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Propagating structures in globally coupled systems with time delays

Damián H. Zanette
Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Centro Ato´mico Bariloche and Instituto Balseiro, 8400 Bariloche, Argentin

~Received 18 January 2000; revised manuscript received 31 March 2000!

We consider an ensemble of globally coupled phase oscillators whose interaction is transmitted at finite
speed. This introduces time delays, which make the spatial coordinates relevant in spite of the infinite range of
the interaction. In the limit of short delays, we show that the ensemble approaches a state of frequency
synchronization, where all the oscillators have the same frequency, and can develop a nontrivial distribution of
phases over space. Numerical calculations on one-dimensional arrays with periodic boundary conditions reveal
that, in such geometry, the phase distribution is a propagating structure.

PACS number~s!: 05.65.1b, 05.45.Xt
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I. INTRODUCTION

Standard models for the study of collective complex b
havior in natural systems consist of ensembles of interac
dynamical elements@1#. Such models have proved to be e
tremely versatile both in the analytical and in the numeri
description of a wide variety of phenomena within the sco
of physics, biology, and other branches of science@2#. Ac-
cording to the range of the interactions involved, these m
els can be divided into two distinct classes. Loc
interactions—which are paradigmatically represented
reaction-diffusion systems@1#—give rise to macroscopic
evolution in which space variables play a relevant role, s
as the appearance of spatial structures and propagation
nomena. On the other hand, with global interactions—wh
the coupling range is of the order of, or larger than,
system size—space becomes irrelevant and collective be
ior is observed to develop in time, typically, in the form
synchronization@3#.

A basic, well-known model of globally coupled elemen
is given by a set ofN identical oscillators described, in th
so-called phase approximation, by phase variablesf i(t) ( i
51,2, . . . ,N). Their evolution is governed by the equation

ḟ i5v1
e

N (
j 51

N

sin~f j2f i !. ~1!

It is known that, for any value of the coupling intensitye, all
the elements converge to a single periodic orbit whose
quencyv coincides with that of an individual oscillator@3#.
In this case,e21 measures the time required to reach suc
synchronized state.

In this paper we present results of a generalization of
above model when time delays are introduced. The effec
time delays in synchronization phenomena has already b
considered for two-oscillator systems, both periodic@4# and
chaotic @5#. Ensembles with local interactions@6# and glo-
bally interacting inhomogeneous systems have also b
studied @7#. None of these contributions, however, mak
explicit reference to the relevant case where interactions
global but their propagation occurs at a finite velocityv.
This situation, where time delays appear in a quite natu
way, provides a realistic description of highly connected s
tems where the time scales associated with individual ev
PRE 621063-651X/2000/62~3!/3167~6!/$15.00
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tion and with signal transmission between elements are c
parable. Instances of such systems are neural and com
networks@8#, and biological populations with relatively slow
communication mechanisms—such as sound propaga
@9#. Our main result is that, since a finite signal veloc
makes spatial variables relevant even when interactions
global, globally coupled ensembles with time delays exh
typical features of systems driven by local interactions,
particular, structure formation and propagation.

II. MODEL AND ITS SOLUTION FOR SHORT DELAYS

We consider an ensemble ofN identical oscillators in the
phase approximation, governed by the equation

ḟ i~ t !5v1
e

N(
j 51

N

sin@f j~ t2t i j !2f i~ t !#, ~2!

wheret i j 5di j /v is the time required for the signal to trave
from elementj to elementi at velocity v, and di j is the
distance betweeni and j. Note that coupling is still global,
since its intensitye does not depend on the distance betwe
elements. However, the relative position of the oscillat
now becomes relevant through time delays.

The full specification of our system requires us to fix t
topology and the metric properties~i.e., the geometry! of the
ensemble, by fixing the valuesdi j for all i , j 51, . . . ,N.
Moreover, initial conditions forf i must be provided. In the
case of delay equations like Eq.~2!, it is necessary to specify
the evolution off i at times prior tot50 @10#, namely, for
Ti,t,0 with Ti52max$tij%j .

Note that, in contrast with the case without delays,
natural frequencyv cannot be eliminated from Eq.~2! by a
homogeneous phase shiftf i→f i1vt. In fact, in the system
with delays this would introduce phase differencesvt i j in
the coupling terms. Analogous phase differences have b
considered in ensembles of coupled oscillators, in particu
in connection with neural network dynamics@11#. The natu-
ral frequencyv can, however, be given any nonzero val
by rescaling time, the coupling intensitye, and the delays
t i j . Alternatively, the value ofe can be changed by rescalin
time, v, and the delays.
3167 ©2000 The American Physical Society
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3168 PRE 62DAMIÁ N H. ZANETTE
The analytical treatment of time-delay equations is kno
to be a difficult task. This is especially true for nonline
multidimensional problems with many delays like Eq.~2!,
for which essentially no mathematical results of practical
plication are available@10#. In general, numerical approache
are necessary to deal with such problems. Our model~2!,
however, admits an approximate analytical solution for ar
trary geometry in the limit of short delays. In fact, when t
delayst i j are much smaller than the typical evolution tim
of the system, the solution to Eq.~2! is expected to be simila
to the case without delays, where all the oscillators beco
synchronized in both phase and frequency. In our mo
characteristic time scales related to the dynamics of a si
oscillator and to the relaxation due to the global interact
are given, respectively, by the natural frequencyv and the
coupling intensitye. The short-delay limit is therefore de
fined by the conditiont i j !v21,e21 for all i , j . In this limit,
we assume thatuf j (t2t i j )2f i(t)u!1 for all i , j and t.
Equation~2! becomes

ḟ i~ t !5v2ef i~ t !1
e

N (
j 51

N

f j~ t2t i j !, ~3!

i.e., a linear equation with delays.
Let us first consider the evolution of the frequenciesV i

5ḟ i . TakingV i(t2t i j )'V i(t)2t i j V̇ i(t), we find

V̇ i52eV i1
e

N (
j 51

N

~V j2t i j V̇ j !, ~4!

where all the functions are now evaluated at the same timt.
It is convenient to rewrite this equation in matrix notation,

V̇5S I1
e

N
TD 21

MV'S I2
e

N
TDMV, ~5!

whereV5(V1 ,V2 , . . . ,VN), I5$d i j % is the identity ma-
trix, T5$t i j % is the delay matrix, andM5$2ed i j 1e/N%.

Equation~5! can be seen as a perturbation of the probl
without delays,V̇05MV0, whose solution is

V0~ t !5^V0&@12exp~2et !#e1exp~2et !V0~0!. ~6!

Here, e5(1,1, . . . ,1), and^V0&5N21( jV j
0(t)5N21e•V0

is a constant of motion associated with the invariance of
unperturbed problem upon a homogeneous shift in the
quencies. As expected, this solution describes the asymp
approach of all the frequencies to the same value^V0&.

The solution to Eq.~5! can now be written asV5V0

1J, where the components ofJ should be of the same
order as the time delays. Expanding Eq.~5! up to the first
order in the components ofT, we find

J̇5MJ2
e

N
TMV05MJ2

e2

N
exp~2et !D, ~7!

with D5T@^V0&e2V0(0)#. If the unperturbed problem is
solved with the initial conditions for the perturbed equatio
V0(0)5V(0), Eq. ~7! is to be solved withJ(0)50. The
solution reads
n

-

i-

e
l,
le
n

s

e
e-
tic

,

J~ t !52
e2

N
t exp~2et !D, ~8!

so that the full solution for the perturbed problem is

V~ t !5V@12exp~2et !#e1exp~2et !V~0!

2
e2

N
t exp~2et !D, ~9!

with V5N21e•V(0). The phases are then given b
the time integral of the respective frequenciesf i(t)5f i(0)
1*0

t V i(t8)dt8.
Thus, in the limit of short delays, all the frequencies in t

ensemble approach asymptotically the same value,V i(t)
→V for all i, and the oscillators become synchronized
frequency. On the other hand, it can be seen from the lin
ized equations~3! that their phases do not synchronize. Th
is a direct by-product of the presence of time delays. F
asymptotically large times, in fact, we can writef i(t)5Vt
1c i . Replacing in Eq.~3!, we get

c i5C2V^t i&, ~10!

where^t i&5N21( jt i j is the average delay associated w
the i th oscillator. The value of the constantC can be arbi-
trarily chosen, as a consequence of the symmetry of our
tem upon a homogeneous phase shift. In the generic situa
where the geometrical properties of the ensemble are in
mogeneous, such that the sites occupied by the oscillator
not equivalent with respect to their relative positions, t
average delayŝt i& are expected to differ from site to site. I
such a case, the oscillators will generally have differe
phases. According to Eq.~10!, oscillators with smaller aver-
age delays have larger phases, and are therefore relat
ahead in the evolution.

If, on the other hand, the geometrical properties are
mogeneous, the average delay is the same for all oscilla
and the system becomes synchronized both in frequency
in phase. This is the case of the one-dimensional reg
array with periodic boundary conditions considered in t
next section. In such a geometry, indeed, we find that
synchronization is the asymptotic state observed for sh
time delays. However, as we show in the following, oth
kinds of phase distributions can develop when the del
become larger.

III. ONE-DIMENSIONAL ARRAYS

We now focus attention on a specific geometry, and c
sider ensembles ofN oscillators in a regular one-dimension
array with periodic boundary conditions, i.e., forming a rin
The distancedi j between two sitesi and j is in principle not
well defined, since the difference between their positions
be measured in both directions around the ring. To solve
ambiguity we choosedi j 5N21Lmin$ui2ju,N2ui2ju%, where
L is the linear size of the array. This choice satisfies all
formal requirements that define a well-behaved metric. T
time delays associated with these distances are

t i j 5
T

N
min$u i 2 j u,N2u i 2 j u%, ~11!
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where T5L/v is the time needed by the signal to trav
around the whole ring at velocityv.

Extensive numerical calculations on one-dimensional
riodic arrays, which are presented in detail in the next s
tion, strongly suggest that the asymptotic large-time evo
tion of model~2! with time delays~11! corresponds to a stat
of frequency synchronization. That is, all our numerical
alizations have shown that the ensemble approaches a
where all the oscillators have the same frequency. We re
that this asymptotic state was derived in Sec. II for sh
delays in arbitrary geometries. In the numerical calculatio
frequency synchronization has been found far beyond
range where the short-delay approximation holds. In the
lowing, we study the asymptotic solutions to Eq.~2! assum-
ing that the ensemble becomes synchronized in freque
and postpone the presentation of the evidence suppo
such an assumption to the next section.

If at large times all the oscillators have the same f
quencyV, their phases can be written asf i(t)5Vt1c i ~cf.
Sec. II!. Replacing this ansatz in Eq.~2!, we find

V5v2
e

N (
j 51

N

sin~Vt i j 1c i2c j !. ~12!

Note that the sumsSi5( jsin(Vtij1ci2cj) are in general
different for eachi. However, their numerical values mu
coincide if the synchronization frequency is to be well d
fined. For a given value ofV, this constraint providesN
21 independent equations for the phasesc i :

S15S2•••5SN . ~13!

Since phases are defined up to an additive constant, we
for instance, fix the value ofc1 and solve these equations fo
c2 , . . . ,cN .

To find a solution to Eq.~13!, it is convenient to analyze
the explicit expression forSi for the one-dimensional peri
odic array:

Si5(
j 51

N

sinS VT

N
min$u i 2 j u,N2u i 2 j u%1c i2c j D . ~14!

Since the delayt i j depends on the labelsi and j through the
differencei 2 j only, we note thatSi can be made indepen
dent of i if the phase differencec i2c j is also a function of
i 2 j . Under such a condition,i acts in fact as an irrelevan
origin in the sum overj and can be eliminated by redefinin
the summation variable asj→( j 1 i )modN. The condition
is met for all i and j only if the phasec i depends linearly on
i, c i5Ai1B with A andB constants. Requiring the phase
be single valued under the transformationi→ i 1N ~up to the
addition of an integer multiple of 2p), and choosingc1
50, we get

c i52p
m

N
~ i 21!, ~15!

wherem is any integer in the interval@2N11,N21#.
The solution~15! represents a state where the oscilla

phases vary linearly along the array. A total phase differe
Df52pm accumulates in a whole turn around the ring. T
-
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simplest mode,m50, corresponds to the state of full syn
chronization. Taking into account the time evolution
phases,

f i~ t !5Vt12p
m

N
~ i 21!, ~16!

we realize that each modem represents a propagating stru
ture, whose velocity isV5LV/2pm, and whose shape i
preserved. The corresponding synchronization frequenc
given by

V5v2
e

N(
j 51

N

sinS VT

N
min$ j 21,N2 j 11%22p

m

N
~ j 21! D .

~17!

The solutions to this equation can be found numerically,
instance, using a built-in function of a program of algebra
manipulation@12#. Figure 1 displays the results for the fir
few modes (m>0) for N5100. Replacingj→N2 j in Eq.
~17!, it is immediately shown that the synchronization fr
quency is independent of the sign ofm.

In principle, the stability of these propagating modes c
be analyzed by means of a linearization of Eq.~2!. Taking
f i(t)5Vt1c i1df i(t), expanding to the first order indf i ,
and proposing a solution of the formdf i(t)5Ai exp(lt), we
end with the eigenvaluelike problem

lAi5
e

N (
j 51

N

cos~Vt i j 1c i2c j !@Ajexp~lt i j !2Ai #.

~18!

It has nontrivial solutions for the amplitudesAi if the deter-
minant of a matrix with elements

FIG. 1. Synchronization frequencyV of the asymptotic modes
m50, . . . ,3 in a one-dimensional array ofN5100 globally coupled
oscillators with periodic boundary conditions, as a function of t
parameterT that defines delays in Eq.~11!. Frequencies are mea
sured in units of the natural frequencyv. Bold lines indicate the
range where each mode attracts the random-phase initial condi
defined in the text.
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Hi j 5
e

N
cos~Vt i j 1c i2c j !exp~lt i j !

2d i j S e

N (
k51

N

cos~Vt ik1c i2ck!1l D ~19!

vanishes. This determinant has the form of a polynomial il
and in theN(N21)/2 variables exp(ltij). The eigenvaluel
then satisfies a transcendental equation, to be solved in
complex plane. Typically, it has infinitely many solution
corresponding to exponential growth and decay, and to
cillatory behavior, as well as to their possible combinatio
For moderate or large values ofN, the resolution of such an
equation is unfortunately impracticable, even with the h
of numerical algorithms.

The stability of the propagating modes can, however,
decided when the delays vanish,T50. In this limit, the
above linearization leads to a standard eigenvalue prob
for the matrixK with elements

Ki j 5
e

N
cos~c i2c j !2d i j

e

N (
k51

N

cos~c i2ck!. ~20!

For the full-synchronization modem50, K reduces to the
matrix M of Eq. ~5!, and the problem is trivially solved. A
a consequence of the invariance of the system under a
mogeneous phase shift, there is a vanishing eigenvaluel1
50. The remainingN21 eigenvalues are identical an
negative,l25•••5lN52e. Thus, as is well known in the
ordinary situation without delays, full synchronization
stable. On the other hand, all the other modes are unst
for T50. This conclusion is drawn by noting that, for tho
modes, the trace ofK is positive, trK5( jKii 5e. Since the
trace of a matrix equals the sum of all its eigenvalues
follows that at least one of them must be positive. A clo
analysis reveals that, in fact,N22 eigenvalues are zero, an
the remaining two equal 1/2.

In summary, we have found that, under the assumptio
frequency synchronization at large times, a set of globa
coupled oscillators with time delays in a one-dimensio
regular array with periodic boundary conditions admits
class of stationary states that correspond to propaga
structures where the phases vary linearly along the array.
arbitrary delays, the stability of these structures cannot
studied analytically. We find, on the other hand, that
vanishing delays the only stable mode is that of full synch
nization, where all the phases coincide. In the next sec
we present numerical results justifying the assumption
frequency synchronization. Moreover, these results sh
that the propagating structures derived above can be s
for larger delays and, as a matter of fact, correspond to
asymptotic states of our system for a wide class of ini
conditions.

IV. NUMERICAL RESULTS

In our numerical analysis of globally coupled oscillato
with time delays, we have solved Eq.~2! by means of a
fourth-order Runge-Kutta scheme@13#. The time increment
Dt is chosen such that the time delayst i j are all integer
multiples of Dt. In this way, the timest2t i j at which the
he
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phasesf j contribute to the evolution off i(t) coincide with
nodes of the time discretization, and no interpolations
needed to calculate the valuesf j (t2t i j ). These values are
stored in a matrix which is updated at each time step, and
then be retrieved directly from the matrix. In our calculatio
we fix v5e51, so that the typical time scales are of th
order of unity. For these scales, a time incrementDt
;1022 yields reasonably precise results. In fact, comparis
with test calculations using much shorter increments reve
maximal relative differences of the order of 1% along t
whole time domain.

As for the initial conditions, we have assumed that fot
,0 the oscillators evolve independently from each oth
with their natural frequencyv and with random relative
phases. That is, fort,0 we have takenf i(t)5vt1f i(0),
wheref i(0) is drawn at random from a uniform distributio
in (2p,p). At t50 coupling is switched on, so that w
formally have a time-dependent coupling intensitye(t)
5eu(t), whereu is the Heaviside step function.

Our numerical calculations for one-dimensional regu
arrays with periodic boundary conditions have been p
formed for systems ofN510 to 104 elements. If, asN grows,
time delays are rescaled in such a way that the timeT needed
for the signal to travel along the whole array is he
constant—which, for a given signal velocity, corresponds
preserving the linear sizeL of the system while the density o
oscillators increases~cf. Sec. III!—the results become esse
tially independent ofN at relatively small values ofN. We
therefore choose to present the results forN5100, which are
fully representative of those for larger systems.

We have performed extensive numerical realizations
values of T of the form T5kDT, with DT50.1 and k
51,2, . . . ,200, i.e., up toT520. For the present choicev
5e51, most of these values ofT are well beyond the range
where the approximation considered in Sec. II holdsT
&1). The calculations were run from the above describ
random-phase initial conditions up tot5103. In all cases,
we found that the system approaches an asymptotic s
where the frequencies of all the oscillators converge to
same value, so that the ensemble becomes synchronize
frequency. To illustrate this fact, Fig. 2 displays the tim
evolution of the mean dispersion of frequenciessV

5AŠ(V i2^V&)2
‹, for some selected values ofT up to t

5200. It is seen that, after a certain transient,sV decreases
exponentially with time,sV;exp(Lt) with L,0. Note that
the slopeL of this exponential decay is a direct measure
the ~real part of the! largest eigenvalue of the linearize
problem around the state of frequency synchronization.
small values ofT the slope is well approximated by the valu
expected for short delays,L52e521 ~cf. Sec. II!, as
shown by the dashed line in Fig. 2. For larger values ofT,
uLu is smaller. We have measured the slope as a functio
T for values of the formT5kDT, where nowDT51 and
k51,2, . . .,20, by least-squares fitting of an exponential
the large-time evolution ofsV . The results are shown as fu
dots in Fig. 3.

Figure 2 shows, moreover, that transients become lon
as T grows. The duration of transients is given by the tim
needed to lose information on the initial conditions. In o
time-delay system, in fact, the initial conditions are specifi
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over time intervals whose maximum length is, precisely,T.
The analysis of the distribution of phases at large tim

i.e., when the state of frequency synchronization has b
reached, shows that the ensemble converges to the prop
ing structures studied in Sec. III. It turns out, however, t
the order m of the asymptotic solution approached fro
random-phase initial conditions depends onT. For small val-
ues ofT (T&5.6), the system approaches the state of
synchronization,m50. As T grows, we find well-defined
ranges where the asymptotic states are propagating struc
with increasing values ofumu. For the first few modes, the
boundaries are atT'5.6, 9.8, and 17.4. Different realiza
tions of the same class of initial conditions lead to both sig
of m with equal probability, as expected. The ranges wh

FIG. 2. Evolution of the mean dispersion of frequenciessV ,
measured in units of the natural frequencyv, in a one-dimensiona
array ofN5100 globally coupled oscillators with periodic boun
ary conditions, for various values ofT. The dashed line stands fo
the analytical slope obtained in Sec. II for short delays.

FIG. 3. SlopeL of the exponential decay of the mean frequen
dispersion~see Fig. 2! as a function ofT. For each set of data, th
label m indicates the mode that describes the observed asymp
state. Full dots stand for the results of numerical calculations w
random-phase initial conditions, whereas empty dots correspon
initial conditions prepared as perturbations of the propaga
modes, as explained in the text.
s,
en
at-
t

ll

res

s
e

the ensemble tends toward each modem are also shown in
Fig. 1, with bold lines.

The existence of a well-defined interval ofT where each
mode is observed in the numerical calculations can be a
natively ascribed to two facts. Either each mode is sta
within the corresponding interval and unstable elsewhere
at a given value ofT, several modes are stable but only o
is selected by the random-phase initial conditions. In t
latter case, the selection of a mode should be related to
relative size of the respective attraction basin. Since, from
probabilistic viewpoint, most initial conditions are of th
random-phase type, the mode that attracts such initial st
for a givenT should have the largest basin.

To decide between the two alternatives, we have p
formed a series of calculations with different initial cond
tions. We have taken the evolution of phases fort,0 to be
given by a small perturbation of a given mode, name
f i(t)5Vt12p( i 21)m/N12pr i , where r i is a random
number drawn from a uniform distribution in the interv
(0,r ). The corresponding value ofV has been calculated
from Eq.~12!, as in Fig. 1. Using such initial conditions wit
sufficiently small perturbations~typically, r;1022 to 1021)
we have found that each mode is approached asymptotic
and is therefore stable, not only for the values ofT quoted
above but in a wider interval. Thus, in general, our system
multistable, as different initial conditions can lead to diffe
ent asymptotic states for the same set of time delays. In
3, empty dots stand for measurements of the slopeuLu for
different modes in these extended intervals.

It is observed, however, that the range where each m
is stable is not infinite. For sufficiently low and high value
of T, even very small perturbations (r &1026 in our calcula-
tions! drive the system away from the mode prepared
initial condition, and a different mode is asymptotically a
proached. This indicates that, for each value ofm, there is a
bounded interval where all the corresponding eigenvalues
negative or have negative real parts, such that the assoc
mode is stable there. This picture is partially supported
the fact that forT50 the only stable mode is the fully syn
chronized statem50, as shown in Sec. III.

In summary, extensive numerical calculations for on
dimensional arrays with periodic boundary conditions sh
quite convincingly that, in such geometry, our ensemble
globally coupled phase oscillators approaches, for a w
range of time delays, an asymptotic state where all the os
lators have the same frequency. For short delays, they h
also the same phase and are fully synchronized. For la
delays we obtain the propagating structures studied in S
III, where the phases vary linearly around the array. Th
structures coexist for any set of time delays. The ran
where they are stable have, however, finite length. The s
tem is multistable, since the stability ranges are partia
overlapping.

V. SUMMARY AND CONCLUSION

We have considered an ensemble of globally coup
identical phase oscillators with finite interaction velocit
This finite velocity introduces time delays in the evolutio
equations, and makes the spatial coordinates of oscilla
relevant in spite of the infinite range of their interaction. A

tic
h
to
g
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a matter of fact, we have found that the system devel
spatial structures, much like ensembles of locally interact
dynamical elements. This feature, which is reminiscent
the behavior of reaction-diffusion systems, points out sh
differences from the collective motion of coupled oscillato
without time delays.

In the limit of short delays, we have been able to der
an approximate analytical solution for arbitrary geometri
This solution describes the asymptotic approach towar
state where all the oscillators have the same freque
When the geometry is inhomogeneous—for instance, in
presence of boundaries—a stationary spatial distribution
phases appears. Numerical realizations for one-dimensi
regular arrays with periodic boundary conditions reveal t
the state of frequency synchronization is also attained
larger delays. In this homogeneous geometry, a class
propagating spatial structures, where the oscillator pha
vary linearly around the system, is observed. The existe
of such structures can be derived analytically, and a num
cal study shows that, for given parameter sets, they can
simultaneously stable. Thus, as for many other instance
globally coupled ensembles, our system exhibits multista
ity @6#.

Our results with short delays suggest that it would
interesting to consider systems with larger delays in geo
etries different from the one-dimensional arrays specifica
studied here. We have run a series of preliminary realizati
s
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for several geometries, such as one-dimensional arrays
free boundaries, tree~ultrametric! structures, and two-
dimensional lattices with periodic and free boundaries. Th
results, which will be presented elsewhere@14#, provide
strong evidence that the state of frequency synchroniza
presented here is a quite generic form of asymptotic col
tive evolution for globally coupled systems with time delay
in both homogeneous and inhomogeneous geometries.
fortunately, an analytical approach to our system in th
more general situations appears to be impossible in prac
even at the level of deciding the existence of stationary
lutions, and most conclusions rely at the moment on num
cal evidence.

Of course, the possible variations of the model with
spect to the individual dynamics of each coupled element
not exhausted with phase oscillators as in Eq.~2!. The next
step will be to study the effects of the present kind of tim
delays in ensembles formed by chaotic oscillators, wh
coupling competes as a stabilizing mechanism against
inherently unstable dynamics of individual elements.
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