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Random resistor-diode networks and the crossover from isotropic to directed percolation
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By employing the methods of renormalized field theory, we show that the percolation behavior of random
resistor-diode networks near the multicritical line belongs to the universality class of isotropic percolation. We
construct a mesoscopic model from the general epidemic process by including a relevant isotropy-breaking
perturbation. We present a two-loop calculation of the crossover expgnédspon blending the-expansion
result with the exact valueé=1 for one dimension by a rational approximation, we obtain1.29+0.05 for
two dimensions. This value is in agreement with the recent simulations of a two-dimensional random diode
network by Inui,et al. [Phys. Rev. B59, 6513(1999], who found an order parameter expongndifferent
from those of isotropic and directed percolation. Furthermore, we reconsider the theory of the full crossover
from isotropic to directed percolation by Frey, uker, and SchwallEurophys. Lett26, 413 (1994); Phys.

Rev. E49, 5058(1994)], and clear up some minor shortcomings.

PACS numbg(s): 64.60.Ak, 05.40-a, 64.60.Ht, 64.60.Kw

[. INTRODUCTION RDN'’s at the full multicritical line belong to the universality
class of isotropic percolation. The variabte=p,=p_,
Random resistor-diode networkdRDN’s) were intro-  which maps out the multicritical lin@=p.(r), is a redun-

duced by Rednefl-3]. Nevertheless, they were already dant variable in the sense of the classification scheme of
contained implicitly in the pioneering work of Broadbent and scaling variables by Wegné8]. Thus all the points of this
Hammersley[4] on percolation. RDN'’s define a percolation line are equivalent to the usual isotropic percolation point
model (for a recent introduction to percolation, see Staufferwith r=0.
and Aharony[5]) on ad-dimensional hypercubic lattice in The case >0, in which positive and negative diodes are
which nearest-neighbor sites are connected by a resistor, distributed with equal probability, leads to a breaking of isot-
positive diode(conducting only in a preferred directipra  ropy and to elongated percolating clusters. However, this
negative diode(conducting only opposite to the preferred symmetry breaking can be easily compensated for in the me-
direction), or an insulator with respective probabilitigs  soscopic field theoretic formulation by a simple rescaling of
p., and p_, and q=1-p—p,—p_. In the three- the length scale of the preferred direction. The specific length
dimensional phase diagranfpictured as a tetrahedron scale is therefore redundant. Wegner showed that the renor-
spanned by the four probabilitiesne finds a nonpercolating malization flow of a redundant variable depends on the par-
phase and three percolating phases. The percolating phadesular form of renormalization group used, and does not
are isotropic, positively directed, or negatively directed. Be-affect the physics. Thus, in the case of Redner’s real space
tween the phases there are surfaces of continuous transitiomsnormalization group, a special fixed point, the so called
All four phases meet along a multicritical line, wheres®  mixed one, is distinguished.

=p,=p_=<1/2 andp=p(r). On the entire multicritical The situation is different for a symmetry breaking which
line, i.e., independently af, one finds the scaling properties favors not only an axis but also a direction on that axis. This
of usual isotropic percolatiorr €0). leads to a relevant variable (p, —p_), and therefore to a

About 20 years ago Redngt—3] studied the phase dia- new correlation length exponent= ¢v|p. The crossover
gram sketched in Fig. 1 as well as geometrical properties oéxponent¢ describes the beginning of the crossover to di-
RDN'’s in two dimensions. He used real-space renormaliza-
tion methods and planar lattice dualli§]. 4lp.-p|

Recently Inuiet al. [7] measured the order parameter ex-
ponentB for the special case of a two-dimensional random
diode network(with p=q=0) by Monte Carlo methods DP |
combined with series expansions. At the symmetric critical
point p,=p_=1/2 (so called random Manhattgnthey
found B=0.1794+0.008, which does not coincide with the

known values wether for isotropic percolatiqiP), B,p

=5/36, nor directed percolatidiDP), Bpp=0.27643. There-

fore, they concluded that the percolation properties of the »p

random diode network constitute a new universality class Pe

different from isotropic and directed percolation. FIG. 1. Generic phase diagram for. +p_=consts1—p. The

In this paper we study RDN'’s by the methods of renor-nomenclature is the following, , critical point;nonP, nonperco-
malized field theory. Contrary to Inwt al, we find that lating phase; DP, phase of directed percolation; IP, phaselar-
random diode networks at the percolation point as well agated isotropic percolation.
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rected percolation. It also relates the order parameter expaule #(t<0)=0 in response functions. This causality rule
nentsB= ¢B,p . In two dimensions, it has, according to the then forbids response propagator loops in the diagrammatical
results of Inuiet al.[7], the value¢p=1.29 ... . Oumpertur-  perturbation expansion.
bation calculation yieldgp=1.29+0.05, in agreement with Using the path-integral formulation, a renormalized field
the simulations. It should be noted that the interpretation oftheory of dynamic isotropic percolation can be gained from
the multicritical line as a line of equivalent fixed points with the GEP[20,21]. If we add to this model a relevant coupling
the same scaling behavior, as well as the new correlatiowhich breaks isotropy and introduce a preferred direction
exponentr, can be already found implicitly and explicitly in for the spreading of the disease in tth&limensional space,
the early papers of Redngt—3] (his notation isv, for the  we obtain the dynamic functional
new exponenv).

The organization of the remainder of this paper is as fol- j:J ddx[ J dia NG
lows. In Sec. Il, we first develop a mesoscopic field theoretic
model that is capable of describing the crossover from iso- )
tropic to directed percolation, which is the basic feature of n )\—ggﬁt

2
] : 2.2

i+ NT—V%+20(n-V))— - S|s
t

! T dt’s(t’
RDN’s. We describe the renormalization of the model and 2 f (t')
calculate the renormalization factors to two-loop order. In_ _ _ _
Sec. lll, we introduce the renormalization group equation forThis functional corresponds to the Langevin equations
the model, and derive the general asymptotic scaling proper- _ 5
ties. In Sec. IV, we derive an interpolating formula for the S(t)=A(V==2v(n-V)—7-gn(x,1))s(x,t)+{(x.1),

crossover exponent from the two-loop-expansion, and 2.3

show that it reproduces the result of Iretial. In Sec. V we .

reconsider the theory by Frey, Tlger, and Schwatjl9] for n(X,t)=>\f s(x,t")dt’, (2.4)

the crossover from isotropic to directed percolation, and —o

clear up some minor shortcomings. In Sec. VI, we give some

conclusions and summarize our work. In an appendix, we (CX (X ))y=Ngs(x,t) S(x—x")8(t—t") (2.5

present the two-loop calculation of the renormalization fac-

tors. for the GEP, with the suitable scaled densi(,t) of the

infected individuals. Here(x,t) constitutes the density of

Il. FIELD THEORETIC MODEL the immun(or dead individuals, and{(x,t) is a Gaussian
AND ITS RENORMALIZATION noise which is zero in spatial regions where the disease is

extinguished. The deterministic drift of the disease in space
Here we develop a mesoscopic model that is capable g§ represented by the flowa2 ns(x,t).
describing the crossover from isotropic to directed percola- Of course, if thed-dimensional rotational symmetry is
tion. In this paper we are only interested in connectivityproken to @—1)-dimensional isotropy, the diffusion con-
properties of the percolating system. In contrast to earliektants for longitudinalwith respect to the direction) and
work on random resistor network$0—13, we neglect trans-  transversal spreading are in general different. Thus we have

port properties as the conductance, etc. In other words, all W consider a more general diffusion operakdr2— \ (V2
ask is whether two points on the lattice are connected or nogc—zﬁﬁ)_ However, it is easy to see that the new parameter

Formally, we consider the limit of zero resistance of the; .4 he absorbed into the definition of the longitudinal

conducting_elements. . , length scale by x— X, followed by an appropriate change
Percolating clusters in space and time can be generated the densities and the coupling constgniAfter that, dif-

a stochastic spreading process known as the general efisional spreading looks isotropic again. The parameter

demic proces$GEF) [14]. In qrder to apply field-thgoretic depends on the microscopic model. It is a redundant variable
methods[15,16, it is convenient to use the path-integral i, ho sense of Wegnd8] and is responsible for the muilti-

representat.ion of .the gnderlying stochastic procs(sst) critical line in the RDN’s[1-3]. From the microscopic RDN
[17-19. With the imaginary-valued response field denmedstandpoint, the three variablesc, and v are analytical

by s(x,t), the generating functional of the Greens functions functions of the three probabilities, p., andp_ for the
the connected response, and correlation functions take th@sistors and diodes near the critical manifolds of RDN's and
form share their spatial symmetries. Thus one hés,p, ,p_)
=7(p,p-.p+), c(p,p+ .IO—)=C(P,I0_— P+) and
WIH,H]=In J D(E,s)exr{—j["é,s] v(p.p+.,p-)=—v(p,p-.p+). In particular we have
¢(p,0,0)=1, but in generat(p,r,r)#1 if r>0. Moreover,
v(p,r,r)=0 holds. Remember thap,=p_=r and p
. (2.1 =p.(r) defines the multicritical line.
In this paper we are interested only in the static behavior
. . ~ . of the process, i.e., in the statistics of the distributions of
The dynanllc fungnonal Jls:s] and the functional immunes in spaca(x,») after a long time when the epi-
measure D(s,s) [D(s,s) is a symbolic notation for demic is extinguished. These distributions constitute isotro-
IT, ;(ds(x,t)ds(x,t)) times a constattare understood to be pic percolating clusters at the critical point of the GEP,
defined using a prepoirtto) discretization with respect to which is given byv =v (p¢(r),r,r)=0 and 7= 7(p.(r),r,r)
time [19]. The prepoint discretization leads to the causality=7.=0 if we neglect fluctuation corrections. The density

+fddxf dt(Hs+Hs)
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n(x,) is proportional to the Fourier transform sffor fre-  that the renormalization constants do not depend andv)
quency zero. The statistical weight for these frequency-zer@s long asv is finite and complete the renormalization
modes can be found by invoking the formal limits scheme by

~ - o °_5-1 2y 2 °_ -1
s(x,t)— @(X)=const, )\f dts(x,t)=n(x,%)— ¢(X) ToT1=2"(Z7+Y, 0 )u5, v—ov=2Z ZUU,LL(.213)

28 Here we anticipate that andv? are mixed under renormal-
for the fields in the dynamic functional [Eq. (2.2)]. This  ization.
manipulation can be controlled term by term in a diagram- To calculateZ, und Y, ., we need thgunrenormalizey
matical perturbation expansion, and leads to the desired repropagatorG(q)=<<pq<~p_q>g“””°). We define the spatial
resentation of the zero frequency Green’s functions as fund=ourier transform byp(X) = [ q@qexp(g-x) (with the abbre-
tional integrals with a weight exp(X) and a quasistatic viation f,=(27) %fd%y), and obtain
Hamiltonian

H=J ddx{Tp
2.7 where we used the notation=vn. The one-loop contribu-

Remember that closed loops of the response propagators di@n to the vertex functior’; ; (the amputated one-particle
forbidden in the Feynman diagrams as a consequence of tfigeducible Green’s function with one and ones leg) is
causality rule. Therefore, the functiori#lis, up to a rescal-  given by
ing, identical with the statistical functional considered by 2
Frey, Tan(_ar, and_SchwakﬁB,Zz] in their work on the cross- 3 (W(q)= g_f G(k+q/2)G(—k+q/2)
over from isotropic to directed percolation. 2 Jk

To absorb ultraviolet divergencies in a perturbational cal-
culation of the Green’s functions with the Hamiltoniéf
we use, in the case=0, the following renormalization

1

G = = y
@ T+Q?+2iv-q  (7+v?)+(g+iv)?

(2.19

7—V2+2u(n-V)+ %(qa—?p)}cp].

2 rp
:g_f dsldszf exp —(s;+Sy)(7+0v?)
2 Jo k

schemeg20]:

—s;(k+(g/2+iv))?—s,(k— (g/2+iVv))?]
e—9=2"%, ¢—e=7"%, (2.8 2G.¢° 7 70
=~ Goe)s TTOTKEU N g

° —¢g)e T

T—T=7Z lZTT,LL2+TC, gz—>gz—G 1z 3Zuu,u8.
2.9 B 27
=—G€gz7' el2 (2_8)8K£024(U/\/;)

Heree=6—d, G,=T"(1+¢/2)/(47)%?, andu is the usual
external momentum scale, which makes the renormalized Q
coupling constanti dimensionless. Note that the fielgsand +
¢ are renormalized by the sarddactor as a consequence of

the reflection symmetryp(x, ,xH)<—>—Zo(xl ,—X)) of H,

which eventually leads to the equalify =8 between the \yhere we have defined the functions

exponents characterizing the particle density and the perco-

lation probability. The renormalizations are known from per- ) 1 (1—x%)"

colation field theory up to three-loop ordg23]. Using di- K (p)= fo dxm (2.16
mensional regularization and minimal subtractioninimal P

renormalizatioh together with thes expansion, one finds 5,4 the abbreviation

2
KO, (v 1) — %K?’(v/ﬁ)m(@)),
(2.15

€

;C=O and, to two-loop order,

1 37 u
~12°)\6e

Q=q%/4+iv-q. (2.17
2

+0(u®), (210 The expansion of the yet unrenormalized one-loop self-
energyM(q) in v2 ande yields

Z 1+u+
B 6¢e

u 47 u\? 2 _—el2 2 o
- e _ _ 3 G.0°7 v 2i 1
4u 59 \[u\? .
Z,=1+ ?+ 15— ¢\ 5 +0(u°). (2.12 +0(&?) . (2.18

If v#0, further renormalizations are needed. Because Using the renormalization schenj&gs. (2.8), (2.9, and
~ u, this relevant parameter has a positive naive dimensio2.13], the renormalized vertex functidry ; is found to first
like 7. Hence, we consider it as a soft varialiehich means order in the renormalized coupling constanas
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2

u v _ u The RG equations can be solved in terms of a single flow
[=|Z,7+Y, 0% STt pP+2i| Z,~ 35| H#V-d parametet using the characteristics
u d— ~ — —
+Z- 6o 2+0(&?), (2.19 17U =8uu(), u@)=u, (3.7
from which the new renormalizations can be gathered to d—  — — —
O(u) as ’ lgr(=vDlx,@IN-1], v(H)=v, (3.8
B u 73 \[ u)\? 5 d_ o - -
L=t g 20l TOMD 220l = (el (1) = 20+ 0Pk, (1)), A1) =
3.9
u 35 \[u)? 5 39
Yor=5, T|30-Sellg] TOW). (22D with the help of these flow equations, we recast B as
Here we have also included the two-loop result calculated in | d N+N — R —
the Appendix. Iy =5 ) Gy d{xt, (1), (1), u(h),Iw)=0.

(3.10
I1l. RENORMALIZATION GROUP EQUATION . .
AND SCALING BEHAVIOR Equationq3.7)—(3.9) describe how the parameters transform

_ _ ~_if we change the momentum scalg according to u
Next we explore the .scalmg prqpemes o_f percolatlon_m_,;m:m_ Being interested in the infraredR) behavior
the RDN'’s system. Scaling properties describe how physicals the theory, we must study the limit-0. According to

guantities wiI.I trgnsform under_a change of Iength scales. BBEq. (3.7) we expect that in this IR limit the coupling constant
the renormalization, we have introduced the arbitrary meso--

) 1 . u(l) flows to a stable fixed point, , with B,, =0. At the
scopic length scalg. ~. The freedom to choose, keeping fixed point it is legitimate to diagonalize the part of the RG

the unrenormalized fields and bare parameters,g}, and,  differential operator containing the relevant parameteasd
in cutoff regularization, the momentum cutoff fixed, can 4 Introducing a new parameter instead ofr, we find

be used to derive in a routine fashion the renormalization

group (RG) equation for the connected Green'’s functions (TK g F UK yrg ) F UKy Oy = 0K 1 0y F U Kyy Oy s

N N+N (conn) 319
GN,N<{x})=<i_Hl¢<xi)j_1;l+l?p<x,->> . 3y where

K

We denoteu derivatives at fixed bare parameters iy o=1+a,v? a, =#- (3.12
o Tk vk
From M(9M|OGN,N:0 and the renormalization schenj&gs. _ .
(2.8, (29, and (213], which lead to éN,N Si;insttsnd for the Gell-Mann-Low functions taken at the fixed
.-
Using dimensional analysis in conjunction with the flow
equations, we readily find the asymptotic behavior of the

=z(N*N2G 5, we then find the RG equations

D,+ N+N y|Gni=0. (3.2 connected Green’s functions_ fér—0. Neglecting nonuni-
2 ' versal scale factors, we obtain
D, stands for the renormalization group differential operator Gn({X},o,0,U, )
D,=ud,+ Budy+ (r(k,—2)+ v2k, ).+ v(Kk,—1)d,. = (N+N)n/2GN,N({X}aU'/| 2= kne pfIY o uy ul)

(3.3 _ _
— (/~LI )(N+N)(d72)/2| (N+N) n/ZGN S
Here we have introduced the Gell-Mann-Low functions '

X ({lux},ol12~ %o p /11 %ox U, 1), (3.13
Ju
ﬁu:ﬁmﬂ‘ =(—e+3y=nu, (34 \where the Fisher exponent is defined byn=y(u,). We
0 define the remaining exponents by
aT
TKT+U2KUT:— :T(‘y_ 77)_U27071 (35) — 1 — (HJ

C?Inﬂ 0 v 1_KU* ’ v 2 ’ (3'14)

_m = - 3.6 1 d—2+79
vKU_&In,u, O_U(y o), (3.6 MiP=5T ) BIP:VIPT’ (3.19

Tk

and the Wilson functiony . =dInZ _ /dIn ul,. and the crossover exponedtby
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2

6

2— Ky u
b= 1« =vivip=pIBp. (3.16 =g

u 35
+0(ud), k,,=5—==U?+0(ud).

3 36
(4.9

The appropriate choice of the flow parameltén the case ) . 5 671 2
|o|<|v|? is 1~|v|*. In this case the Green’s functions scale FOM gwg =0 the stable fixed point value, =7+ 35576"
+0O(e”) is readily obtained. We finally derive the following

as
& expansion of the crossover exponent:
G D) =[o|MVERyR({X €L ofu]?), (3.17) e 597
, , o p=2—-+ +0(&3). (4.6
with a correlation lengthé~u~*v|~”. Otherwise, in the 7 2x213
case|v|<|o|**, we choosd ~|a|” and arrive at isotropic _ . _ o
percolation scaling Crudely evaluating this expansion for small spatial dimen-
sions, i.e., fore =3 or 4, leads inevitably to poor quantitative
GN,N({X})Z|U|(N+N)B'PFSR({X/§|P}'0/|(T|l/¢), predictions. Therefore, we improve theexpansion via a

(3.18 rational approximation, which takes into account that dor

=1 the correlation length exponents are, trivially, always
with a correlation length;p~ = Y o =P equal t(_) 1. In addition, we make the hypothesi§ that.dhe
expansion can be extended upete 5. These considerations

lead then to the interpolation formula
IV. RESULTS FOR THE CROSSOVER EXPONENT

FROM THE & EXPANSION

&
1— =

$=1+|1-¢

. 4.7

In this section we derive the scaling indices. Because the
e expansions of the usual percolation exponents are well
known, we concentrate on the new crossover expogent From Eq.(4.7) we obtain values for the crossover and the
For this purpose we need the Gell-Mann-Low functighs order parameter exponent fo=2 tod=6. These values are
v, andk; explicitly. From Eq.(3.4) we know thatB, begins  summarized in the following table:
with the zero-loop term-eu, and the higher order terms are

L 2s+ 67672
35 50x 213

determined by the Wilson functions. These functions, thed= 2 3 4 5 6
logarithmic derivatives of th& factors, are given by

=M(9M|0Inzm=,8u(9ulnz._.. In minimal renormalization #= 1.29 1.52 1.70 1.86 2.00
the Z factors have a pure Laurent expansion with respect t&= 0.18 0.62 1.09 1.56 2.00
g1 Z2=1+YWD/e+Y@)g2+ ... It then follows recursively

in the |00p eXpanSion that the Wilson functions have also a Of course, the calculated values ¢fdepend S||ght|y on
pure Laurent expansion and, because they are finite: for the interpolation procedure, i.e., different rational approxi-
—0, this expansion reduces to the constant term, i.ez all mands may be used to incorporatéd=1)=1. We learn

poles have to be compensated for by the logarithmic derivafrom this numerical sorceries that the displayed numbers
tive. Thus we obtain the Wilson functions simply from the may have a failure of roughly-0.05.

formulay = —ud, Y™ . Now itis easy to find these func-  Now we come back to the question which of the order
tions from theZ factors [Egs. (2.10—(2.12, (2.20, and  parameter exponents are seen in simulations by étul
(2.21)]. The results are [7]. From the scaling properties of the Green’s functions

G n({x}) we have learned that this depends on the relative

59 47 - ) .
Y= — AU+ 240U, = — Ut 24O, behavior of the relevant parametéod and|v|? as functions

6 24 of the microscopic probabilities for the conducting elements.
(4.1)  Writing the deviations from the multicritical line asp=p
—pc(r), dp-=p=—r, we have the expansions
u 73 ) 3 u 35 ) 3 5
YW= T3 oggu O, v, =~ g F ggut+HO(UY), o=a,(0p+0p-)+aop+az(p.+4op-)

(4.2) +a,0p., op_+agdp+- - -, (4.9

u 37 = — .

__ Y4 e 3 v=(8p+—6p-)(by+by0p+bs(dp+dp-))- -,

where the coefficients; andb; depend on the microscopic
model. In the simulations of the pure two-dimensional ran-
7u 671 dom diode system, Inwet al. [7] setdp, =—Sp_=4r and
Bu=|—st5— ﬁ“ZJF o(ud) |u, Sp=0. It follows thato~ 6r? andv ~ &r, and consequently
|o|/|v|?~]|6r|?~ ?<1, becausep<2. Thus the exponens
is found as the simulations clearly state. In their extended
193 model Inuiet al. set the variations of the probabilities to

Su
o0 e 3
=6 ~ 108" +Ow, 4.4 opy=06p_=or anddp=0. In this case we have~ ér and

from which the Gell-Mann-Low functions follow as
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v~ &r, and consequentlv|/|o|Y¢~|6r|1"Y4<1 because length itself as the mass parameféi7] and to define the
1/¢p<1. Now the isotropic percolation exponefit,=5/36  minimal renormalization at a suitable renormalization point,
is measured. which introduces the usual external mass sgal@he con-
sequences are relatively simple renormalization factors and a
homogeneous RG equation. Hence the SD formalism fosters
V. CROSSOVER FROM ISOTROPIC TO DIRECTED higher order calculations and resummation procedures. We
PERCOLATION will use the SD formalism in the following. FTS used a
massive renormalization scheme that is a mixture of renor-
malization conditions and a mass renormalization at an ex-
The crossover theory of Frey, Taer, and Schwaldl9], ternal mass scalg. It is unclear wether this scheme can be
henceforth called FTS, starts with the quasistatic Hamil-used consistently at higher loop orders.
tonian H stated in Eq(2.7). FTS used the modification of
the longitudinal length scale by the parametewhich we B. Crossover renormalization
discussed in Sec. Il. We have seen thals a redundant . o o
variable near the isotropic fixed point and hence dropped it We revisit the quasistatic Ham|lt_on|dﬁl, [Eq.(2.7], and
from the onset. FTS also renormalizedlhey found that the introduce, in the case+0, new variables by
anomalous dimension of is zero at the isotropic point.
Moreover, they calculated a nonvanishing anomalous dimen-
sion of ¢ at the directed fixed point. The variaklddor better

1/c?, which couples to the composed fielaV ), being
redundant at the isotropic fixed point, changes over to an
irrelevant variable at the directed fixed point. Thus, in order
to renormalize it, one has to include all the irrelevant opera-
tors of equal naive dimension and symmetry which mix un- ﬁ:J dtdd‘ly{g{ o~ L&IZ-H\(T—VZ)
2
v

A. Preliminaries

X, =Yy, X=n-x=2vAt, ¢=|2v| Y%,

o=2v|"Y%, g=|2v|Y4. (5.0

hen’H appears as

der renormalization. This was overlooked in the work of
FTS; thus the calculated anomalous dimension of 1% o
meaningless. AQ ~
The technical problem of the crossover from IP to DP is, to(s=9)s|. (5.2
as FTS stated, that the two fixed points, which are to connect
by the renormalization flow, have different upper critical di- In the limit v —oc we arrive at the dynamic functional which

mensions, 6 and 5, respectively. Thus, from the outset on .
has the problem of renormalizing the theory for general di—gescrlbes DH28,29. We conclude that the so far unrenor-

mensions below 6, and cannot use thexpansion, which malized Green'’s functions have the asymptotic property
bypasses the problem that the perturbation expansion is ill- (N+R)2~ - — —

defined if one uses critical massless propagators, leading to  (2v) G (X} 70,9) =G f({X: At} 7,.),
IR divergencies below the upper critical dimension. How-

ever, the renormalization can be accomplished in a massive _

theory, which avoids the IR divergencies, by using normal-where theGy i are the DP Green's functions. The minimal

ization conditions for the vertex functions. Asymptotic scal-renormalizations of the DP theory in dimensional regulariza-
ing properties follow from the inhomogeneous Callan-tion are

Symanzik equation.

(5.3

Below the upper critical dimension, the theory is super- 5-8=7V% s—os=7zY% NA—N=Z,'Z\, (5.9
renormalizable. Only the vertex functidn, ; is UV diver-
gent and can be renormalized by a mass shiftr+ 67, o — i = 5, % —p 0y — 1= g y—— T
wheredr absorbs the UV divergencies. If the theory is requ- 774 "2 7u"+ 7, 9°—=0°=G"Z,"Z “Z,up’,
larized dimensionally, these UV divergencies manifest them- (5.9

selves as poles at=¢,=2/, | =1,2, .. .[25-27], where, at _ _ o _
the corresponding spatial dimensiods=6—¢,, only per- Where e=eg—1=5-d=4-d, G,=I(1+e/2)/(4m)"?
turbational contributions td', ; of a loop order smaller then and known[29] as

| are superficially UV divergent. These poles can be elimi-

nated, as long as is finite, by a shiftd7=g* M(e), where _ u u? (13 31 35 4 —
M is meromorphic ine. After the mass shift, the theory is Z=1+ 8__+ e | s 2 Tz Ing/ oW,
UV finite. Then, however, in those dimensions correspond- €
. . . IO (5.6
ing to the above-mentioned poles, a nonanalytic logarithmic
behavior with respect to the coupling constant arises. T 9 4
. ; . o . . u u o

An alternative Q|men5|onal regularization formalism was Zo=1+ —+ —| -3+ 2In~|+0(®), (5.7
presented some time ago by Schloms and Do24 hence- 4e 32c\e 23
forth called SD. This formalism circumvents renormalization
conditions, and resorts to the more convenient minimal T W@/l 5
renormalization but without using the expansion. The key Z. =1+ i_+ u_(__ —|+0(ud), (5.9
feature of this formalism is to use the inverse correlation 2¢ 2ele 16
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— 2u 7u?(1 _ e o, 00
Zu:]_-|-:_|_g<g_Z +O(U3). (59) rl,l({o}lT ;z)!g!d) .
¢ J 2F11{q} 7 ,0,9;d)] =0

(5.19

—2_ 2
& °=m

Note that the DP Hamiltoniat [Eq. (5.2)], is nonrenormal-

izable ford>5. Thus, to study this limit, we are restricted to :

spatial dimensiong<5. inverted to definer’
We expect that the theory can be rendered finite for all

values ofv, including infinity, by interpolating the renormal-

izations of H. Then it follows from definitiong5.1) that the

following asymptotic properties hold far—oe:

The functionm(:-’,z‘;,:c)];d) has poles only ati=6. It can be
as a function oim,

(5.19

' =r(myv,g:d),

The function? can be substituted into
in terms of the

with r(0,g:d)=0.
I'5 v Yielding the bare vertex functiorisy
massm:

Z. (up,e)=Z  (us), (5.10
with u=u/2v. Of course, as long as is finite, soft renor-

malizations of H can be used, but fov —o, logarithmic
divergencies~ Inv arise fore=e—1=0. These must be
included in the renormalization factors to make the theory
finite for all v, especially in the DP limit. Note that in this N the following we abbrewaté‘N n by 5, for notational

limit v plays the role of a cutoff. In the following we dem- simplicity. "y \ are now free of dimensional smgularltles
onstrate that the renormalization procedure suggested by SIF

ﬁ,N({Q}f(mvgd)vgd) FNN{OI}mvgd)
(5.16

elowd=6, and have an expansion in integer powergof

i.e., an extended minimal renormalization scheme withou n the limit v—c, for d<5, from Eq. (5.3 we deduce the

using thee expansion, is feasible, and that it allows one to

extract the crossover behavior of the Green’s functions.

We consider the dimensional regularized bare vertex
functionsf“N,N({q}; ;',lc;,a;d) as functions of the bare param-

eters, v, anda, and the momentéqg} at spatial dimension
d=6—¢, £>0. The critical point;C is determined by

I'11{0}; 7 v,:0) =0, (5.1
which provides an implicit definition of
o= 14(0,0;d) = g% S(e,0/g%*). (5.12)

The generalized Symanzik functi¢@5] has pole singulari-
ties ate=2/1, 1=1,2, ..., adong asx= v/gz’s is finite. An
expansion yield§(s,x) So(s)+Y(s)x +0O(x* with a fi-
nite Y(&) as long a>0. Taking the limit behavior of the
vertex functions fox>1 into account, we find fog>1, the

asymptotic behavioB(e,x) —x2 ¢P(x " *:e) +x2(1~€)S(g),
whereP denotes an analytic function &f °=g%v°®. Fore
>1, the pole singularities dP(y;e) andS(e) are found at

e—1=e=2/l. These pole singularities combine to yield

logarithmic divergencies in instead the poles in.
Since the theory is super-renormalizable for0, we
know that all the functions

4 Wdak 7 0,0:d) =Frovdal 7 + 74(0,0;d),0,9;d)
(5.13

asymptotic property

(o]

P ndarm,o,g;d)— (20)NHR-22pg

X ({qi ,i*lw},m,&d),
(5.17

with w= ZXSq” and the unrenormalized DP vertex functions
P

ZI

Henceforth for simplicity we use the notatignsymboli-
cally for all the momentdq}. It is convenient to write

NER n(G/m,o/m,glme2 d),
(5.18

Prn(am,o,g;d)=m

with dimensionless function%N,N and 6N,N=d—(d—2)(N
+N)/2. Expandingcfﬁvhl in a power series gives

ﬁN,N(x,y,z;d)=z”lZo Sy ) ()" e),
| (5.19

wheres=0 if (N+N)/2 is an integer, and-=1 if it is not.
The exponentl denotes the loop order. The functions

£ n)(y d) are finite ford<6 and finitey. Moreover, they are
analytlc iny, and can be expanded to

oy d)_Z " (5.20

are finite below six dimensions. However, because of the

nonanalyticity of Z-C with respect toé, they are no more
expandable in the coupling consta31tTh|s can be fixed by

The contributions of order' to the scaled vertex func-
t|onsFN n LEQ. (5.19] exhibit IR divergencies fom— 0. SD

introducing the inverse transversal correlation length as thehowed, at the instance of tide* theory, that this problem

new mass. It is defined according to

can be treated by minimal renormalizations
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S gy _ap malizations{ _ (u,v;d) which interpolate between the two
¢=2"¢, ¢=Z7¢, (529 minimal renormalizations at the renormalization pomt
o o :/.L,
g?=A(d)G, 2 %Z,uu’, v—v=2"'Z,upu,
(5.22 Z (ud)—¢.  (uu;d)Z. (ud)=Z. (up;d),

(5.2

where the soft renormalization factafs (u;d) absorb just
the poles atl=6, followed by the application of the renor- ) L= ——=
malization group. The U\ poles and the IR divergencies w'hergthez__:(u,v,d') tgnd to the corresponding. . (u;d)
are then summed up, yielding the correct critical scaling beWith u=u/2v in the limit v — .

havior reminiscent of the intimate relation between both. Following SD, the remaining problem is to determine the
Since the poles of the coefficienf%lk’,'\l’n)(G—s)/s' do not renormalization of the relation between the masand the

depend on any of the parameters, they are identical to th&emperature,” 7=r(m,v,g;d)=m?T(v/m,g/m;d). The
usual soft minimal renormalizations, and can be calculate@dimensionless functioif has an expansion

by settingm= w or in the massless theory with— 0. Fol-

lowing SD, we have introduced in E¢5.22 a further am- . *

plitude A(d) with A(0)=1. This dimension dependent func- T(y,z;d)=1+ > t,(y;d)(Z%/¢)', (5.27
tion can be conveniently defined, and is extremely useful for =1

a practical calculation of scaling functions. For simplicity we _ N ]
setA(d)=1 in the remaining part of this paper. Note that butti(y;d) show UV singularities belovd=6. Otherwise,
from its definition[Eq. (5.14)], the massn does not need a the use of the variable 7'=rr.=r(m,v,g:d)

multiplicative renormalization and that=m. =m2T(v/m,g/m®:d) — g S(e,v/g?*?) instead of r elimi-
Now we consider the DP vertex functions nates all UV singularities below the upper critical dimension.
o °o — Then, however, the function is not more expandable |g°]|
I'in(a A tw,m,§;d) Following SD, we shall therefore consider the derivative
= o o - arlgm2|: o, Which is not only expandable but also free of
= mNNFR (0, /M, o/Am2,g/me'2d), £ y exp

singularities. We define the function

(5.23

. ~ , o o o ar J(m2T) ot ‘
with 85 y=(d+1)—(d—1)(N+N)/2. The power series ex- P(v/m,g/m®;d)=—| = = ,
- gm2|es | om? |eo gm?|e

pansion of theFy \ reads, ford<5, v.g v.9 v,(gs 28

o _ _ * |’ ‘ _ . X

Fan(x, X, zd)=2" >, ?% :li ") which has the expansion

I,n, ,nH:O '
X(x )L (x)(z%e)',  (5.29 P(y,zzd)=1+ > p(y;d)(z%e)". (5.29
I=1

with e=5—d=4—d. By the same argument as above, one

can show that the poles are canceled, and the IR divergen-The functionsp,(y;d) are finite ford<6, andP is mini-

cies are summed up by the renormalization group equatiomally renormalized by

based on the minimal renormalizatioAsZ, , andZ,, [Egs. .

(5.6), (5.7), and (5.9)], where the renormalization factors P=z"1z.P. (5.30

Z (u,d) now absorb just the poles atd=5. As above,

they are identical to the usual soft minimal renormalizationsThe same argumentation as above shows that it is possible to
They can be calculated at the renormalization pomt u find aZ,(u,v;d) which interpolates between the respective
{q=0}, or in the massless theory with—0, because the Minimal renormalizations of isotropic and directed percola-

functions 7™ (d) do not depend on any of the param- tion. Note thatd/ am?(; 5=a/am?|, 4 ,. Thus the derivative
eters N,N with respect to the masa commutes with the multiplication

. . . with Z factors.
Combining the asymptotic properties of the vertex func-

tions fory—c, [Eq. (5.17)], with the various expansions, we .
find, for d<5, C. One-loop crossover calculation

) _— i, — In th'is subsection we dgrive a minim.al crossover renor-
fron (vid)—(2y)NEN=2ma2em =g g e (d), malization, the corresponding renormalization group equa-
’ ’ (5.25  tion, and the flow equations, which show the crossover from
o isotropic to directed percolation. From the self-energy to or-
In case of taking the limitl—5 beforey—o, thee ' poles  derg?, we obtain the unrenormalizétbr notational simplic-
are replaced by a polynomia!:": ")(Iny) of order|. ity we drop the overcircvertex functionl'; ;, expanded to
Therefore, it should be possible to find further finite renor-second order in the momenta:
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Fia=r 1_2?;?—287)_:/2@@4(11/\/;))
+2iv~q(1— #Kg%(v/ﬁ))
+0%| 1- —GSQZSIZKS_)Z(U/IT)>
—<v-q>2%:mr<§)<v/ﬁ>. (5.3

The inverse transversal correlation length is given by

2G 927_—8/2
11— —— KO,/
, ( (2—e)e et

m== 7 _— . (532
-

G 9°r el2
Zed T )
1. KPa/)

From Eq.(5.32, we easily find the unrenormalized pertur-

bational temperature as

G.g’m™ ¢
4¢e

2 14

7T=M

KO ,(v/m)— Kgljz(v/m)) ) .
(5.33

Taking the derivative with respect to? while holdingg

( 8
(2—e)
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2+¢
Ke(p)=1-=g—p*+0(p*) (5.39
Val(1+e)) 1 s
T T (1+e2) T1te +O(p ),
(5.39

from which we find that the fictitious pole at=1 in Eq.
(5.37) is replaced by a divergence- Inv, and thatw

=uK8(v)—>U/2 for v—o0. Thus a minimal crossover renor-
malization is given by

zz;1:1—2—2(1+02)8’2—4(il)
X[K,y(v)—(1+0v%) 2]+ 0(u?). (5.40
Defining the crossover function
C.(v)=1—((1+v?)*K (v)) 71, (5.41

we render the renormalized temperature derivative

1
3—¢

1-C,(v) 5—¢ _
25 v ZCS(U)))
(5.42

w
P=1+

81+

andv constant, and renormalizing by multiplication with the finite for all d<5 and allv.

factor ZZ ! yields, via the renormalization scheme, the

function P as

1
P=z7_ '+ u(M/m)e(Eng‘”z(w/m) — KM (v u/m))

1 (1)
—gKS (vulm)|. (5.39
With the formulas
P?KP(p)=(1+p?)K,(p)—K,—a2(p),  (5.39

(1+ a)K (p)=(2+ a)K . o(p)— (1+p?) 172

(5.36
where we have defined ,:=K‘®) | we obtain
551, Y @ s, 2 _ -2
P=2Z, 4 5| 5 (140D ™2+ = (3-07?)
X[K,(v) = (1+v%) "]
+ {0 2K, ()~ (14+09) 7]
e—3 e
2
—§(1+02)‘9’2)+K8(v)) (5.37)

at the renormalization poinnh= . Note that the poles for
e=1 and 3 are fictitious because;(p)=(1+p?) 2 and
Ks(p)=(1+p?) ¥41+2p?3). Useful properties of the
functionK_(p) are

Now we consider the vertex functidn, ; [Eq. (5.31], for
g#0. Inserting 7 [Eq. (5.33], after renormalization we ob-
tain

u(u/m)

Z-— - Kf})z(w/m))

I'1=(m*+g?)

u(u/m)®
+2i,uv~q(ZU— ('L;—S)Kgl)z(v,u/m))
U(,LL/m)2+8

—(v- o) =K (op/m). (5.43

The last term is finite for all<5 and allv, even in the limit
v—o, if one holds Z-q=w/\N and w=uK_,(v) constant.
The reduction oK ,(v) with Egs.(5.35, and(5.36) leads
to

-2

2 2+v
(1) — 2\—¢l2
KiZo(v) 38(1-i-v ) + 26—1)

XK, (0)~ (1+0?) 2]~

X %U—Z[Kg(u)—(Hu?)—S’Z]

1
_5(1_,_1)2)3/2)' (5‘44)
We see that the divergencies which have to be absorbed by

renormalization arise from the first two terms of the right
hand side of Eq(5.44). Thus we define
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_ i —el u _ —el
Z=1+ o (1+0v?) 2+4(8_1)[K8(v) (1+v?)7°7]
+0(u?), (5.45
Z,=1+ i(1+ 2)-el2y u [Ky(v)—(1+0v?) %72
v 3 2e—1)- =Y v

+0(u?). (5.46

Now we turn to a calculation of the one-loop contribution

to the vertex functiorl’; ,. To renormalizel’; , we need it
for zero external momenta. We find the contribution

vh=— 2g3fke(k)26( —k)

J
=2g(9—72<1>(0)

2G.g°
:—sg 7K, _o(0I\7), (5.47)
which leads, after renormalization, to
4u( u/m)?®
(1197= 6wt 2~ 2™ i .
(5.48

Once more using the reduction formula.36), we finally
find

4u
(e—1)

4u
Zy=1+ —(1+0?) "% [Ke(v)—(1+0?) 7]

+0(u?). (5.49

Now, all the Z factors[Egs. (5.40, (5.45, (5.46, and
(5.49] are of the form

‘ b.
Zi=1+u %(1+v2)_8/2+ ﬁ[KS(v)—(lJrvz)_*”z])

+0(u?), (5.50
where the coefficients are given by

a=1/6, b=1/4, a,=1, b.=1, (5.51)

a,=1/3, b,=1/2, a,=4, b,=4. (5.52

With the help of the derivative of thK function,

K, (v)
v

v (1+0v2) 17 #2—K (v)=—K, (v)C,(v),
(5.53

and the Gell-Mann-Low functions

Bu=0uldIn u|o=(—e+3y—y,)u=—su+0(u?),
(5.59

By=0uldIn u|o=(—1+y—y,)v=(—1+0(u))v
(5.55
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we obtain the Wilson functionsy;=dInZ/dIn ulo=(B.d,
+B,d,)In Z|, easily as
%= —u(@(1+v?) 24 b[K, (v) — (1+02) "1 7*2)
+0(u?) (5.56

=—-w(a;(1—C,(v))+b;C.(v))+0O(u?). (5.57

Here we have used the new coupling constantuK,(v)

and definition(5.41) of the crossover functio,(v). We
mention thatv=u for v =0 andw=u/2 forv ==, as well as
C.(0)=0 andC_(°)=1. C_(v) crosses over monotonically

between this two values. In particular, in three dimensions, it

is a simple rational function af?:

Cy v%(5+202) (5.58
)= . .
’ (1+v2)(3+2v?)
The renormalization group equati@8.2),
N+N
D,+ — 7 Gn =0, (5.59

follows as usually from the independence of the unrenormal-

ized Green’s functions from the external mass sgalé&lere
we have to note that the massis by definition(5.14) a

function of the bare parameters only. Therefore, its Gell-
Mann-Low function vanishes. Thus we have the renormal-

ization group differential operator

D= ud,+ Byowt By, - (5.60
To one-loop order, we obtain
_ _ 2
ﬁWZ(—e—Ce(v)+42 N w)w,
(5.61
2+C,.(v)
Bv:<_1+ —1 )v, (5.62
and
2+C,(v)
v=— TW (5.63
The flow equations
d_— - _
I =Buw),v(),  wl)=w, (564
d_— - _
I =B,wb),ud),  v(l)=v, (5.69

and their solutions of course show tkenstable isotropic
and the(stablg directed percolation fixed points fer, =0

andv, ==, respectively, and the continuous crossover be-

tween both.
Upon defining the flowing amplitude functiof(l) by
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d - —
IaInX(I)=y(W(I),v(I)), X(1)=1, (5.66

the scaling form of the Green’s functions follows from renor-
malization group equatiofb.59 as @) b)

G, u({X}Hmyw,v; i) FIG. 2. Two-loop self-energy diagrams.
_(md-2 (N+NY2~ B -

(™ "X (m/ ) G Rdmxswim/ )0 (m/u)) higher dimensions, in order to compare these with our result.
(N+N)/2 In Sec. V we have reconsidered the theory by Frey,
EN,N({mXL N (MY )t} Tauber, and Schwabl for the crossover from isotropic to di--

rected percolation. Some shortcomings were corrected, and it

— was demonstrated how one can perform crossover calcula-
Xw(m/w)), (5.67 tions consistently by using a type of extended minimal renor-

malization.

z(md_zm
ZU_(m//.L)

where the last form holds asymptotically fa(m/,u)>1,

and A\ () =1v(D)/v. ACKNOWLEDGMENTS
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[D,—k]P=0, (5.68 APPENDIX: TWO-LOOP CALCULATION
with x=y—1,. Its solution is given by In this appendix we briefly present the main part of the
o o two-loop calculation of the new renormalization constahjs
P(m/w;w,v)=Y(m/ w)PL;w(m/uw),v(m/w)), andY,,. The dimensionally regularized parameter integral
(5.69
1
where the amplitude functio¥ is determined by the differ- I(a,b,c)= 5 5 >
ential equation pa(a+p9)(b+g)(c+(p+a)9)
G([1
d — — __¢8 - - 3—¢ 3—¢ 3—¢
I YO =—«W(D.v()), Y(D)=1. (570 —68( ot )@ b e
. . . I 3 21
P comprises the mair(exponential contribution of the —3abc—(—+— (@ *(b+c)+b2 #(a+c)
crossover scaling ofr/am2|w,vvﬂ. The amplitudeP(1;w,v) e 4

is given to one-loop order by E@5.42. The temperature
then results from the solution of the differential equation +c?7¢(b+c))
ar/am2|wvvyﬂ= P(m/w;w,v). The integration of all the flow

equations has to be done numerically and leads, qualita- . , i
tively, back to the numerical results of FTS]. introduced in Ref[30], plays a fundamental role in the cal

culation. Its derivatives

: (A1)

V1. EPILOG (—1)!*m+n-3

Using field theoretic methods, we have analyzed the con- e (= (m=1)(n—-1)!
nectivity behavior of random resistor-diode networks near |+ m+n—3
the percolation critical point. We found that the introduction % J I(a,b,c)
of positive and negative diodes oriented to a privileged di- ga'~logpm1lgcn—1
rection in space with unequal probabilities leads to a cross-
over to the directed percolation problem, whereas a distribuare extensively used in the following. Particularly simple are
tion of diodes with equal probabilities results only in the integrals
elongated isotropic percolation clusters. In the latter case, a
simple rescaling of the privileged direction maps the prob- 1
lem to isotropic percolation. A slightly different distribution Ih= J o
of the diodes introduces a further relevant variable with a p(1+p%)
new scaling dimension. We have calculated this scaling di-
mension toO(&?) in ane expansion around six dimensions. =
An interpolation resulting from this expansion and an exact (n=D!(4-e)(2—e)e  ja
value at one dimension leads to a formula that compares very
well with a recent simulational result in two dimensions. It We start with the self-energy diagram displayed in Fig.
would also be very interesting to perform simulations in2(a). Its value is given by

(A2)

a=b=c=1

8(_1)n—lG é;n—laZ—s/Z
n—-1

(A3)

a=0
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4
se99--% | s@-nokremek-p
P

1
T (@2 K et (pt V)2t (k—p)]

(A4)

where we have shifted—k—iv, and definedr= 7+v2 and

q_=q+2iv. We expand the last integral mandv to second
order, and find

2By =—

l115F

d— 47 )
T|123+ F|133 v
— iv-q
+2(15l 4+ 7l 124"114"123)T
d—4 a7\
- T|114+F|115 as .
In the same fashion, for the diagram shown in Figp) 2we
obtain

(A5)

3@ (q)= —g“fk pG(q—k)G(q—|o)G(k)G(|c>)G(k—|o)

., d—4 a7 5
=—0"7 °| 10t T'zzz*‘g'zzs %
d—6 47 1, 7 |-
— 2| =g lzst yla2at 15+ glass) A7)

(AB)
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Using Egs.(A2) and (A3), we obtain, from Eqs(A5) and
(A6) the singular contributions to the two-loop vertex func-
tion after renormalization according to the scheme in equa-
tions (2.8), (2.9), and(2.13 as

2 (9 458) 5 (5 258)(;”)2
T —

T 16 /#2722 T3

2- —
o= o

€

Using the renormalization constants t©(u) [Egs.
(2.10-(2.12, (2.20, and(2 21)], we obtain from Eq(2.18),

after the renormal|zat|orf1 —T = ZFl 1, the one-loop
self-energy taO(u?) as

11 7e
s 72

q° (23 138)2mv-q

u 9 1le\u
(1-loop) _ __ —8/2 11,2
iy 1+(2 6)3)’“7-
5¢\ u\ (uv)?
+ 1+(5_E) ;) 3
1a 11 5¢\u)\qg?
3 12/¢) 6
23 b5g\u\2iuv-q
* 1+(€_E>ET (A8)

By adding I'{'{°°? and I'{}/°°” and the renormalized
zero-loop part, we obtain

Ty 4= p2(Z,7+Y, w2 +2iZ,uv-q+ 22+ TP

+ TP +0(£%,u). (A9)

We see that the nonprimitive divergenciesn 7 of T {';°°P)
andT"{%°°P) cancel(as a check of a correct calculatipand
f|naIIy f|nd the renormalization constants cited in E@s10,

(2.12), (2.20, and(2.21).
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