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Macroscopic effects of the perturbation of the particle velocity distribution in a trigger wave
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Departure from the equilibrium particle velocity distribution induced by a chemical reaction is studied in an
inhomogeneous chemical bistable system in which a trigger wave can propagate. These nonequilibrium effects
influence the speed and shape of the trigger wave propagating between the two stable stationary states. In
contrast to the Fisher front, the discretization of the variables and the internal fluctuations do not sensitively
modify the macroscopic properties of the trigger wave. Analytical results deduced from the Boltzmann equa-
tion agree well with microscopic simulations using Bird’s method. Both approaches lead to large relative
corrections to the front speed, in particular for parameter values close to that corresponding to a stationary
interface between the two stable states.

PACS number~s!: 05.70.Ln, 51.10.1y, 82.20.Wt, 82.20.Mj
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I. INTRODUCTION

Kinetic theory studies based on the Boltzmann equa
have revealed that the perturbation of the particle velo
distribution induced by a chemical reaction may significan
influence the dynamics of gaseous chemical systems@1–4#.
The departure from the equilibrium distribution comes fro
the dependence of molecule reactivity on energy, so th
chemical process affects more strongly the populations
reactant molecules in a certain range of velocities. The c
sequence of this nonequilibrium effect at a macroscopic le
is a modification of the rate constants and transport coe
cients appearing in the macroscopic equations for the c
centrations of chemical species.

In this paper, we study the perturbation of the parti
velocity distribution induced by a reaction in a bistable
homogeneous chemical system. Our objective is to study
influence of such a nonequilibrium effect on the macrosco
properties of a wave front propagating between the t
stable stationary states of the system. We examine a ch
cal model with a third order reaction that was originally i
troduced by Schlo¨gl @5# to compare a bifurcation in an ope
system with the liquid-gas phase transition. Depending
the values of the rate constants, the reaction-diffusion eq
tion associated with the Schlo¨gl model admits either one o
three homogeneous stationary states. In this last case an
adequately chosen initial and boundary conditions, it p
sesses a unique wave-front solution, called the trigger w
connecting the two stable stationary states@6#. The propaga-
tion speed and the profile width of the front depend on
rate constants and on the diffusion coefficient of the che
cal species. Consequently, the corrections to the rate co
cients due to perturbations of the particle velocity distrib
tion may modify the values of the macroscopic properties
the front. Moreover, a previous study@7# of the Schlo¨gl
model in homogeneous conditions has revealed that the
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turbation of local equilibrium shifts the values of the statio
ary states, especially in the vicinity of a bifurcation. It ca
therefore be expected that the level of the plateau in
trigger front will be modified in the presence of a perturb
tion of the particle velocity distribution. The original Schlo¨gl
model involves reservoirs of chemical species. Keeping c
stant the concentrations of these species maintains the
tem out of chemical equilibrium. To avoid the costly sim
lation @7,8# of such reservoirs in the numerical procedure,
this paper we consider the following modified Schlo¨gl
model:

2A1B
3A, ~1!

A→B. ~2!

This reaction scheme differs somewhat from Schlo¨gl’s origi-
nal one, used in our previous study of homogeneous syst
@7#, but it also leads to third order reaction kinetics and
stability. The second reaction is supposed to be irreversi
so that one of the stable stationary states is associated w
vanishing concentration of speciesA. Since reactions~1! and
~2! do not proceed withoutA particles, there are no chemica
fluctuations within the domain occupied by this state. Th
if this is the receding stable state of the front, then we av
nucleation phenomena that could switch the system loc
to another stable state and create other spots of origin
front propagation. We assume that reaction~2! is induced by
an interaction with the exterior; for example, it may be
photochemical reaction. For this reason, the system is o
out of chemical equilibrium, and may exhibit multiple stab
stationary states.

The number of molecules is conserved by the above re
tions and it can be assumed that the total concentration
both speciesn5nA1nB is homogeneous and stationary. U
der this constraint, only one of the equations governing
macroscopic dynamics of the concentrations is independ
Moreover, if the initial condition depends only on one~let us
sayx) coordinate, the inhomogeneity will be of this form a
3156 ©2000 The American Physical Society
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the time. The standard reaction-diffusion equation for
concentrationnA of speciesA can then be written as

]nA

]t
52~k1

(0)1k21
(0) !nA

31k1
(0)nA

2n2k2nA1D
]2nA

]x2 , ~3!

whereD is the diffusion coefficient, andki
(0) are reaction rate

constants unperturbed by the nonequilibrium effects. In or
to investigate the effect of nonequilibrium velocity distrib
tions in the modified Schlo¨gl model with reactions~1! and
~2!, we consider the Boltzmann equation for the distributi
functions f a(x,v,t) for position x and velocityv of species
a5A,B. To simplify computations, we choose a model
reactive hard spheres already used in previous works inv
ing microscopic simulations of chemical systems@9–11#.
The molecules are considered as hard spheres with iden
massm and diameterd, which differ only by their chemical
identity. These chemical properties are changed in reac
collisions occurring when collision partners correspond t
given reaction and if a condition following from a molecul
reaction cross section is satisfied. The essential property
assume is that no heat is released in the reaction: Then,
from the chemical effect, the particle velocities are tra
formed in a reactive collision as in an elastic one. Mo
specifically, we set up the reaction cross section by cut
out a part of the original cross section of nonreactive h
spheres. Thus, for an observer blind to the chemical asp
all collisions are elastic, and the system seems as if it c
sists of simple hard spheres. Consequently, if we assume
the mixture as a whole is initially in mechanical equilibrium
it remains in this state all the time. Accordingly, the dist
bution function for the whole mixture satisfies the conditi

F~v !5 f A~x,v,t !1 f B~x,v,t !

5n~m/2pkT!3/2exp~2mv2/2kT!

[nc0~v !, ~4!

wherec0(v) is the normalized equilibrium Maxwellian dis
tribution function for velocities of molecules of massm in a
system at temperatureT. Condition ~4! can also be derived
rigorously from the kinetic equations consistent with t
properties introduced above. However, the velocity distri
tions of individual components in nonequilibrium conditio
are not Maxwellian, and the concentrations of the specie

E f a~x,v,t !dv5na~x,t !, a5A,B, ~5!

depend on positionx and timet. When reactive collisions are
less frequent than elastic collisions, the velocity distributio
of reactive species can be obtained from a perturbative s
tion of the Boltzmann equations@1,3#.

We verify analytical calculations of nonequilibrium e
fects by comparing them with microscopic simulations.
contrast to actual experiments, microscopic simulations m
be performed using exactly the same assumptions as in
theoretical approach. The direct simulation Monte Ca
~DSMC! method, initially proposed by Bird@12#, introduces
a stochastic treatment of binary collisions that relies on
same hypotheses as the Boltzmann equation and spee
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the simulation time by two or three orders of magnitude w
respect to actual molecular dynamics. The Bird method
already been successfully used to simulate reactive sys
@9–11# and may be directly compared with the theoretic
predictions.

The results of the macroscopic deterministic descript
of a trigger wave based on reaction scheme~1! and ~2! are
briefly recalled in the next section. In Sec. III we present
Boltzmann equation associated with the Schlo¨gl model and
obtain the solution of this equation by means of a pertur
tive method @1,3#. The corrections to the macroscop
reaction-diffusion equation~3! for the concentration of spe
ciesA are calculated using this solution. The procedure f
lowed to perform the microscopic simulations is given
Sec. IV and the analytical predictions are compared with
simulation results in Sec. V. Section VI contains conc
sions.

II. MACROSCOPIC DESCRIPTION
OF A TRIGGER WAVE

In the bistability domain, the macroscopic equation~3!
admits three stationary states obeying

A1,2
(0)5

k1
(0)n

2~k1
(0)1k21

(0) !
~16b!, ~6!

A3
(0)50, ~7!

with

b25124~k1
(0)1k21

(0) !k2 /~k1
(0)n!2>0. ~8!

We chooseb5(A1
(0)2A2

(0))/(A1
(0)1A2

(0)) as the control pa-
rameter to measure the distance from the two bifurcati
associated with the valuesb50 andb51. In the bistability
region, the parameterb obeys 0<b<1. The critical value
b50 (b51) corresponds to the coalescence of the unsta
stationary stateA2

(0) with the stable oneA1
(0) (A3

(0)). Equation
~3! admits a single wave front propagating at a const
speedU and connecting the two stable stationary statesnA

5A1
(0) andnA50:

nA~z!5A1
(0) exp~24z/E!

11exp~24z/E!
, ~9!

wherez5x2Ut is a coordinate in the frame moving wit
the front, andE is the profile width deduced from the stee
ness at the inflection point,

E5
4A2

A1
(0) S D

k1
(0)1k21

(0) D 1/2

. ~10!

The speedU of the front propagation,

U5S ~k1
(0)1k21

(0) !D

2 D 1/2

~A1
(0)22A2

(0)!, ~11!

is uniquely prescribed by the dynamics; it depends only
the rate coefficients in the reaction-diffusion equation. In
following, we impose the condition
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3158 PRE 62A. LEMARCHAND AND B. NOWAKOWSKI
A2
(0),

A1
(0)

2
~12!

so that the propagation speed remains positive. From
above condition it follows that

1/3,b<1. ~13!

We explain below that the propagation of the front in t
opposite direction would present a problem in the mic
scopic simulation procedure in the presence of a perturba
of local equilibrium. Note, however, that condition~13! pre-
vents one from studying the vicinity of the bifurcation ass
ciated withb50, i.e., with the coalescence ofA2

(0) andA1
(0) .

We know from a former analysis of the Schlo¨gl model in
homogeneous conditions@7# that it is precisely in the vicinity
of this bifurcation that even small nonequilibrium effects a
sensitively amplified by the dynamical system, leading
very large macroscopic effects, like a diverging correction
the nonvanishing stable stationary state. Nevertheless,
trigger wave, with its uniquely defined speed, appears a
good candidate for the analysis of the nonequilibrium effe
induced by a reaction, because other possible sources o
turbance do not lead to significant effects in this system. T
is not true for a wave front propagating into an unstable s
as in the Fisher model@13#. In this case, the existence of
continuous family of propagation speeds associated w
stable front solutions@14# makes the system sensitive to se
eral perturbations of different nature. In particular, the d
cretization of the variables occurring when switching fro
concentrations to particle numbers@15,16# and the internal
fluctuations@16,17# present in microscopic simulations a
known to modify the speed of this kind of wave front. A
these effects of different origin interfere and it is therefo
difficult to isolate the nonequilibrium effects in microscop
simulations of the Fisher front@11,16#. Stochastic descrip
tions of the trigger wave at a mesoscopic level prove that
effects of internal fluctuations@18# and variable discretiza
tion @19# arise only in very small systems and decrease
V23/2, whereV characterizes the system size. For the sys
studied in this paper, these effects can be neglected.

III. BOLTZMANN EQUATION
FOR THE SCHLÖ GL MODEL

Our treatment of the Boltzmann equation follows a pre
ous work @20# which presented the solution of the kinet
equation for an inhomogeneous binary mixture with bim
lecular reactions. However, a specific problem arises in
Schlögl model in relation to the existence of ternary col
sions according to reaction~1!. Introduction of processe
with simultaneous interactions of three or more molecu
poses a particular problem in the model of hard spheres
mimic this kind of collision we use the solution alread
adopted in microscopic simulations of the Brusselator mo
@10#. In the case of the forward reaction~1!, we first deter-
mine the reaction cross section for binary collision (A-B).
When this kind of encounter occurs, it is regarded as a
nary collision (A-B)-A if an A molecule is in the neares
neighborhood of the colliding pair (A-B). It can be assumed
that in such a small volume concentrations are uniform,
he
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consequently the probability of finding anA particle around
positionr of the colliding (A-B) pair is equal to the concen
tration fractionnA(r )/n, or, in terms of the velocity distribu-
tion, it is * f Adv/n. The exclusion correction is omitted, a
usual in the Boltzmann treatment. Thus, the term for
termolecular (A-B)-A reactive collisions consists of th
usual factor for binary (A-B) reactive collisions multiplied
by the probability factor given above. For reasons that w
be explained further, only this combination is accepted
the forward reaction~1!, while the combination of (A-A)
and B as a third partner is excluded. Triple collision
(A-A)-A are handled in the same fashion. The proced
used to introduce three-molecular reactions can be expla
in terms of the two-step mechanism: A binary collision
regarded as the formation of a molecular complex with
certain lifetime and the subsequent weak interaction of
doublet with a third, nearest molecule yields effectively
termolecular process@21#. The second stage can be treated
an induction effect, which is much faster than the first o
and the rate of such a termolecular reaction is determi
effectively by the frequency of the relevant binary collision
Equivalently, in the framework of the quasistationary sta
approximation@22#, the termolecular process is usually o
tained by elimination of a very reactive intermediate ste
This approach corresponds to the formulation of ternary c
lisions in standard chemical kinetics@23#. In the rigorous
approach in kinetic theory, many-particle collision terms
volve sequences of binary encounters of hard spheres
velocities correlated due to recollisions or cyclic collisio
@24#. Our implementation of ternary collisions relies on
simpler decomposition, in which a bimolecular stage is d
scribed by the usual Boltzmann term for binary collisions

As a molecular reaction model, we apply in this paper
line-of-centers model that has been extensively used in
vious theoretical work@3,4,20# and simulations@4,9,11,25#.
In a reactive encounter, the relative velocityg of molecules
in a direct binary collision must satisfy the condition

e•g>g* , ~14!

wheree denotes the unit vector along the line connecting
centers of the hard spheres at the instant of impact, andg* is
the threshold relative velocity. From condition~14! it follows
that the energy of the relative motion in a reactive collisi
exceeds the value~in units of kT)

e5
mg* 2

4kT
. ~15!

Thus, e is the activation energy of the reaction. Moreove
the reaction is effective with the probability given by th
steric factorss61 associated with forward and reverse rea
tions ~1!. There is no reaction heat, and thus the detai
balance condition requires that for reaction~1! the cross sec-
tions for the forward (s1* ) and reverse (s21* ) processes are
proportional@20#,

s1*

s1
5

s21*

s21
5s* . ~16!
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The steric factorss1 ands21 give the conditional probability
that molecules actually react, provided the energetic co
tion imposed by the cross sections* is satisfied. Let us
recall that, in the molecular model of reactive hard sphe
the cross sections for elastic collisions (se) and reactive col-
lisions (s* ) of molecules of the same species sum up to
cross section of nonreactive particles. For example, forA-B
collisions@which are also involved in the bimolecular step
forward reaction~1!# this means thatsAB

e 1(nA /n)s1* 5s0.
Taking into account the assumptions introduced abov

can easily be checked that the Boltzmann equation for
total distribution functionF5 f A1 f B is a closed equation
that does not contain terms for reactive collisions. The s
tially uniform Maxwellian distribution is then a stable st
tionary solution forF—this formally justifies condition~4!
for the distribution functions of the species. Due to this co
dition, it is sufficient to consider a kinetic equation for on
one species in the Schlo¨gl model; for componentA the Bolt-
zmann equation has the form

] f A

]t
1v•

] f A

]r
5J~ f A!1s1S E f B~v8! f A~v18!g ds* dv1D

3

E f A~v!dv

n
2s21

3S 1

2E f A~v8! f A~v18!g ds* dv1D
3

E f A~v!dv

n
2k2f A . ~17!

Only velocities are indicated explicitly as arguments off a in
the collision integrals, the primes denote postcollisional
locities, andg5uv2v1u. The termJ( f A) includes all inte-
grals for elastic collisions. As shown in previous pape
@7,20#, due to constraint~4! for the distribution functions, it
can be transformed into the following simple form:

J~ f A!5E @ f A~v8!F~v18!2 f A~v!F~v1!#g ds0 dv1 .

~18!

It is worth noting thatJ( f A) is a linear integral operator for
f A . Moreover,J( f A) is self-adjoint, with the scalar produc
defined as

^gu f &5E g~v! f ~v!@c0~v !#21dv. ~19!

The next two terms on the right side of Eq.~17! describe
termolecular reactive collisions related to reactions~1! ~ac-
cording to the approach described above! and the last term
represents irreversible reaction~2!. Using relation~16!, the
differential cross sections for reaction~1! are put in the form
dsr* 5srds* ,r561, whereds* is the differential cross
section with condition~14! for energy only.

Equation~17! is solved by means of the Chapman-Ensk
perturbative method@26#, originally successfully develope
for calculation of coefficients for transport processes. T
i-

s,

e

it
e

a-

-

-

s

s

solution method has been adopted to nonequilibrium che
cal kinetics in homogeneous conditions in many previo
kinetic theory studies of reactions in gases@1–3#. In the re-
cently presented extension of this approach to inhomo
neous chemical systems@20#, the perturbation treatment o
simultaneous chemical reactions and diffusion is applied
order to obtain higher order cross effects. The Chapm
Enskog method is valid if transport processes are slow
comparison with the relaxation of the velocity distribution b
elastic collisions@26,27#; the same limitation applies also t
reactive processes@28,29#. Under this condition, the time an
spatial derivatives as well as the collision integrals for re
tions can be treated as perturbations of the leading te
related to elastic collisions, which is the collision integr
J( f A) in the case of Eq.~17!. The solution obtained by this
method results in a macroscopic reaction-diffusion equa
which includes corrections due to the perturbation of
Maxwellian molecular velocity distributions. We adopt he
the derivation developed for a two-component chemical m
ture with reactions involving binary collisions@20#. The
modifications specific to the Schlo¨gl model are related only
to the treatment of ternary collisions in reaction~1!. We out-
line below the essential steps of the calculations, and refe
the earlier work@20# for details. The distribution function is
expanded in perturbation series as

f A5 f A
(0)1 f A

(1)1 f A
(2)1•••. ~20!

The introduction of Eq.~20! into the Boltzmann equation
~17! yields the expansion of the kinetic equation. The low
order equation contains the elastic collision integral sole
J( f A

(0))50. The only solution of this equation is the loc
equilibrium distribution

f A
(0)~r ,v,t !5nAc0~v !, ~21!

where nA is the number density of moleculesA, and the
function c0 is the Maxwellian velocity distribution at tem
peratureT as for the whole mixture. The lowest order a
proximation for the dynamics ofnA is obtained by inserting
function ~21! into the Boltzmann equation~17! and integrat-
ing over velocities. This yields the standard equation
chemical kinetics as if in a homogeneous system,

S ]nA

]t D (0)

5k1
(0)nA

2n2~k1
(0)1k21

(0) !nA
32k2nA . ~22!

The lowest order approximations for rate constantsk1
(0) and

k21
(0) of reaction~1! have the following form for the model o

reactive hard spheres considered here:

k1
(0)5s1 exp~2e!

4s0

n S kT

pmD 1/2

, ~23!

k21
(0)5

1

2
s21 exp~2e!

4s0

n S kT

pmD 1/2

. ~24!

In this approximation, the Boltzmann equation only justifi
the phenomenological law for chemical kinetics. Correctio
to the standard rate equation~22! are provided by the nex
order solution. The Boltzmann equation for higher ord
terms in expansion~20! involves the time derivative. The
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approximation for the so-called normal solutions assum
that the distribution function depends on time only implicit
through the hydrodynamic variables—in this case the c
centrationnA and its gradients. Consequently, the time d
rivative of the distribution function is calculated as follow

] f A
( i )

]t
5 (

k50

i ] f A
( i 2k)

]nA
S ]nA

]t D (k)

1 (
k50

i ] f A
( i 2k)

]“nA
•“S ]nA

]t D (k)

1•••.

~25!

The time derivatives (]nA /]t)(k) are calculated by integrat
ing over velocities thekth term of the expansion of the Bolt
zmann equation, obtained with the use of expansion~20! of
the distribution function. Thus, they provide thekth order
approximations to the dynamics ofnA . Equation~25! elimi-
nates the explicit time derivative from the Boltzmann equ
tion for the higher order terms of the distribution functio
given in Eq.~20!. In this approach, the equation for the fir
perturbative correctionf A

(1) has the form

“nA•vc02
nA

n

S 2
1

2
s21nA

21s1nAnBD
n

3@R~c0!2^c0uR~c0!&c0#5J~ f A
(1)!. ~26!

The linear integral operatorR introduced above is

R~f!5E f~v8!F~v18!g ds* dv1 . ~27!

It is related to the integrals for reactive collisions for reacti
~1!. In the following it is convenient to use the notation

Q5

2
1

2
s21nA

21s1nAnB

n
. ~28!

We also define the operation

f̄5f2^c0uf&c0 , ~29!

where f̄ is deduced fromf by substracting its projection
onto c0. Thus,f̄ is orthogonal to the kernel ofJ, which is
spanned only byc0 @the only solution ofJ( f )50#. The so-
lution of Eq. ~26! can then be written in the form

f A
(1)5

nA

n
Qv~v !1“nA•vx~v !, ~30!

where functionsv andx are the solutions of the following
linear integral equations

2R~c0!5J~v!, ~31!

vc05J~vx!. ~32!

The left hand sides of these equations are orthogonal to
kernel of J, so Eqs.~31! and ~32! are well defined. The
function v describes the perturbation of the equilibrium v
locity distribution caused by the chemical reaction, andvx
provides the anisotropic component of the velocity distrib
s

-
-

-

he

-

tion related to diffusion. Introducing the first correctionf (1)

into the Boltzmann equation and integrating over velocit
yields

S ]nA

]t D (1)

5S nA

n D 2

Q
dQ

dnA
^c0uR~v!&1D0DnA . ~33!

The first term of this equation gives the first order correct
to the standard reaction kinetics given in Eq.~3!. Note that
only multimolecular reactions~1! are effective in perturbing
the velocity distribution functionf A . In particular, the cor-
rection to the reaction rate vanishes when reaction~1! is
balanced, i.e., forQ50. More specifically, the condition fo
reaction imposed on the bimolecular step in the model c
sen for reactive collisions~1! favors molecules with highe
energy. Consequently, reaction results in an energy tran
from reactants to products, but only for the species that p
ticipate in a binary collision step. However, the forward r
action ~1!, which would involve twoA molecules in the bi-
nary collision, would not produce a systematic energy fl
from one species to the other, since the chemical identity
the partners of this binary complex is not changed in suc
realization of the termolecular reaction. For this reason
combination of a doublet (A-A) andB as a third molecule is
not considered as a ternary collision for the forward react
~1!. The unimolecular reaction~2! as a process of interna
transformation is independent of collisions, and does
cause any perturbation of the velocity distribution becaus
involves a uniform sampling from a givenf A .

The second term of Eq.~33! describes diffusion with a
coefficient given by the formula

D052
1

3
^c0uv2x&. ~34!

This result does not involve the chemical process, so that
approximation level gives the same diffusion coefficient
in the nonreactive system@26#. In order to calculate in turn
the correction to the transport process, it is necessary to
sort to the second order approximation. This involves
reactive collision integrals linearized aroundf (0),

Rl~f!5
nA

n

dQ

dnA
R~f!1

Q

n
R2~f!2k2f, ~35!

where the operatorR2 is given by

R2~f!5E ~f18F82f8F18!g ds* dv1 . ~36!

The equation forf (2) has the form

S d

dnA

nA

n
Q^c0uR~c0!&2k2D S nA

n
Qv1“nA•vx D

2k2

nA
2

n

dQ

dnA
v1v•“

nA

n
Qv1~v•“ !~v•“nA!x

2Rl S nA

n
Qv1“nA•vx D5J~ f A

(2)!. ~37!



he

n

m
tr
c

th

to

a
no
ot

im
on

-

nd
rm
e

s,

de-
teric
The
are

n-
he
ape
cal
t-

ns,

be

les
led.
eir

ga-
. In
ntly
ilute
ere

ure

ly
le

in-
cu-
ve-

ctual
cles

a-
ons

e-

PRE 62 3161MACROSCOPIC EFFECTS OF THE PERTURBATION OF . . .
The solution of this equation is obtained formally by t
action ofJ21 on both sides of Eq.~37!. We consider only the
terms off (2) containing“nA , which contribute to diffusion.
They yield the following correction to the diffusion term i
the standard macroscopic equation~3!:

S ]nA

]t D
di f f

(2)

5“•~D8“nA!

52
1

3
“•S nA

n

dQ

dnA
@^c0uR~c0!&^xuv2x&

12^vuv2x&2^vxuR~vx!&#

1
Q

n
@^c0uR~c0!&^xuv2x&

1^vuv2x&2^vxuR2~vx!&# D“nA . ~38!

Moreover, the Boltzmann equation yields an additional co
ponent in the second order dynamic equation for concen
tion nA . This term is related to the nonlinearity of the rea
tive collision integrals and contains the square of
concentration gradient@20#. For the Schlo¨gl model it has the
form

S ]nA

]t D
nonl

(2)

5
1

3
~“nA!2F d

dnA
S nA

n

dQ

dnA
D ^vuv2x&

1
1

2
nA

d2Q

dnA
2 E xx1~v•v1!g ds* dv dv1G .

~39!

In order to obtain the explicit form of the corrections
the dynamic equation fornA , the solutionsv andx of Eqs.
~31! and ~32! are needed. As usual, these functions are
sumed to be in the form of an expansion in Sonine poly
mials @26#; its convergence has been examined for b
transport@26,27# and chemical processes@3,29#. Two-term
solutions are commonly accepted as satisfactory approx
tions, and allow for use of convenient analytical expressi
as well:

v~v !5c0~v !@a1S1/2
(1)~c2!1a2S1/2

(2)~c2!#, ~40!

x~v !5c0~v !@b0S3/2
(0)~c2!1b1S3/2

(1)~c2!#, ~41!

wherec25mv2/2kT. The coefficientsai ,bi for the model of
reactive hard spheres are given by@20#

a152 1
2 exp~2e!@ 1

2 1e1 1
30 ~ 3

4 12e2e2!#, ~42!

a252 1
15 exp~2e!~ 3

4 12e2e2!, ~43!

and @26#

b052
59

58

3

32ns0
A m

pkT
, b15

4

59
b0 . ~44!

The terms~33!, ~38!, and ~39! can then be explicitly calcu
lated by quadratures with the above functionsv andx. The
-
a-
-
e

s-
-

h

a-
s

modified reaction-diffusion equation including up to seco
order corrections can be presented in the following fo
@when restricted like Eq.~3! to one dimension related to th
directionx of the front propagation#:

dnA

dt
5@2~k1

(0)1k21
(0) !nA

31k1
(0)nA

2n#~11h!2k2nA

1
]

]x
D0~11g!

]nA

]x
1qS ]nA

]x D 2

. ~45!

D05kTub0u/m is the diffusion coefficient for hard sphere
unperturbed by the reactions. Nonequilibrium correctionsh,
g, andq to the rate of chemical and transport processes
pend on reaction parameters—activation energy and s
factors—as well as on the concentrations of the species.
elementary but lengthy expressions for these coefficients
given in the Appendix. The above modified reactio
diffusion equation is the main result of our treatment of t
Boltzmann equation. The predictions for the speed and sh
of the perturbed trigger front are deduced from numeri
integration of Eq.~45!. In Sec. V we examine these theore
ical results by comparison with the microscopic simulatio
in which motion of individual particles is followed. The
method of the simulation is described in Sec. IV.

IV. MICROSCOPIC SIMULATION PROCEDURE

According to Bird’s simulation method@12#, the medium
is divided into linearly arranged cells of lengthDx equal to a
fraction of the mean free path. Each cell is assumed to
homogeneous. During the simulation time stepDt chosen as
a fraction of the mean free time, the free motion of partic
and their mutual collisions are supposed to be uncoup
Particle velocities are treated in three dimensions, but th
positions are projected onto the direction of front propa
tion, and the perpendicular coordinates are disregarded
these conditions, the sections of the cells and conseque
the number density are adjustable parameters and the d
gas assumption is not restrictive. The results presented w
obtained for the following parameter values: temperat
kT51, massm51, diameterd51, cell volumeV51, mean
number of particles in a cell,N5100. Assigning the values
of the steric factorss1 ands21 and activation energye de-
termines the rate constantsk1

(0) andk21
(0) . Then, for a chosen

value ofb, the rate constantk2 follows from Eq.~8!.
In order to simulate collisions, we choose random

DtN2s0gmax/2 pairs of particles in the same cell susceptib
to collision in time stepDt. Here,gmax is the continuously
updated maximum relative speed. The above number
cludes actual as well as null collisions, because it is cal
lated as for a hypothetical system in which the relative
locity for each pair of particles isgmax @30#. The standard
acceptance-rejection method is then applied to choose a
encounters: The collision between a chosen pair of parti
is accepted if their relative speed obeysg.Rgmax where 0
<R<1 is a random number@12#. The postcollisional rela-
tive velocity is calculated for randomly chosen impact p
rameter and deflection angle. In order to simulate reacti
~1! of the applied version of the Schlo¨gl model, the chemical
identity of the colliding pair changes according to the proc
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3162 PRE 62A. LEMARCHAND AND B. NOWAKOWSKI
dure described in the previous section. Let us give an
ample of the particular treatment adopted to simulate a
molecular reaction like (A1B)1A→3A. A collision
between a particleA and a particleB is reactive~i! with the
probability given by the steric factors1, ~ii ! if the condition
on relative velocity given in Eq.~14! is satisfied, and~iii ! if
a third particle, randomly chosen in the same cell, is anA.
When these three conditions are fulfilled, the particleB is
transformed intoA. Reaction~2! is reproduced by transform
ing during the time stepDt a numberk2nADt of randomly
chosenA particles intoB particles.

We choose as initial condition the unperturbed pro
given by Eq.~9!. The simulated medium is ten times long
than the front width. On the extreme left of the medium, t
numbers of particlesA and B in a cell initially obey NA

5A1
0V andNB5N2NA , whereas on the extreme right of th

medium, one has initiallyNA50 andNB5N.
We choose specific boundary conditions in order to mim

the propagation of a front of particlesA in an infinite me-
dium. In the case of the Fisher front@13#, associated with the
chemical reactionA1B→2A, the first ~last! cell was occu-
pied only by particlesA(B), which had an equilibrium ve-
locity distribution @11#. It was therefore possible to coup
the first and last cells by particular periodic boundary con
tions, simply by changing the chemical nature of the p
ticles that were crossing the permeable wall between the
and the first cell. For the Schlo¨gl front, we assume that th
left wall of the first cell as well as the right wall of the la
cell are impermeable: particles are elastically reflected
these walls. Actually, in this case, the last cells are filled o
with B particles that have an equilibrium velocity distrib
tion since there is no reaction in the absence ofA particles.
However, the first cells contain bothA and B particles,
whose velocity distributions are perturbed due to react
~1!. In these conditions, the possible arrival of a particleB
from the last cell into the first one cannot be treated prope
Moreover, in simulations we switch to the frame movin
with the front: each time the total number of particlesA
becomes greater than its initial value, the first left cell
transformed into the last right one with simultaneous tra
formation of its particlesA into B’s. At the same time, the
front position f(t) is increased byDx. This procedure is
made possible by the fact that the mixture of particlesA and
B ~as a whole! on the extreme left and the particlesB on the
extreme right both have equilibrium velocity distribution
For the parameter values chosen, this trick is actually p
formed only about every 100th time step on average. N
that the propagation of the front in the opposite directio
linked to a decrease of the total number of particlesA, would
require the suppression of the last cell containing onlyB’s in
equilibrium and the creation of a first cell containing pa
ticles A andB with different nonequilibrium velocity distri-
butions. It would be impossible to assign velocities to t
particles of each species in the new first cell.

V. COMPARISON OF THE MACROSCOPIC PROPERTIES
OF A TRIGGER WAVE DEDUCED

FROM THE BOLTZMANN EQUATION AND
FROM MICROSCOPIC SIMULATIONS

We deduce from the microscopic simulations a time
erage of the local fraction of particlesA, ^a(z)&
x-
r-

c

i-
-
st

y
y

n

y.

-

r-
te
,

e

-

5^nA(z)&/n, in cell z of the moving frame. It evolves to a
stationary profile and the moving frame reaches a station
mean speed̂U&. The results given in this section are o
tained for stationary conditions in the moving frame and
ter averaging over a time corresponding to more than8

reactive collisions. As shown in Fig. 1, the value of the le
front plateau is decreased with respect to the unpertur
stationary state valueA1

(0)/n, for both the profiles predicted
by the theory and deduced from the simulations. The slop
the inflection point, i.e., the profile width, is not sensitive
modified. It can be seen in Fig. 2 that the decrease of
front plateau is accompanied by a deviation of the kine
energy of particlesA from the equilibrium value. This in-
crease of particleA temperature is associated with a dev
tion of the particle velocity distribution from the Maxwellia

FIG. 1. Front profiles in the moving frame. The solid line co
responds to simulation results and gives the spatial variations o
time averaged fraction̂a(z)& of particlesA. The short-dashed line
corresponds to analytical results based on the Boltzmann equ
and the dotted line to the macroscopic prediction without noneq
librium corrections. The parameters take the following valu
steric factor of the forward~backward! reaction ~1! s151 (s21

50), activation energy of reaction~1! e51, control parameterb
50.35. The average is performed over a time corresponding
more than 2.73108 reactive collisions. The profiles have bee
slightly translated to improve readability.

FIG. 2. Spatial variations in the moving frame of the kurtos
kyz of the A particle velocity distribution and of the relative devia
tion of its second moment^vy

21vz
2& from its equilibrium value. The

solid lines correspond to simulation results, the dashed lines to
lytical results based on the Boltzmann equation. Same param
values as in Fig. 1.
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shape, as proved by the nonvanishing values of the kurto
The deformation of the velocity distribution ofA particles
can be expressed by the moments of the distribution;
confine ourself to the first order correction~30! determined
by Eqs.~40!—~44!. In order to avoid the anisotropy of ve
locity distribution induced by inhomogeneities in thex direc-
tion, we use the perpendicular velocityv'5(vy ,vz). The
second moment* f A(v,t)v'

2 dv5nA(t)^v'
2 &A is related to the

temperature of speciesA by kTA5 1
2 m^v'

2 &A . The relative
correction toTA calculated analytically by means of the pe
turbation solution of the Boltzmann equation is given by

TA2T

T
5

1

2
Xs12S s11

1

2
s21D nA

n
CnA

n
exp~2e!S e11

1

30
f 1D
~46!

with e15e11/2 and f 152e212e13/4. The shape of the
velocity distribution is indicated by the kurtosiskyz

5(m/2kT)2(^v'
4 &22^v'

2 &2) which vanishes for the Max
wellian distribution. The perturbation solution of the Bolt
mann equation gives the following expression for the kur
sis:

kyz52Xs12S s11
1

2
s21DnA

n
CnA

n
exp~2e!

3F 2

15
f 11

1

2
Xs12S s11

1

2
s21D nA

n
CnA

n

3exp~2e!S e11
1

30
f 1D 2G . ~47!

As well predicted by the analytical approach, temperat
shift and kurtosis reach maximum values in the steepest
of the front and tend to a nonvanishing limit in the region
the left front plateau. The deviation of macroscopic wa
front properties from the values predicted in the frame o
macroscopic approach by the unperturbed equation~3! is
clearly related to the frequency of reactive collisions
shown in Fig. 3: The relative deviations of left platea
height, profile width, and propagation speed from the unp
turbed values given respectively by Eqs.~6!, ~10!, and ~11!
decrease and eventually vanish as the activation energye of
reaction~1! increases.

The front speed appears to be the macroscopic prop
that is the most affected by nonequilibrium effects. Acco
ing to the simulation results and for the parameter val
chosen, the largest effect reaches 65% and is obtainede
51. As expected, the analytical predictions deduced from
perturbative approach of the Boltzmann equation are not
liable in the limit of very fast reaction. Whereas the pertu
bative approach predicts a positive correction to the fr
speed fore50, the simulation results lead to a negative o
Simulation results fore50 have been tested using a larg
value of the mean number of particles in each spatial cell:
N51000 we obtain the same negative correction to fr
speed as forN5100. As already mentioned at the end
Sec. II, the simulation results do not sensitively depend oN
in the case of a trigger wave@18,19#, contrary to the specific
case of a wave front propagating into an unstable s
@15,17,18#. As soon as the activation energy becomes gre
is.
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than 0.5, the analytical predictions based on the Boltzm
equation agree, at least qualitatively, with the simulation
sults. For variablee, the deviations of the second and four
moments of the particleA velocity distribution from their
equilibrium values are very well reproduced by the analyti
approach based on the Boltzmann equation. As shown in
4, the analytical predictions for the limit values reached
the left front plateau by correction to particleA temperature
and by kurtosis agree remarkably with the simulation resu
Note that the nonvanishing corrections to macroscopic fr
properties, observed in Fig. 3 ase becomes smaller than 4
can be correlated with the nonvanishing corrections to eq
librium velocity distribution appearing in Fig. 4 for exactl
the same range of activation energies.

We examine in Figs. 5 and 6 how the macroscopic fro
properties are affected by nonequilibrium effects when
control parameterb, defined by Eq.~8!, varies. According to
the prediction of the unperturbed macroscopic descripti
the front speed vanishes asb tends to 1/3. This result ex

FIG. 3. Comparison between simulation results~triangles and
circles! and analytical results~squares and crosses! based on the
Boltzmann equation: relative deviations from their macrosco
predictions of front propagation speed~solid polygons!, time aver-
aged profile width~open polygons!, and left plateau height~crosses
and circles!, as functions of activation energye. The parameters
take the following values: steric factor of the forward~backward!
reaction~1! s151 (s2150), control parameterb50.35.

FIG. 4. Comparison between simulation results~symbols! and
analytical results~lines! based on the Boltzmann equation: vari
tions with activation energye of the limit value reached in the lef
plateau of the front for the kurtosiskyz ~open triangles and dashe
line! of the A particle velocity distribution and for the relative de
viation of its second moment^vy

21vz
2& from its equilibrium value

~solid triangles and solid line!. Same parameter values as in Fig.
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3164 PRE 62A. LEMARCHAND AND B. NOWAKOWSKI
plains why the relative correction to front speed induced
nonequilibrium effects diverges asb→1/3. A different be-
havior is observed for the nonvanishing front properties s
as width and left plateau height, whose corrections rem
bounded in the vicinity ofb51/3. The growth of the distor-
tion from the Maxwellian particle velocity distribution, ob
served in Fig. 6 asb decreases from 1, is related to th
approach of the bifurcation predicted forb50. Actually, we
know from analysis of the Schlo¨gl model in homogeneou
conditions @7# that the bifurcation diagram is sensitive
modified by nonequilibrium effects and that the bifurcati
associated with the coalescence of the nonvanishing st
stationary state and the unstable one occurs earlier, for s
positive value ofb. We have shown that, in the vicinity o
this bifurcation, the dynamical system presents an enhan
sensitivity to nonequilibrium effects. This tendency is pe
ceivable in the case of the inhomogeneous system asb ap-
proaches 1/3.

Finally, we study in Figs. 7 and 8 how the nonequilibriu
corrections to macroscopic front properties vary with t
steric factors21 of the backward reaction~1!. As s21 in-
creases, the corrections to front properties diminish, as d
the distortion to particle velocity distribution. Let us consid
nonequilibrium effects induced by the reactive collisio
(A1B)1A→3A, related to the forward reaction~1!. A col-
lision between a particleA and a particleB will be most
likely accepted ifA andB are both fast, so that the twoA’s,
which will be created in case of reaction, will also mo
likely be fast. It is therefore not surprising to observe

FIG. 5. Same as for Fig. 3 for a variable control parameterb and
an activation energy fixed ate51.

FIG. 6. Same as for Fig. 4 for a variable control parameterb and
an activation energy fixed ate51.
y

h
in

ble
me

ed
-

es
r

t

increase of the kinetic energy of particlesA due to forward
reaction ~1!, and a simultaneous cooling of particlesB,
whose fastest representatives are transformed intoA’s.
Clearly, the reverse reaction~1!, which createsB’s from the
population ofA, has the opposite tendency and weakens
effect induced by the forward reaction. As can be seen
Fig. 8, the effect of the forward reaction always prevails
the upper stationary state, because the forward process
be faster there to ensure balance between reaction~1! and
irreversible reaction~2!. The agreement between the theor
ical predictions and simulation results worsens whens21
increases. These discrepancies probably result from the
clusion correction arising in simulations due to the fin
number of particles in a cell. It should be noted that t
exclusion effect is much stronger for the reverse reaction~1!
than for the forward reaction, because the former involv
three molecules of the same species.

VI. CONCLUSIONS

In this paper we have studied a trigger wave front pro
gating between the two stable stationary states of an inho
geneous chemical system. Imposing specific conditions,
have been able to eliminate nucleation phenomena, wh
could disturb the front propagation. It has been proved th
departure from the equilibrium particle velocity distributio
induced by a chemical reaction modifies the macrosco
properties of the front. The trigger front gives a good opp

FIG. 7. Same as for Fig. 3 for a variable steric factors21 and an
activation energy fixed ate51.

FIG. 8. Same as for Fig. 4 for a variable steric factors21 and an
activation energy fixed ate51.
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tunity to study these nonequilibrium effects because in
system the perturbations due to variable discretization
internal fluctuations can be neglected. This is a great adv
tage over the case of a wave front propagating into an
stable state, where all the perturbations of different orig
interfere@11,16#.

From the perturbation solution of the Boltzmann equat
we have derived a modified reaction-diffusion equation
concentrations which includes the corrections due to the n
equilibrium effects, to both the reaction and the diffusi
terms. The speed and shape of the perturbed front has
calculated using a numerical solution of this modifi
reaction-diffusion equation. It should be emphasized t
derivation of these results cannot neglect the perturbatio
the diffusion process, and thus cannot be obtained from
perturbed equation for the chemical kinetics only, conside
in the previous paper on the homogeneous bistable sys
@7#. We showed there that values of stationary states ca
changed due to nonequilibrium effects. However, it can e
ily be calculated@from Eq. ~45! with neglect of all terms
related to inhomogeneities# that the relative shifts of the two
stationary statesA1 andA2 are approximately the same an
negative. It can be seen from Eq.~11! that this will slow
down propagation of the front. On the contrary, our theor
ical predictions and microscopic simulations almost alwa
give an increase of the front speed.

Provided the reaction is not very fast, the theoretical p
dictions based on the reaction-diffusion equation agree q
well with the results of microscopic simulations using Bird
method, even for such a sensitive quantity as the fourth o
cumulant ~or kurtosis! of the particle velocity distribution.
Superposition of different effects prevented us from reach
such a good agreement in the previous study of a wave f
propagating into an unstable state@11,16#. The nonequilib-
rium effects for the trigger front are strongest when the
tivation energy of the reaction is comparable to the therm
energy. The largest effects are observed on the speed o
front, for which the relative correction reaches 65% for p
rameter values close to that corresponding to a station
interface between the two stable stationary states. The
teau height and the front width are also affected by the n
equilibrium effects, but the relative corrections in these ca
do not exceed 10%. We expect stronger corrections in
vicinity of the bifurcation associated with the coalescence
the unstable stationary state with the nonvanishing stable
tionary state. The previous study@7# of a homogeneous
bistable system revealed the existence of diverging cor
tions to the nonvanishing stable stationary state value n
this bifurcation. However, the conditions applied in this p
ch
is
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per allowed us on the one hand to avoid the problem
nucleation, but on the other hand prevented us from study
the vicinity of this bifurcation.
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APPENDIX

For the line-of-centers model of reactive hard spheres,
coefficientsh, g, andq in Eq. ~45! are given by

h5S s12~2s11s21!
nA

n DnA

n

1

4

3exp~2e!@~ 1
2 1e!21 1

30 ~ 3
4 12e2e2!2#, ~A1!

g5S s1d12
nA

n
~2s11s21!d2DnA

n
, ~A2!

d15exp~2e!F2
5

8
12e2

1

59S 5

4
111e1

13

2
e2D

1S 1

59D
2

~24110e110e212e3!G , ~A3!

d25exp~2e!F2
1

2
1e1

1

59S 2
1

4
15e2

7

2
e2D

1S 1

59D
2S 2314e2

5

4
e2D G , ~A4!

q5
D0

n S 2s1d31
nA

n
~2s11s21!d4D , ~A5!

d35exp~2e!F1

4
1

1

2
e2

1

59S 5

4
1

5

3
e1

5

3
e2D

211S 1

59D
2S 3

4
12e2e2D G , ~A6!

d45exp~2e!F5

8
1

5

4
e2

1

59S 7

2
1

5

2
e14e2D

2S 1

59D
2S 9

2
25e25e22e3D G , ~A7!
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