc (see caption to Fig.)9 It is evident from Fig. 9 that the that the recurrent state is characterized by the independent
scaling function defined in Eq11) increases faster than an distribution of occupation numbers zero and one at each site.
exponential. Hence, one can expect that this property of recurrent state
In the simulations a continuous flow may occur in theprovides independent distribution of single avalanches at
case of dissipative dynamics at finite lattice sizeshen the least for asymptotically large systems. This assumption al-
driving rate is increased. However, with increased systentows us to consider the process of driving the directed sand-
sizelL the behavior is different from that in the case of con-pile automaton as a sequence of i.i.d. events. Another impor-
servative dynamics discussed above. From the numericghnt consequence of the statistical independence is that stops
simulations alone we cannot distinguish if the affected areaf combined avalanches can be considered as recurrent
of a continuous avalanche diverges with the system sizevents, i.e., the probability of two successive stops
L—oo, or it remains finite for the range of driving rates Prob(,,t,) at the moments, andt,+t, is given by the
considered here. We will also discuss laigdimit in Sec.  product Probt{;)Prob(,).
V. We consider the probability distributidn(t) that a com-
We have restricted our analysis to the case where thbined avalanche starting at the momeéntO stopsfor the
degree of dissipation is such th&&L. Forc—0, however, first time at the discrete momertt This means thaE(t) is
we haveé— o, thus the role ol and ¢ is interchanged at the probability that the stop of all preceding elementary ava-
some finiteL. In the reverse limit wheh <¢ the behavior is  lanches occurs until the momentThus,F(t) coincides with
expected to be similar to the case of conservative dynamicthe probability distribution of duration of combined ava-
at finite L, studied in Sec. Il lanches when an ensemble of events is considered. Along
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with F(t), itis useful to consider the functidd(t), which is

defined as the probability that all preceding single ava-

lanches stop to the momentegardlessof how many stops
of combined avalanches occurred befardloting that stops

of combined avalanches are recurrent events, we can wri

for F(t) andU(t) the following identity[20]:

U(t)=F(LH)U(t—1)+F(2)U(t—2)+--- +F(t)U(0),
(12

where it is convenient to pE(0)=0 andU(0)=1. For the
generating functions defined by

u(s):t:E0 stU(t) (13)

and

f(s)=t§l S'F(t) (14)

one easily gets from Eq.12) the known equation of the
theory of recurrent even{0]

u(s)—1

f(s)= us)

(19
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t—byr| "
U<t>~(ﬁ__—bﬁﬁ) exd —2b(r\t—vr)] (20

tfgr t>1 and O<r<1. For the infinite lattice there exists a

constantc, such that

u(1)sc22,0 exp(—rt)<w. (21)

Therefore, we can find that for all finite driving rates 0
there is a nonzero probability of continuous flow. In particu-
lar, the sum in Eq(21) diverges at smalt as

1
u(1)~ 5 (22)

leading to the probability of stofi(1)~1—2r?b?, which
decreases from unity as soon as a finite driving rate is ap-
plied. Then the probability of continuous flow E€L.6) in-
creases from zero by the same amount, i.e.,

F(%)~r?r—0. (23
For larger we expect that
1-F()~exp —r). (24)

The total probability that a combined avalanche ever stops is ) o -
given by f(1). Therefore, the probability that a combined !f the size of the system is finiteL(<) the probability of
avalanche never stops, i.e., the probability of a continuou§topsU(t) is bounded fromaboveby a finite value

flow, which is given by
F()=1-1(1), (16)
does not vanish ifi(1) in Eq. (15) is finite u(1)<<oe.
A. Casec=0
In the case of conservative dynamiecs<0) the probabil-

U(t)=<(rL) **"2exp — 2brL %), (25)

which follows from Eq.(20) taking only the dominant be-
havior fort=L>1.

B. Casec>0
In the case of finite dissipation rate>0 the dissipation

ity distribution of durations of elementary avalanches isleads to a finite characteristic leng¢hin the distribution of
given by Eq.(1). Then we can estimate the probability(t) elementary avalanches in E®). This can be easily demon-

as follows. LetAt=1/r be the average time interval between strated using mean-field argumefi24] in reaction-diffusion
addition of successive particles to the first row. The probabilsystems. Let us suppose that at each site of the lattice one of
ity Prob(x<t) that a single avalanche has a duration lessspeciesA or B is living. These species represent two possible

thant is
b
PrOdX$t)~l— tT/Z (17)

for larget, whereb is a constant of the order unity whéns
large. Then for time$>At we have

e
(V) t112 (t_At)l/z (At)1/2 :

(18)
Introducingk=t/At we can write Eq(18) as the sum

1/2

1- (nAt)l/Z) == (At)1/2'

k
InU(t)= Zl In (19

Approximating the sum by an integral leads to

states of the original modek corresponds to the empty site,
B to the occupied site. Due to the external driving force, new
particles¢ are added to the first row of the lattice at rate
The propagation of particles can be described by the follow-
ing rules:

A+¢—B, B+odp—oA+24¢. (26)
The Kkinetic equations corresponding to this scheme of

“chemical” reactions are

NA(7)=ng()Ng(£)—Na()], (27)
(/) =n4()[NA(/)—Ng()], (28)
Ny(7)=—ny(/)+2n4/—1)ng(/)(1—c), (29

wheren,(/), ng(/), andn (/) are concentrations of spe-
ciesA, B, and ¢, respectively, at the'th row. In the steady
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state we have,=ng= h¢:0 and Eqs(27)—(29) lead to the & random variable. The co_mbined avglgnche stops if the ran-
simple conditions for the concentratioms,=ng=1/2 and dom walk returns to the origin where it is trapped. The prob-
[22] ability of the return to the origin from an arbitrary positian
is not smaller thartJ (¢), where
ng(/)=r(l-c)’. (30) ,

U(&)=(r&) " exp(—2bre'?), (34)
For c>0, the density of particleg, and hence the number
of topplings in an avalanche, decay exponentially with theand&~ 1/c as above. The survival timeof the random walk
distance/” from the top as (/) =r exp(—//£). This im-  under consideration does not exceed the period of successful
plies that the characteristic length of the avalanch&i$  tests in the Bernoulli scheme with the probability of “suc-
~—In(1—c)~c. Therefore the above results, in particular cess” 1-U(£). The period of tests in the Bernoulli process
Eq. (25), obtained for the case of finite latticksandc=0 has the geometrical distribution
apply also for the case>0 by the substitutior. —L . with

Prob(x=t)=[1-U(£)]'U(). (35

Hence, the time distribution for combined avalanches is
bounded from above by the exponential function in 8%).
Using Eq.(34), we obtain

L.=min{&,L}. (31

C. Bounds for the busy time

If the combined avalanches are finifee., there is no

continuous floy, we can estimate their average duration us- P(H)~F(H)<A(L-U(&)'~Aexd —tU(&)], (36

ing the known theorem from the theory of recurrent events

(Ref.[20], Ch. XIll, Theorem 3. According to this theorem, WwhereA is a constant antl(£) is given by Eq.(34). Note

the inverse average time of combined avalanghtgs® co-  that this expression represents an upper bound of the distri-

incides with the limit of the sequende(t) when t—oe. bution of busy periods in Eq7). Therefore 1 (&) plays the

Using the bound fotJ(t) given by Eq.(25) we get role of an effective correlation length at finite in a quali-
tative agreement with the numerical data and @ .0of Sec.

(ty=(rL)**"2 exp(2brL?). 32 .

The true asymptotics aoft) possibly co'ntains an add?tional V. CONCLUSIONS AND DISCUSSION
prefactor 2 as in the case far=0. Notice that numerically
the average duration as a function rofcf. inset to Fig. 7 We have shown that a finite driving rateis a relevant
increases faster than the exponential, which agrees with Egerturbation, which alters self-organized critical states in the
(32. directed sandpile automata. In the case of conservative dy-
The combinatiorrL 2 appears as a characteristic param-namicsr couples to(t)o~L*? thus leading to enhanced ef-
eter determining the duration of combined avalanches. Thuggcts when the length scale is increasetl te <. A continu-
for £<L it follows from Egs.(32) and(30) that the coher- ous flow eventually occurs, in which critical long-range
ence length remains constant ifaries withc asr ~/c, i.e.,  correlations are destroyed. On a finite length scalg,
the increasing driving rate compensates the dissipation. =min{{,L}< either due to finite screening lenggtor finite
Another interesting feature of the probability distributions System size., the critical states occur with qualitatively new
at finite driving rates is the occurrence of stretch-exponentiagorrelation properties, which is manifested (i:a multifrac-
cutoffs in both dissipative and nondissipative cagésFigs.  tal scaling of combined avalanches whesk £, and(ii) oc-
3, 4, and 7. Indeed, we can see from E@L2) that U(t) currence of compensation between driving and dissipation
>F(t) for all finite t. Therefore, for the nondissipative case along a linery(c)~ ¢ 12~ Jc, whenL> ¢, How precisely
we have an exponential decay of combined avalanches the effective coherence length(r) of combined ava-
lanches increases with driving rate depends on details of the
P(t)~F(t)<(rt) "2exg — 2bryt) (33)  relaxation process and grain addition. In the case of a finite
input current at each site of the system, we find a finite
in the thermodynamic limi. —<, which follows directly  toppling rate at all scalesn,(/)~r/c, compatible with
from Eq. (20) for larget. &aii(r)—. However, if grains are added only at the top, the
For finite lattice sized. or finite dissipationc>0 the correlation length increases exponentially witim the range
function U(t) is bounded from above by a constant given in0<r<1, but remains finite presumably up to large driving
Eq. (25) with L replaced byL.. In this case we can find the rates. Here we restricted the discussion to the casé,
origin of an exponential cutoff in the following way. Con- where queues of Dhar—Ramaswamy avalanches occur. Ava-
sider an enveloping process that corresponds to propagatidganche queuing for this range of driving rates is peculiar to
of the front of the combined avalanches. Duration of an el-our model, due to strictly local critical height rule and the
ementary avalanche startingtaj is a simple linear function directed transport. In the ricepile and in the symmetric Abe-
of time t;=t—t;,. The enveloping process consists of thoselian models[12,13 a perfect queuing is prevented by the
topplings which occur at the maximal distance from the timecollision of avalanches, which occurs at any finite0. Ow-
axis at each moment of time The positionx of the frontis  ing to the exact solution for behavior of elementary ava-
an one-dimensional random walk confined to the intervalancheq?2], we were able to study properties of the queue in
[0,£]. Starting fromx=0, the walk performs a step ahead detail. In particular, we find that an average busy period is
with some probability, and a step back, the length of which ishounded from below by an exponential function
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<t>2(r|_)b2r/2 exp(rLY?). The avalanche queue can be re- of dissipative dynamics>0 an effective coherence length

garded as a multifractal set, in which the average length i§'creases with for 1/c<L —co. Our results suggest that the

regulated by the driving rate &8)=1+rL 2 There are no probability f (1) remains finite even at high driving rates. In

waiting times for elementary avalanches, therefore oufh€ limitL—e thehcompensaftlon_ line extends to the p(;]l_nt
model corresponds to the realization known in the queué?_’o’ r—0. For the range of driving rates studied in this

theory as “infinite number of servers.” Hence, the averagework we expect that the transport properties of grains in this

number of jobsy, that can be served in parallel is unlimited. M0de! remain unchangeooked at the time scale of ava-

It should be stressed that our cellular automaton represents!‘?;lnche propagation compared to the transport at zero driv-

new example in the queue theory in which queuing jobs ardd rate[23]. Collision of avalanche§, which occurs fjrst at
distributed according to a power-law distribution with the Fa€Sr=1, may accelerate the grain transport possibly re-

exponentr<2 and average duration of jobs is limited by a sulting in a new scaling behavior of the distribution of transit
control parametek .= min{&,L}. We hope that more practical times. Notice that due to local critical height rules and deter-
examples of this class can be found. We also believe that t inistic topplings the depth of the active zo(defined in
study of the scaling properties of the queues, as we ha ef.[12]) does not change in the flow phase of our model.

done in this work, adds a new aspect which has not been The analytical results in Sec. IV are derived assuming that

considered so far in the queue theory. The observed nonun?_lementary avalanches may be considered as independent

versal scaling properties of avalanche queues can be relatgefems' We checked by comp_utlng numencally _the correla-
to variation of the average length of the queue with drivingtIon function between events in a queue for f|.rllle/vhere
rate. The scaling exponents are found to vary approximatel _ther w?a_k corre”latlons occur. The correlations increase
linearly with the driving rate. A similar r dependence was ith the d'Staﬂce T .be_tween avalanches a3, where »
observed experimentally in other driven disordered systems; 0.05%0.01 with statistical error bars.
and seems to apply more generally.

A continuous activity on the lattice, corresponding to a
flow phase occurs for=L %2 in the case of conservative The work of B.T. was supported by the Ministry of Sci-
dynamics. On an infinite lattice— < probability of continu-  ence and Technology of the Republic of Slovenia. The work
ous flow increases from zero a@(x)~2b?r2, whereas of V.P. was supported in part by the International Slovenian-
probability of an intermittent avalanche-like flow decreasesRussian project. B.T. wishes to thank A. Corral for discus-
from unity with the same raté(1)~1—2b?r2. For the case sions.
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