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Dynamics and changing environments in highly optimized tolerance
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Highly optimized tolerancéHOT) is a mechanism for power laws in complex systems based on the robust
design of systems in uncertain environments. Once the system, the environment, and the optimization scheme
have been specified, the HOT state is fixed and corresponds to the set of meas(iypaity a single point
in the configuration space which minimizes a cost functibrHere we explore th&J-dependent structures in
configuration space which are associated with departures from the optimal state. We introduce dynamics,
quantified by an effective temperatufesuch thafT=0 corresponds to the original HOT state, while»o
corresponds to completely random configurations. More generhlijefines the range in state space over
which fluctuations are likely to be observed. In a fixed environment fluctuations always raise the average cost.
However, in a time-dependent environment, mobile configurations can lower the atkbegause they adjust
more efficiently to changes.

PACS numbgs): 05.40—a, 64.60.Ht, 05.65:b, 87.17--d

[. INTRODUCTION about the optimized state, which are characterized by an ef-
fective temperatur@. We present our results in the context
Recently, highly optimized toleranc@HOT) was intro-  of the one-dimensional forest fire model], although the
duced as a mechanism which connects power-law distribusasic approach we outline is applicable to other systems as
tions of events to the optimal design of a system subject tgyel]|.
external perturbation$1-3]. HOT links robustness to the  |n the configuration space, every point, i.e., each state of
underlying origins of complexity in systems where designthe system, has a corresponding valuelbf The optimal
and/or evolution play an important role. HOT provides strik- configuration has measure zero and corresponds to the mini-
ingly accurate fits to frequency vs size distributions for forestmum U=U,. If the configuration space i dimensional, it
fires, power outages, and world wide web traf8¢ One key  can be divided intoN— 1-dimensional subspaces, each of
feature of HOT systems is their special sensitivity to unex-which consists of states with a fixed value df We define
pected perturbations or systematic changes in the environ/(u) to be the density of states, i.e., the relative number of
ment. In this paper we introduce a time-dependent environconfigurations in each subspace, WithU 5) =0.
ment, and derive conditions under which the original
optimized state is replaced by an ensemble. The ensemble
includes fluctuations about the original HOT state character-
ized by an effective temperatufie
We focus on a simple, one-dimensional forest fire model The model consists of a continuous, one-dimensional line
[4] for HOT considered previously ifiL]. The optimal state of lengthL, 0<x<L. The line is subdivided into disjoint
minimizes a functionU, associated with the expected loss segments by a set dfl cuts at positiong/;<y,< ...yy.
due to a fire initiated by a single spark. The model also haghe N-dimensional vectoy uniquely defines the configura-
an interpretation in terms of the design of world wide webtion. A probability distributionp(x) specifies the likelihood
sites, in whichU is associated with the expected file transferthe line is hit at positiorx. When a hit occurs at, such that
size. In Sec. Il we define the model and calculate the density, <x<y; , ;, the associated cost or loss is the length,
of states as a function of the cost functidnWe replace the —vy, of the segment containing
static description of the configuration, which consists of trees  The analogy with the well-studied forest fire mo@#4] is
and firebreaks, to allow for dynamical fluctuations of themade when the line is understood to be the continuum limit
barriers, characterized by an effective temperalur Sec.  of a discrete one-dimensional percolation mdd@Imapped
Il we study the response of the model to a changing enviinto a finite interval. The segments represent contiguous oc-
ronment, and derive an inequality describing when the incupied sites, or trees, and the cuts represent vacant sites, or
creased robustness to environmental change outweighs dfrebreaks. Here we study the high density limit, in which all
sign flaws introduced by fluctuations. We conclude in Secput a finite number of sites are occupied. The distribution
IV with a discussion of our results. p(x) represents the spatially structured distribution of sparks
which initiate fires and burn through connected clusters.
This model has also been studied in the context of world
wide web site desigfi,3], where cuts represent the division
of the document into files, angl(x) represents the probabil-
To date HOT systems have been described simply ity a user will download information in the document up
terms of a static optimized configuratiph—3]. In this sec- through the positiox. Loss is associated with the cost of file
tion we generalize this description to include fluctuationstransfer over the world wide web, which increases with file

A. One-dimensional forest fire model

II. CONFIGURATION SPACE METRICS, DYNAMICS,
AND FINITE TEMPERATURES
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size due to the increased delays. ' 107 . v
We choose this model as our starting point because it is

simple and tractable, yet rich enough to illustrate our basic

results. In general, cuts can be thought of as resources whic

are allocated prior to a loss and serve to limit the damage. Ir

the typical percolation model, sites are randomly occupied 10

and configurations are characterized by their density. In de-

signed configurations, the placements of the cuts or vacans

sites are specifically chosen to minimize the expected loss>

which we denote byJ, ,
107
N+1

U(y1.ya, - yn) = 21 (yi_yi—l)JA:i_lp(X)an (1)

-12

where in the suny;=0 fori=0 andy;=L fori=N+1. 1072 Lo e = = o
The HOT state minimizedl for a specific choice op(x)
[1]. In the absence of uncertairiye., p(x) is a § function at
a known locatiof, the HOT state is trivially associated with  F|G. 1. The density of staté&(U). This plot is for a system of
any configuration in which a cut is placed at the knownjengthL=1, with N=10 cuts andp(x) = ae **/(1—e"?). Three
location of the spark. Alternately, in the case of maximalcurves are shown for=5: the heavy solid line is obtained from
uncertainty,p(x) is spatially uniform, and the HOT state simple sampling while the two heavy dotted lines are from sam-
corresponds to equally spaced cuts. In this case, the size pling from neighborhood of the optimal configuration. The heavy
the event is fixed at./(N+1). The most interesting cases dashed line is for the power-lawsy) (V=1 whereN=10 here.
correspond to nonuniform uncertainty, whewéx) has re-  For comparison, three corresponding curves are showa#at0 in
gions of high and low probability. In that case, cuts are condighter dot-dashed lines.
centrated in regions of high(x), and sparse in regions of
low p(x). In[1] it was shown that for a broad class @fx), For a particular neighborhood defined by here assumed
including distributions with Gaussian and exponential tails,small, results for smaller values dfare well sampled, while
configurations which minimiz&) have power-law distribu- for larger U inadequate sampling rounds the curve at the
tions of eventgsee the Appendix The probability distribu- boundary of the neighborhood. The two heavy dotted lines in
tion of events of sizé is given byP(l)e| 1. Fig. 1 are examples of our numerical results generated for
In the absence of degeneracies associated with specifwo different values ok. The lighter dot-dashed lines in that
choices ofp(x), the optimal state corresponds to a uniquefigure are corresponding numerical results for a different
configuration, represented by a single poips in the  P(X).
N-dimensional configuration spage Overall, a very small For the one-dimensional forest fire model the density of
portion of configurations will be fine tuned to give small ~ statesV(U) is relatively simple, exhibiting a minimum for
[Eq. (1)]. Whenp(x) is sharply peakeficompared td_/(N the HOT state which is smoothly connected to a broad maxi-
+1)] with rapidly decaying tails, the value &f for most of ~mum which characterizes the most probable generic random
the configurations is determined by the widthpg), since  configurations. In the neighborhood of the optimal state, the
in that caseJ is determined nearly entirely by the length of relationship betweevV(U) and sU=U—-U, is well de-
the first segment. scribed by a power law, in which the exponent increases with
In Fig. 1 we illustrate the density of statégU) as a N, but is independent of our choice p{x) (see below. In
function of SU=U—U, for a system consisting dil=10  Fig. 1 this is illustrated by the fact that the slope of \4(g))
cuts whenp(x) has exponential tails. To obtain this plot we Vs 10gdU is independent op(x), for U sufficiently small.
first pick C=5x10" configurations randomly and calculate The coefficient of the power law does dependpgr). For a
the corresponding values &f. Our results are not sensitive given 6U, steeper distributionp(x) exhibit a smaller den-
to the specific choice of as long as it is sufficiently large. Sity of states.
This random sampling yields a good description\tfU) The power-law form o#/(U) in the near neighborhood of
near its maximunithe solid curve in Fig. L However, since the optimal state is quite general, and does not depend on our
these configurations are generated randomly, the much les§oice ofp(x) or the details of the forest fire model. Instead
likely configurations in the neighborhood bfy, are not well it is a property associated with the dimension of the configu-
represented. To resolve the structure near the HOT state, wation space, or, equivalently, the number of degrees of free-
locate the optimal configuratiop, by minimizing Eq.(1). dom available for the design. In the configuration space, if
Then we pick random relocationg of each cut within a we move away from the optimal poig} to yo+ &y the first
prescribed neighborhood of its original placemgry de-  order change itJ vanishegby definition. Thus we have

8U

fined byyio_figyiiyio‘f‘ €, WhereEi:E/\/(?ZU/ayi |y=y0 n 9

. : . , 1 1

is the change ity; which produces a change efin U when SU== , N=_6V.-VVU- 2
all other cuts are held fixed. By increasiagve generate a 2 IZJ dY;dy; (oy)(oy}) 2 o . @

series of curves which extrapolate between the immediate
vicinity of the HOT state and the initial random sampling. We define the eigenvectors of the mat¥i¥ U to bez;, and
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the corresponding eigenvalues toXye Then rewritingdy in ~ whereF;(t) is a random force describing white noise and
terms ofz; as dy=23c;z;, we have — ni(dy;/dt) describes the dynamical friction. This is an
equation for the diffusion process of the cuts in the figld
5 Its final state is the equilibrium state described by &j. In
oU :2 AiCi. 3 this case, the noise level is connected to temperature by

If we view z; as the basis of a coordinate systegis then (Fi(t)Fi(t2)) =27KTa(t; —t3). ®
form the coordinate of a point. So from E@) we see that
fixed 6U define a hyperellipse in the-dimensional configu-
ration space. The volume this ellipse encompasses is

This dynamical extension of the static forest fire model leads
to Eq.(6). This expression is potentially very informative. It
assigns to each configuration a statistical weight which de-

a2 (su)N2? pends onU, the minimum value of which is the target of
V(UgtoU)= : (4)  design. WherT=0, the configuration is limited to the opti-
rl=+1 IT W mal state, while whef—<, U is no longer important and

2 the configuration is totally random. If we decreds&om oo

to 0, we realize the crossover from randomness to design.

BecausdI\; is the determinant of the matrkVU, we have We emphasize that EG6) is independent of the deriva-

dVy(Ug+oU) N2 (su)(N2)-1 tion in terms of Brownian motion. Equatiof®) leads to a

V(Up+6U)= = : concise mathematical representatioVgU), just as the par-
d(su) F(E) VIvvu] tition function in statistical mechanics leads to a correspond-

2 ing V(U). However, the form ofU in Eq. (1) is different

(5 from traditional potential functions in statistical mechanics.
From this we see that near the optimal ste@)) is de- Most importantly, it depends expligitly on spgtial pos@timn
scribed by a power law, where the exponent is determined b{f'rough the dependence on the hit distributig(x), which
the dimensionality of the configuration space. This powerfN@y have persistent structure which extends to large length

law is shown as the dashed line in Fig. 1 and it agrees weffc@les. For a broad class p{x), including Cauchy, expo-
with the numerical results. nential, and Gaussian, minimization of the potential leads to

Aside from numerical constants, there is only one nonHOT states which exhibit power-law distributions of events
trivial term in the prefactor of Eq(5), \[VVU]|, which is (see the Appendjx That is, powerllaws naturally arise in the_
evaluated ay=y,, and depends on the number of cuts and“ground state,” and are not special features associated with
the probability di:stributionp(x). Aside from special cases criticality. Interestingly, while the positions of the cuts in the

[e.g., uniformp(x)] this is a complicated function. However, optimal are extremely sensitive f(x), the results of Sec.
for a fixed number of cuts, it satisfies a monotonicity Condi_IIA and the Appendix indicate that the statistical properties

tion. As shown in Fig. 1, it is smaller fqu(x) which exhibits (the density of states and the exponents describing the power

more rapidly decaying tailsM(U) satisfies the same power law) are independent of the details pfx).
law for two differentp(x), but it is smaller in amplitude for

larger «, i.e., steepep(x). This implies that for fixedSU, C. Localization of the cuts
the density of states of the neighborhood withld of U is In confining our attention to a fixed, finite number of cuts
relatively smaller for steepep(x), reflecting relatively (and then studying the limit of largd) we focus our atten-
greater sensitivity of the optimal state. tion on the high density limit of an underlying lattice model.
However, in the typicatl=1 percolation at the correspond-
B. Variability and effective temperatures ing density, the cuts are randomly plac@drresponding to

the broad maximum in Fig.)land there are no power laws
in the distribution of events, even in the neighborhood of the
d=1 critical point atp=1. After introducing fluctuations in

Consider the Laplace transform ®fU) (the “partition
function”), which introduces the effective temperatuyge

=1k the positions of the cuts, characterized by an effective tem-
peratureT, it is natural to ask whether there is a phase tran-
Zs(,B)ZJ exp(—,BU)V(U)dU=f exp(—gU)dy. sition separating “low-temperature” designed states from

(6) “high-temperature” random ones. Although we started with
a percolation model, we do not seek a percolation transition,
Here the subscrips refers to the fact that we only consider since our fixed number of cuts prevents the system from
the spatial degrees of freedom. percolating. Instead, we ask whether there is a localization
This description is consistent with an ensemble of statidransition as a function of temperature which bounds the am-
configurations, each of which is weighted according to itsplitude of fluctuations of the positions of the cuts, as the
value of U, or a system which evolves dynamically with number of cutdN—c. Certainly for lower values of the
time. The dynamics of the cuts could be described by auts are relatively less mobile on average than at higher
Brownian motion due to some noise, while the configurationHowever, not surprisingly, in the one-dimensional forest fire

still has a tendency towards low values\of model the localization transition of the cuts is a simple, zero-
temperature phase transition.
ﬂ __ % FE(D) 7) To see that the transition occursTat 0, consider first the
aY; KO T: nee high temperature state. Whe@=0 (T—x), the above
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model of a dynamical one-dimensional forest fire in a potento spread between neighboring regions which were previ-
tial described by Eq(1) reduces to a one-dimensional ideal ously separate. This case is likely to be much more subtle
gas, where the potential becomes irrelevant, and each mihan ind=1 where the boundaries are mobile but cannot
crostate has the same probability. Thus the probability fodisintegrate.

the position of thath cut beingy; is

IIl. UNDERSPECIFIED AND CHANGING EXTERNAL

i1 i
Py — (Loy)"™ ) ENVIRONMENTS
(i=1r (N=i)! : :

The coupling between the systeftihe line segment and
Thus(y;)=i/N+1L and cutg, and the external environment is represented by the

distribution of sparke(x) which ignite fires. In the previous

o T(N+1—1) L? section we assumep(x) was known. Here we relax that

((yi=(yi))= N+2 (N+1)2 (10 assumption, and study the effects of a time depengént)

on the HOT state. We derive conditions for which intrinsic

If we keepL/N a constant and leil—c, then fluctuations Vvariability in the state(modeled here as a finite effective
are proportional to system size. This argument applies wherf€émperaturel) leads to a decrease in the expected loss. The
ever the temperature is sufficiently high tiais not impor- ~ Key quantities Wh!Ch determine when noise is benef|c!al are
tant. Clearly in this limit there is no structure. the rate and amplitude of changepmf,t), the rate at which

On the other hand, for some sufficiently low temperaturethe configuration can adapt, and the sacrifice in the time
fluctuations become localized. For this one-dimensional sysaverage costU) associated with finitd fluctuations relative
tem, the fluctuations only become localized wieis strictly ~ to the fully optimized state. Our results would apply gener-
zero. To see this, consider a low but finite temperature. FoRlly to any statistical mechanics system described by a time
simplicity, we consider a constaptx) = p,. For this cas¢J ~ Varying potential. However, we want to point out that the

[Eq. (1)] becomes trade-off between fluctuations and optimality is a key con-
sideration for HOT.
N+1 To facilitate our analysis, we assume that changes in the en-
U(y1.Y2, .- YN = poiEl (Yi—Yi-1)? (1) vironment are slow and continuous. This corresponds to the

case where we have sufficient sampling to obtain a good
estimate ofp(x,t) within a moving time window. This al-

erned by when the corresponding chang®iis of orderkT lows us to compute an instantaneous optimal configuration

In analogy with arguments developed for melting transitions(the local equ[lll.)rlum staje and model t.he evolution OT the
jSystem as a finite-temperature relaxation towards this state.

a linear increase in the displacement of the duttative to | 1€ fime dependence @i(x,t) results in a time dependent
d U(y,t). Assuming local equilibrium, the partition function

the position which minimized)) which starts at one end an

peaks in the middle of the system, followed by a linear de.Pecomes
crease approaching the opposite boundary. We define the

displacement of the center cut to beso that the placement Zs(t)Zf e AUl gy, (13)
of the ith cut is [i/(N/2)]d when i<N/2 and [(N

—i)/(N/2)]d wheni>N/2. So the change iy, ;—Y; is
2d/N wheni<N/2 and —2d/N wheni>N/2. The corre-
sponding change it from Eq. (11) is

The size of the typical fluctuation in each of thgis gov-

and the statistical probability of a certain configuratiom
the equilibrium state is

e7 BU (y:t)

2
_ 2Pod . (12 Coly,t)= J— (14

ouU N

e Bu(yxt)dy

When 8U is aboutkT, d is aboutykTN/4p,. So for any
small but finiteT, d goes to infinity in the thermodynamic The rate of change of the system is limited by the internal
limit. dynamics[e.qg., Eqs.(7)], which typically prevents the sys-
In one dimension there are many configurations with tem from equilibrating to the state characterized by @¢).
close to the minimum. There is no phase transition at finitéAs a consequence, the system changes in response to envi-
temperature. Even when ogehas a very big deviation from ronmental change, but never fully catches up.
its mean position, the system is still able to accommodate the We write the actua{nonequilibrium probability of con-
change. Thus no clear structure is preserved. This is true fdigurationy asc(y,t). We assume that to a good approxima-
any p(x). tion, the system evolves towards the instantaneous equilib-
In higher dimension§1—-3] the HOT state corresponds to rium distributioncy(y,t) with a fixed rater, i.e.,
compact d-dimensional cellular regions, separated by
d—1-dimensional boundaries. In that case, boundary fluc-
tuations are associated with coherent modes ofdthd. di-
mensional barriers, involving of ord&~* unoccupied sites
in the discrete case. The melting transition will involve de-Here r is a time scale describing the speed with which the
velopment of defectéholeg in the boundaries, allowing fires system adjusts to the environment.

p 1
Ec(y,t)=—;[c(y,t)—co(y,t)]- (15



PRE 62

We focus on the long-term behavior, when the effects of

the initial state have decayed away. For latgthe solution
to the above equation is

t/T t
c(y,t)= - fOCO(Y:tl)etlletl- (16)

DYNAMICS AND CHANGING ENVIRONMENTS IN . . .
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Zs=f coshi BNef(y)]e AUsMdly. (21)

Equation(20) is the most general statement of our primary
result—namely{U) can be reduced by variabilitifinite T)

in the presence of a changing environment. In order to see
this more clearly, it is useful to simplify Eq20) further.

In order to obtain analytical results, we focus on the case in First, consider the case far=0, i.e., no change in the

which the change iU is slow and small in amplitude. This
allows us to focus on the dominarFourier-like mode,
which is characterized by an overall amplitude of change
and a frequencw. We write

U(y,t)=Uu(y) =Nef(y), (17

whereUy(y) is stationary and captures most dfy,t) (b

stands for “background), e describes the magnitude of the
average change per cut, which we assume to be small, a
f(y) describes the spatial dependence of the change. Tq

equation takes the- sign for the first half of the period,
2nmlw<t<(2n+1)m/w, and the— sign for the second
half, (2n+1)7/w<t<(2n+2)7/ w.

For simplicity, we consider the case tt&atfrom Eq.(13)
is time independent. This condition sets a constraaft-
tained by plugging Eq(17) into Eq.(13)] which is satisfied,
e.g., whenU,(y) is even andf(y) is odd. This is typically
satisfied becaudg,, is generally quadrati¢even to leading-

order with respect to shifts in the positions of the cuts, while
a linear(odd) f describes the leading-order effect of shifting

weight from one side of each cyf, to the other side. How-

ever, this assumption is not essential for our basic conclu-

sions.
Substituting into Eq(16) for c(y,t) we obtain

c(y,t)= e'BUb(V)[ cosh BNef(y)]

2

:{1— —,e—A“T]sinr[/aNef(y)]}/zs,
1+e ™ot

(18)

where the— sign is for the first half of a period and the
sign for the second half, ankit is the time duration between
t and the moment of the last changeléfy,t).

This allows us to calculate the expectation valuelof

Because it is time dependent, it is most useful to obtain the "

time average value over a period

w 27w
(U)= ﬂfo dtf U(y,t)c(y,t)dy (19)

xtanr(%T)U f(y)sinH ANef (y)]e AsMdy.  (20)

environment. Then the second term in E20) vanishes and
the first returns to the familiar form which far sufficiently
small is

N
(Up(Y))e=0=Uo+ EkT- (22)

The factorN/2 is from the equipartition of energy—thg

rl]*aodes each contributdsT/2. It describes the sacrifice we

make in(U) when we raise the noise level. Looking back at
Re expression fo(U) in Eg. (5), we see the factoN/2
comes from the index for the power law, while the prefactor
in that equation is not relevant in this calculation.

When e>0, the first term is modified by a term of order
€2, which can be ignored for smadl The second term in Eq.
(20) which is linear ine describes the beneficial effects of
variability. To see it more clearly, we takkéy)==1. Then

Eq. (20) simplifies to
Ne
tan ﬁ .

(23)

ko

Uy=(U Nel 1- 2974
(U)=(Up)e—o—Ne - tanf o —

The time scaler depends on the intrinsic dynamics of the
system. It is a key observation that higher temperature is
associated with higher mobility of the dynamical degrees of
freedom. This in turn leads to more rapid adjustment of the
relative weights of the different configuratiortgy,t) to-

2 T T T

A
]

= I I I I
0 0.2 0.4 0.6 0.8 1

KT

FIG. 2. The dependence @) onkT, calculated from Eq(25).
For the dashed line, Eq27) is not satisfied andU) is a monotoni-
cally increasing function ofl. In contrast, Eq(27) is satisfied for

Finally, whenZ is time independent, it can be calculated the solid line, so thatU) exhibits a minimum forT#0 so that

from Eq. (13),

fluctuations enhance performance.
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wards the equilibri@,(y,t), which is reflected in a decreased the resourcegcuts in a potential described by the cost func-
value of 7. If there is not another time scale, we can onlytion U. Our method parallels traditional frameworks in sta-

form 7 in one way, tistical physics and dynamical systems. However, where sta-
tistical physics and dynamical systems typically focus on
T B properties of the most probable configurations, HOT states
== —, (24) - . )
2 kT are rare and specialized. They reflect high performance with

respect to a distributiop(x) of perturbations which the en-
where the units of time arise from the square rootkd@  vironment may impose on the system. Optimization of the
HereB is a constant determined by the internal dynamics ofesource allocations with respectp¢x) leads to the robust
the system and corresponds to the coefficient for theyet fragile behavior of HOT systems. HOT systems outper-
T-dependent time scale at which the system evolves towarderm generic states in the situations they were designed for,
equilibrium. 7 is larger for larger values @, and the system but are simultaneously highly sensitive to design flaws and

changes more slowly. changes in the environment. This reflects an important
Now we have tradeoff which is central to the majority of real complex
systems where design and evolution play key roles.
N Bw JKT Ne Introducing finite-temperature fluctuations allows us to
(U)=Uo+ EkT_ Ne l—\/ﬁ_tan?‘( Bo tanl‘( ﬁ) : guantify an importandynamicaltradeoff between losséde-
25) sign flawg associated with noisy fluctuations about an opti-
mized state and gains associated with an increased ability of
We can expand for small and obtain a system to adapt to changespifx,t). When the mobility of
resources is characterized by a single time scale, which can
Ne be related to the effective temperatufewe derive an in-
(U)=Uq+ >~ F) KT. (26)  equality which separates cases in which noise improves the
w

performance of the system from cases in which the perfor-

. . . . .mance is degraded. Our calculation assumes changes in the
When we raise the noise level, there is a cost associated WIPH 9 9

fluctuations, but because the system is more flexible, we gai ig\g;oonrgrigl ifn;flﬁigﬁgl S(!g\lflv gg%;m\zl:j’ S\?V;hgéﬁ] l%[izl the
back some of the performance of the state in a changin P 9 ' P

environment due to increased adaptability associated wit verage C.OS(U> as_somated with th? dominant fre_quency
variations in the environment, assuming the relaxation of the

wﬁegynamlcs. When the gain is greater than the cost, I'egystem towards the local optimum can be described by a

single time scaler.
3B2w2< 2, (27) Three cases are of particular interest. First, if the domi-
nant mode is a steady shift in demajedy., for transportation

a certain level of noise can be beneficial. This is reflected bpr communication systemsit corresponds to an infinite pe-
a minimum at finiteT in the curve(U(T)) (Fig. 2. From this  riod characterizing the change @ In this case by Eq(27)
condition we see that when the change in the environments i§ is always in the best interest of a system to incorporate
too fast, the system will not be able to adjust effectively andsome finite-temperature mobility and adapt.
the best solution is to keep still at the optimal state for the Second, in some cases there is a semiregular pattern to the
backgroundJ,, . Only when the change is sufficiently slow is fluctuations associated with some nonzero dominant fre-
it beneficial for the system to be mobile. quency of change. Examples includeoisy) weather and

WhenU(y,t) is time dependent, the finifEvariability of  climate fluctuations which are coupled to ecological systems,
the configurations about the HOT state leads to a sampling dfuctuations in spending and investment cycles which are
some states with losses which are smaller than the averageoupled to a market economy, or daily variability in user
However, it is not the intrinsic spread of the distribution of demand which are coupled to transportation and communi-
configurations at finitd which gives rise to lower values of cation systems as well as public utilities. In this case, be-
the expected loss in ER7). On average, such an effect does cause the patterns are somewhat predictable, time-dependent
not lower(U), since aside from special choicespfi) finite ~ optimization can improve the performance by directly adjust-
T leads to as many configurations that raises lowerU. ing output and the allocation of resources to incorporate this
Instead, it is the link between the amplitude of the fluctua-variability. For example, many metropolitan areas adjust
tions about the HOT state and the rate at which the distributraffic patterns to account for the relative increases in incom-
tion of configurations as a whole can adjust which leads tdng and/or outgoing traffic during morning and/or evening
the nontrivial minimum. This link is rooted in the internal commutes. This scenario goes a step beyond the calculations
dynamics of the system which is ultimately responsible forperformed here by anticipating the reallocation of resources
both fluctuations about and relaxation towards the timein response to the changing environment. In this case there

dependent optimal state. need not be a direct link between relaxation towards the op-
timal state and fluctuations, so EQ7) does not apply.
IV. CONCLUSIONS Finally, the most interesting case arises when the domi-

nant mode is not priori known. In some manmade tech-
We have developed a methodology for systematically exnologies (e.g., algorithms that are used to optimize world
ploring neighborhoods of the HOT state, through incorporawide web sites for maximum throughputocal optimization
tion of an effective temperature describing the mobility of of the resource allocations is decoupled from random fluc-
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tuations in the distribution of resourses, so E2fl) does not dp
apply. However, in other cases it is the low level degrees of [(yi+1_yi)2+(yi_yifl)2]T
freedom, rather than an externally imposed optimization Y
scheme, which are both constantly fluctuating and adapting =4(2yi—Yi_1—Yi+1PY;). (AB)

to change in a manner which on average favors higher per-
formance. This process is easiest to visualize in the conteX€t us viewy; as the value of some continuous functig(s)
biology and ecology, where mutation leads to the next round@t s=i. Then remembering the interval betwegrandy; , ;
of candidates subject to optimization through natural selecis small, i.e.,y(s) is a slow varying function of, we can
tion in a time-dependent environment. Our model representgpproximate
a highly simplified description of this scenario. Equati@m)

can be viewed as a condition on the frequeacgssociated

with change at which it becomes beneficial for the system to

adapt to time-dependent conditions. For frequencies greater

than o= \2¢/3B? a system is better off optimizing for the and
average environment than it is making time-dependent ad-
justments. In any real complex, adaptive system, different

frequency modes of a changing environment will be impor-

tant at different levels in a hierarchical design.

dy(s)) (A6)

Yi+1_Yi:( ds

2
d y(s)) . (A7)

yi1+yi+1_ZYi:(?

Then Eq.(A5) becomes
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P A9
=242 (A9)

APPENDIX dy

alele

In this Appendix we solve the optimization problem for
the one-dimensional forest fire model for arbitrary probabil-gnd
ity distribution functionp(x) of the initial spark. The forest
is confined in the segment<Ox<<1. There areN cuts (fire dy 1
breaks which are located at;,y,, . . ..yyn. We assum&l is dinp=24-d-. (A10)
big so that the intervals between neighboring cuts are small -
and p(x) varies slowly in each interval.
The loss function to minimize is So finally,

N+1
Yi
U(y11y21 CE 1yN): I=21 (yi_yi*l) fy-lp(X)dX7 d—y= i (All)
| (A1)
whereA is a constant.

We can proceed to solve functigfs) and find the opti-
mal positions fory;’s. But instead, let us look at the relation

where the suny;=0 fori=0 andy;=1 fori=N+1. For
the optimal positions of thg;’s, we have

ou between the size of loss and its corresponding probability.
a—y_ZO, (A2)  The size of loss here is the length of an interval,
|
hich leads t dy(s) A
whien feads fo yi+1_Yi:<—ds = (A12)
in+1 q in dxe (2 s=i p
i px)dx yi_lp(x) X=(2Yi YY) PO And the probability of this loss is
(A3)
Yit+1
In the above equation, becausgx) is slowly varying in an f P(x)dx=(yi1—Yi)p=AVp. (A13)
interval, we can approximate it by keeping to the first-order i
terms in the Taylor expansion From the above two equations we see tRgk)oc| 1.
d This power law is for arbitrarp(x). Though the deriva-
p(x)=p(y;)+ _p) (X—V;). (A4)  tion depends on the assumption thais big enough so that
dx x=y; the intervals between cuts are small, this power law should

still be a good approximation even for the situations when
Plug this into Eq(A3) and we have the assumption is not satisfied.



3204 TONG ZHOU AND J. M. CARLSON PRE 62

[1] J. M. Carlson and J. Doyle, Phys. Rev6H, 1412(1999. B. Drossel and F. Schwabl, Phys. Rev. Lé®, 1629(1992.
[2] J. M. Carlson and J. Doyle, Phys. Rev. L&#, 2529(2000. [5] D. Stauffer,Introduction to Percolation TheoryTaylor, Lon-
[3] J. Doyle and J. M. Carlson, Phys. Rev. L&#, 5656(2000. don, 1985.

[4] P. Bak, K. Chen, and C. Tang, Phys. Lett1A7, 290(1990; [6] K. J. Strandburg, Rev. Mod. Phy80, 161 (1988.



