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Dynamics and changing environments in highly optimized tolerance

Tong Zhou and J. M. Carlson
Department of Physics, University of California, Santa Barbara, California 93106

~Received 6 December 1999!

Highly optimized tolerance~HOT! is a mechanism for power laws in complex systems based on the robust
design of systems in uncertain environments. Once the system, the environment, and the optimization scheme
have been specified, the HOT state is fixed and corresponds to the set of measure zero~typically a single point!
in the configuration space which minimizes a cost functionU. Here we explore theU-dependent structures in
configuration space which are associated with departures from the optimal state. We introduce dynamics,
quantified by an effective temperatureT, such thatT50 corresponds to the original HOT state, whileT→`
corresponds to completely random configurations. More generally,T defines the range in state space over
which fluctuations are likely to be observed. In a fixed environment fluctuations always raise the average cost.
However, in a time-dependent environment, mobile configurations can lower the averageU because they adjust
more efficiently to changes.

PACS number~s!: 05.40.2a, 64.60.Ht, 05.65.1b, 87.17.2d
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I. INTRODUCTION

Recently, highly optimized tolerance~HOT! was intro-
duced as a mechanism which connects power-law distr
tions of events to the optimal design of a system subjec
external perturbations@1–3#. HOT links robustness to the
underlying origins of complexity in systems where desi
and/or evolution play an important role. HOT provides str
ingly accurate fits to frequency vs size distributions for for
fires, power outages, and world wide web traffic@3#. One key
feature of HOT systems is their special sensitivity to un
pected perturbations or systematic changes in the envi
ment. In this paper we introduce a time-dependent envir
ment, and derive conditions under which the origin
optimized state is replaced by an ensemble. The ensem
includes fluctuations about the original HOT state charac
ized by an effective temperatureT.

We focus on a simple, one-dimensional forest fire mo
@4# for HOT considered previously in@1#. The optimal state
minimizes a functionU, associated with the expected lo
due to a fire initiated by a single spark. The model also
an interpretation in terms of the design of world wide w
sites, in whichU is associated with the expected file trans
size. In Sec. II we define the model and calculate the den
of states as a function of the cost functionU. We replace the
static description of the configuration, which consists of tre
and firebreaks, to allow for dynamical fluctuations of t
barriers, characterized by an effective temperatureT. In Sec.
III we study the response of the model to a changing en
ronment, and derive an inequality describing when the
creased robustness to environmental change outweighs
sign flaws introduced by fluctuations. We conclude in S
IV with a discussion of our results.

II. CONFIGURATION SPACE METRICS, DYNAMICS,
AND FINITE TEMPERATURES

To date HOT systems have been described simply
terms of a static optimized configuration@1–3#. In this sec-
tion we generalize this description to include fluctuatio
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about the optimized state, which are characterized by an
fective temperatureT. We present our results in the conte
of the one-dimensional forest fire model@4#, although the
basic approach we outline is applicable to other system
well.

In the configuration space, every point, i.e., each state
the system, has a corresponding value ofU. The optimal
configuration has measure zero and corresponds to the m
mum U[U0. If the configuration space isN dimensional, it
can be divided intoN21-dimensional subspaces, each
which consists of states with a fixed value ofU. We define
V(U) to be the density of states, i.e., the relative number
configurations in each subspace, withV(U0)50.

A. One-dimensional forest fire model

The model consists of a continuous, one-dimensional
of lengthL, 0<x<L. The line is subdivided into disjoin
segments by a set ofN cuts at positionsy1,y2, . . . yN .
The N-dimensional vectory uniquely defines the configura
tion. A probability distributionp(x) specifies the likelihood
the line is hit at positionx. When a hit occurs atx, such that
yi,x,yi 11, the associated cost or loss is the lengthyi 11
2yi of the segment containingx.

The analogy with the well-studied forest fire model@4# is
made when the line is understood to be the continuum li
of a discrete one-dimensional percolation model@5# mapped
into a finite interval. The segments represent contiguous
cupied sites, or trees, and the cuts represent vacant site
firebreaks. Here we study the high density limit, in which
but a finite number of sites are occupied. The distribut
p(x) represents the spatially structured distribution of spa
which initiate fires and burn through connected clusters.

This model has also been studied in the context of wo
wide web site design@1,3#, where cuts represent the divisio
of the document into files, andp(x) represents the probabil
ity a user will download information in the document u
through the positionx. Loss is associated with the cost of fi
transfer over the world wide web, which increases with fi
3197 ©2000 The American Physical Society
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3198 PRE 62TONG ZHOU AND J. M. CARLSON
size due to the increased delays.
We choose this model as our starting point because

simple and tractable, yet rich enough to illustrate our ba
results. In general, cuts can be thought of as resources w
are allocated prior to a loss and serve to limit the damage
the typical percolation model, sites are randomly occup
and configurations are characterized by their density. In
signed configurations, the placements of the cuts or va
sites are specifically chosen to minimize the expected l
which we denote byU,

U~y1 ,y2 , . . . ,yN!5 (
i 51

N11

~yi2yi 21!E
yi21

yi
p~x!dx, ~1!

where in the sumyi50 for i 50 andyi5L for i 5N11.
The HOT state minimizesU for a specific choice ofp(x)

@1#. In the absence of uncertainty@i.e., p(x) is ad function at
a known location#, the HOT state is trivially associated wit
any configuration in which a cut is placed at the know
location of the spark. Alternately, in the case of maxim
uncertainty,p(x) is spatially uniform, and the HOT stat
corresponds to equally spaced cuts. In this case, the siz
the event is fixed atL/(N11). The most interesting case
correspond to nonuniform uncertainty, wherep(x) has re-
gions of high and low probability. In that case, cuts are c
centrated in regions of highp(x), and sparse in regions o
low p(x). In @1# it was shown that for a broad class ofp(x),
including distributions with Gaussian and exponential ta
configurations which minimizeU have power-law distribu-
tions of events~see the Appendix!. The probability distribu-
tion of events of sizel is given byP( l )} l 21.

In the absence of degeneracies associated with sp
choices ofp(x), the optimal state corresponds to a uniq
configuration, represented by a single pointy0 in the
N-dimensional configuration spacey. Overall, a very small
portion of configurations will be fine tuned to give smallU
@Eq. ~1!#. Whenp(x) is sharply peaked@compared toL/(N
11)# with rapidly decaying tails, the value ofU for most of
the configurations is determined by the width ofp(x), since
in that caseU is determined nearly entirely by the length
the first segment.

In Fig. 1 we illustrate the density of statesV(U) as a
function of dU5U2U0 for a system consisting ofN510
cuts whenp(x) has exponential tails. To obtain this plot w
first pick C553107 configurations randomly and calcula
the corresponding values ofU. Our results are not sensitiv
to the specific choice ofC as long as it is sufficiently large
This random sampling yields a good description ofV(U)
near its maximum~the solid curve in Fig. 1!. However, since
these configurations are generated randomly, the much
likely configurations in the neighborhood ofU0 are not well
represented. To resolve the structure near the HOT state
locate the optimal configurationy0 by minimizing Eq. ~1!.
Then we pick random relocationsyi of each cut within a
prescribed neighborhood of its original placementyi0 de-
fined by yi02e i<yi<yi01e i , wheree i5e/A]2U/]yi

2uyÄy0

is the change inyi which produces a change ofe in U when
all other cuts are held fixed. By increasinge we generate a
series of curves which extrapolate between the immed
vicinity of the HOT state and the initial random samplin
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For a particular neighborhood defined bye, here assumed
small, results for smaller values ofU are well sampled, while
for larger U inadequate sampling rounds the curve at
boundary of the neighborhood. The two heavy dotted line
Fig. 1 are examples of our numerical results generated
two different values ofe. The lighter dot-dashed lines in tha
figure are corresponding numerical results for a differ
p(x).

For the one-dimensional forest fire model the density
statesV(U) is relatively simple, exhibiting a minimum fo
the HOT state which is smoothly connected to a broad ma
mum which characterizes the most probable generic rand
configurations. In the neighborhood of the optimal state,
relationship betweenV(U) and dU[U2U0 is well de-
scribed by a power law, in which the exponent increases w
N, but is independent of our choice ofp(x) ~see below!. In
Fig. 1 this is illustrated by the fact that the slope of logV(U)
vs logdU is independent ofp(x), for dU sufficiently small.
The coefficient of the power law does depend onp(x). For a
given dU, steeper distributionsp(x) exhibit a smaller den-
sity of states.

The power-law form ofV(U) in the near neighborhood o
the optimal state is quite general, and does not depend on
choice ofp(x) or the details of the forest fire model. Instea
it is a property associated with the dimension of the confi
ration space, or, equivalently, the number of degrees of fr
dom available for the design. In the configuration space
we move away from the optimal pointy0 to y01dy the first
order change inU vanishes~by definition!. Thus we have

dU5
1

2 (
i , j

n
]2U

]yi]yj
~dyi !~dyj !5

1

2
dy•¹¹U•dy. ~2!

We define the eigenvectors of the matrix¹¹U to bezi , and

FIG. 1. The density of statesV(U). This plot is for a system of
lengthL51, with N510 cuts andp(x)5ae2ax/(12e2a). Three
curves are shown fora55: the heavy solid line is obtained from
simple sampling while the two heavy dotted lines are from sa
pling from neighborhood of the optimal configuration. The hea
dashed line is for the power-law (dU)(N/2)21, whereN510 here.
For comparison, three corresponding curves are shown fora510 in
lighter dot-dashed lines.
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PRE 62 3199DYNAMICS AND CHANGING ENVIRONMENTS IN . . .
the corresponding eigenvalues to bel i . Then rewritingdy in
terms ofzi asdy5(cizi , we have

dU5( l ici
2 . ~3!

If we view zi as the basis of a coordinate system,ci ’s then
form the coordinate of a point. So from Eq.~3! we see that
fixed dU define a hyperellipse in theN-dimensional configu-
ration space. The volume this ellipse encompasses is

Vc~U01dU !5
pN/2

GS N

2
11D

~dU !N/2

) Al i

. ~4!

Because)l i is the determinant of the matrix¹¹U, we have

V~U01dU !5
dVc~U01dU !

d~dU !
5

pN/2

GS N

2 D
~dU !(N/2)21

Ai¹¹Ui
.

~5!

From this we see that near the optimal stateV(U) is de-
scribed by a power law, where the exponent is determined
the dimensionality of the configuration space. This pow
law is shown as the dashed line in Fig. 1 and it agrees w
with the numerical results.

Aside from numerical constants, there is only one no
trivial term in the prefactor of Eq.~5!, Ai¹¹Ui , which is
evaluated aty5y0, and depends on the number of cuts a
the probability distributionp(x). Aside from special case
@e.g., uniformp(x)# this is a complicated function. Howeve
for a fixed number of cuts, it satisfies a monotonicity con
tion. As shown in Fig. 1, it is smaller forp(x) which exhibits
more rapidly decaying tails—V(U) satisfies the same powe
law for two differentp(x), but it is smaller in amplitude for
larger a, i.e., steeperp(x). This implies that for fixeddU,
the density of states of the neighborhood withindU of U0 is
relatively smaller for steeperp(x), reflecting relatively
greater sensitivity of the optimal state.

B. Variability and effective temperatures

Consider the Laplace transform ofV(U) ~the ‘‘partition
function’’!, which introduces the effective temperatureb
51/kT:

Zs~b!5E exp~2bU !V~U !dU5E exp~2bU !dNy.

~6!

Here the subscripts refers to the fact that we only conside
the spatial degrees of freedom.

This description is consistent with an ensemble of sta
configurations, each of which is weighted according to
value of U, or a system which evolves dynamically wit
time. The dynamics of the cuts could be described b
Brownian motion due to some noise, while the configurat
still has a tendency towards low values ofU,

]U

]yi
52h i

dyi

dt
1Fi~ t !, ~7!
y
r
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whereFi(t) is a random force describing white noise an
2h i(dyi /dt) describes the dynamical friction. This is a
equation for the diffusion process of the cuts in the fieldU.
Its final state is the equilibrium state described by Eq.~6!. In
this case, the noise level is connected to temperature by

^Fi~ t1!Fi~ t2!&52h ikTd~ t12t2!. ~8!

This dynamical extension of the static forest fire model lea
to Eq. ~6!. This expression is potentially very informative.
assigns to each configuration a statistical weight which
pends onU, the minimum value of which is the target o
design. WhenT50, the configuration is limited to the opti
mal state, while whenT→`, U is no longer important and
the configuration is totally random. If we decreaseT from `
to 0, we realize the crossover from randomness to desig

We emphasize that Eq.~6! is independent of the deriva
tion in terms of Brownian motion. Equation~6! leads to a
concise mathematical representation ofV(U), just as the par-
tition function in statistical mechanics leads to a correspo
ing V(U). However, the form ofU in Eq. ~1! is different
from traditional potential functions in statistical mechanic
Most importantly, it depends explicitly on spatial positionx
through the dependence on the hit distributionp(x), which
may have persistent structure which extends to large len
scales. For a broad class ofp(x), including Cauchy, expo-
nential, and Gaussian, minimization of the potential leads
HOT states which exhibit power-law distributions of even
~see the Appendix!. That is, power laws naturally arise in th
‘‘ground state,’’ and are not special features associated w
criticality. Interestingly, while the positions of the cuts in th
optimal are extremely sensitive top(x), the results of Sec
II A and the Appendix indicate that the statistical propert
~the density of states and the exponents describing the po
law! are independent of the details ofp(x).

C. Localization of the cuts

In confining our attention to a fixed, finite number of cu
~and then studying the limit of largeN) we focus our atten-
tion on the high density limit of an underlying lattice mode
However, in the typicald51 percolation at the correspond
ing density, the cuts are randomly placed~corresponding to
the broad maximum in Fig. 1!, and there are no power law
in the distribution of events, even in the neighborhood of
d51 critical point atr51. After introducing fluctuations in
the positions of the cuts, characterized by an effective te
peratureT, it is natural to ask whether there is a phase tra
sition separating ‘‘low-temperature’’ designed states fro
‘‘high-temperature’’ random ones. Although we started w
a percolation model, we do not seek a percolation transit
since our fixed number of cuts prevents the system fr
percolating. Instead, we ask whether there is a localiza
transition as a function of temperature which bounds the a
plitude of fluctuations of the positions of the cuts, as t
number of cutsN→`. Certainly for lower values ofT the
cuts are relatively less mobile on average than at higheT.
However, not surprisingly, in the one-dimensional forest fi
model the localization transition of the cuts is a simple, ze
temperature phase transition.

To see that the transition occurs atT50, consider first the
high temperature state. Whenb50 (T→`), the above
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3200 PRE 62TONG ZHOU AND J. M. CARLSON
model of a dynamical one-dimensional forest fire in a pot
tial described by Eq.~1! reduces to a one-dimensional ide
gas, where the potential becomes irrelevant, and each
crostate has the same probability. Thus the probability
the position of thei th cut beingyi is

P~yi !}
yi

i 21

~ i 21!!

~L2yi !
N2 i

~N2 i !!
. ~9!

Thus ^yi&5 i /N11L and

Š~yi2^yi&!2
‹5

i ~N112 i !

N12

L2

~N11!2
. ~10!

If we keepL/N a constant and letN→`, then fluctuations
are proportional to system size. This argument applies wh
ever the temperature is sufficiently high thatU is not impor-
tant. Clearly in this limit there is no structure.

On the other hand, for some sufficiently low temperatu
fluctuations become localized. For this one-dimensional s
tem, the fluctuations only become localized whenT is strictly
zero. To see this, consider a low but finite temperature.
simplicity, we consider a constantp(x)5p0. For this caseU
@Eq. ~1!# becomes

U~y1 ,y2 , . . . ,yN!5p0 (
i 51

N11

~yi2yi 21!2. ~11!

The size of the typical fluctuation in each of theyi is gov-
erned by when the corresponding change inU is of orderkT.
In analogy with arguments developed for melting transitio
@6#, we focus on the long-wavelength mode in which there
a linear increase in the displacement of the cuts~relative to
the position which minimizesU) which starts at one end an
peaks in the middle of the system, followed by a linear d
crease approaching the opposite boundary. We define
displacement of the center cut to bed, so that the placemen
of the i th cut is @ i /(N/2)#d when i ,N/2 and @(N
2 i )/(N/2)#d when i .N/2. So the change inyi 112yi is
2d/N when i ,N/2 and 22d/N when i .N/2. The corre-
sponding change inU from Eq. ~11! is

dU5
4p0d2

N
. ~12!

WhendU is aboutkT, d is aboutAkTN/4p0. So for any
small but finiteT, d goes to infinity in the thermodynami
limit.

In one dimension there are many configurations withU
close to the minimum. There is no phase transition at fin
temperature. Even when oneyi has a very big deviation from
its mean position, the system is still able to accommodate
change. Thus no clear structure is preserved. This is true
any p(x).

In higher dimensions@1–3# the HOT state corresponds t
compact d-dimensional cellular regions, separated
d21-dimensional boundaries. In that case, boundary fl
tuations are associated with coherent modes of thed21 di-
mensional barriers, involving of orderNd21 unoccupied sites
in the discrete case. The melting transition will involve d
velopment of defects~holes! in the boundaries, allowing fire
-
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to spread between neighboring regions which were pre
ously separate. This case is likely to be much more su
than in d51 where the boundaries are mobile but cann
disintegrate.

III. UNDERSPECIFIED AND CHANGING EXTERNAL
ENVIRONMENTS

The coupling between the system~the line segment and
cuts!, and the external environment is represented by
distribution of sparksp(x) which ignite fires. In the previous
section we assumedp(x) was known. Here we relax tha
assumption, and study the effects of a time dependentp(x,t)
on the HOT state. We derive conditions for which intrins
variability in the state~modeled here as a finite effectiv
temperatureT) leads to a decrease in the expected loss. T
key quantities which determine when noise is beneficial
the rate and amplitude of change ofp(x,t), the rate at which
the configuration can adapt, and the sacrifice in the ti
average cost̂U& associated with finiteT fluctuations relative
to the fully optimized state. Our results would apply gen
ally to any statistical mechanics system described by a t
varying potential. However, we want to point out that t
trade-off between fluctuations and optimality is a key co
sideration for HOT.

To facilitate our analysis, we assume that changes in
vironment are slow and continuous. This corresponds to
case where we have sufficient sampling to obtain a g
estimate ofp(x,t) within a moving time window. This al-
lows us to compute an instantaneous optimal configura
~the local equilibrium state!, and model the evolution of the
system as a finite-temperature relaxation towards this s
The time dependence ofp(x,t) results in a time dependen
U(y,t). Assuming local equilibrium, the partition functio
becomes

Zs~ t !5E e2bU(y,t)dy, ~13!

and the statistical probability of a certain configurationy in
the equilibrium state is

c0~y,t !5
e2bU(y,t)

E e2bU(y,t)dy
. ~14!

The rate of change of the system is limited by the inter
dynamics@e.g., Eqs.~7!#, which typically prevents the sys
tem from equilibrating to the state characterized by Eq.~14!.
As a consequence, the system changes in response to
ronmental change, but never fully catches up.

We write the actual~nonequilibrium! probability of con-
figurationy asc(y,t). We assume that to a good approxim
tion, the system evolves towards the instantaneous equ
rium distributionc0(y,t) with a fixed ratet, i.e.,

]

]t
c~y,t !52

1

t
@c~y,t !2c0~y,t !#. ~15!

Here t is a time scale describing the speed with which t
system adjusts to the environment.
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We focus on the long-term behavior, when the effects
the initial state have decayed away. For larget, the solution
to the above equation is

c~y,t !5
e2t/t

t E
0

t

c0~y,t1!et1 /tdt1 . ~16!

In order to obtain analytical results, we focus on the cas
which the change inU is slow and small in amplitude. Thi
allows us to focus on the dominant~Fourier-like! mode,
which is characterized by an overall amplitudeNe of change
and a frequencyv. We write

U~y,t !5Ub~y!6Ne f ~y!, ~17!

whereUb(y) is stationary and captures most ofU(y,t) (b
stands for ‘‘background’’!, e describes the magnitude of th
average change per cut, which we assume to be small,
f (y) describes the spatial dependence of the change.
equation takes the1 sign for the first half of the period
2np/v,t,(2n11)p/v, and the2 sign for the second
half, (2n11)p/v,t,(2n12)p/v.

For simplicity, we consider the case thatZs from Eq.~13!
is time independent. This condition sets a constraint@ob-
tained by plugging Eq.~17! into Eq. ~13!# which is satisfied,
e.g., whenUb(y) is even andf (y) is odd. This is typically
satisfied becauseUb is generally quadratic~even! to leading-
order with respect to shifts in the positions of the cuts, wh
a linear~odd! f describes the leading-order effect of shiftin
weight from one side of each cutyi0 to the other side. How-
ever, this assumption is not essential for our basic con
sions.

Substituting into Eq.~16! for c(y,t) we obtain

c~y,t !5e2bUb(y)H cosh@bNe f ~y!#

7F12
2

11e2p/vt
e2Dt/tGsinh@bNe f ~y!#J /Zs ,

~18!

where the2 sign is for the first half of a period and the1
sign for the second half, andDt is the time duration betwee
t and the moment of the last change ofU(y,t).

This allows us to calculate the expectation value ofU.
Because it is time dependent, it is most useful to obtain
time average value over a period

^U&5
v

2pE0

2p/v

dtE U~y,t !c~y,t !dy ~19!

5
1

Zs
E cosh@bNe f ~y!#Ub~y!e2bUb(y)dy2

Ne

Zs
F12

2vt

p

3tanhS p

2vt D G E f ~y!sinh@bNe f ~y!#e2bUb(y)dy. ~20!

Finally, whenZs is time independent, it can be calculate
from Eq. ~13!,
f

in

nd
he

e

u-

e

Zs5E cosh@bNe f ~y!#e2bUb(y)dy. ~21!

Equation~20! is the most general statement of our prima
result—namely,̂ U& can be reduced by variability~finite T)
in the presence of a changing environment. In order to
this more clearly, it is useful to simplify Eq.~20! further.

First, consider the case fore50, i.e., no change in the
environment. Then the second term in Eq.~20! vanishes and
the first returns to the familiar form which forT sufficiently
small is

^Ub~y!&e505U01
N

2
kT. ~22!

The factorN/2 is from the equipartition of energy—theN
modes each contributeskT/2. It describes the sacrifice w
make in^U& when we raise the noise level. Looking back
the expression forV(U) in Eq. ~5!, we see the factorN/2
comes from the index for the power law, while the prefac
in that equation is not relevant in this calculation.

Whene.0, the first term is modified by a term of orde
e2, which can be ignored for smalle. The second term in Eq
~20! which is linear ine describes the beneficial effects o
variability. To see it more clearly, we takef (y)561. Then
Eq. ~20! simplifies to

^U&5^Ub&e502NeF12
2vt

p
tanhS p

2vt D G tanhS Ne

kTD .

~23!

The time scalet depends on the intrinsic dynamics of th
system. It is a key observation that higher temperature
associated with higher mobility of the dynamical degrees
freedom. This in turn leads to more rapid adjustment of
relative weights of the different configurationsc(y,t) to-

FIG. 2. The dependence of^U& on kT, calculated from Eq.~25!.
For the dashed line, Eq.~27! is not satisfied and̂U& is a monotoni-
cally increasing function ofT. In contrast, Eq.~27! is satisfied for
the solid line, so that̂ U& exhibits a minimum forT5” 0 so that
fluctuations enhance performance.
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3202 PRE 62TONG ZHOU AND J. M. CARLSON
wards the equilibriac0(y,t), which is reflected in a decrease
value of t. If there is not another time scale, we can on
form t in one way,

t5
p

2

B

AkT
, ~24!

where the units of time arise from the square root ofkT.
HereB is a constant determined by the internal dynamics
the system and corresponds to the coefficient for
T-dependent time scale at which the system evolves tow
equilibrium.t is larger for larger values ofB, and the system
changes more slowly.

Now we have

^U&5U01
N

2
kT2NeF12

Bv

AkT
tanhSAkT

Bv D G tanhS Ne

kTD .

~25!

We can expand for smallT and obtain

^U&5U01S N

2
2

Ne

3B2v2D kT. ~26!

When we raise the noise level, there is a cost associated
fluctuations, but because the system is more flexible, we
back some of the performance of the state in a chang
environment due to increased adaptability associated
the dynamics. When the gain is greater than the cost,
when

3B2v2,2e, ~27!

a certain level of noise can be beneficial. This is reflected
a minimum at finiteT in the curvê U(T)& ~Fig. 2!. From this
condition we see that when the change in the environmen
too fast, the system will not be able to adjust effectively a
the best solution is to keep still at the optimal state for
backgroundUb . Only when the change is sufficiently slow
it beneficial for the system to be mobile.

WhenU(y,t) is time dependent, the finiteT variability of
the configurations about the HOT state leads to a samplin
some states with losses which are smaller than the aver
However, it is not the intrinsic spread of the distribution
configurations at finiteT which gives rise to lower values o
the expected loss in Eq.~27!. On average, such an effect do
not lower^U&, since aside from special choices ofp(x) finite
T leads to as many configurations that raiseU as lowerU.
Instead, it is the link between the amplitude of the fluctu
tions about the HOT state and the rate at which the distr
tion of configurations as a whole can adjust which leads
the nontrivial minimum. This link is rooted in the interna
dynamics of the system which is ultimately responsible
both fluctuations about and relaxation towards the tim
dependent optimal state.

IV. CONCLUSIONS

We have developed a methodology for systematically
ploring neighborhoods of the HOT state, through incorpo
tion of an effective temperature describing the mobility
f
e
ds
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the resources~cuts! in a potential described by the cost fun
tion U. Our method parallels traditional frameworks in st
tistical physics and dynamical systems. However, where
tistical physics and dynamical systems typically focus
properties of the most probable configurations, HOT sta
are rare and specialized. They reflect high performance w
respect to a distributionp(x) of perturbations which the en
vironment may impose on the system. Optimization of t
resource allocations with respect top(x) leads to the robus
yet fragile behavior of HOT systems. HOT systems outp
form generic states in the situations they were designed
but are simultaneously highly sensitive to design flaws a
changes in the environment. This reflects an import
tradeoff which is central to the majority of real comple
systems where design and evolution play key roles.

Introducing finite-temperature fluctuations allows us
quantify an importantdynamicaltradeoff between losses~de-
sign flaws! associated with noisy fluctuations about an op
mized state and gains associated with an increased abilit
a system to adapt to changes inp(x,t). When the mobility of
resources is characterized by a single time scale, which
be related to the effective temperatureT, we derive an in-
equality which separates cases in which noise improves
performance of the system from cases in which the per
mance is degraded. Our calculation assumes changes i
environment are relatively slow and small, so that a local~in
time! optimal configuration can be defined. We compute
average cost̂ U& associated with the dominant frequen
variations in the environment, assuming the relaxation of
system towards the local optimum can be described b
single time scalet.

Three cases are of particular interest. First, if the do
nant mode is a steady shift in demand~e.g., for transportation
or communication systems!, it corresponds to an infinite pe
riod characterizing the change inU. In this case by Eq.~27!
it is always in the best interest of a system to incorpor
some finite-temperature mobility and adapt.

Second, in some cases there is a semiregular pattern t
fluctuations associated with some nonzero dominant
quency of change. Examples include~noisy! weather and
climate fluctuations which are coupled to ecological syste
fluctuations in spending and investment cycles which
coupled to a market economy, or daily variability in us
demand which are coupled to transportation and comm
cation systems as well as public utilities. In this case,
cause the patterns are somewhat predictable, time-depen
optimization can improve the performance by directly adju
ing output and the allocation of resources to incorporate
variability. For example, many metropolitan areas adj
traffic patterns to account for the relative increases in inco
ing and/or outgoing traffic during morning and/or eveni
commutes. This scenario goes a step beyond the calcula
performed here by anticipating the reallocation of resour
in response to the changing environment. In this case th
need not be a direct link between relaxation towards the
timal state and fluctuations, so Eq.~27! does not apply.

Finally, the most interesting case arises when the do
nant mode is nota priori known. In some manmade tech
nologies ~e.g., algorithms that are used to optimize wor
wide web sites for maximum throughput!, local optimization
of the resource allocations is decoupled from random fl
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tuations in the distribution of resourses, so Eq.~24! does not
apply. However, in other cases it is the low level degrees
freedom, rather than an externally imposed optimizat
scheme, which are both constantly fluctuating and adap
to change in a manner which on average favors higher
formance. This process is easiest to visualize in the con
biology and ecology, where mutation leads to the next rou
of candidates subject to optimization through natural se
tion in a time-dependent environment. Our model represe
a highly simplified description of this scenario. Equation~27!
can be viewed as a condition on the frequencyv associated
with change at which it becomes beneficial for the system
adapt to time-dependent conditions. For frequencies gre
than v5A2e/3B2 a system is better off optimizing for th
average environment than it is making time-dependent
justments. In any real complex, adaptive system, differ
frequency modes of a changing environment will be imp
tant at different levels in a hierarchical design.
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APPENDIX

In this Appendix we solve the optimization problem f
the one-dimensional forest fire model for arbitrary probab
ity distribution functionp(x) of the initial spark. The fores
is confined in the segment 0,x,1. There areN cuts ~fire
breaks! which are located aty1 ,y2 , . . . ,yN . We assumeN is
big so that the intervals between neighboring cuts are sm
andp(x) varies slowly in each interval.

The loss function to minimize is

U~y1 ,y2 , . . . ,yN!5 (
i 51

N11

~yi2yi 21!E
yi21

yi
p~x!dx,

~A1!

where the sumyi50 for i 50 andyi51 for i 5N11. For
the optimal positions of theyi ’s, we have

]U

]yi
50, ~A2!

which leads to

E
yi

yi 11
p~x!dx2E

yi 21

yi
p~x!dx5~2yi2yi 212yi 11!p~yi !.

~A3!

In the above equation, becausep(x) is slowly varying in an
interval, we can approximate it by keeping to the first-ord
terms in the Taylor expansion

p~x!5p~yi !1S dp

dxD
x5yi

~x2yi !. ~A4!

Plug this into Eq.~A3! and we have
f
n
g
r-
xt
d
c-
ts

o
ter

d-
t

-

id

e

-

ll

r

@~yi 112yi !
21~yi2yi 21!2#

dp

dyi

54~2yi2yi 212yi 11!p~yi !. ~A5!

Let us viewyi as the value of some continuous functiony(s)
at s5 i . Then remembering the interval betweenyi andyi 11
is small, i.e.,y(s) is a slow varying function ofs, we can
approximate

yi 112yi5S dy~s!

ds D
s5 i

~A6!

and

yi 211yi 1122yi5S d2y~s!

ds2 D
s5 i

. ~A7!

Then Eq.~A5! becomes

dp

dy S dy

dsD
2

522p
d2y

ds2
~A8!

so

d ln p

dy
52

d

ds

1

dy

ds

~A9!

and

d ln p52
dy

ds
d

1

dy

ds

. ~A10!

So finally,

dy

ds
5

A

Ap
, ~A11!

whereA is a constant.
We can proceed to solve functiony(s) and find the opti-

mal positions foryi ’s. But instead, let us look at the relatio
between the size of loss and its corresponding probabi
The size of loss here is the length of an interval,

yi 112yi5S dy~s!

ds D
s5 i

5
A

Ap
. ~A12!

And the probability of this loss is

E
yi

yi 11
p~x!dx5~yi 112yi !p5AAp. ~A13!

From the above two equations we see thatP( l )} l 21.
This power law is for arbitraryp(x). Though the deriva-

tion depends on the assumption thatN is big enough so tha
the intervals between cuts are small, this power law sho
still be a good approximation even for the situations wh
the assumption is not satisfied.
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