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Macroscopic effects of the perturbation of the particle velocity distribution in a trigger wave
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Departure from the equilibrium particle velocity distribution induced by a chemical reaction is studied in an
inhomogeneous chemical bistable system in which a trigger wave can propagate. These nonequilibrium effects
influence the speed and shape of the trigger wave propagating between the two stable stationary states. In
contrast to the Fisher front, the discretization of the variables and the internal fluctuations do not sensitively
modify the macroscopic properties of the trigger wave. Analytical results deduced from the Boltzmann equa-
tion agree well with microscopic simulations using Bird’s method. Both approaches lead to large relative
corrections to the front speed, in particular for parameter values close to that corresponding to a stationary
interface between the two stable states.

PACS numbgs): 05.70.Ln, 51.10ty, 82.20.Wt, 82.20.Mj

[. INTRODUCTION turbation of local equilibrium shifts the values of the station-
ary states, especially in the vicinity of a bifurcation. It can

Kinetic theory studies based on the Boltzmann equatiortherefore be expected that the level of the plateau in the
have revealed that the perturbation of the particle velocityirigger front will be modified in the presence of a perturba-
distribution induced by a chemical reaction may significantlytion of the particle velocity distribution. The original Schlo
influence the dynamics of gaseous chemical systgmg].  model involves reservoirs of chemical species. Keeping con-
The departure from the equilibrium distribution comes fromstant the concentrations of these species maintains the sys-
the dependence of molecule reactivity on energy, so that m out of chemical equilibrium. To avoid the costly simu-
chemical process affects more strongly the populations oftion[7,8] of such reservoirs in the numerical procedure, in
reactant molecules in a certain range of velocities. The corthis paper we consider the following modified Sajilo
sequence of this nonequilibrium effect at a macroscopic levemodel:
is a modification of the rate constants and transport coeffi-
cients appearing in the macroscopic equations for the con- 2A+B=3A, (1)
centrations of chemical species.

In this paper, we study the perturbation of the particle
velocity distribution induced by a reaction in a bistable in-
homogeneous chemical system. Our objective is to study the
influence of such a nonequilibrium effect on the macroscopicThis reaction scheme differs somewhat from Sghtoorigi-
properties of a wave front propagating between the twmal one, used in our previous study of homogeneous systems
stable stationary states of the system. We examine a chenji?], but it also leads to third order reaction kinetics and bi-
cal model with a third order reaction that was originally in- stability. The second reaction is supposed to be irreversible,
troduced by Schigl [5] to compare a bifurcation in an open so that one of the stable stationary states is associated with a
system with the liquid-gas phase transition. Depending orvanishing concentration of speci@sSince reactiongl) and
the values of the rate constants, the reaction-diffusion equd?) do not proceed withouA particles, there are no chemical
tion associated with the Sclgbmodel admits either one or fluctuations within the domain occupied by this state. Thus,
three homogeneous stationary states. In this last case and fibthis is the receding stable state of the front, then we avoid
adequately chosen initial and boundary conditions, it posnucleation phenomena that could switch the system locally
sesses a unigue wave-front solution, called the trigger waveo another stable state and create other spots of origin of
connecting the two stable stationary stdi®ls The propaga- front propagation. We assume that reacti@nis induced by
tion speed and the profile width of the front depend on thean interaction with the exterior; for example, it may be a
rate constants and on the diffusion coefficient of the chemiphotochemical reaction. For this reason, the system is open,
cal species. Consequently, the corrections to the rate coeffout of chemical equilibrium, and may exhibit multiple stable
cients due to perturbations of the particle velocity distribu-stationary states.
tion may modify the values of the macroscopic properties of The number of molecules is conserved by the above reac-
the front. Moreover, a previous study] of the Schigl tions and it can be assumed that the total concentration of
model in homogeneous conditions has revealed that the pelboth species = n,+ ng is homogeneous and stationary. Un-

der this constraint, only one of the equations governing the

macroscopic dynamics of the concentrations is independent.
*Email address: anle@Iptl.jussieu.fr Moreover, if the initial condition depends only on ofiet us
"Email address: bogn@ichf.edu.pl sayx) coordinate, the inhomogeneity will be of this form all
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the time. The standard reaction-diffusion equation for thethe simulation time by two or three orders of magnitude with

concentratiom, of speciesA can then be written as respect to actual molecular dynamics. The Bird method has
already been successfully used to simulate reactive systems
AN any [9-11] and may be directly compared with the theoretical

— == (KP4 kO)n3+k{¥nin—kna+ D

at X2’ 3) predictions.

The results of the macroscopic deterministic description
whereD is the diffusion coefficient, ank®) are reaction rate of a trigger wave based on reaction schefbieand (2) are
constants unperturbed by the nonequilibrium effects. In ordebriefly recalled in the next section. In Sec. Ill we present the
to investigate the effect of nonequilibrium velocity distribu- Boltzmann equation associated with the Sghimodel and
tions in the modified Schlyl model with reactiongl) and  obtain the solution of this equation by means of a perturba-
(2), we consider the Boltzmann equation for the distributiontive method [1,3]. The corrections to the macroscopic
functionsfa(xlvit) for positionx and Ve|ocityv of Species reaction-diffusion equatio(‘B) for the concentration of spe-
a=A,B. To simplify computations, we choose a model of CiesA are calculated using this solution. The procedure fol-
reactive hard spheres already used in previous works involMowed to perform the microscopic simulations is given in
ing microscopic simulations of chemical systefigs-11].  Sec. IV and the analytical predictions are compared with the
The molecules are considered as hard spheres with identicéimulation results in Sec. V. Section VI contains conclu-
massm and diameted, which differ only by their chemical SIlons.
identity. These chemical properties are changed in reactive
collisions occurring when collision partners correspond to a Il. MACROSCOPIC DESCRIPTION
given reaction and if a condition following from a molecular OF A TRIGGER WAVE
reaction cross section is satisfied. The essential property we . - . . .
assume is that no heat is released in the reaction:pThF()en,gpar In the bistability domain, the macroscopic equati@)

from the chemical effect, the particle velocities are trans> mits three stationary states obeying

formed in a reactive collision as in an elastic one. More KO
specifically, we set up the reaction cross section by cutting A(loz)zl—(lt b) (6)
out a part of the original cross section of nonreactive hard ’ 2(k(l°)+ k(,oi)

spheres. Thus, for an observer blind to the chemical aspect,

all collisions are elastic, and the system seems as if it con- AL =0, (7)
sists of simple hard spheres. Consequently, if we assume that

the mixture as a whole is initially in mechanical equilibrium, with

it remains in this state all the time. Accordingly, the distri-

bution function for the whole mixture satisfies the condition b2=1-4(k{?+kk,/(k{Pn)?=0. €)
F(0)=fA(,V,1) + F(6V,t) We chooseb= (A"~ A{)/ (A" +AY) as the control pa-
o ) rameter to measure the distance from the two bifurcations
=n(m/27kT)>exp( —mv</2kT) associated with the valuds=0 andb=1. In the bistability

region, the parametds obeys G<b=<1. The critical value
b=0 (b=1) corresponds to the coalescence of the unstable
stationary statd$’) with the stable on&{®) (A{)). Equation
(3) admits a single wave front propagating at a constant
speedU and connecting the two stable stationary statgs

Enlr//O(U)l (4)

where o(v) is the normalized equilibrium Maxwellian dis-
tribution function for velocities of molecules of massin a

system at temperaturE Condition (4) can also be derived )
rigorously from the kinetic equations consistent with the=A1 andn,=0:
properties introduced above. However, the velocity distribu- expl — 4¢/E)
tions of individual components in nonequilibrium conditions na()=AP —— =
are not Maxwellian, and the concentrations of the species b l+exp(—4L/E)’

C)

where {=x—Ut is a coordinate in the frame moving with
f f(x,v,t)dv=n,(x,t), «a=A,B, (5) the front, ancE is the profile width deduced from the steep-
ness at the inflection point,

depend on positior and timet. When reactive collisions are 1/2
less frequent than elastic collisions, the velocity distributions - iﬁ D (10)
of reactive species can be obtained from a perturbative solu- A | k04 K©)
tion of the Boltzmann equatiori4,3].
We verify analytical calculations of nonequilibrium ef- The speedJ of the front propagation,
fects by comparing them with microscopic simulations. In
contrast to actual experiments, microscopic simulations may (k(10)+k(9%)D v ) 0)
be performed using exactly the same assumptions as in the - 2 =] (AT7=2A37), (1)

theoretical approach. The direct simulation Monte Carlo

(DSMC) method, initially proposed by BirflL2], introduces is uniquely prescribed by the dynamics; it depends only on
a stochastic treatment of binary collisions that relies on thehe rate coefficients in the reaction-diffusion equation. In the
same hypotheses as the Boltzmann equation and speeds fofiowing, we impose the condition
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A consequently the probability of finding aaparticle around
A(20)<T (12 positionr of the colliding (A-B) pair is equal to the concen-
tration fractionna(r)/n, or, in terms of the velocity distribu-
so that the propagation speed remains positive. From thiion, |t'|s Jfadv/n. The exclusion correction is omitted, as
above condition it follows that usual in the Boltzmann treatment. Thus, the term for the
termolecular A-B)-A reactive collisions consists of the
1/3<b<1. (13  usual factor for binary A-B) reactive collisions multiplied
by the probability factor given above. For reasons that will

We explain below that the propagation of the front in thebe explained further, only t_his combinat.ion.is accepted for
opposite direction would present a problem in the micro-the forward reactior(1), while the combination of A-A)
scopic simulation procedure in the presence of a perturbatioAnd B as a third partner is excluded. Triple collisions
of local equilibrium. Note, however, that conditioh3) pre- ~ (A-A)-A are handled in the same fashion. The procedure
vents one from studying the vicinity of the bifurcation asso-Used to introduce three-molecular reactions can be explained
ciated withb=0, i.e., with the coalescence Af” andA{®. I terms of the two-step mechanism: A binary collision is
We know from ,a fc;rmer analysis of the S'c':glcmodell in regarded as the formation of a molecular complex with a
homogeneous conditiofig] that it is precisely in the vicinity certain I|fgt|me an_d the subsequent weak_ |nteract|on_ of this
of this bifurcation that even small nonequilibrium effects aredoublet with a third, nearest molecule yields effectively a
sensitively amplified by the dynamical system, leading totermolecu_lar proces[Ql]_. Th_e second stage can be tr(_eated as
very large macroscopic effects, like a diverging correction to?" induction effect, which is much faster than the first one,
the nonvanishing stable stationary state. Nevertheless, tfd the rate of such a termolecular reaction is determined

trigger wave, with its uniquely defined speed, appears as gffectively by the frequency of the relevant binary collisions.

good candidate for the analysis of the nonequilibrium effect&auivalently, in the framework of the quasistationary state
induced by a reaction, because other possible sources of di@PProximation[22], the termolecular process is usually ob-
turbance do not lead to significant effects in this system. Thi&&ined by elimination of a very reactive intermediate step.
is not true for a wave front propagating into an unstable statd NiS @pproach corresponds to the formulation of ternary col-
as in the Fisher moddlL3]. In this case, the existence of a 1SI0nS in standard chemical kineti¢€3]. In the rigorous
continuous family of propagation speeds associated witi@Pproach in kinetic th(_aory, many-particle collision terms in-
stable front solution§14] makes the system sensitive to sev- V0IVe sequences of binary encounters of hard spheres with
eral perturbations of different nature. In particular, the dis-velocities correlated due to recollisions or cyclic collisions
cretization of the variables occurring when switching from[24]: Our implementation of ternary collisions relies on a
concentrations to particle humbeis5,16 and the internal swn_pler decomposition, in which a blmolet_:ular stage_ is de-
fluctuations[16,17] present in microscopic simulations are SCTibed by the usual Boltzmann term for binary collisions.
known to modify the speed of this kind of wave front. All _AS @ molecular reaction model, we apply in this paper the
these effects of different origin interfere and it is thereforeline-of-centers model that has been extensively used in pre-
difficult to isolate the nonequilibrium effects in microscopic Vious theoretical work3,4,2Q and simulation§4,9,11,29.
simulations of the Fisher froftL1,16. Stochastic descrip- " & réactive encounter, the relative veloogyof molecules
tions of the trigger wave at a mesoscopic level prove that thd @ direct binary collision must satisfy the condition

effects of internal fluctuationgl8] and variable discretiza-

tion [19] arise only in very small systems and decrease as e-g=g~, (14
Q%2 whereQ) characterizes the system size. For the system
studied in this paper, these effects can be neglected. wheree denotes the unit vector along the line connecting the
centers of the hard spheres at the instant of impactgénd
l1l. BOLTZMANN EQUATION the threshold relative velocity. From conditiGh) it follows
FOR THE SCHLO GL MODEL that the energy of the relative motion in a reactive collision

) _exceeds the valuén units ofkT)
Our treatment of the Boltzmann equation follows a previ-
ous work[20] which presented the solution of the kinetic .2
equation for an inhomogeneous binary mixture with bimo- _mg (15)

lecular reactions. However, a specific problem arises in the AT

Schlaggl model in relation to the existence of ternary colli-

sions according to reactiofl). Introduction of processes Thus, e is the activation energy of the reaction. Moreover,

with simultaneous interactions of three or more moleculeshe reaction is effective with the probability given by the

poses a particular problem in the model of hard spheres. Teteric factorss. ; associated with forward and reverse reac-
mimic this kind of collision we use the solution already tions (1). There is no reaction heat, and thus the detailed
adopted in microscopic simulations of the Brusselator modepalance condition requires that for reactidn the cross sec-

[10]. In the case of the forward reactidf), we first deter-  tions for the forward ¢%) and reversed* ;) processes are
mine the reaction cross section for binary collisiok-B).  proportional[20],

When this kind of encounter occurs, it is regarded as a ter-

nary collision A-B)-A if an A molecule is in the nearest % *

neighborhood of the colliding paiA-B). It can be assumed I (16)
that in such a small volume concentrations are uniform, and S1 S
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The steric factors; ands_; give the conditional probability solution method has been adopted to nonequilibrium chemi-
that molecules actually react, provided the energetic condieal kinetics in homogeneous conditions in many previous
tion imposed by the cross sectiar® is satisfied. Let us kinetic theory studies of reactions in ga$és-3. In the re-
recall that, in the molecular model of reactive hard spheres;ently presented extension of this approach to inhomoge-
the cross sections for elastic collisions®j and reactive col- neous chemical systeni20], the perturbation treatment of
lisions (6*) of molecules of the same species sum up to thesimultaneous chemical reactions and diffusion is applied in
cross section of nonreactive particles. For example Af@3 order to obtain higher order cross effects. The Chapman-
collisions[which are also involved in the bimolecular step of Enskog method is valid if transport processes are slow in
forward reaction(1)] this means thatrig+ (Na/n) oy = oy. comparison with the relaxation of the velocity distribution by
Taking into account the assumptions introduced above, ielastic collisiond26,27]; the same limitation applies also to
can easily be checked that the Boltzmann equation for théeactive process¢&8,29. Under this condition, the time and
total distribution functionF=f,+fg is a closed equation spatial derivatives as well as the collision integrals for reac-
that does not contain terms for reactive collisions. The spations can be treated as perturbations of the leading terms
tially uniform Maxwellian distribution is then a stable sta- related to elastic collisions, which is the collision integral
tionary solution forF—this formally justifies condition4)  J(fa) in the case of Eq(17). The solution obtained by this
for the distribution functions of the species. Due to this con-method results in a macroscopic reaction-diffusion equation
dition, it is sufficient to consider a kinetic equation for only Which includes corrections due to the perturbation of the

one species in the Sclybmodel; for componenA the Bolt- ~ Maxwellian molecular velocity distributions. We adopt here
zmann equation has the form the derivation developed for a two-component chemical mix-

ture with reactions involving binary collisiong20]. The

dfa dfa , , modifications specific to the Sclybmodel are related only
TV =) +Sl( f fa(v')fa(v)g do™dv, to the treatment of ternary collisions in reactidn. We out-
line below the essential steps of the calculations, and refer to
the earlier worl{ 20] for details. The distribution function is
fa(v)dv . . .
y expanded in perturbation series as
: fa= O+ D4 @ (20)
1
X Ef fa(V)fa(vy)g do* dvl) The introduction of Eq.(20) into the Boltzmann equation
(17) yields the expansion of the kinetic equation. The lowest
order equation contains the elastic collision integral solely,
J fa(v)dv J(f)=0. The only solution of this equation is the local
XT —kyfp. (17) equilibrium distribution
fO(r,v,t) =nato(v), (22)

Only velocities are indicated explicitly as argumentd gfin
the collision integrals, the primes denote postcollisional veyynhere n, is the number density of molecules and the
locities, andg=|v—v,|. The termJ(f,) includes all inte-  fynction 4, is the Maxwellian velocity distribution at tem-

grals for elastic collisions. As shown in previous papersperatureT as for the whole mixture. The lowest order ap-
[7,20], due to constraint4) for the distribution functions, it proximation for the dynamics ai, is obtained by inserting

can be transformed into the following simple form: function (21) into the Boltzmann equatiofl7) and integrat-
ing over velocities. This yields the standard equation for
J(fA):J [fa(V)F(v])—fa(V)F(v1)]g dogdv, . chemical kinetics as if in a homogeneous system,
(18) g\ ©

0
) kP (KD ny. @2

It is worth noting that](f,) is alinear integral operator for

fa. Moreover,J(f,) is self-adjoint, with the scalar product L
A (fa) ] P The lowest order approximations for rate constdd?$ and

defined as ) ]
k() of reaction(1) have the following form for the model of
B reactive hard spheres considered here:
(9|f>:fg(V)f(V)[¢o(v)] 'dv. (19
O 4o KT |12

The next two terms on the right side of E.7) describe L =S1exp—e) = Tl 23
termolecular reactive collisions related to reactidhs (ac-
cording to the approach described abosad the last term ) Aog KT\ 1?2
represents irreversible reactié®). Using relation(16), the k_1=§s,1exr(—e)T m (24)

differential cross sections for reacti¢h) are put in the form

doj =s,do*,p=*1, whereds* is the differential cross In this approximation, the Boltzmann equation only justifies

section with conditior(14) for energy only. the phenomenological law for chemical kinetics. Corrections
Equation(17) is solved by means of the Chapman-Enskogto the standard rate equatié®2) are provided by the next

perturbative methodl26], originally successfully developed order solution. The Boltzmann equation for higher order

for calculation of coefficients for transport processes. Thigerms in expansiorf20) involves the time derivative. The
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approximation for the so-called normal solutions assumesion related to diffusion. Introducing the first correctié
that the distribution function depends on time only implicitly into the Boltzmann equation and integrating over velocities
through the hydrodynamic variables—in this case the conyields

centrationn, and its gradients. Consequently, the time de-

rivative of the distribution function is calculated as follows: ana\ M ny\2 dQ
- o —o) =15 QgnitolR(@)+DoAns. (33
gt L ot a0 L ot fana\® :
_ = — + . -
o dna ( at ) =0 dVnpu ( at ) The first term of this equation gives the first order correction

(25  to the standard reaction kinetics given in E8). Note that
only multimolecular reactionél) are effective in perturbing
the velocity distribution functiorf . In particular, the cor-
rection to the reaction rate vanishes when reactibnis

The time derivatives dn,/dt)¥ are calculated by integrat-
ing over velocities thdth term of the expansion of the Bolt-
zmann equation, obtained with the use of expans®h of  hajanced, i.e., fo=0. More specifically, the condition for
the distribution function. Thus, they provide théh order  reaction imposed on the bimolecular step in the model cho-
approximations to the dynamics of. Equation(25) elimi-  sen for reactive collisionél) favors molecules with higher
nates the explicit time derivative from the Boltzmann equa-gnergy. Consequently, reaction results in an energy transfer

tion for the higher order terms of the distribution function from reactants to products, but only for the species that par-
given in Eq.(20). In this approach, the equation for the first jjcipate in a binary collision step. However, the forward re-

perturbative correctio$) has the form action (1), which would involve twoA molecules in the bi-
1 nary collision, would not produce a systematic energy flux
—Zs .n24+snan from one species to the other, since the chemical identity of
2 —1'A 1''Al'B . . . .
Vi..v _Na the partners of this binary complex is not changed in such a
VYo n n realization of the termolecular reaction. For this reason, a

W combination of a doubletX-A) andB as a third molecule is
X[R(0) = (%ol R(#0)) o] =I(fR"). (260 not considered as a ternary collision for the forward reaction
(1). The unimolecular reactiof2) as a process of internal
transformation is independent of collisions, and does not
cause any perturbation of the velocity distribution because it
R(¢)=f d(V)F(vy)gdo*dv,. (27)  involves a uniform sampling from a givefy .
The second term of E(33) describes diffusion with a
It is related to the integrals for reactive collisions for reactioncoefficient given by the formula
(2). In the following it is convenient to use the notation

The linear integral operatdR introduced above is

1
1, Do=— 3{%olv’x). (34)
- 53—1nA+ SN
Q= o : (28)  This result does not involve the chemical process, so that this
approximation level gives the same diffusion coefficient as
We also define the operation in the nonreactive systefi26]. In order to calculate in turn

. the correction to the transport process, it is necessary to re-

b= d— (ol d) o, (29  sort to the second order approximation. This involves the

o reactive collision integrals linearized aroun’,
where ¢ is deduced from¢ by substracting its projection
onto ¢,. Thus, ¢ is orthogonal to the kernel af, which is
spanned only by}, [the only solution of]J(f)=0]. The so-
lution of Eg. (26) can then be written in the form

na d
Ri(¢)= FAd—riwa 2Rkt @9

where the operatdR_ is given by

n
f(A1)=FAQw(v)+VnA~vX(v), (30)
R ()= | (6iF - ¢'Fhgdoan. (@30

where functionsw and y are the solutions of the following

linear integral equations The equation forf @) has the form

~R(#)=(w), (31) . i
_—AQ<1//0|R(l/f0)>_k2)(_AQw+VnA‘VX>
Vipo=J(Vy). (32) dna n n
2
The left hand sides of these equations are orthogonal to the A dQ

Na S —
- —— w+v.V— +(v- .
kernel of J, so Egs.(31) and (32) are well defined. The K n dnAw v-v n Qo+ (v-V)(v-Vna)x
function o describes the perturbation of the equilibrium ve-
locity distribution caused by the chemical reaction, and

provides the anisotropic component of the velocity distribu-

—R,(%QmVnA-vX):J(ff)). (37)
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The solution of this equation is obtained formally by the modified reaction-diffusion equation including up to second
action ofJ~* on both sides of Eq:37). We consider only the order corrections can be presented in the following form
terms off(?) containingVn,, which contribute to diffusion. [when restricted like Eq(3) to one dimension related to the
They vyield the following correction to the diffusion term in directionx of the front propagatioh

the standard macroscopic equati@n:

dna
&) A (k0 1 1 (0)y a3 4 1 (0) 12 -
(ﬁ =V.(D'Vn,) dt [—(ki’+kZ)na+ki’nan](1+ 7) —kana
ot | .
diff . aD . 5”A+ PRE: .
ox DoLT Va5 ) (49

1 d
=— §V~(% —Q[<t/fo|R( o)) xv2x)

n dnp
Do=kT]|bo|/m is the diffusion coefficient for hard spheres,

2.\
+2(wlv*x) —(vxIR(vx))] unperturbed by the reactions. Nonequilibrium correctigns

Q v, andq to the rate of chemical and transport processes de-
+F[<¢O|R(%)><X|U2X> pend on reaction parameters—activation energy and steric

factors—as well as on the concentrations of the species. The

elementary but lengthy expressions for these coefficients are
+{wlvZx)—(vx|R_(vx))]|Vna. (38 given in the Appendix. The above modified reaction-
diffusion equation is the main result of our treatment of the

Moreover, the Boltzmann equation yields an additional comBoltzmann equation. The predictions for the speed and shape
ponent in the second order dynamic equation for concentrf the perturbed trigger front are deduced from numerical
tion n,. This term is related to the nonlinearity of the reac- integration of Eq(45). In Sec. V we examine these theoret-
tive collision integrals and contains the square of theical results by comparison with the microscopic simulations,

concentration gradierfi20]. For the Schigl model it has the in which motion of individual particles is followed. The
form method of the simulation is described in Sec. IV.

an.\ @ 1
( ’*) =2 (Vny)?
nonl

- d (E d—Q)<w|vzx) IV. MICROSCOPIC SIMULATION PROCEDURE
at 3

dnal n dna

According to Bird’s simulation methoflL2], the medium
is divided into linearly arranged cells of lengitx equal to a
. fraction of the mean free path. Each cell is assumed to be
homogeneous. During the simulation time stejpchosen as
(39 a fraction of the mean free time, the free motion of particles
. . . and their mutual collisions are supposed to be uncoupled.
In order to obtain the explicit form of the corrections 1o pjicle velocities are treated in three dimensions, but their
the dynamic equation fan,, the solutionsw andx of EGs.  hqsitions are projected onto the direction of front propaga-
(31) and (32) are needed. As usual, these functions are asgq, and the perpendicular coordinates are disregarded. In
sumed to be in the form of an expansion in Sonine polyNOyese conditions, the sections of the cells and consequently

mials [26]; its convergence has been examined for bothne nymber density are adjustable parameters and the dilute
transport[26,27) and chemical process¢8,29. Two-term 444 assumption is not restrictive. The results presented were

solutions are commonly accepted as satisfactory approximgpained for the following parameter values: temperature
tions, and allow for use of convenient analytical expressiongt—1 massm=1. diameted=1. cell volumeV=1. mean

1 d%Q .
+§nAd_rﬁf xx1(v-vy)g do*dvdv,

as well: number of particles in a celN=100. Assigning the values
_ a,S(c?) +a,S3)(c?)], 40 of the steric factors,; ands_, and activation energy de-
@)= Yo(v)121515(¢%) + a255(¢7) (40 termines the rate constarity”) andk®) . Then, for a chosen
x(v) = o()[ DS (c?) + b, SH(c2) ], (41  Vvalue ofb, the rate constark; follows from Eq.(8).

In order to simulate collisions, we choose randomly
wherec?=muv?/2kT. The coefficients; ,b; for the model of AtN20gmay/2 pairs of particles in the same cell susceptible
reactive hard spheres are given [120] to collision in time stepAt. Here,gax IS the continuously
updated maximum relative speed. The above number in-
aj=—sexp—e)i+tets(E+2e—€?)], (42 cludes actual as well as null collisions, because it is calcu-
lated as for a hypothetical system in which the relative ve-

a,=— = exp—e)(2 +2e—€?), (43 locity for each pair of particles igmay [30]. The standard
acceptance-rejection method is then applied to choose actual
and[26] encounters: The collision between a chosen pair of particles
is accepted if their relative speed obays Rgy,,, Wwhere 0
59 3 /[ m 4 <R=<1 is a random numbdrl2]. The postcollisional rela-
Po= "~ 5530 V kT P17 5% (44 tive velocity is calculated for randomly chosen impact pa-

rameter and deflection angle. In order to simulate reactions
The terms(33), (38), and(39) can then be explicitly calcu- (1) of the applied version of the Sclgbmodel, the chemical
lated by quadratures with the above functiensnd y. The  identity of the colliding pair changes according to the proce-
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dure described in the previous section. Let us give an ex- ' ' '

ample of the particular treatment adopted to simulate a ter- LI

molecular reaction like A+B)+A—3A. A collision i

between a particl& and a particleB is reactive(i) with the

probability given by the steric factay, (ii) if the condition

on relative velocity given in Eql4) is satisfied, andiii) if

a third particle, randomly chosen in the same cell, isAan

When these three conditions are fulfilled, the partiBlés

transformed intdA. Reaction(2) is reproduced by transform-

ing during the time stepAt a numberk,n,At of randomly

chosenA patrticles intoB particles. o L L N L
We choose as initial condition the unperturbed profile 200 400 600 800

given by Eq.(9). The simulated medium is ten times longer cell number

than the front width. On the extreme left of the medium, the FIG. 1. Front profiles in the moving frame. The solid line cor-

nurrg)bers of particlesA and B in a cell initially ot_)ey Na responds to simulation results and gives the spatial variations of the
=A1V andNg=N—N,, whereas on the extreme right of the {jne averaged fractiofa({)) of particlesA. The short-dashed line
medium, one has initiallNa=0 andNg=N. corresponds to analytical results based on the Boltzmann equation
We choose specific boundary conditions in order to mimicand the dotted line to the macroscopic prediction without nonequi-
the propagation of a front of particlel in an infinite me-  librium corrections. The parameters take the following values:
dium. In the case of the Fisher frofit3], associated with the steric factor of the forwardbackward reaction (1) s;=1 (s_;
chemical reactiolh+B— 2A, the first(last cell was occu- =0), activation energy of reactiofl) e=1, control parameteb
pied only by particlesA(B), which had an equilibrium ve- =0.35. The average is performed over a time corresponding to
locity distribution[11]. It was therefore possible to couple more than 2.X 10 reactive collisions. The profiles have been
the first and last cells by particular periodic boundary condi-slightly translated to improve readability.
tions, simply by changing the chemical nature of the par-
ticles that were crossing the permeable wall between the last(n,(£))/n, in cell { of the moving frame. It evolves to a
and the first cell. For the Schgbfront, we assume that the stationary profile and the moving frame reaches a stationary
left wall of the first cell as well as the right wall of the last mean speedU). The results given in this section are ob-
cell are impermeable: particles are elastically reflected byained for stationary conditions in the moving frame and af-
these walls. Actually, in this case, the last cells are filled onlyter averaging over a time corresponding to more thah 10
with B particles that have an equilibrium velocity distribu- reactive collisions. As shown in Fig. 1, the value of the left
tion since there is no reaction in the absencégfarticles.  front plateau is decreased with respect to the unperturbed
However, the first cells contain botA and B particles, stationary state valua!®/n, for both the profiles predicted
whose velocity distributions are perturbed due to reactiorpy the theory and deduced from the simulations. The slope at
(1). In these conditions, the possible arrival of a partiBle the inflection point, i.e., the profile width, is not sensitively
from the last cell into the first one cannot be treated properlymodified. It can be seen in Fig. 2 that the decrease of the
Moreover, in simulations we switch to the frame moving front plateau is accompanied by a deviation of the kinetic
with the front: each time the total number of particlas energy of particlesA from the equilibrium value. This in-
becomes greater than its initial value, the first left cell iscrease of particleéd temperature is associated with a devia-

transformed into the last right one with simultaneous transtion of the particle velocity distribution from the Maxwellian
formation of its particlesA into B’s. At the same time, the

front position ¢(t) is increased byAx. This procedure is — T T
made possible by the fact that the mixture of partidlesnd r T
B (as a wholg¢ on the extreme left and the particlBson the
extreme right both have equilibrium velocity distributions. 0.05 A<V2+vE>
For the parameter values chosen, this trick is actually per- vEvES,
formed only about every 100th time step on average. Note
that the propagation of the front in the opposite direction,
linked to a decrease of the total number of partidesould
require the suppression of the last cell containing d@ikyin
equilibrium and the creation of a first cell containing par-
ticles A and B with different nonequilibrium velocity distri-
butions. It would be impossible to assign velocities to the 008 L
particles of each species in the new first cell. 300 400 500 600
cell number

©
o

0.4

0.2

profile of species A

V. COMPARISON OF THE MACROSCOPIC PROPERTIES

OF A TRIGGER WAVE DEDUCED FIG. 2. Spatial variations in the moving frame of the kurtosis
FROM THE BOLTZMANN EQUATION AND Ky, of the A particle velocity distribution and of the relative devia-
FROM MICROSCOPIC SIMULATIONS tion of its second momemv§+v§) from its equilibrium value. The

solid lines correspond to simulation results, the dashed lines to ana-
We deduce from the microscopic simulations a time avdytical results based on the Boltzmann equation. Same parameter
erage of the local fraction of particlesA, (a({))  values as in Fig. 1.
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shape, as proved by the nonvanishing values of the kurtosis. 1 T I .
The deformation of the velocity distribution & particles L .. velocity |
can be expressed by the moments of the distribution; we Ft e mwli;itf:au .
confine ourself to the first order correcti¢®0) determined o5 L fe P ]
by Egs.(40—(44). In order to avoid the anisotropy of ve- L _
locity distribution induced by inhomogeneities in theirec- -t - ]
tion, we use the perpendicular velocity = (v, ,v,). The L - .. |
second momenf fA(v,t)v2dv=n,(t)(v?), is related to the 02853, § & & %+
temperature of specie& by kTy=2m(v?),. The relative i |
correction toT 5 calculated analytically by means of the per- - 1
turbation solution of the Boltzmann equation is given by o5 Ll | L
2 4
Ta-T 1 1 nA) Na 1 .
T 2\t 551) ) SRe et %fl) FIG. 3. Comparison between simulation resulriangles and

(46)  circles and analytical result¢squares and crosgebased on the
Boltzmann equation: relative deviations from their macroscopic
with e;=e+1/2 andf,=— €?+2e+3/4. The shape of the predictions of front propagation speésblid polygons, time aver-
velocity distribution is indicated by the kurtosis,, aged profile width(open polygonk and left plateau heigtitrosses
=(m/2kT)2((vf)—2<vf>2) which vanishes for the Max- and circle$, as functions of activation energy. The parameters
wellian distribution. The perturbation solution of the Boltz- take the following values: steric factor of the forwaliackward
mann equation gives the following expression for the kurto-éaction(1) s;=1 (s-,=0), control parameteb=0.35.

sis:
than 0.5, the analytical predictions based on the Boltzmann

1 AlNa equation agree, at least qualitatively, with the simulation re-
Ky,= —\|S1—| S1t+ 531>F FeXp(— €) sults. For variable:, the deviations of the second and fourth
moments of the particlé velocity distribution from their
2 1 1 Nalna equilibrium values are very well reproduced by the analytical
X 1—5f1+ AGE ( Sk 55—1) iy approach based on the Boltzmann equation. As shown in Fig.
4, the analytical predictions for the limit values reached in
1 2 the left front plateau by correction to particketemperature
Xexp—e)| et 55 } (47)  and by kurtosis agree remarkably with the simulation results.

Note that the nonvanishing corrections to macroscopic front

As well predicted by the analytical approach, temperaturd’operties, observed in Fig. 3 asbecomes smaller than 4,
shift and kurtosis reach maximum values in the steepest paf@h be correlated with the nonvanishing corrections to equi-
of the front and tend to a nonvanishing limit in the region of librium velocity distribution appearing in Fig. 4 for exactly
the left front plateau. The deviation of macroscopic wavethe same range of activation energies. _
front properties from the values predicted in the frame of a We examine in Figs. 5 and 6 how the macroscopic front
macroscopic approach by the unperturbed equatBnis properties are affecteql by nonequmbrlu_m effects v_vhen the
clearly related to the frequency of reactive collisions astontrol parameteb, defined by Eq(8), varies. According to
shown in Fig. 3: The relative deviations of left plateau the prediction of th<=T unperturbed macroscopic description,
height, profile width, and propagation speed from the unperIhe front speed vanishes &stends to 1/3. This result ex-
turbed values given respectively by E@6), (10), and(11)
decrease and eventually vanish as the activation eneady L
reaction(1) increases. -
The front speed appears to be the macroscopic property 0.05
that is the most affected by nonequilibrium effects. Accord-
ing to the simulation results and for the parameter values L
chosen, the largest effect reaches 65% and is obtainee for -
=1. As expected, the analytical predictions deduced from a

perturbative approach of the Boltzmann equation are not re- P i 1
liable in the limit of very fast reaction. Whereas the pertur- L RNAACC I
bative approach predicts a positive correction to the front [ | ‘ &y ‘ ]

. . . _0.05 Il Il 1 1 1 1 1
speed fore=0, the simulation results lead to a negative one. 0 2 4 8
Simulation results foe=0 have been tested using a larger €

value of the mean number of particles in each spatial cell: for £G4, comparison between simulation resugmbols and

N=1000 we obtain the same negative correction to fronpayytical resultglines based on the Boltzmann equation: varia-
speed as foN=100. As already mentioned at the end of tions with activation energy of the limit value reached in the left
Sec. II, the simulation results do not sensitively dependNon plateau of the front for the kurtosis,, (open triangles and dashed
in the case of a trigger wa\é8,19, contrary to the specific line) of the A particle velocity distribution and for the relative de-
case of a wave front propagating into an unstable stat@iation of its second momer(b§+u§> from its equilibrium value
[15,17,18. As soon as the activation energy becomes greategisolid triangles and solid line Same parameter values as in Fig. 3.
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FIG. 5. Same as for Fig. 3 for a variable control parametand ) ) )
an activation energy fixed at=1. FIG. 7. Same as for Fig. 3 for a variable steric factog and an

activation energy fixed a¢=1.

plains why the relative correction to front speed induced by, — .
nonequilibrium effects diverges ds—1/3. A different be- Increase of the k|net|c_ energy of partch{Qsdue to f°fward
havior is observed for the nonvanishing front properties suclﬁeﬁgggn ffals)t’egtndrear:.l,r:#tlgci(s)Ungo?:gr?sfgIm%Egtl%ﬁ
as width and left plateau height, whose corrections remai P

bounded in the vicinity ob=1/3. The growth of the distor- Iearly,_ the reverse reactidd), .WhiCh created’s from the
tion from the Maxwellian particle velocity distribution, ob- population ofA, has the opposite tendency and weakens the

served in Fig. 6 ad decreases from 1, is related to the effect induced by the forward reaction. As can be seen in

approach of the bifurcation predicted floe=0. Actually, we '::hlg.u& tgfsfgﬂeg;;rf tg;:grvgggdgziﬂznf;w:ﬁ prroecveiif rlr?ust
know from analysis of the Schip model in homogeneous PP y ’ P

conditions [7] that the bifurcation diagram is sensitively be faster there to ensure balance between reatipand

modified by nonequilibrium effects and that the bifurcation!rreverSIble reaction2). The agreement between the theoret-

associated with the coalescence of the nonvanishing stab]‘(\é"’“r predlctllg)rrlw arécii sr'mUIﬁt'?n rersﬂtsblw?rserlltsfrwﬁh “-
stationary state and the unstable one occurs earlier, for sorrt Ss?gr?ecsérrecetisoen as;?siipairf iismrijl(;tiinsy diseu o '?he firﬁts
positive value ofb. We have shown that, in the vicinity of 9

this bifurcation, the dynamical system presents an enhancégi)jg:;gnogggg'?sle;Jghast(r:s::' étr fsg]rotwg rgse?s?;er((jaafgtla:;nthe
sensitivity to nonequilibrium effects. This tendency is per'than for the forward reactiongbecause the former involves
ceivable in the case of the inhomogeneous systeiin @3- ’

proaches 1/3 three molecules of the same species.

Finally, we study in Figs. 7 and 8 how the nonequilibrium

corrections to macroscopic front properties vary with the VI. CONCLUSIONS

steric factors_; of the backward reactiofil). As s_; in- ] ) ]

creases, the corrections to front properties diminish, as does !N this paper we have studied a trigger wave front propa-
the distortion to particle velocity distribution. Let us consider 9ating between the two stable stationary states of an inhomo-
nonequilibrium effects induced by the reactive collisionsg&neous chemical system. Imposing specific conditions, we
(A+B)+A—3A, related to the forward reactigi). A col-  have been able to eliminate nucleation phenomena, which
lision between a particlé and a particleB will be most ~ could disturb the front propagation. It has been proved that a
likely accepted ifA andB are both fast, so that the tw's departure from the equilibrium particle velocity distribution
which will be created in case of reaction, will also mostinduced by a chemical reaction modifies the macroscopic

likely be fast. It is therefore not surprising to observe anProperties of the front. The trigger front gives a good oppor-

| L ‘ L | L | 1T L
L 1 F A<vRHvRE> -
0.06 - A<ve+vEs ] 01 . 20T ]
L a—r = | L <V§+V§>eq i
= <VEHVE>, 4 L i
0.04 - - L L& ]
L - yz

0.0z [ ] 0.05 j\,—
o B ] r ]
r _E ] 0 N
—002f J e 1
[ 1 - .

—0.04 NI BT BRI BN B —0.05 Lo v by by P o
04 06 08 1 1.2 0 02 04 06 08 1

b s
FIG. 6. Same as for Fig. 4 for a variable control parametand FIG. 8. Same as for Fig. 4 for a variable steric factog and an

an activation energy fixed at=1. activation energy fixed a¢=1.
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tunity to study these nonequilibrium effects because in thiper allowed us on the one hand to avoid the problem of
system the perturbations due to variable discretization anducleation, but on the other hand prevented us from studying
internal fluctuations can be neglected. This is a great advarthe vicinity of this bifurcation.
tage over the case of a wave front propagating into an un-
stable state, where all the perturbations of different origins ACKNOWLEDGMENTS
interfere[11,16). , i

From the perturbation solution of the Boltzmann equation__This work was possible thanks to the support of Grant No.
we have derived a modified reaction-diffusion equation for”OL/1639 from CNRSFrancg and the Polish Academy of

concentrations which includes the corrections due to the non2Ciences.
equilibrium effects, to both the reaction and the diffusion
terms. The speed and shape of the perturbed front has been APPENDIX

calcu_lateg.ﬁusi.ng a nu_mericlal r?O“fgog of thihs mogifiid For the line-of-centers model of reactive hard spheres, the
reaction-diffusion equation. It shou e emphasized t a%oefficientsn, ¥, andq in Eq. (45) are given by
derivation of these results cannot neglect the perturbation o

the diffusion process, and thus cannot be obtained from the na\na 1

perturbed equation for the chemical kinetics only, considered n=|s1—(2s;+s_ 1)7 na

in the previous paper on the homogeneous bistable system

[7]. We showed there that values of stationary states can be xexp—e)[(L+e)2+ L (3+2e—€2)?], (AL

changed due to nonequilibrium effects. However, it can eas-
ily be calculated[from Eq. (45) with neglect of all terms Na Na
related to inhomogeneiti¢shat the relative shifts of the two y= ( $1d;— —(2s,+s_ l)d2>—, (A2)
stationary stateé,; and A, are approximately the same and n n
negative. It can be seen from E(L1) that this will slow
down propagation of the front. On the contrary, our theoret- d,=exp(—€)
ical predictions and microscopic simulations almost always
give an increase of the front speed.

Provided the reaction is not very fast, the theoretical pre- +
dictions based on the reaction-diffusion equation agree quite
well with the results of microscopic simulations using Bird’s
method, even for such a sensitive quantity as the fourth order d,= exp(— €)
cumulant(or kurtosig of the particle velocity distribution.
Superposition of different effects prevented us from reaching
such a good agreement in the previous study of a wave front +
propagating into an unstable stdtel,16. The nonequilib-
rium effects for the trigger front are strongest when the ac-
tivation energy of the reaction is comparable to the thermal q= %( —s,ds+ %(251+s 1)d4) (A5)
energy. The largest effects are observed on the speed of the n '
front, for which the relative correction reaches 65% for pa-

1
——+2e— —

8 59\ 4 2

5 13
—+11le+ —¢?

: (A3)

1 2
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2 59
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5
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rameter values close to that corresponding to a stationary dy— exp(— o) e I §62>
interface between the two stable stationary states. The pla- 3 4 2 5914 3 3

teau height and the front width are also affected by the non- )

equilibrium effects, but the relative corrections in these cases _ 11( i) § +2e— 62) (AB)
do not exceed 10%. We expect stronger corrections in the 59/ \4 '

vicinity of the bifurcation associated with the coalescence of £ = 117 s

the unstable stationary state with the nonvanishing stable sta- _ 2

tionary state. The previous study] of a homogeneous di=exp(—e) g+ g€ gg( 5t 5T 4e

bistable system revealed the existence of diverging correc- )

tions to the nonvanishing stable stationary state value near _(i) (9_5 52 3) (A7)
this bifurcation. However, the conditions applied in this pa- 59/ |2 €72 € )
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