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Propagating structures in globally coupled systems with time delays

Damian H. Zanette
Consejo Nacional de Investigaciones Ciéioéis y Tenicas, Centro Atmico Bariloche and Instituto Balseiro, 8400 Bariloche, Argentina
(Received 18 January 2000; revised manuscript received 31 March 2000

We consider an ensemble of globally coupled phase oscillators whose interaction is transmitted at finite
speed. This introduces time delays, which make the spatial coordinates relevant in spite of the infinite range of
the interaction. In the limit of short delays, we show that the ensemble approaches a state of frequency
synchronization, where all the oscillators have the same frequency, and can develop a nontrivial distribution of
phases over space. Numerical calculations on one-dimensional arrays with periodic boundary conditions reveal
that, in such geometry, the phase distribution is a propagating structure.

PACS numbe(s): 05.65:+b, 05.45.Xt

[. INTRODUCTION tion and with signal transmission between elements are com-
parable. Instances of such systems are neural and computer
Standard models for the study of collective complex be-networks[8], and biological populations with relatively slow

havior in natural systems consist of ensembles of interactingommunication mechanisms—such as sound propagation
dynamical elementgl]. Such models have proved to be ex-[9]. Our main result is that, since a finite signal velocity
tremely versatile both in the analytical and in the numericalmakes spatial variables relevant even when interactions are
description of a wide variety of phenomena within the scopeglobal, globally coupled ensembles with time delays exhibit
of physics, biology, and other branches of scief@e Ac-  typical features of systems driven by local interactions, in
cording to the range of the interactions involved, these modparticular, structure formation and propagation.
els can be divided into two distinct classes. Local
interactions—which are paradigmatically represented in
reaction-diffusion system$l}l—give rise to macroscopic !l MODEL AND ITS SOLUTION FOR SHORT DELAYS

evolution in which space variables play a relevant role, such \ye consider an ensemble Nfidentical oscillators in the

as the appearance of spatial structures and propagation p%ase approximation, governed by the equation
nomena. On the other hand, with global interactions—where

the coupling range is of the order of, or larger than, the
system size—space becomes irrelevant and collective behav- . el ]
ior is observed to develop in time, typically, in the form of di(H)=o+ Nzl sin ¢;(t=7ij) = i(D)], @
synchronizatior] 3]. .
A basic, well-known model of globally coupled elements
is given by a set oN identical oscillators described, in the wherer;;=d;; /v is the time required for the signal to travel
so-called phase approximation, by phase variakigs) (i from elementj to elementi at velocity v, and d;; is the
=1,2,...N). Their evolution is governed by the equation distance betweenandj. Note that coupling is still global,
since its intensitye does not depend on the distance between
) € ) elements. However, the relative position of the oscillators
bi=oty JZl sin(¢;— ¢i). (D) now becomes relevant through time delays.

The full specification of our system requires us to fix the
It is known that, for any value of the coupling intensityall ~ topology and the metric properti¢ise., the geometnyof the
the elements converge to a single periodic orbit whose freensemble, by fixing the valuegd;; for all i,j=1,... N.
quencyw coincides with that of an individual oscillat)8]. Moreover, initial conditions foip; must be provided. In the
In this caseg™ ! measures the time required to reach such &ase of delay equations like E@), it is necessary to specify
synchronized state. the evolution of¢; at times prior tot=0 [10], namely, for

In this paper we present results of a generalization of thd;<t<<0 with T;=—maxr;};.

above model when time delays are introduced. The effect of Note that, in contrast with the case without delays, the
time delays in synchronization phenomena has already bedratural frequency» cannot be eliminated from E@2) by a
considered for two-oscillator systems, both peridditand homogeneous phase shiff— ¢; + wt. In fact, in the system
chaotic[5]. Ensembles with local interactiori§] and glo-  with delays this would introduce phase differences; in
bally interacting inhomogeneous systems have also beehe coupling terms. Analogous phase differences have been
studied[7]. None of these contributions, however, makesconsidered in ensembles of coupled oscillators, in particular,
explicit reference to the relevant case where interactions arié@ connection with neural network dynamigkl]. The natu-
global but their propagation occurs at a finite veloaity ral frequencyw can, however, be given any nonzero value
This situation, where time delays appear in a quite naturaby rescaling time, the coupling intensigy and the delays
way, provides a realistic description of highly connected sys-;; . Alternatively, the value o can be changed by rescaling
tems where the time scales associated with individual evolutime, w, and the delays.
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The analytical treatment of time-delay equations is known _ €?
to be a difficult task. This is especially true for nonlinear E()=—texn—eh)A, (8)
multidimensional problems with many delays like E@),

for which essentially no mathematical results of practical apso that the full solution for the perturbed problem is
plication are availablgl0]. In general, numerical approaches

are necessary to deal with such problems. Our m@2kl Q(t)=Q[1—exp — et)]e+exp — et)Q(0)
however, admits an approximate analytical solution for arbi- 2

trary geometry in the limit of short delays. In fact, when the _ E_t exp(— et)A (9)
delaysr;; are much smaller than the typical evolution times N '

of the system, the solution to E) is expected to be similar . )

to the case without delays, where all the oscillators becom@ith (=N""e-Q(0). The phases are then given by
synchronized in both phase and frequency. In our modefthe time integral of the respective frequenciggt) = ¢;(0)
characteristic time scales related to the dynamics of a singl& Joi(t')dt’.

oscillator and to the relaxation due to the global interaction Thus, in the limit of short delays, all the frequencies in the
are given, respectively, by the natural frequengyand the ~€nsemble approach asymptotically the same valugt)
coupling intensitye. The short-delay limit is therefore de- — {2 for all i, and the oscillators become synchronized in

fined by the Conditiowijgw*1,6*1 for alli,j. In this limit, ~ frequency. On the other hand, it can be seen from the linear-
we assume thate;(t—7;)— ¢i(t)|<1 for all i,j and t. ized equationg3) that their phases do not synchronize. This
Equation(2) becomes is a direct by-product of the presence of time delays. For
asymptotically large times, in fact, we can wrigg(t) = Qt
. e N + ¢, . Replacing in Eq(3), we get
B =w—edi(t)+5 2 ¢j(t=7), (3
=1 =V —-Q(7), (10
i.e., a linear equation with delays. where(7,)=N"'2;7; is the average delay associated with
Let us first consider the evolution of the frequendiés  theith oscillator. The value of the consta¥it can be arbi-
= ¢i . Taking Q;(t— 7;j) ~Q;(t) — TijQi(t)v we find trarily chosen, as a consequence of the symmetry of our sys-

tem upon a homogeneous phase shift. In the generic situation
i e N ) where the geometrical properties of the ensemble are inho-
Qi=—€); N Zl (Qj—7;9)), (40 mogeneous, such that the sites occupied by the oscillators are
= not equivalent with respect to their relative positions, the
average delayér,) are expected to differ from site to site. In
such a case, the oscillators will generally have different
phases. According to Eq10), oscillators with smaller aver-
€ age delays have larger phases, and are therefore relatively
Mﬂw(I— N?j MQ, (5) ahead in the evolution.

If, on the other hand, the geometrical properties are ho-
mogeneous, the average delay is the same for all oscillators,
trix, T={r;;} is the delay matrix, andV={— €5, + e/N} and the system becomes synchronized both in frequency and

] 1] 3 ij . . . . A .
Equation(5) can be seen as a perturbation of the problen4n phas_e. Th's. IS the case of the one dlmen_slonal Tegu'af
_ 20— 100 wh lution i array Wlth periodic boundary condl_tlons conS|d_ered in the
without delays 2"=MQ", whose solution is next section. In such a geometry, indeed, we find that full
O/er— /VONCA _ _ 0 synchronization is the asymptotic state observed for short
(D) =(Q7)[1-exp(—et) Jetexp(—e) Q7(0).  (6) e delays. However, as we show in the following, other

ki f ph istributi I h h I
Here, e~(L1,... 1), and(0%)—N 13, 0%() ~N-"e. g0 K> Of phase disributons can develop when the delays

is a constant of motion associated with the invariance of the
unperturbed problem upon a homogeneous shift in the fre-
guencies. As expected, this solution describes the asymptotic
approach of all the frequencies to the same v48). We now focus attention on a specific geometry, and con-
The solution to Eq(5) can now be written a2=0Q°  sider ensembles ™ oscillators in a regular one-dimensional
+E, where the components & should be of the same array with periodic boundary conditions, i.e., forming a ring.
order as the time delays. Expanding E§) up to the first  The distanced;; between two sitesandj is in principle not
order in the components &f, we find well defined, since the difference between their positions can
be measured in both directions around the ring. To solve this
ambiguity we choosel;;=N"*Lmin{fi—j|,N—[i—j[}, where
L is the linear size of the array. This choice satisfies all the
formal requirements that define a well-behaved metric. The
with A=71(Q%e—Q°0)]. If the unperturbed problem is time delays associated with these distances are
solved with the initial conditions for the perturbed equations,
0°%0)=9(0), Eq.(7) is to be solved withE(0)=0. The
solution reads

where all the functions are now evaluated at the sametime
It is convenient to rewrite this equation in matrix notation, as

-1

O=

T+ <71
N

where Q= (Q4,0Q,,...,Qy), Z={§} is the identity ma-

Ill. ONE-DIMENSIONAL ARRAYS

2
E=ME- ETMQ(’:ME— %exp( —et)a,  (7)

T o
mij=Minfli =i LN =i =} (11)
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where T=L/v is the time needed by the signal to travel L5
around the whole ring at velocity.

Extensive numerical calculations on one-dimensional pe-
riodic arrays, which are presented in detail in the next sec-
tion, strongly suggest that the asymptotic large-time evolu-
tion of model(2) with time delayq11) corresponds to a state
of frequency synchronization. That is, all our numerical re-
alizations have shown that the ensemble approaches a state?
where all the oscillators have the same frequency. We recall
that this asymptotic state was derived in Sec. Il for short
delays in arbitrary geometries. In the numerical calculations,
frequency synchronization has been found far beyond the
range where the short-delay approximation holds. In the fol-
lowing, we study the asymptotic solutions to Ef) assum-
ing that the ensemble becomes synchronized in frequency, g, . . s
and postpone the presentation of the evidence supporting 0 3 1T° 15 20
such an assumption to the next section.

If at large times all the oscillators have the same fre- FIG. 1. Synchronization frequendy of the asymptotic modes
quency{}, their phases can be written as(t) = Qt+ ¢; (cf. m=0,...,3 in a one-dimensional array Nf= 100 globally coupled
Sec. I). Replacing this ansatz in EqR), we find oscillators with periodic boundary conditions, as a function of the

parametefT that defines delays in Eqll). Frequencies are mea-
€ _ sured in units of the natural frequenay. Bold lines indicate the
Q=0- N Z SIN(Q 7+ i — ;). (12)  range where each mode attracts the random-phase initial conditions
=1 defined in the text.

05 r

N

Note that the sums§=Z;sin(Qn;+—¢;) are in general

different for eachi. However, their numerical values must Simplest modem=0, corresponds to the state of full syn-
coincide if the synchronization frequency is to be well de-Chronization. Taking into account the time evolution of
fined. For a given value of), this constraint providedl ~ Phases,

—1 independent equations for the phages

$,=S,---=Sy. (13) ¢i(t)=Qt+2ﬂ-g(i—1), (16)

Since phases are defined up to an additive constant, we can, ) :
for instance, fix the value af; and solve these equations for We realize that each mode represents a propagating struc-

/2 W /N ture, whose velocity is/=LQ/27m, and whose shape is
To find a solution to Eq(13), it is convenient to analyze p_reserved. The corresponding synchronization frequency is
the explicit expression fo8, for the one-dimensional peri- 9Ve€n by
odic array: |
€ QT . m
N QT Q=w—NE sin| min{j —LN=j+1}—275(—1)|.
§=2, sinf gmin{li—j[.N=[i=jl}+ s - |. (14 =
R an

Since the delay; depends on the labeisandj through the  The solutions to this equation can be found numerically, for
differencei —j only, we note that§ can be made indepen- instance, using a built-in function of a program of algebraic
dent ofi if the phase difference; —; is also a function of  manipulation[12]. Figure 1 displays the results for the first
i—j. Under such a condition, acts in fact as an irrelevant few modes m=0) for N=100. Replacing —N—j in Eq.
origin in the sum ovej and can be eliminated by redefining (17), it is immediately shown that the synchronization fre-
the summation variable gs—(j+i)modN. The condition  quency is independent of the sign rof

is met for alli andj only if the phase); depends linearly on In principle, the stability of these propagating modes can
I, ¢ =Ai+B with A andB constants. Requiring the phase to pe analyzed by means of a linearization of E2). Taking

be single valued under the transformatieni +N (up to the ¢, (t) = Qt+ ¢+ 5¢;(t), expanding to the first order ifig; ,
addition of an integer multiple of 2), and choosingy;  and proposing a solution of the foréw;(t)=A; exp(\t), we

=0, we get end with the eigenvaluelike problem
pi=2m(i-1) 15 .
i=2m—(i—1), €
I N )\AI:NE CO&QT”+lﬂi_lﬂj)[Ajqu)\Tij)_Ai].

=1

wherem is any integer in the intervdl—N+1N—1]. (18
The solution(15) represents a state where the oscillator

phases vary linearly along the array. A total phase differencét has nontrivial solutions for the amplitudés if the deter-

A ¢=27mm accumulates in a whole turn around the ring. Theminant of a matrix with elements
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€ phasesp; contribute to the evolution of;(t) coincide with
Hij = Cos Q7 + i~ ¢ expn 7)) nodes of the time discretization, and no interpolations are
needed to calculate the valugg(t— 7;;). These values are
€ stored in a matrix which is updated at each time step, and can
N k§=:1 Cog Q7+ i — ) +A (19 then be retrieved directly from the matrix. In our calculations
we fix o=€=1, so that the typical time scales are of the
vanishes. This determinant has the form of a polynomial in order of unity. For these scales, a time incremeiit
and in theN(N—1)/2 variables exi7;). The eigenvalue ~ 10" ? yields reasonably precise results. In fact, comparison
then satisfies a transcendental equation, to be solved in thwth test calculations using much shorter increments reveals
complex plane. Typically, it has infinitely many solutions, maximal relative differences of the order of 1% along the
corresponding to exponential growth and decay, and to osyhole time domain.
cillatory behavior, as well as to their possible combinations. As for the initial conditions, we have assumed that tfor
For moderate or large values Nf the resolution of such an <0 the oscillators evolve independently from each other
equation_is unfortgnately impracticable, even with the helpgith their natural frequencyw and with random relative
of numerical algorithms. phases. That is, for<0 we have takenp;(t) = wt+ ¢;(0),

T_he stability of the propagat_ing modes can, _ho_vvever, b"?/vheredn(O) is drawn at random from a uniform distribution
decided when the delays vanish=0. In this limit, the (—m,7). At t=0 coupling is switched on, so that we

above linearization leads to a standard eigenvalue pmble%rmally have a time-dependent coupling intensisft)

for the matrixk with elements =€e6(t), whered is the Heaviside step function.
€ e N Our numerical calculations for one-dimensional regular
Kij=ﬁcos{¢i—¢j)—5ijﬁ 2 codi— ). (20 arrays with periodic boundary conditions have been per-
k=1 formed for systems dfl=10 to 1¢ elements. If, adl grows,
time delays are rescaled in such a way that the imeeded

N
-9

For the full-synchronization modm=0, K reduces to the for the sianal | al h hol s held
matrix M of Eq. (5), and the problem is trivially solved. As or the signal to travel along the whole array Is he

a consequence of the invariance of the system under a h8_onstan.t—whic_h, for a given signal velocif[y, correqunds to
mogeneous phase shift, there is a vanishing eigenvejue preserving the linear sizeof the system while the density of

—0. The remainingN—1 eigenvalues are identical and oscillators increase®f. Sec. Il)—the results become essen-

neg.ative)\ — . =)= —c Thus. as is well known in the tially independent oN at relatively small values oil. We
Ap=- - =Ay=—€. , )

ordinary situation without delays, full synchronization is therefore choose to present the resultsNer 100, which are

stable. On the other hand, all the other modes are unstabw;"y representative of those for larger systems.
We have performed extensive numerical realizations for

for T=0. This conclusion is drawn by noting that, for those - . a

modes, the trace df is positive, tC=ZX;K;; = €. Since the \iallmzes of I)OOf' the fortmTT_—ZISA'II;, V\;'rt]h AT_O'tl 2n.d k
trace of a matrix equals the sum of all its eigenvalues, it_ ’_’1"'2 " Ifetzh up °| - at or Tzlgreser:j tﬁ 0loe
follows that at least one of them must be positive. A closer €~ ~ most of these values drare well beyond the range

analysis reveals that, in fadtl— 2 eigenvalues are zero, and where the approx!manon considered in Sec. I hOIG-S. (
the remaining two equal 1/2. =<1). The calcglaqons were run from the above described
In summary, we have found that, under the assumption Oﬁnc:com-gh&set |t|;]|t|al C?nd't'ons up L@ 10°. In all c?st_es, tat
frequency synchronization at large times, a set of globall)y"e oun at the system approaches an asymplolic state
coupled oscillators with time delays in a one-dimensionalWhere the frequencies of all the oscillators converge to the_
regular array with periodic boundary conditions admits afsame value_,rsq”tha}[t tthe tﬁns?m?le':_becgn;gs Isync?fr\onlt_zed n
class of stationary states that correspond to propagatin equency. 1o riustrate this fact, Fig. ISplays the time
volution of the mean dispersion of frequencies,

structures where the phases vary linearly along the array. F
arbitrary delays, the stability of these structures cannot b& V{(22i—(2))%), for some selected values df up to t

studied analytically. We find, on the other hand, that for=200. Itis seen that, after a certain transiery, decreases
vanishing delays the only stable mode is that of full synchro-£xPonentially with timego~exp(At) with A <0. Note that
nization, where all the phases coincide. In the next sectiof!€ SlopeA of this exponential decay is a direct measure of
we present numerical results justifying the assumption ofhe (real part of the largest eigenvalue of the linearized
frequency synchronization. Moreover, these results showroblem around the state_of frequency_synchromzatlon. For
that the propagating structures derived above can be stabfgnall values off the slope is well approximated by the value
for larger delays and, as a matter of fact, correspond to th@xpected for short delays\=—e=—1 (cf. Sec. I), as

asymptotic states of our system for a wide class of initiaShown by the dashed line in Fig. 2. For larger values of
conditions. A| is smaller. We have measured the slope as a function of

T for values of the formT=KkAT, where nowAT=1 and
k=1,2,...,20, by least-squares fitting of an exponential to
the large-time evolution of, . The results are shown as full

In our numerical analysis of globally coupled oscillators dots in Fig. 3.
with time delays, we have solved ER) by means of a Figure 2 shows, moreover, that transients become longer
fourth-order Runge-Kutta scheni&3]. The time increment asT grows. The duration of transients is given by the time
At is chosen such that the time delays are all integer needed to lose information on the initial conditions. In our
multiples of At. In this way, the times—7;; at which the time-delay system, in fact, the initial conditions are specified

IV. NUMERICAL RESULTS
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the ensemble tends toward each maodare also shown in
Fig. 1, with bold lines.

The existence of a well-defined interval ©fwhere each
mode is observed in the numerical calculations can be alter-
natively ascribed to two facts. Either each mode is stable
within the corresponding interval and unstable elsewhere or,
at a given value off, several modes are stable but only one
is selected by the random-phase initial conditions. In this
latter case, the selection of a mode should be related to the
relative size of the respective attraction basin. Since, from a
probabilistic viewpoint, most initial conditions are of the
random-phase type, the mode that attracts such initial states
for a givenT should have the largest basin.

To decide between the two alternatives, we have per-
0 %0 100 50 00 formed a series of calculations with different initial condi-

t tions. We have taken the evolution of phasestfa0 to be
given by a small perturbation of a given mode, namely,
¢ (t)=Qt+27(i —1)M/N+2mp;, wherep; is a random
number drawn from a uniform distribution in the interval
(0r). The corresponding value d has been calculated
from Eq.(12), as in Fig. 1. Using such initial conditions with
sufficiently small perturbationgypically, r~10 2 to 10 %)
over time intervals whose maximum length is, precis@ly, Wedh.avehfou?d that %?Ch modellsfapp:]oachtlad a_?ympto'glcally,

The analysis of the distribution of phases at large timesag 'Sé eretore .Zta '€, notl o_:jhy or the va UFS ofjuote .
i.e., when the state of frequency synchronization has bee% ove but in a wider interval. Thus, In general, our system Is
reached, shows that the ensemble converges to the propagg}glnstable, as different initial conditions can lead to differ-

ent asymptotic states for the same set of time delays. In Fig.

ing structures studied in Sec. Ill. It turns out, however, tha empty dots stand for measurements of the slaplefor
the orderm of the asymptotic solution approached from ! Pty ; .
different modes in these extended intervals.

random-phase initial conditions dependsTori-or small val- It is observed. however. that the range where each mode
ues of T (T=<5.6), the system approaches the state of full. ’ ' 9

A " ) ' is stable is not infinite. For sufficiently low and high values
synchronizationm=0. As T grows, we find well-defined £ T, even very small perturbations£ 10" in our calcula-
ranges where the asymptotic states are propagating structur@s Y P

with increasing values ofm|. For the first few modes, the tons) drive the system away from the mode prepared as
boundaries are aT~5.6 gé and 17.4. Different reéliza- initial condition, and a different mode is asymptotically ap-

. . . . roached. This indicates that, for each valuemthere is a
tions of the same class of initial conditions lead to both sign , X :

. o ounded interval where all the corresponding eigenvalues are
of m with equal probability, as expected. The ranges where

hegative or have negative real parts, such that the associated
. mode is stable there. This picture is partially supported by
10—y ' ' the fact that forT=0 the only stable mode is the fully syn-
° 6 chronized staten=0, as shown in Sec. Ill.
o In summary, extensive numerical calculations for one-

° dimensional arrays with periodic boundary conditions show

° :"=0 quite convincingly that, in such geometry, our ensemble of

globally coupled phase oscillators approaches, for a wide
range of time delays, an asymptotic state where all the oscil-

FIG. 2. Evolution of the mean dispersion of frequencigs,
measured in units of the natural frequeneyin a one-dimensional
array of N=100 globally coupled oscillators with periodic bound-
ary conditions, for various values @t The dashed line stands for
the analytical slope obtained in Sec. Il for short delays.

Lo o ]
A0 o * o m=2 lators have the same frequency. For short delays, they have
m=1 ° °. also the same phase and are fully synchronized. For larger
. * e . m=3 delays we obtain the propagating structures studied in Sec.
. .0, Ill, where the phases vary linearly around the array. These
. fee, structures coexist for any set of time delays. The ranges
. ° where they are stable have, however, finite length. The sys-
107 o tem is multistable, since the stability ranges are partially
0 s 10 15 20 overlapping.
T
FIG. 3. SlopeA of the exponential decay of the mean frequency V. SUMMARY AND CONCLUSION

dispersion(see Fig. 2 as a function ofT. For each set of data, the

label m indicates the mode that describes the observed asymptotic W€ have considered an ensemble of globally coupled
state. Full dots stand for the results of numerical calculations witddentical phase oscillators with finite interaction velocity.
random-phase initial conditions, whereas empty dots correspond tohis finite velocity introduces time delays in the evolution
initial conditions prepared as perturbations of the propagatingequations, and makes the spatial coordinates of oscillators
modes, as explained in the text. relevant in spite of the infinite range of their interaction. As
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a matter of fact, we have found that the system developfor several geometries, such as one-dimensional arrays with
spatial structures, much like ensembles of locally interactindree boundaries, tregultrametrio structures, and two-
dynamical elements. This feature, which is reminiscent ofdimensional lattices with periodic and free boundaries. These
the behavior of reaction-diffusion systems, points out sharpesults, which will be presented elsewhdr&], provide
differences from the collective motion of coupled OSCi||at0rSStrong evidence that the state of frequency synchronization
without time delays. presented here is a quite generic form of asymptotic collec-
In the limit of short delays, we have been able to derivetive evolution for globally coupled systems with time delays,
an approximate analytical SO|uti0n fOI‘ arbitrary geometriesin both homogeneous and inhomogeneous geometries_ Un-
This solution describes the asymptotic approach toward gortunately, an analytical approach to our system in these
state where all the oscillators have the same frequencynore general situations appears to be impossible in practice
When the geometry is inhomogeneous—for instance, in th@yen at the level of deciding the existence of stationary so-
presence of boundaries—a stationary spatial distribution ofytions, and most conclusions rely at the moment on numeri-
phases appears. Numerical realizations for one-dimensiongh] evidence.
regular arrays with periodic boundary conditions reveal that  of course, the possible variations of the model with re-
the state of frequency synchronization is also attained fogpect to the individual dynamics of each coupled element are
larger delays. In this homogeneous geometry, a class Qfot exhausted with phase oscillators as in &). The next
propagating spatial structures, where the oscillator phasegep will be to study the effects of the present kind of time
vary linearly around the system, is observed. The existencgelays in ensembles formed by chaotic oscillators, where
of such structures can be derived analytically, and a numericoupling competes as a stabilizing mechanism against the

cal study shows that, for given parameter sets, they can B@herently unstable dynamics of individual elements.
simultaneously stable. Thus, as for many other instances of

globally coupled ensembles, our system exhibits multistabil-
ity [6]. ACKNOWLEDGMENT
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