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Random resistor-diode networks and the crossover from isotropic to directed percolation

Hans-Karl Janssen and Olaf Stenull
Institut für Theoretische Physik III, Heinrich-Heine-Universita¨t, 40225 Düsseldorf, Germany

~Received 20 March 2000!

By employing the methods of renormalized field theory, we show that the percolation behavior of random
resistor-diode networks near the multicritical line belongs to the universality class of isotropic percolation. We
construct a mesoscopic model from the general epidemic process by including a relevant isotropy-breaking
perturbation. We present a two-loop calculation of the crossover exponentf. Upon blending the«-expansion
result with the exact valuef51 for one dimension by a rational approximation, we obtainf51.2960.05 for
two dimensions. This value is in agreement with the recent simulations of a two-dimensional random diode
network by Inui,et al. @Phys. Rev. E59, 6513 ~1999!#, who found an order parameter exponentb different
from those of isotropic and directed percolation. Furthermore, we reconsider the theory of the full crossover
from isotropic to directed percolation by Frey, Ta¨uber, and Schwabl@Europhys. Lett.26, 413 ~1994!; Phys.
Rev. E49, 5058~1994!#, and clear up some minor shortcomings.

PACS number~s!: 64.60.Ak, 05.40.2a, 64.60.Ht, 64.60.Kw
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I. INTRODUCTION

Random resistor-diode networks~RDN’s! were intro-
duced by Redner@1–3#. Nevertheless, they were alread
contained implicitly in the pioneering work of Broadbent a
Hammersley@4# on percolation. RDN’s define a percolatio
model ~for a recent introduction to percolation, see Stauf
and Aharony@5#! on a d-dimensional hypercubic lattice in
which nearest-neighbor sites are connected by a resist
positive diode~conducting only in a preferred direction!, a
negative diode~conducting only opposite to the preferre
direction!, or an insulator with respective probabilitiesp,
p1 , and p2 , and q512p2p12p2 . In the three-
dimensional phase diagram~pictured as a tetrahedro
spanned by the four probabilities! one finds a nonpercolatin
phase and three percolating phases. The percolating ph
are isotropic, positively directed, or negatively directed. B
tween the phases there are surfaces of continuous transit
All four phases meet along a multicritical line, where 0<r
ªp15p2<1/2 and p5pc(r ). On the entire multicritical
line, i.e., independently ofr, one finds the scaling propertie
of usual isotropic percolation (r 50).

About 20 years ago Redner@1–3# studied the phase dia
gram sketched in Fig. 1 as well as geometrical propertie
RDN’s in two dimensions. He used real-space renormal
tion methods and planar lattice duality@6#.

Recently Inuiet al. @7# measured the order parameter e
ponentb for the special case of a two-dimensional rando
diode network~with p5q50) by Monte Carlo methods
combined with series expansions. At the symmetric criti
point p15p251/2 ~so called random Manhattan!, they
found b50.179460.008, which does not coincide with th
known values wether for isotropic percolation~IP!, b IP
55/36, nor directed percolation~DP!, bDP50.27643. There-
fore, they concluded that the percolation properties of
random diode network constitute a new universality cl
different from isotropic and directed percolation.

In this paper we study RDN’s by the methods of ren
malized field theory. Contrary to Inuiet al., we find that
random diode networks at the percolation point as well
PRE 621063-651X/2000/62~3!/3173~13!/$15.00
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RDN’s at the full multicritical line belong to the universalit
class of isotropic percolation. The variabler 5p15p2 ,
which maps out the multicritical linep5pc(r ), is a redun-
dant variable in the sense of the classification scheme
scaling variables by Wegner@8#. Thus all the points of this
line are equivalent to the usual isotropic percolation po
with r 50.

The caser .0, in which positive and negative diodes a
distributed with equal probability, leads to a breaking of is
ropy and to elongated percolating clusters. However,
symmetry breaking can be easily compensated for in the
soscopic field theoretic formulation by a simple rescaling
the length scale of the preferred direction. The specific len
scale is therefore redundant. Wegner showed that the re
malization flow of a redundant variable depends on the p
ticular form of renormalization group used, and does n
affect the physics. Thus, in the case of Redner’s real sp
renormalization group, a special fixed point, the so cal
mixed one, is distinguished.

The situation is different for a symmetry breaking whic
favors not only an axis but also a direction on that axis. T
leads to a relevant variable;(p12p2), and therefore to a
new correlation length exponentn5fn IP . The crossover
exponentf describes the beginning of the crossover to

FIG. 1. Generic phase diagram forp11p25const<12p. The
nomenclature is the following:pc , critical point;nonP, nonperco-
lating phase; DP, phase of directed percolation; IP, phase of~elon-
gated! isotropic percolation.
3173 ©2000 The American Physical Society
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rected percolation. It also relates the order parameter e
nentsb5fb IP . In two dimensions, it has, according to th
results of Inuiet al. @7#, the valuef51.29 . . . . Ourpertur-
bation calculation yieldsf51.2960.05, in agreement with
the simulations. It should be noted that the interpretation
the multicritical line as a line of equivalent fixed points wi
the same scaling behavior, as well as the new correla
exponentn, can be already found implicitly and explicitly in
the early papers of Redner@1–3# ~his notation isn1 for the
new exponentn).

The organization of the remainder of this paper is as
lows. In Sec. II, we first develop a mesoscopic field theore
model that is capable of describing the crossover from
tropic to directed percolation, which is the basic feature
RDN’s. We describe the renormalization of the model a
calculate the renormalization factors to two-loop order.
Sec. III, we introduce the renormalization group equation
the model, and derive the general asymptotic scaling pro
ties. In Sec. IV, we derive an interpolating formula for th
crossover exponent from the two-loop«-expansion, and
show that it reproduces the result of Inuiet al. In Sec. V we
reconsider the theory by Frey, Ta¨uber, and Schwabl@9# for
the crossover from isotropic to directed percolation, a
clear up some minor shortcomings. In Sec. VI, we give so
conclusions and summarize our work. In an appendix,
present the two-loop calculation of the renormalization f
tors.

II. FIELD THEORETIC MODEL
AND ITS RENORMALIZATION

Here we develop a mesoscopic model that is capabl
describing the crossover from isotropic to directed perco
tion. In this paper we are only interested in connectiv
properties of the percolating system. In contrast to ear
work on random resistor networks@10–13#, we neglect trans-
port properties as the conductance, etc. In other words, al
ask is whether two points on the lattice are connected or
Formally, we consider the limit of zero resistance of t
conducting elements.

Percolating clusters in space and time can be generate
a stochastic spreading process known as the general
demic process~GEP! @14#. In order to apply field-theoretic
methods@15,16#, it is convenient to use the path-integr
representation of the underlying stochastic processs(x,t)
@17–19#. With the imaginary-valued response field denot
by s̃(x,t), the generating functional of the Greens functio
the connected response, and correlation functions take
form

W @H,H̃#5 ln E D~ s̃,s!expF2J @ s̃,s#

1E ddxE dt~Hs1H̃s̃!G . ~2.1!

The dynamic functional J @ s̃,s# and the functional
measure D( s̃,s) @D( s̃,s) is a symbolic notation for
)x,t„ds̃(x,t)ds(x,t)… times a constant# are understood to be
defined using a prepoint~Ito! discretization with respect to
time @19#. The prepoint discretization leads to the causa
o-
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rule u(t<0)50 in response functions. This causality ru
then forbids response propagator loops in the diagramma
perturbation expansion.

Using the path-integral formulation, a renormalized fie
theory of dynamic isotropic percolation can be gained fro
the GEP@20,21#. If we add to this model a relevant couplin
which breaks isotropy and introduce a preferred directionn
for the spreading of the disease in thed-dimensional space
we obtain the dynamic functional

J5E ddxH E dts̃F] t1l„t2¹212v~n•¹!…2
lg

2
s̃Gs

1
l2g

2
s̃] tF E t

dt8s~ t8!G2J . ~2.2!

This functional corresponds to the Langevin equations

] ts~x,t !5l„¹222v~n•¹!2t2gn~x,t !…s~x,t !1z~x,t !,
~2.3!

n~x,t !5lE
2`

t

s~x,t8!dt8, ~2.4!

^z~x,t !z~x8,t8!&5lgs~x,t !d~xÀx8!d~ t2t8! ~2.5!

for the GEP, with the suitable scaled densitys(x,t) of the
infected individuals. Heren(x,t) constitutes the density o
the immun~or dead! individuals, andz(x,t) is a Gaussian
noise which is zero in spatial regions where the diseas
extinguished. The deterministic drift of the disease in sp
is represented by the flow 2lvns(x,t).

Of course, if thed-dimensional rotational symmetry i
broken to (d21)-dimensional isotropy, the diffusion con
stants for longitudinal~with respect to the directionn) and
transversal spreading are in general different. Thus we h
to consider a more general diffusion operatorl¹2→l(¹'

2

1c22] i
2). However, it is easy to see that the new parame

c can be absorbed into the definition of the longitudin
length scale bycxi→xi , followed by an appropriate chang
of the densities and the coupling constantg. After that, dif-
fusional spreading looks isotropic again. The parametec
depends on the microscopic model. It is a redundant varia
in the sense of Wegner@8# and is responsible for the multi
critical line in the RDN’s@1–3#. From the microscopic RDN
standpoint, the three variablest, c, and v are analytical
functions of the three probabilitiesp, p1 , and p2 for the
resistors and diodes near the critical manifolds of RDN’s a
share their spatial symmetries. Thus one hast(p,p1 ,p2)
5t(p,p2 ,p1), c(p,p1 ,p2)5c(p,p2 ,p1), and
v(p,p1 ,p2)52v(p,p2 ,p1). In particular we have
c(p,0,0)51, but in generalc(p,r ,r )Þ1 if r .0. Moreover,
v(p,r ,r )50 holds. Remember thatp15p25r and p
5pc(r ) defines the multicritical line.

In this paper we are interested only in the static behav
of the process, i.e., in the statistics of the distributions
immunes in spacen(x,`) after a long time when the epi
demic is extinguished. These distributions constitute iso
pic percolating clusters at the critical point of the GE
which is given byv5v„pc(r ),r ,r …50 andt5t„pc(r ),r ,r …
5tc50 if we neglect fluctuation corrections. The dens
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n(x,`) is proportional to the Fourier transform ofs for fre-
quency zero. The statistical weight for these frequency-z
modes can be found by invoking the formal limits

s̃~x,t !→w̃~x!5const, lE
2`

`

dts~x,t !Än~x,`!→w~x…

~2.6!

for the fields in the dynamic functionalJ @Eq. ~2.2!#. This
manipulation can be controlled term by term in a diagra
matical perturbation expansion, and leads to the desired
resentation of the zero frequency Green’s functions as fu
tional integrals with a weight exp(2H) and a quasistatic
Hamiltonian

H5E ddxH w̃Ft2¹212v~n•¹!1
g

2
~w2w̃ !GwJ .

~2.7!

Remember that closed loops of the response propagator
forbidden in the Feynman diagrams as a consequence o
causality rule. Therefore, the functionalH is, up to a rescal-
ing, identical with the statistical functional considered
Frey, Täuber, and Schwabl@9,22# in their work on the cross-
over from isotropic to directed percolation.

To absorb ultraviolet divergencies in a perturbational c
culation of the Green’s functions with the HamiltonianH,
we use, in the casev50, the following renormalization
schemes@20#:

w̃→ ẘ̃5Z1/2w̃, w→w° 5Z1/2w, ~2.8!

t→t°5Z21Zttm21t°c , g2→g° 25G«
21Z23Zuum«.

~2.9!

Here«562d, G«5G(11«/2)/(4p)d/2, andm is the usual
external momentum scale, which makes the renormali
coupling constantu dimensionless. Note that the fieldsw̃ and
w are renormalized by the sameZ factor as a consequence
the reflection symmetryw(x' ,xi)↔2w̃(x' ,2xi) of H,
which eventually leads to the equalityb85b between the
exponents characterizing the particle density and the pe
lation probability. The renormalizations are known from pe
colation field theory up to three-loop order@23#. Using di-
mensional regularization and minimal subtraction~minimal
renormalization! together with the« expansion, one finds

t°c50 and, to two-loop order,

Z511
u

6«
1S 112

37

12
« D S u

6« D 2

1O~u3!, ~2.10!

Zt511
u

«
1S 92

47

12
« D S u

2« D 2

1O~u3!, ~2.11!

Zu511
4u

«
1S 152

59

12
« D S u

« D 2

1O~u3!. ~2.12!

If vÞ0, further renormalizations are needed. Becausv
;m, this relevant parameter has a positive naive dimens
like t. Hence, we consider it as a soft variable~which means
ro

-
p-
c-

are
he

l-

d

o-
-

n

that the renormalization constants do not depend ont andv)
as long asv is finite and complete the renormalizatio
scheme by

t→t°5Z21~Ztt1Yvtv
2!m2, v→v° 5Z21Zvvm.

~2.13!

Here we anticipate thatt andv2 are mixed under renormal
ization.

To calculateZv und Yvt , we need the~unrenormalized!
propagatorG(q)5^wqw̃2q&0

(trunc) . We define the spatia
Fourier transform byw(x)5*qwq exp(iq"x) ~with the abbre-
viation *q5(2p)2d*ddq), and obtain

G~q!5
1

t1q212iv•q
5

1

~t1v2!1~q1 iv!2
, ~2.14!

where we used the notationvÄvn. The one-loop contribu-
tion to the vertex functionG1,1 ~the amputated one-particl
irreducible Green’s function with ones and ones̃ leg! is
given by

S (1)~q!5
g2

2 E
k
G~k1q/2!G~2k1q/2!

5
g2

2 E
0

`

ds1ds2E
k
expF2~s11s2!~t1v2!

2s1„k1(q/21 iv……22s2„k2~q/21 iv……2#

52
2G«g2

~22«!«
~t1Q!12«/2K«24

(0) SAv22Q

t1Q D
52G«g2t2«/2S 2t

~22«!«
K«24

(0) ~v/At!

1
Q

«
K«22

(1) ~vAt!2
Q2

4
K«

(2)~v/At!1O~Q3! D ,

~2.15!

where we have defined the functions

Ka
(n)~p!5E

0

1

dx
~12x2!n

~11p2x2!11a/2
~2.16!

and the abbreviation

Q5q2/41 iv•q. ~2.17!

The expansion of the yet unrenormalized one-loop s
energyS (1)(q) in v2 and« yields

S (1)~q!52
G«g2t2«/2

« S S 11
«

2D t1
v2

3
1

2i

3
v•q1

1

6
q2

1O~«2! D . ~2.18!

Using the renormalization scheme@Eqs. ~2.8!, ~2.9!, and
~2.13!#, the renormalized vertex functionG1,1 is found to first
order in the renormalized coupling constantu as
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G1,15S Ztt1Yvtv
22

u

« S t1
v2

3 D Dm212i S Zv2
u

3« Dmv•q

1S Z2
u

6« Dq21O~«0!, ~2.19!

from which the new renormalizations can be gathered
O(u) as

Zv511
u

3«
1S 232

73

12
« D S u

6« D 2

1O~u3!, ~2.20!

Yvt5
u

3«
1S 302

35

2
« D S u

6« D 2

1O~u3!. ~2.21!

Here we have also included the two-loop result calculate
the Appendix.

III. RENORMALIZATION GROUP EQUATION
AND SCALING BEHAVIOR

Next we explore the scaling properties of percolation
the RDN’s system. Scaling properties describe how phys
quantities will transform under a change of length scales.
the renormalization, we have introduced the arbitrary me
scopic length scalem21. The freedom to choosem, keeping

the unrenormalized fields and bare parameters$t° ,v° ,g° %, and,
in cutoff regularization, the momentum cutoffL fixed, can
be used to derive in a routine fashion the renormalizat
group ~RG! equation for the connected Green’s functions

GN,Ñ~$x%!5K )
i 51

N

w~xi ! )
j 5N11

N1Ñ

w̃~xj !L (conn)

. ~3.1!

We denotem derivatives at fixed bare parameters by]mu0.

From m]mu0G° N,Ñ50 and the renormalization scheme,@Eqs.

~2.8!, ~2.9!, and ~2.13!#, which lead to G° N,Ñ

5Z(N1Ñ)/2GN,Ñ , we then find the RG equations

FDm1
N1Ñ

2
gGGN,Ñ50. ~3.2!

Dm stands for the renormalization group differential opera

Dm5m]m1bu]u1„t~kt22!1v2kvt…]t1v~kv21!]v .
~3.3!

Here we have introduced the Gell-Mann-Low functions

bu5
]u

] ln m U
0

5~2«13g2gu!u, ~3.4!

tkt1v2kvt5
]t

] ln m U
0

5t~g2gt!2v2gvt , ~3.5!

vkv5
]v

] ln m U
0

5v~g2gv!, ~3.6!

and the Wilson functionsg . . . 5] ln Z . . . /] ln mu0.
o

in

al
y
o-

n

r

The RG equations can be solved in terms of a single fl
parameterl using the characteristics

l
d

dl
ū~ l !5bu~ ū~ l !!, ū~1!5u, ~3.7!

l
d

dl
v̄~ l !5 v̄~ l !@kv„ū~ l !…21#, v̄~1!5v, ~3.8!

l
d

dl
t̄~ l !5$t̄@kt„ū~ l !…22#1 v̄2kvt„ū~ l !…%, t̄~1!5t.

~3.9!

With the help of these flow equations, we recast Eq.~3.2! as

F l
d

dl
1

N1Ñ

2
g„ū~ l !…GGN,Ñ„$x%,t̄~ l !,v̄~ l !,ū~ l !,lm…50.

~3.10!

Equations~3.7!–~3.9! describe how the parameters transfo
if we change the momentum scalem according to m

→m̄( l )5 lm. Being interested in the infrared~IR! behavior
of the theory, we must study the limitl→0. According to
Eq. ~3.7! we expect that in this IR limit the coupling consta
ū( l ) flows to a stable fixed pointu* , with bu* 50. At the
fixed point it is legitimate to diagonalize the part of the R
differential operator containing the relevant parameterst and
v. Introducing a new parameters instead oft, we find

~tkt* 1v2kvt* !]t1vkv* ]v5skt* ]s1vkv* ]v ,
~3.11!

where

s5t1a* v2, a* 5
kvt*

kt* 22kv*
. ~3.12!

k i* stand for the Gell-Mann-Low functions taken at the fix
point u* .

Using dimensional analysis in conjunction with the flo
equations, we readily find the asymptotic behavior of t
connected Green’s functions forl→0. Neglecting nonuni-
versal scale factors, we obtain

GN,Ñ~$x%,s,v,u* ,m!

5 l (N1Ñ)h/2GN,Ñ~$x%,s/ l 22kt* ,v/ l 12kv* ,u* ,m l !

5~m l !(N1Ñ)(d22)/2l (N1Ñ)h/2GN,Ñ

3~$ lmx%,s/ l 22kt* ,v/ l 12kv* ,u* ,1!, ~3.13!

where the Fisher exponenth is defined byh5g(u* ). We
define the remaining exponents by

n5
1

12kv*
, b5n

d221h

2
, ~3.14!

n IP5
1

22kt*
, b IP5n IP

d221h

2
, ~3.15!

and the crossover exponentf by
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f5
22kt*
12kv*

5n/n IP5b/b IP . ~3.16!

The appropriate choice of the flow parameterl in the case
usu!uvuf is l;uvun. In this case the Green’s functions sca
as

GN,Ñ~$x%!5uvu(N1Ñ)bFN,Ñ~$x/j%,s/uvuf!, ~3.17!

with a correlation lengthj;m21uvu2n. Otherwise, in the
caseuvu!usu1/f, we choosel;usun and arrive at isotropic
percolation scaling

GN,Ñ~$x%!5usu(N1Ñ)b IPFN,Ñ
(IP)

~$x/j IP%,v/usu1/f!,
~3.18!

with a correlation lengthj IP;m21usu2n IP.

IV. RESULTS FOR THE CROSSOVER EXPONENT
FROM THE « EXPANSION

In this section we derive the scaling indices. Because
« expansions of the usual percolation exponents are
known, we concentrate on the new crossover exponenf.
For this purpose we need the Gell-Mann-Low functionsbu ,
g, andk i explicitly. From Eq.~3.4! we know thatbu begins
with the zero-loop term2«u, and the higher order terms ar
determined by the Wilson functions. These functions,
logarithmic derivatives of theZ factors, are given byg . . .
5m]mu0 ln Z . . . 5bu]u ln Z . . . . In minimal renormalization
the Z factors have a pure Laurent expansion with respec
«: Z511Y(1)/«1Y(2)/«21•••. It then follows recursively
in the loop expansion that the Wilson functions have als
pure Laurent expansion and, because they are finite fo«
→0, this expansion reduces to the constant term, i.e., a«
poles have to be compensated for by the logarithmic der
tive. Thus we obtain the Wilson functions simply from th
formulag . . . 52u]uY . . .

(1) . Now it is easy to find these func
tions from the Z factors @Eqs. ~2.10!–~2.12!, ~2.20!, and
~2.21!#. The results are

gu524u1
59

6
u21O~u3!, gt52u1

47

24
u21O~u3!,

~4.1!

gv52
u

3
1

73

216
u21O~u3!, gvt52

u

3
1

35

36
u21O~u3!,

~4.2!

g52
u

6
1

37

216
u21O~u3!, ~4.3!

from which the Gell-Mann-Low functions follow as

bu5S 2«1
7u

2
2

671

72
u21O~u3! Du,

kt5
5u

6
2

193

108
u21O~u3!, ~4.4!
e
ll

e

to

a

a-

kv5
u

6
2

u2

6
1O~u3!, kvt5

u

3
2

35

36
u21O~u3!.

~4.5!

From bu* 50 the stable fixed point valueu* 5 2
7 «1 671

3087«
2

1O(«3) is readily obtained. We finally derive the followin
« expansion of the crossover exponent:

f522
«

7
1

59«2

23213
1O~«3!. ~4.6!

Crudely evaluating this expansion for small spatial dime
sions, i.e., for«53 or 4, leads inevitably to poor quantitativ
predictions. Therefore, we improve the«-expansion via a
rational approximation, which takes into account that ford
51 the correlation length exponents are, trivially, alwa
equal to 1. In addition, we make the hypothesis that the«
expansion can be extended up to«55. These consideration
lead then to the interpolation formula

f511S 12
«

5D S 11
2«

35
1

6767«2

503213D . ~4.7!

From Eq.~4.7! we obtain values for the crossover and t
order parameter exponent ford52 to d56. These values are
summarized in the following table:

d5 2 3 4 5 6

f5 1.29 1.52 1.70 1.86 2.00
b5 0.18 0.62 1.09 1.56 2.00

Of course, the calculated values off depend slightly on
the interpolation procedure, i.e., different rational appro
mands may be used to incorporatef(d51)51. We learn
from this numerical sorceries that the displayed numb
may have a failure of roughly60.05.

Now we come back to the question which of the ord
parameter exponents are seen in simulations by Inuiet al.
@7#. From the scaling properties of the Green’s functio
GN,Ñ($x%) we have learned that this depends on the rela
behavior of the relevant parametersusu anduvuf as functions
of the microscopic probabilities for the conducting elemen
Writing the deviations from the multicritical line asdp5p
2pc(r ), dp65p62r , we have the expansions

s5a1~dp11dp2!1a2dp1a3~dp11dp2!2

1a4dp1dp21a5dp21•••, ~4.8!

v5~dp12dp2!„b11b2dp1b3~dp11dp2!…•••,
~4.9!

where the coefficientsai andbi depend on the microscopi
model. In the simulations of the pure two-dimensional ra
dom diode system, Inuiet al. @7# setdp152dp25dr and
dp50. It follows thats;dr 2 andv;dr , and consequently
usu/uvuf;udr u22f!1, becausef,2. Thus the exponentb
is found as the simulations clearly state. In their extend
model Inui et al. set the variations of the probabilities t
dp15dp25dr anddp50. In this case we haves;dr and
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v;dr , and consequentlyuvu/usu1/f;udr u121/f!1 because
1/f,1. Now the isotropic percolation exponentb IP55/36
is measured.

V. CROSSOVER FROM ISOTROPIC TO DIRECTED
PERCOLATION

A. Preliminaries

The crossover theory of Frey, Ta¨uber, and Schwabl@9#,
henceforth called FTS, starts with the quasistatic Ham
tonian H stated in Eq.~2.7!. FTS used the modification o
the longitudinal length scale by the parameterc which we
discussed in Sec. II. We have seen thatc is a redundant
variable near the isotropic fixed point and hence droppe
from the onset. FTS also renormalizedc. They found that the
anomalous dimension ofc is zero at the isotropic point
Moreover, they calculated a nonvanishing anomalous dim
sion ofc at the directed fixed point. The variablec ~or better
1/c2, which couples to the composed fieldw̃¹ i

2w), being
redundant at the isotropic fixed point, changes over to
irrelevant variable at the directed fixed point. Thus, in ord
to renormalize it, one has to include all the irrelevant ope
tors of equal naive dimension and symmetry which mix u
der renormalization. This was overlooked in the work
FTS; thus the calculated anomalous dimension of 1/c2 is
meaningless.

The technical problem of the crossover from IP to DP
as FTS stated, that the two fixed points, which are to conn
by the renormalization flow, have different upper critical d
mensions, 6 and 5, respectively. Thus, from the outset
has the problem of renormalizing the theory for general
mensions below 6, and cannot use the« expansion, which
bypasses the problem that the perturbation expansion is
defined if one uses critical massless propagators, leadin
IR divergencies below the upper critical dimension. Ho
ever, the renormalization can be accomplished in a mas
theory, which avoids the IR divergencies, by using norm
ization conditions for the vertex functions. Asymptotic sc
ing properties follow from the inhomogeneous Calla
Symanzik equation.

Below the upper critical dimension, the theory is sup
renormalizable. Only the vertex functionG1,1 is UV diver-
gent and can be renormalized by a mass shiftt→t1dt,
wheredt absorbs the UV divergencies. If the theory is reg
larized dimensionally, these UV divergencies manifest the
selves as poles at«5« l52/l , l 51,2, . . . @25–27#, where, at
the corresponding spatial dimensionsdl562« l , only per-
turbational contributions toG1,1 of a loop order smaller then
l are superficially UV divergent. These poles can be elim
nated, as long asv is finite, by a shiftdt5g4/«M(«), where
M is meromorphic in«. After the mass shift, the theory i
UV finite. Then, however, in those dimensions correspo
ing to the above-mentioned poles, a nonanalytic logarith
behavior with respect to the coupling constant arises.

An alternative dimensional regularization formalism w
presented some time ago by Schloms and Dohm@24#, hence-
forth called SD. This formalism circumvents renormalizati
conditions, and resorts to the more convenient minim
renormalization but without using the« expansion. The key
feature of this formalism is to use the inverse correlat
l-
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length itself as the mass parameter@27# and to define the
minimal renormalization at a suitable renormalization poi
which introduces the usual external mass scalem. The con-
sequences are relatively simple renormalization factors a
homogeneous RG equation. Hence the SD formalism fos
higher order calculations and resummation procedures.
will use the SD formalism in the following. FTS used
massive renormalization scheme that is a mixture of ren
malization conditions and a mass renormalization at an
ternal mass scalem. It is unclear wether this scheme can b
used consistently at higher loop orders.

B. Crossover renormalization

We revisit the quasistatic HamiltonianH, @Eq. ~2.7!#, and
introduce, in the casevÞ0, new variables by

x'5y, xi5n•x52vlt, w5u2vu21/2s,

w̃5u2vu21/2s̃, g5u2vu1/2ḡ. ~5.1!

ThenH appears as

H̄5E dtdd21yH s̃F ] t2
1

4lv2
] t

21l~t2¹2!

1
lḡ

2
~s2 s̃!GsJ . ~5.2!

In the limit v→` we arrive at the dynamic functional whic
describes DP@28,29#. We conclude that the so far unreno
malized Green’s functions have the asymptotic property

~2v !(N1Ñ)/2GN,Ñ~$x%,t,v,g!→ḠN,Ñ~$x' ,lt%,t,ḡ!,
~5.3!

where theḠN,Ñ are the DP Green’s functions. The minim
renormalizations of the DP theory in dimensional regulari
tion are

s̃→ s̃°5Z̄v
1/2s̃, s→s°5Z̄v

1/2s, l→l° 5Z̄v
21Z̄l, ~5.4!

t→t°5Z̄21Z̄ttm21t°̄c , ḡ2→ḡ°25Ḡ«̄
21

Z̄v
21Z̄22Z̄ūūm«̄,

~5.5!

where «̄5«21552d542d̄, Ḡ«̄5G(11 «̄/2)/(4p) d̄/2,
and known@29# as

Z̄511
ū

8«̄
1

ū2

128« S 13

«
2

31

4
1

35

2
ln

4

3D1O~ ū3!,

~5.6!

Z̄v511
ū

4«̄
1

ū2

32« S 7

«
231

9

2
ln

4

3D1O~ ū3!, ~5.7!

Z̄t511
ū

2«̄
1

ū2

2« S 1

«
2

5

16D1O~ ū3!, ~5.8!
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Z̄u511
2ū

«̄
1

7ū2

2« S 1

«
2

1

4D1O~ ū3!. ~5.9!

Note that the DP HamiltonianH̄ @Eq. ~5.2!#, is nonrenormal-
izable ford.5. Thus, to study this limit, we are restricted
spatial dimensionsd<5.

We expect that the theory can be rendered finite for
values ofv, including infinity, by interpolating the renorma
izations ofH. Then it follows from definitions~5.1! that the
following asymptotic properties hold forv→`:

Z . . . ~u,v,«!→Z̄ . . . ~ ū,«̄ !, ~5.10!

with ū5u/2v. Of course, as long asv is finite, soft renor-
malizations ofH can be used, but forv→`, logarithmic
divergencies; ln v arise for «̄5«2150. These must be
included in the renormalization factors to make the the
finite for all v, especially in the DP limit. Note that in thi
limit v plays the role of a cutoff. In the following we dem
onstrate that the renormalization procedure suggested by
i.e., an extended minimal renormalization scheme with
using the« expansion, is feasible, and that it allows one
extract the crossover behavior of the Green’s functions.

We consider the dimensional regularized bare ver

functionsG° Ñ,N($q%;t° ,v° ,g° ;d) as functions of the bare param

eterst° , v° , andg° , and the momenta$q% at spatial dimension

d562«, «.0. The critical pointt°c is determined by

G° 1,1~$0%;t°c ,v° ,g° ;d!50, ~5.11!

which provides an implicit definition of

t°c5t°c~v° ,g° ;d!5g° 4/«S~«,v° /g° 2/«!. ~5.12!

The generalized Symanzik function@25# has pole singulari-

ties at«52/l , l 51,2, . . . , aslong asx5v° /g° 2/« is finite. An
expansion yieldsS(«,x)5S0(«)1Y(«)x21O(x4) with a fi-
nite Y(«) as long as«.0. Taking the limit behavior of the
vertex functions forx@1 into account, we find for«.1, the
asymptotic behaviorS(«,x)→x22«P̄(x2«;«)1x2/(12«)S̄(«),

whereP̄ denotes an analytic function ofx2«5g° 2/v° «. For «

.1, the pole singularities ofP̄(y;«) and S̄(«) are found at
«215 «̄52/l . These pole singularities combine to yie
logarithmic divergencies inx instead the poles in«̄.

Since the theory is super-renormalizable for«.0, we
know that all the functions

G° Ñ,N
8 ~$q%;t°8,v° ,g° ;d!5G° Ñ,N„$q%;t°81t°c~v° ,g° ;d!,v° ,g° ;d…

~5.13!

are finite below six dimensions. However, because of

nonanalyticity of t°c with respect tog° , they are no more

expandable in the coupling constantg° . This can be fixed by
introducing the inverse transversal correlation length as
new mass. It is defined according to
ll

y

D,
t

x

e

e

j'
225m25

G° 1,18 ~$0%;t°8,v° ,g° ;d!

]q
'
2 G° 1,18 ~$q%;t°8,v° ,g° ;d!uq50

. ~5.14!

The functionm(t°8,v° ,g° ;d) has poles only atd56. It can be

inverted to definet°8 as a function ofm,

t°85r°~m,v° ,g° ;d!, ~5.15!

with r°(0,v° ,g° ;d)50. The functionr° can be substituted into

G° Ñ,N
8 yielding the bare vertex functionsG° Ñ,N

9 in terms of the
massm:

G° Ñ,N
8 „$q%;r°~m,v° ,g° ;d!,v° ,g° ;d…5G° Ñ,N

9 ~$q%;m,v° ,g° ;d!.
~5.16!

In the following we abbreviateG° Ñ,N
9 by G° Ñ,N for notational

simplicity. G° Ñ,N are now free of dimensional singularitie

below d56, and have an expansion in integer powers ofg° .
In the limit v→`, for d,5, from Eq.~5.3! we deduce the
asymptotic property

G° Ñ,N~$q%,m,v° ,g° ;d!→~2v° !(N1Ñ22)/2Ḡ
°

Ñ,N

3~$q' ,l° 21v%,m,g°̄ ;d!,

~5.17!

with v52l° v°qi and the unrenormalized DP vertex functio

G°̄ Ñ,N .
Henceforth for simplicity we use the notationq symboli-

cally for all the momenta$q%. It is convenient to write

G° Ñ,N~q,m,v° ,g° ;d!5mdÑ,NF° Ñ,N~q/m,v° /m,g° /m«/2;d!,
~5.18!

with dimensionless functionsF° Ñ,N andd Ñ,N5d2(d22)(Ñ

1N)/2. ExpandingF° Ñ,N in a power series gives

F° Ñ,N~x,y,z;d!5zs (
l ,n50

`

f Ñ,N
( l ,n)

~y;d!~x!n~z2/«! l ,

~5.19!

wheres50 if ( Ñ1N)/2 is an integer, ands51 if it is not.
The exponentl denotes the loop order. The function
f Ñ,N

( l ,n)(y;d) are finite ford<6 and finitey. Moreover, they are
analytic iny, and can be expanded to

f Ñ,N
( l ,n)

~y;d!5 (
k50

`

f Ñ,N
(k,l ,n)

~d!yk. ~5.20!

The contributions of orderzl to the scaled vertex func

tionsF° Ñ,N @Eq. ~5.19!# exhibit IR divergencies form→0. SD
showed, at the instance of theF4 theory, that this problem
can be treated by minimal renormalizations
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w̃°5Z1/2w̃, w° 5Z1/2w, ~5.21!

g° 25A~d!G«
21Z23Zuum«, v→v° 5Z21Zvvm,

~5.22!

where the soft renormalization factorsZ . . . (u;d) absorb just
the poles atd56, followed by the application of the renor
malization group. The UV« poles and the IR divergencie
are then summed up, yielding the correct critical scaling
havior reminiscent of the intimate relation between bo
Since the poles of the coefficientsf Ñ,N

(k,l ,n)(62«)/« l do not
depend on any of the parameters, they are identical to
usual soft minimal renormalizations, and can be calcula
by settingm5m or in the massless theory with«→0. Fol-
lowing SD, we have introduced in Eq.~5.22! a further am-
plitudeA(d) with A(0)51. This dimension dependent func
tion can be conveniently defined, and is extremely useful
a practical calculation of scaling functions. For simplicity w
set A(d)51 in the remaining part of this paper. Note th
from its definition@Eq. ~5.14!#, the massm does not need a

multiplicative renormalization and thatm5m° .
Now we consider the DP vertex functions

Ḡ
°

Ñ,N~q' ,l° 21v,m,g°̄ ;d!

5md̄Ñ,NF̄
°

Ñ,N~q' /m,v/l° m2,g̃°/m«̄/2;d!,

~5.23!

with d Ñ,N5(d11)2(d21)(Ñ1N)/2. The power series ex

pansion of theF°̄ Ñ,N reads, ford,5,

F̄
°

Ñ,N~x' ,x̄i ,z̄;d!5 z̄s (
l ,n' ,ni50

`

f̄
Ñ,N

( l ,n' ,ni)~ d̄!

3~x'!n'~xi!
ni~ z̄ 2/ «̄ ! l , ~5.24!

with «̄552d542d̄. By the same argument as above, o
can show that the«̄ poles are canceled, and the IR diverge
cies are summed up by the renormalization group equa
based on the minimal renormalizationsZ̄, Z̄v , andZ̄u , @Eqs.
~5.6!, ~5.7!, and ~5.9!#, where the renormalization factor
Z̄ . . . (ū,d) now absorb just the«̄ poles atd55. As above,
they are identical to the usual soft minimal renormalizatio
They can be calculated at the renormalization pointm5m

$q50%, or in the massless theory with«̄→0, because the

functions f̄
Ñ,N

( l ,n' ,ni)(d̄) do not depend on any of the param

eters.
Combining the asymptotic properties of the vertex fun

tions fory→`, @Eq. ~5.17!#, with the various expansions, w
find, for d,5,

f Ñ,N
( l ,n)

~y;d!→~2y!(N1Ñ222s)/21ni2 l~«/ «̄ ! l f̄
Ñ,N

( l ,n' ,ni)~ d̄!.
~5.25!

In case of taking the limitd→5 beforey→`, the «̄2 l poles
are replaced by a polynomialP( l ,n' ,ni)( ln y) of order l.
Therefore, it should be possible to find further finite ren
-
.

he
d

r

-
n

.

-

-

malizationsz . . . (u,v;d) which interpolate between the tw
minimal renormalizations at the renormalization pointm
5m,

Z . . . ~u;d!→z . . . ~u,v;d!Z . . . ~u;d!5Z . . . ~u,v;d!,
~5.26!

where theZ . . . (u,v;d) tend to the correspondingZ̄ . . . (ū;d̄)
with ū5u/2v in the limit v→`.

Following SD, the remaining problem is to determine t
renormalization of the relation between the massm and the

‘‘temperature,’’ t°5t°(m,v° ,g° ;d)5m2T° (v° /m,g° /m«;d). The

dimensionless functionT° has an expansion

T° ~y,z;d!511(
l 51

`

t l~y;d!~z2/«! l , ~5.27!

but t l(y;d) show UV singularities belowd56. Otherwise,

the use of the variable t°85t°t°c5r°(m,v° ,g° ;d)

5m2T° (v° /m,g° /m«;d)2g° 4/«S(«,v/g° 2/«) instead oft° elimi-
nates all UV singularities below the upper critical dimensio

Then, however, the functionr° is not more expandable ing° .
Following SD, we shall therefore consider the derivati

]r°/]m2uv° ,g° , which is not only expandable but also free
singularities. We define the function

P° ~v° /m,g° /m«;d!5
]r°

]m2U
v° ,g°

5U]~m2T° !

]m2 U
v° ,g°

5
]t°

]m2U
v° ,g°

,

~5.28!

which has the expansion

P° ~y,z;d!511(
l 51

`

pl~y;d!~z2/«! l . ~5.29!

The functionspl(y;d) are finite for d<6, and P° is mini-
mally renormalized by

P° 5Z21ZtP. ~5.30!

The same argumentation as above shows that it is possib
find a Zt(u,v;d) which interpolates between the respecti
minimal renormalizations of isotropic and directed perco
tion. Note that]/]m2uv° ,g°5]/]m2uv,g,m . Thus the derivative
with respect to the massm commutes with the multiplication
with Z factors.

C. One-loop crossover calculation

In this subsection we derive a minimal crossover ren
malization, the corresponding renormalization group eq
tion, and the flow equations, which show the crossover fr
isotropic to directed percolation. From the self-energy to
derg2, we obtain the unrenormalized~for notational simplic-
ity we drop the overcirc! vertex functionG1,1, expanded to
second order in the momenta:
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G1,15tS 12
2G«g2t2«/2

~22«!«
K«24

(0) ~v/At! D
12iv•qS 12

G«g2t2«/2

2«
K«22

(1) ~v/At! D
1q2S 12

G«g2t2«/2

4«
K«22

(1) ~v/At! D
2~v•q!2

G«g2t2«/2

4t
K«

(2)~v/At!. ~5.31!

The inverse transversal correlation length is given by

m25

tS 12
2G«g2t2«/2

~22«!«
K«24

(0) ~v/At! D
S 12

G«g2t2«/2

4«
K«22

(1) ~v/At! D . ~5.32!

From Eq.~5.32!, we easily find the unrenormalized pertu
bational temperature as

t5m2S 11
G«g2m2«

4« S 8

~22«!
K«24

(0) ~v/m!2K«22
(1) ~v/m! D D .

~5.33!

Taking the derivative with respect tom2 while holdingg
andv constant, and renormalizing by multiplication with th
factor ZZt

21 yields, via the renormalization scheme, t
function P as

P5ZZt
211u~m/m!«S 1

4«
„4K«22

(0) ~vm/m!2K«22
(1) ~vm/m!…

2
1

8
K«

(1)~vm/m! D . ~5.34!

With the formulas

p2Ka
(1)~p!5~11p2!Ka~p!2Ka22~p!, ~5.35!

~11a!Ka~p!5~21a!Ka12~p!2~11p2!212a/2,
~5.36!

where we have definedKaªKa
(0) , we obtain

P5ZZt
211

u

8 S 20

3«
~11v2!2«/21

2

«21
~32v22!

3@K«~v !2~11v2!2«/2#

1
1

«23 S v22@K«~v !2~11v2!2«/2#

2
2

3
~11v2!2«/2D1K«~v ! D ~5.37!

at the renormalization pointm5m. Note that the poles for
«51 and 3 are fictitious becauseK1(p)5(11p2)21/2 and
K3(p)5(11p2)23/2(112p2/3). Useful properties of the
function K«(p) are
K«~p!512
21«

6
p21O~p4! ~5.38!

5
ApG„~11«!/2…

2G~11«/2!
p212

1

11«
p222«1O~p242«!,

~5.39!

from which we find that the fictitious pole at«51 in Eq.
~5.37! is replaced by a divergence; ln v, and that w

5uK«(v)→ū/2 for v→`. Thus a minimal crossover renor
malization is given by

ZZt
21512

5u

6«
~11v2!2«/22

3u

4~«21!

3@K«~v !2~11v2!2«/2#1O~u2!. ~5.40!

Defining the crossover function

C«~v !512„~11v2!«/2K«~v !…21, ~5.41!

we render the renormalized temperature derivative

P511
w

8 S 11
1

32« S 2
12C«~v !

3
1

52«

12«
v22C«~v ! D D

~5.42!

finite for all d<5 and allv.
Now we consider the vertex functionG1,1 @Eq. ~5.31#, for

qÞ0. Insertingt @Eq. ~5.33!#, after renormalization we ob
tain

G1,15~m21q2!S Z2
u~m/m!«

4«
K«22

(1) ~vm/m! D
12imv•qS Zv2

u~m/m!«

2«
K«22

(1) ~vm/m! D
2~v•q!2

u~m/m!21«

4
K«

(2)~vm/m!. ~5.43!

The last term is finite for alld<5 and allv, even in the limit
v→`, if one holds 2v•q5v/l and w5uK«(v) constant.
The reduction ofK«22

(1) (v) with Eqs.~5.35!, and~5.36! leads
to

K«22
(1) ~v !5

2

3«
~11v2!2«/21

21v22

2~«21!

3@K«~v !2~11v2!2«/2#2
1

«23

3S 1

2
v22@K«~v !2~11v2!2«/2#

2
1

3
~11v2!2«/2D . ~5.44!

We see that the divergencies which have to be absorbe
renormalization arise from the first two terms of the rig
hand side of Eq.~5.44!. Thus we define
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Z511
u

6«
~11v2!2«/21

u

4~«21!
@K«~v !2~11v2!2«/2#

1O~u2!, ~5.45!

Zv511
u

3«
~11v2!2«/21

u

2~«21!
@K«~v !2~11v2!2«/2#

1O~u2!. ~5.46!

Now we turn to a calculation of the one-loop contributio
to the vertex functionG1,2. To renormalizeG1,2 we need it
for zero external momenta. We find the contribution

V(1)522g3E
k
G~k!2G~2k!

52g
]

]t
S (1)~0!

5
2G«g3

«
t2«/2K«22~v/At!, ~5.47!

which leads, after renormalization, to

~G1,2!
25G«

21um«S Zu2
4u~m/m!«

«
K«22~vm/m! D .

~5.48!

Once more using the reduction formula~5.36!, we finally
find

Zu511
4u

«
~11v2!2«/21

4u

~«21!
@K«~v !2~11v2!2«/2#

1O~u2!. ~5.49!

Now, all the Z factors @Eqs. ~5.40!, ~5.45!, ~5.46!, and
~5.49!# are of the form

Zi511uS ai

«
~11v2!2«/21

bi

~«21!
@K«~v !2~11v2!2«/2# D

1O~u2!, ~5.50!

where the coefficients are given by

a51/6, b51/4, at51, bt51, ~5.51!

av51/3, bv51/2, au54, bu54. ~5.52!

With the help of the derivative of theK function,

v
]K«~v !

]v
5~11v2!212«/22K«~v !52K«~v !C«~v !,

~5.53!

and the Gell-Mann-Low functions

bu5]u/] ln mu05~2«13g2gu!u52«u1O~u2!,
~5.54!

bv5]u/] ln mu05~211g2gv!v5„211O~u!…v
~5.55!
we obtain the Wilson functionsg i5] ln Zi /] ln mu05(bu]u
1bv]v)ln Ziu0 easily as

g i52u„ai~11v2!212«/21bi@K«~v !2~11v2!212«/2#…

1O~u2! ~5.56!

52w~ai„12C«~v !…1biC«~v !!1O~u2!. ~5.57!

Here we have used the new coupling constantw5uK«(v)
and definition~5.41! of the crossover functionC«(v). We
mention thatw5u for v50 andw5ū/2 for v5`, as well as
C«(0)50 andC«(`)51. C«(v) crosses over monotonicall
between this two values. In particular, in three dimensions
is a simple rational function ofv2:

C3~v !5
v2~512v2!

~11v2!~312v2!
. ~5.58!

The renormalization group equation~3.2!,

FDm1
N1Ñ

2
gGGN,Ñ50, ~5.59!

follows as usually from the independence of the unrenorm
ized Green’s functions from the external mass scalem. Here
we have to note that the massm is by definition ~5.14! a
function of the bare parameters only. Therefore, its G
Mann-Low function vanishes. Thus we have the renorm
ization group differential operator

Dm5m]m1bw]w1bv]v . ~5.60!

To one-loop order, we obtain

bw5S 2«2C«~v !1
4225C«~v !2C«~v !2

12
wDw,

~5.61!

bv5S 211
21C«~v !

12
wD v, ~5.62!

and

g52
21C«~v !

12
w. ~5.63!

The flow equations

l
d

dl
w̄~ l !5bw„w̄~ l !,v̄~ l !…, w̄~1!5w, ~5.64!

l
d

dl
v̄~ l !5bv„w̄~ l !,v̄~ l !…, v̄~1!5v, ~5.65!

and their solutions of course show the~unstable! isotropic
and the~stable! directed percolation fixed points forv* 50
and v* 5`, respectively, and the continuous crossover
tween both.

Upon defining the flowing amplitude functionX( l ) by
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l
d

dl
ln X~ l !5g„w̄~ l !,v̄~ l !…, X~1!51, ~5.66!

the scaling form of the Green’s functions follows from reno
malization group equation~5.59! as

GN,Ñ~$x%,m;w,v;m!

5„md22X~m/m!…(N1Ñ)/2GN,Ñ„$mx%;w̄~m/m!,v̄~m/m!…

.S md22
X~m/m!

2v̄~m/m!
D (N1Ñ)/2

ḠN,Ñ„$mx' ,m2l̄~m/m!t%;

3w̄~m/m!…, ~5.67!

where the last form holds asymptotically forv̄(m/m)@1,
andl/l̄( l )5 l v̄( l )/v.

We conclude this section with a determination of the p
rameterm as a function of the temperaturet. For the renor-
malized temperature derivative we have the renormaliza
group equation

@Dm2k#P50, ~5.68!

with k5g2gt . Its solution is given by

P~m/m;w,v !5Y~m/m!P„1;w̄~m/m!,v̄~m/m!…,
~5.69!

where the amplitude functionY is determined by the differ-
ential equation

l
d

dl
ln Y~ l !52k„w̄~ l !,v̄~ l !…, Y~1!51. ~5.70!

P comprises the main~exponential! contribution of the
crossover scaling of]t/]m2uw,v,m . The amplitudeP(1;w,v)
is given to one-loop order by Eq.~5.42!. The temperaturet
then results from the solution of the differential equati
]t/]m2uw,v,m5P(m/m;w,v). The integration of all the flow
equations has to be done numerically and leads, qua
tively, back to the numerical results of FTS@9#.

VI. EPILOG

Using field theoretic methods, we have analyzed the c
nectivity behavior of random resistor-diode networks n
the percolation critical point. We found that the introducti
of positive and negative diodes oriented to a privileged
rection in space with unequal probabilities leads to a cro
over to the directed percolation problem, whereas a distr
tion of diodes with equal probabilities results only
elongated isotropic percolation clusters. In the latter cas
simple rescaling of the privileged direction maps the pro
lem to isotropic percolation. A slightly different distributio
of the diodes introduces a further relevant variable with
new scaling dimension. We have calculated this scaling
mension toO(«2) in an« expansion around six dimension
An interpolation resulting from this« expansion and an exac
value at one dimension leads to a formula that compares
well with a recent simulational result in two dimensions.
would also be very interesting to perform simulations
-

n
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n-
r
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u-

a
-

a
i-

ry

higher dimensions, in order to compare these with our res
In Sec. V we have reconsidered the theory by Fr

Täuber, and Schwabl for the crossover from isotropic to
rected percolation. Some shortcomings were corrected, a
was demonstrated how one can perform crossover calc
tions consistently by using a type of extended minimal ren
malization.
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APPENDIX: TWO-LOOP CALCULATION

In this appendix we briefly present the main part of t
two-loop calculation of the new renormalization constantsZv
andYvt . The dimensionally regularized parameter integr

I ~a,b,c!5E
p,q

1

~a1p2!~b1q2!„c1~p1q!2
…

5
G«

2

6« S S 1

«
1

25

12D ~a32«1b32«1c32«!

23abc2S 3

«
1

21

4 D „a22«~b1c!1b22«~a1c!

1c22«~b1c!…D , ~A1!

introduced in Ref.@30#, plays a fundamental role in the ca
culation. Its derivatives

I lmn5
~21! l 1m1n23

~ l 21!! ~m21!! ~n21!!

3
] l 1m1n23I ~a,b,c!

]al 21]bm21]cn21 U
a5b5c51

~A2!

are extensively used in the following. Particularly simple a
the integrals

I n5E
p

1

~11p2!n

5
8~21!n21G«

~n21!! ~42«!~22«!«

]n21a22«/2

]an21 U
a50

. ~A3!

We start with the self-energy diagram displayed in F
2~a!. Its value is given by

FIG. 2. Two-loop self-energy diagrams.
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S (2a)~q!52
g4

2 Ek,p
G~q2k!G~k!2G~p!G~k2p!

52
g4

2 Ek,p

3
1

@ t̄1~ q̄2k!2#@ t̄1k2#2@ t̄1~p1 iv!2#@ t̄1~k2p!2#
,

~A4!

where we have shiftedk→k2 iv, and definedt̄5t1v2 and
q̄5q12iv. We expand the last integral inq andv to second
order, and find

S (2a)~q!52
g4

2
S I 1131S d24

d
I 1231

4t̄

d
I 133D v2

12~ I 2I 41 t̄I 1242I 1142I 123!
iv•q̄

d

2S d24

d
I 1141

4t̄

d
I 115D q̄2D . ~A5!

In the same fashion, for the diagram shown in Fig. 2~b!, we
obtain

S (2b)~q!52g4E
k,p

G~q2k!G~q2p!G~k!G~p!G~k2p!

52g4t2«S I 1221S d24

d
I 2221

4t̄

d
I 223D v2

22S d26

d
I 1231

4t̄

d
I 1241

1

d
I 3

21
t̄

d
I 133D q̄2D .

~A6!
Ph

-

.

Using Eqs.~A2! and ~A3!, we obtain, from Eqs.~A5! and
~A6! the singular contributions to the two-loop vertex fun
tion after renormalization according to the scheme in eq
tions ~2.8!, ~2.9!, and~2.13! as

G1,1
(2-loop)5

u2

«2
t2«F S 9

4
1

45«

16 Dm2t1S 5

2
1

25«

24 D ~mv…2

3

1S 11

6
1

7«

72Dq2

6
1S 23

12
1

13«

144D 2imv•q

3 G . ~A7!

Using the renormalization constants toO(u) @Eqs.
~2.10!–~2.12!, ~2.20!, and~2.21!#, we obtain from Eq.~2.18!,

after the renormalizationG° 1,1→G1,15ZG° 1,1, the one-loop
self-energy toO(u2) as

G1,1
(1-loop)52

u

«
t2«/2F S 11S 9

2
1

11«

6 D u

« Dm2t

1S 11S 52
5«

12D u

« D ~mv…2

3

1S 11S 11

3
2

5«

12D u

« D q2

6

1S 11S 23

6
2

5«

12D u

« D2imv•q

3 G . ~A8!

By adding G1,1
(1-loop) and G1,1

(2-loop) and the renormalized
zero-loop part, we obtain

G1,15m2~Ztt1Yvtv
2!12iZvmv•q1Zq21G1,1

(1-loop)

1G1,1
(2-loop)1O~«0,u3!. ~A9!

We see that the nonprimitive divergencies; ln t of G1,1
(1-loop)

andG1,1
(2-loop) cancel~as a check of a correct calculation!, and

finally find the renormalization constants cited in Eqs.~2.10!,
~2.11!, ~2.20!, and~2.21!.
d
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