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Spontaneous symmetry breaking in the finite lattice quantum sine-Gordon model
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The spontaneous breaking of a global discrete translational symmetry in the finite lattice quantum sine-
Gordon model is demonstrated by a density matrix renormalization group. A phase diagram in the coupling
constant-inverse system size plane is obtained. Comparison of the phase diagram with a Woomany-Wyld
finite-size scaling leads to an identification of the Berezinskii-Kosterlitz-Thouless transition in the quantum
sine-Gordon model as the spontaneous symmetry breaking.

PACS numbegps): 05.50+q, 11.10.Lm, 11.30.Qc, 64.60i

The sine-GordonSG) model has been basically under- found, however, that the underlying particle spectrum in this
stood, i.e., the Bethe ansa@A) solution[1] and statistical model is different from that of the SG model for large mo-
mechanicq2] in the attractive regimg?<4s. The repul- menta. It is precisely this difference that makes thel)
sive regime 4r< 82<o, however, is still open. The BA for theory free from the difficulty at #<3?<8. This fact is
the massive ThirringMT) model, which is formally equiva- also direct evidence that bosonizatioh13,14, which leads
lent to the SG model fog2<8 [3], led to physically un- to the SG model, is precise only at large space-time separa-
desirable chargdtopologica) neutral excitationd4]. The tions. In short a unified theory of the SG model, which gives
quantum inverse scattering method for a lattice SG modethe exact soliton spectrum atm< 3°< 87 and the massless
with local interaction led to the same difficulf{g]. It is  phase at &< 2, is yet to be constructed. A recent work by
believed that the physical vacuum should be a simple Dira&ehrein [15] based on Wigner's flow equation method is
sea. To avoid difficulty at the repulsive regime, Luthergood progress in this direction.
pointed out the equivalence of the MT model with the spin So much for the infinite system. The BKT transition-
1/2 XY Z model through the Jordan-Wigner transformation,bearing models, however, suffer a strong finite-size effect
and obtained an expression for the soliton massEq. (23) arising from the essential singularity, exponential growth of
in Ref. [6]) See also a criticism of Wiegmani7] on the the correlation length near the BKT transitiph6]. In par-
equivalence between the eight vertex model from which ondicular, the infinite order BKT transition is replaced by a
calculates the energy spectrum of the spin X®2Z model second order-like transition with effective critical coupling
and the SG model. The instability =8, however, was constant, which depends on the system size logarithmically.
not properly resolved. In fact, it was later confirmed throughThus in reality, when finite condensed matter systems are
extensive perturbative renormalization group studies of the@nalyzed by the SG model or any other BKT transition-
SG model[7,8] in the context of its near equivalence to the bearing models, the physical quantities of interest will criti-
two-dimensionalXY model and the associated Berezinskii- cally depend on the system size.

Kosterlitz-Thoules¢BKT) transition, that the SG model un- It is also worth mentioning that often in condensed matter
dergoes a BKT transition g8?>=8 in the small mass pa- physics, there exists a physically meaningful lattice cutoff
rameter limit. The precise determination of the BKT and the lattice cutoff related ambiguitparticularly diver-
transition point and its universality class was done by No-gencies and necessary renormalization procedioes not
mura and others in a series of papg9% That is, the phase exist. Thus, our first motivation in this paper is to precisely
8m< 3% is massless. A possible dynamical mass generatiognalyze a finite lattice SG Hamiltonian

in the massless Thirring model through a Jordan—Wigner L

mapping to the spin 1/XXZ model was discussed by Mc- > [ B d?

Coy and Wu[10]. Notice an important difference between H':i:1 B 7r¢f+ 2_/32(d’i_¢i+1)2

the spin 1/2XXZ and XY Z models. The former has a mass-

less phase while the latter does not. lwabuchi and Schotte 1

also tried to realize the lattice MT model out of a scaling + E2(1+C°S¢i) ' @

limit of a six-vertex mode[11]. The obtained soliton mass

[cf. Eq.(5.10 in Ref.[11]] is different from that of Luther, where ¢; is the field variable at the lattice site The field
and the massless phase is neither accounted for. An effort theory SG Hamiltoniafi17]

cover both the massless phase and the massive phase was

due to Dutyshev and Japaridge, Nersesyan, and Wiegmann 1,1, m?

[12], a U(1) symmetric isospin massless Thirring model Hf:f 57 +§¢X+W(1+C°Sﬁ¢) dx, (2
which is equivalent to the Luther—Emery backscattering

model[13]. They obtained a BKT-like phase diagram with a wherel is the lattice cutoff can be written, after discretization
dynamical mass generation but without spontaneous symmend rescaling3¢p— ¢ andm=1, as

try breaking, and the same soliton mass in the repulsive re-

gime 47 <pB?<87 as that of lwabuchi and Schotte. It is H,=Hq/l. 3
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To discuss our second motivation, consider the strong I
coupling limit 83— oo with the infinite system sizé —oo. It /
is clear from Eq(2) that in this limitH; becomes a massless
scalar field theory with nondegenerate ground state. In the
weak coupling limit3=0 on the other hand, the ground state

is infinitely degenerate with each ground state describing a
zero-point motion near one of the potential minifgeé=
+2mXinteger. The latter point may be intuitively under-
stood if one regards E@l) as describing a system of torsion-
coupled quantum pendula under gravity. In this picte,

=0 means an infinite mass of pendulum. One thus expects a
guantum phase transition at some critical coupling constant
,85 separating a gapless nondegenerate ground state and a
broken symmetry ground state, which is simply a zero-point
motion. Is the BKT transition in the SG model the spontane-
ous breaking of a gloval discrete translational symmetry in /-{mi
the ¢ space? ” LY

In this paper, using a density matrix renormalization
group (DMRG) [18], we demonstrate the spontaneous sym-
metry breaking(SSB in the finite lattice SG model. We
draw a phase diagram in th@# inverse system size plane, a
critical line separating the SSB ground state and unbroken giG. 1. The probability distribution of the phase at the center
one. Comparing the result with a Roomany-Wyld finite-sizesite in the ground state for the system sites7, 37, 43, and 61.
scaling[19] leads then to the identification of the BKT tran- g2=13.
sition as the SSB.

To analyzeH, by DMRG, we proceed as follows. First  To calculate the ground state and the first excited state,
determine the basis states at each lattice site by solving thend thus an energy gap Gap(as a function of the system
one-body problem, the Mathieu equati0] sizeL, we follow the standard DMRG procedure. We use the
infinite algorithm, open boundary condition, and the ground
state target. We limit the phase space at each lattice site to
four potential wells, i.e.M=4. We putn=4 and start with
the superblock siz&l=40. The casesa=5 andN=45 are
To solve this, we limit thep space to b¢ —M7,M =] and  determined for the casg’=13 to see the convergence. The
takeM to be an even integer. Then in the Floquet's solutionsuperblock size®N=50 and 60 are also determined for the
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wheren is the band index and is crystal momentunmy is
determined from the periodic boundary conditieA™?!

Figures 1-3 are the results f@*=13. Figure 1 shows
the probability distribution of the phageosition of pendu-
lum in mechanical analggat the center site in the ground
state. The probability distributions at different sites differ by

=1. Py, (¢) is 27 periodic and can be expanded with a only a few percent at the edges. Due to the phase space
sufficiently large integed as
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" Ko 2f broken ]
It is convenient to work on the Wannier functions o 1 L 1
1 g i ——uae
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wn<¢—2wm>=mz e 2™y (4),  (7) & [ ]
’ ® 4F unbroken ]
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The Wannier function is localized at each cosine potential system size

well. Including up ton bands and for fixed number of
statesM, the dimension of the local basis statesqgis n
XM and all the local variables are expressedgyq ma-
trices.

FIG. 2. The phase average vs the system size for the lowest two
states forB?=13. The phase-average split tor and energy de-
generacy indicate the spontaneous symmetry breaking.
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FIG. 3. Phase averages vs the lattice site in the first excited state £1g 4. The phase diagram j8?— 1/L plane. An extrapolation

2__
for =7, 9, and 13. in the limit L— limit gives 82=19.0. 82=8 for the BKT tran-

. ) . sition in the small mass limit is also plotted for comparison.
truncation,M =4, the translational symmetry is somewhat

broken from the outset, and the symmetry unbroken state ajyyld finite-size scalind19] tells us that a phase transition

L =7 is delocalized over the two potential minima-atrand  can be identified by measuring the quantitx Gap(L) vs

. With the increase of the system size, the distribution beg2, Figure 5 showd X Gap(L) vs 82. The data crossing at
comes asymmetric and eventually localized near the poters2— 188 indicates a continuous transition. Note that the
tial well at —m. At the same time, the first excited state sjtation is rather like the Ising model, where a spontaneous
shows similar localization but at the other potential mini-symmetry breaking separates two massive phgsgsFrom
mum atar. At L=43, thej\évo states are almost degenerateihe RG studies of the continuous model E2) [7,8], it is

the energy difference-10"°, showing the SSB and the as- ynown that the critical poinB2= =8 in the small mass limit
sociated ground state degeneracy. Figure 2 shows the phaggnarates the massless phase and the massive phase. In our
averages at the center site for the lowest two states as fungsitice model. due to the truncation of the phase space to
tions of the system sizie. After L =43, the first excited state [—Mm M ’ the massless phase becomes massive, and

suddenly acquires a mass, indicating that the ground  herefore the behavior df X Gap(L) vs 82 should look like
state localized at the potential well &t is no longer acces- ot of the Ising model. The good agreement between the two

sible from the = ground state, fand the excited state there'valutas[3§=18.8 and 19.0 indicates that the BKT transition is
after is due to a local deformation of thes ground state indeed the SSB
which must be a topologically neutral soliton-antisoliton pair To summarize, we have demonstrated the spontaneous

creation. The squares in Fig. 3 show the phase average now L - ; -
. ; . ! R ' mmetry breaking in the finite, lattice quantum sine-Gordon
different from site to site, versus the lattice site in the first y y g q

; model by using density matrix renormalization group. A
excited state at =67. y g y group

We repeat the calculation varying the coupling constant A 1 ——
B?. With the decrease oB?, the SSB occurs for shorter [
system sizes, more abruptly, and the soliton-antisoliton pair 6 L = 192531 37 43 55 / ]
becomes more deeply bounded as shown in Fig. 3. We can ; R ]
now draw a phase diagram in tig8— L plane with a critical 5[ ) / ]
line separating the broken symmetry ground state and the f B, =188 // ]
unbroken one. To clearly see an asymptotic behavior at large —~4F // ]
system size, we have rather plotted & 1/L phase dia- S //§+
gram in Fig. 4. In this figure, a simple extrapolation from the & 3 . /é+/ ]
last three points for the critical coupling constans$ 2 ‘ i%*
=16-18 gives,8§=19.0 atL—oo. This value is different - 2F Z 1
from the well-establisheg?= 87 for the BKT transition in
the small mass limim—0 [cf. Eq. (2)]. However, we have r /:.7% ]
to take into account the fact that we made the limited phase Z}%
space approximation, and that the BKT-bearing systems suf- 0 3 ]
fer a strong finite-size effedtl6]. The infinite order BKT 17 18 19 20 21
transition is replaced by a second order transition with loga- BZ

rithmically size-dependent critical coupling constant. We

thus need to evaluate the critical coupling constant associ- FIG. 5. Lx Gap(L) vs B2 for the (—4a, 4m) phase space. The
ated with the finite-size modified, and limited phase spacéines are from cross to square for the system slzed9, 25, 31,
modified, BKT transition. For this purpose, the Roomany-37, 43, 49, and 55. Data crossing occurg3at 18.8.
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