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Analysis of time series from stochastic processes
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Analysis of time series from stochastic processes governed by a Langevin equation is discussed. Several
applications for the analysis are proposed based on estimates of drift and diffusion coefficients of the Fokker-
Planck equation. The coefficients are estimated directly from a time series. The applications are illustrated by
examples employing various synthetic time series and experimental time series from metal cutting.

PACS number~s!: 02.50.Ey, 02.50.Fz, 05.45.2a
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I. INTRODUCTION

All experimental data are to a certain extent contamina
by noise. Generally, one can distinguish between meas
ment noise and dynamic noise. Measurement noise is ca
by measurement procedures; it is superimposed on the m
sured signal, and it can not influence the dynamics of
process. Dynamic noise is part of the process dynamics
can play an important role when the process is close to
instability point @1#. Time series from various processes
nature are stochastic, and it is often reasonable to ass
that they contain both types of noise. However, most non
ear techniques for time series analysis, especially those
spired by chaos theory@2#, require the time series to be ge
erated by a deterministic process, and only allow
negligible measurement noise. Consequently, the applica
ity of these methods to the analysis of stochastic time se
is limited.

A method for analysis of stochastic data sets was rece
proposed@3,4# which assumes that the data contain the ad
tive type of dynamic noise. The evolution law of a proce

which generates such signals can be written asẊ(t)
5F@X(t)#1h(t), whereX(t) denotes the process state
time t,F(•) is a nonlinear function, andh(t) denotes noise
The dynamics of this type of processes can also be descr
by the Fokker–Planck equation, which is determined by d
and diffusion coefficients. Using the method proposed
Refs.@3,4#, one can estimate these coefficients directly fro
noisy data for a certain class of processes. Thus, a com
description of a stochastic process can be found, and
deterministic laws of the process dynamics, as well as
form and the strength of the noise, can be determined.

By extracting drift and diffusion coefficients separate
from a time series, the dynamics of a stochastic process
decomposed into a deterministic and a random compon
Such decomposition of the dynamics offers several new p
sibilities for analysis of stochastic processes. The aim of
paper is to demonstrate the following:~a! When the deter-
ministic dynamics’ component is represented as a ve
field, it provides qualitative information about the local st
bility properties of the process in the phase space.~b! The
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extracted dynamics’ components can be used to recons
the process evolution. Deterministic evolution can be rec
structed based only on the deterministic component.~c!
When both the deterministic and the random component
employed for the reconstruction, one can generate typ
stochastic trajectories of the process. These trajectories
sess the same deterministic and random properties as
original time series.~d! Typical trajectories can be applied t
estimate the mean first passage time, i.e., the mean
elapsed between successive visits of the process trajecto
selected locations in the phase space.

We first illustrate these applications by examples empl
ing synthetic time series generated by~1! a stochastic system
exhibiting the pitchfork bifurcation,~2! the stochastic van
der Pol oscillator, and~3! the stochastic Lorenz system in
chaotic regime. Next, we use the applications to analyze
perimental time series obtained under different regimes
metal cutting.

II. METHOD FOR ANALYSIS OF STOCHASTIC
PROCESSES

The method proposed in Refs.@3,4# is a general method
for the estimation of the drift and diffusion coefficients of th
Fokker–Planck equation for stationary continuous Marko
ian stochastic processes. Let the evolution of a continu
m-dimensional stochastic variableX(t) in phase spacesx be
governed by the Langevin equation:

dXi~ t !

dt
5hi„X~ t !…1(

j
gi j „X~ t !…G j~ t !, ~1!

where the fluctuating Langevin forcesG j (t) represent ran-
dom noise, which is assumed to be uncorrelat
^G i(t)G j (t8)&5Qd i j d(t2t8), with vanishing mean,̂G i(t)&
50, for eachi,j . Due to the random term, Eq.~1! can only
rarely be solved. Alternatively, the dynamic behavior of t
underlying stochastic process can be described by
Fokker–Planck equation, which describes the evolution
the conditional probability density distribution of the st
chastic variableX in the phase spacesx:
3146 ©2000 The American Physical Society
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FIG. 1. Time series of a variableX from Eq. ~A1!. The dotted lines at6A0.1 denote the two stable fixed points.
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Di
(1) andDi j

(2) are called drift and diffusion coefficients, re
spectively. If Itô’s definitions of stochastic integrals are a
plied @5#, the coefficientsD(1) andD(2) can be related to the
deterministic and random terms of the Langevin equation
@6#

Di
~1!~x,t !5hi~x,t !, ~3a!

Di j
~2!~x,t !5Q(

k
gik~x,t !gjk~x,t !. ~3b!

If coefficients D(1) and D(2) are estimated from the tim
series generated by the stochastic process, the dynami
the process are in fact completely determined. Using E
~3!, one can further determine the deterministic term, as w
as the form and strength of the fluctuating term in the Lan
vin equation.

For the class of stationary continuous Markovian p
cesses with uncorrelated dynamical noise, it is always p
sible to determine drift and diffusion coefficients direct
from given data@3,4# by using their statistical definition@6#:

Di
~1!~x,t !5 lim

t→0

1

t
^Xi~ t1t!2xi&X~ t !5x , ~4a!

Di j
~2!~x,t !5 lim

t→0

1

t
^~Xi~ t1t!2xi !~Xj~ t1t!2xj !&X~ t !5x .

~4b!

Here X(t1t) is a solution of Eq.~1! which starts atX(t)
5x at time t. In practice,D( i ) can be determined from th
following relations for a small time stept:

Di
~1!~x!5Ti

~1!~x,t!, ~5a!

Di j
~2!~x!5Ti j

~2!~x,t!2tTi
~1!~x,t!Tj

~1!~x,t!. ~5b!

The terms
s

of
s.
ll
-

-
s-

Ti
~1!~x,t!5

1

t E2`

`

~yi2xi !p~y,t1tux,t !)
k

dyk , ~6a!

Ti j
~2!~x,t!5

1

t E2`

`

~yi2xi !~yj2xj !p~y,t1tux,t !)
k

dyk

~6b!

denote the conditional moments which can be determined
numerical integration. For a stationary process,p(y,t
1tux,t) and, consequently,T( i ) andD( i ) are independent o
time.

We illustrate the method using a one-dimensional ti
series generated by the Langevin equation valid for syst
which exhibit noisy pitchfork bifurcation. A typical segmen
of a time series is shown in Fig. 1. The corresponding eq
tion and its parameters are described in the Appendix.
estimated drift and diffusion coefficients are shown in Fig
together with their theoretical dependence onx. The depen-
dencesD ( i )(x) estimated from the time series closely follo
the theoretical ones. The largest discrepancies between
theoretical and the estimated dependences are observ
the vicinity of x50, and at the edges of the phase space.
reason for this lies in the infrequent visits of the proce
trajectory to these intervals ofx ~Fig. 1!, which results in less
reliable estimates of conditional probability density in the
intervals.

Obviously, the better the estimate of conditional probab
ity density, the better the estimates of the coefficientsD( i )

obtained by the method. For the results presented in
paper we estimated the probability density using histogra
with equidistant bins.

An important issue related to the estimation of coe
cientsD( i ) is their dependence on the time stept. This de-
pendence is discussed in detail elsewhere@7#, and only the
main results are given below.

The effect of time stept. For the sake of simplicity, let us
consider a one-dimensional process for which the Fokk
Planck operatorL,

L52
]

]x
D ~1!~x!1

1

2

]2

]x2 D ~2!~x!, ~7!

possesses real eigenvaluesl j<0 and eigenvectorsFj (x).
The conditional probability density can be expressed in
form of an infinite series as
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FIG. 2. The estimated drift and diffusion coefficients~diamonds! compared to their theoretical dependence onx ~dashed line!.
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el j ~ t82t !Fj
†~x!Fj~y!, ~8!

wheret82t5t. The conditional moments are given by

^~y~ t8!2x~ t !!k&y~ t !5x~ t !

5(
j

el j ~ t82t !Fj
†~x!E

2`

`

~y2x!kFj~y!dy ~9!

and the following expansions for drift and diffusion coef
cients are obtained@7#:

D ~1!~x!5(
j

l jFj
†~x!E

2`

`

~y2x!Fj~y!dy, ~10a!

D ~2!~x!5(
j

l jFj
†~x!E

2`

`

~y2x!2Fj~y!dy. ~10b!

When coefficientsD ( i ) are estimated from data, the infinit
series~8!–~10! are approximated by finite ones which co
tain N eigenfunctions. In order to obtain accurate informati
about the conditional probability distribution and coefficien
D ( i ), one has to choose a time stept such thatelNt.0, for
sufficiently largeN @7#.

As an example, let us use a time series generated by
~A1!. CoefficientsD ( i ) estimated from the data using diffe
ent values oft are shown in Fig. 3. Att50.01, 0.1, and 1,
the estimated drift coefficients match the theoretical val
well, whereas for the diffusion coefficient the agreeme
q.

s
t

with the theoretical values is already lost att51. Indeed, the
dependence of root-mean-squared errorE of the estimates on
the time stept confirms that the error ofD (2) estimates
grows with increasingt faster than the error ofD (1) esti-
mates~Fig. 4!. Our experience suggests that the maximu
acceptable time steptmax for accurate estimate of the diffu
sion coefficient is approximately one order of magnitu
smaller thantmax which is acceptable for the estimate of dr
coefficient. In terms of Eqs.~10! this means that, if the serie
are to approximate both coefficients equally well, the num
of termsN in the series which approximatesD (2) must be
larger.

In general, the maximum acceptable time steptmax or,
equivalently, the number of termsN required in a series de
pend on the properties of the process. Based on our exp
ence,tmax for the drift coefficient is usually not much shorte
than the time stept i required for the integration of the cor
responding differential equations. For example, in the cas
the van der Pol oscillator@Eqs. ~A2!# we foundtmax'0.1,
which results in approximately 80 points per oscillatio
cycle, whereas the longest reasonable integration step
which the limit cycle is not yet too distorted is approximate
t i'0.3.

However, in practice one is often faced with experimen
data recorded with a time step for which coefficients w
decreasingt do not converge to a limit value. In this cas
the estimated coefficients should be considered a crude
proximation and treated with caution. The lack of conve
gence ofD ( i ) with decreasingt can be regarded as an ind
cation of the non-Markovian properties of the process@7#.
FIG. 3. CoefficientsD ( i ) estimated using four different time stepst.
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FIG. 4. Root-mean-squared errorE of the coefficientsD ( i ) versus the time stept.
o
d

nu
n
ts

Ac

-

at
rk

qu

it
a
e
d
ffi

n

h

ns
the
ied
wn,
et.
nt

ts

the

se
mit
n
le,
rs,

the
nd
the
an
ce.
ffi-
cal
ion
n
et
of
ring

ase
III. APPLICATIONS OF THE METHOD

Applications discussed in this section are based mainly
the decomposition of stochastic process dynamics into a
terministic and a random component. For stationary conti
ous Markovian stochastic processes, such decompositio
performed by estimating the drift and diffusion coefficien
of the Fokker–Planck equation as described in Sec. II.
cording to the relations in Eqs.~3!, the drift coefficientD(1)

corresponds to the deterministic component@Eq. ~3a!#, while
the diffusion coefficientD(2) is related to the random com
ponent of process dynamics@Eq. ~3b!#.

Applications are illustrated by examples employing d
sets from ~a! a stochastic system exhibiting the pitchfo
bifurcation,~b! a stochastic van der Pol oscillator, and~c! a
stochastic Lorenz system. The corresponding Langevin e
tions and their parameters are given in the Appendix.

A. Deterministic vector field

When studying the dynamics of a stochastic process
interesting to explore how the process would evolve if it w
subject to no random influences. This evolution is govern
by the deterministic component of the stochastic process
namics, which in our case is determined by the drift coe
cient of the Fokker–Planck equation.

Having extracted the drift coefficientD(1) from a stochas-
tic time series, one can plot its componentsDi

(1) separately
versus the phase space coordinates. Such a plot is show
Fig. 5 for a stochastic van der Pol oscillator@Eqs.~A2!#. D(1)

was estimated from a vector time series, a portion of whic
n
e-
-
is

-

a

a-

is
s
d
y-
-
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is

shown in the left-hand panel of Fig. 6. Except for the regio
where there is no data, the estimates agree well with
theoretical values. However, for an experimentally stud
process, for which the dynamics equations are not kno
coefficients presented in this way are not easy to interpr

A more informative presentation of the drift coefficie
D(1) is achieved by plotting it as a vector field~the right-
hand panel of Fig. 6!. An arrow in the field graph represen
a value of the drift coefficientD(1)(x) estimated at locationx
in phase space. The orientation of the arrow indicates
average direction of deterministic motion atx. In the case of
a van der Pol oscillator~the right-hand panel of Fig. 6!, ar-
rows in the vector field point on average in the clockwi
direction, suggesting motion on a stable nonsymmetric li
cycle in that direction. Arrows outside the limit cycle ru
approximately parallel to the cycle around most of the cyc
except at the upper left and at the bottom right corne
where they point towards the cycle. This indicates that
dissipation is close to zero around most of the cycle, a
strongly negative at the two corners. The arrows inside
limit cycle point out towards the cycle, suggesting that
unstable fixed point is located in the center of phase spa

The example shows that examination of the drift coe
cient presented as a field yields information about the lo
stability properties of the process. However, the informat
obtained from the drift coefficient is limited to the regio
visited by the trajectory during experiments. In order to g
information about process properties in other regions
phase space, one should randomly disturb the process du
experiments to make it explore a greater portion of its ph
space.
grid,
FIG. 5. Components of drift coefficientD(1)(x) for a stochastic van der Pol oscillator. Solid grid, estimated values. Dashed
theoretical values.
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FIG. 6. Left: Phase portraits of a stochastic and a deterministic van der Pol oscillator. Right: The estimated drift coefficient is s
a vector field with two trajectories superimposed. The trajectories were integrated using the estimated drift coefficient.
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B. Reconstruction of deterministic dynamics

The relationship between the drift coefficient of th
Fokker–Planck equation and the deterministic term of
Langevin equation can also be exploited to reconstruct
deterministic dynamics of the process. If we drop the rand
term of the Langevin equation~1!, we can solve the trun
cated equation numerically using the estimatedD(1) as

X~ t1Dt !5X~ t !1D~1!
„X~ t !…Dt. ~11!

The solution represents a deterministic trajectory of the p
cess. Two such solutions are shown superimposed on
vector field in the right-hand panel of Fig. 6. The initi
conditions of these trajectories~marked by a diamond! lie
outside or inside the limit cycle, respectively. Both trajec
ries terminate on the stable limit cycle after a transient
riod. For the purpose of comparison, a theoretical determ
istic trajectory is shown superimposed on the stocha
phase portrait in the left-hand panel of Fig. 6. This traject
is a numerical solution of the deterministic term of the eq
tions governing the dynamics of the oscillator@Eqs. ~A2!#.
The deterministic trajectories obtained by integrating E
~11! agree closely with the theoretical deterministic traje
tory.

To illustrate that the method is not restricted to triv
attractors, such as fixed points and limit cycles, a vector t
series from the stochastic Lorenz system in a chaotic reg
was analyzed@Eqs. ~A3!#. A portion of the stochastic time
series and the extracted drift coefficient are shown in
left-hand and the right-hand panels of Fig. 7. The drift co
e
e

m

-
he

-
-
-

ic
y
-

.
-

e
e

e
-

ficient was used to generate a deterministic trajectory, wh
is plotted superimposed on the vector field. A trajectory o
tained by solving numerically the deterministic equations
the Lorenz system@Eqs.~A3!# is shown superimposed on th
stochastic trajectory. Although both deterministic trajector
start at the same point in phase space, they do not follow
same path~the bottom traces in Fig. 8!. This discrepancy
stems from the imperfect estimation of conditional probab
ity density and from the chaotic nature of the Lorenz syste
However, both deterministic trajectories possess sim
characteristic patterns, and the phase portraits formed by
trajectories are qualitatively similar~Fig. 7!. The main dif-
ference can be seen in the inner regions of the two lob
where the probability density was presumably poorly e
mated.

In order to gain an impression of the influence of dynam
noise on the Lorenz system dynamics, compare the up
two traces in Fig. 8 which correspond to the original stoch
tic and deterministic trajectories. In the stochastic case, n
drives the trajectory from one lobe of the attractor to t
other more frequently, and thus prevents the trajectory
raling in a particular lobe for a protracted period, as is t
case in the deterministic system. Nevertheless, the spira
typical of the Lorenz attractor is clearly observed in the
constructed deterministic trajectory~the bottom trace!. More-
over, note the difference between the extent of the determ
istic attractor and the vector field in the right-hand panel
Fig. 7. Dynamic noise increases the extent of the attra
from 45% in thex1 direction up to 83% in thex3 direction.
Although the noise repeatedly drives the trajectory aw
a vector
FIG. 7. Left: Phase portraits of a stochastic and a deterministic Lorenz system. Right: The estimated drift coefficient is shown as
field with a trajectory superimposed. The trajectory was integrated using the estimated drift coefficient.
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FIG. 8. Comparison of the original stochastic trajectory with the original and reconstructed deterministic trajectories of the
system.
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from the deterministic attractor, the trajectory generated
the extracted drift coefficient forms an attractor which
sembles the shape and the extent of the original determin
attractor. Hence using our method, we obtain informat
about the deterministic properties of the process from
chastic data, although the dynamics of the process are
nificantly altered by the noise.

C. Reconstruction of stochastic dynamics

In order to reconstruct a stochastic trajectory which p
sesses deterministic and random properties similar to th
of the studied process, drift and diffusion coefficients m
be estimated from the stochastic data set. A stochastic tra
tory can be obtained from the Langevin equation as

Xi~ t1Dt !5Xi~ t !1Di
~1!
„X~ t !…Dt1ADt(

j 51

i

gi j „X~ t !…G j~ t !,

~12!

where G j (t) represents uncorrelated noise,^G i(t)G j (t8)&
y
-
tic
n
-

ig-

-
se
t
c-

5Qdijd(t2t8), with vanishing mean,̂G i(t)&50, for eachi,j .
Following Eq. ~3b!, the noise amplitudesgi j can be calcu-
lated from

Qgg†5D~2! ~13!

using the Cholesky decomposition@8#, p. 96, iff. ~i! D(2) is
positive definite and symmetric, and~ii ! g is a lower trian-
gular matrix. Diffusion coefficient fulfills the condition~i!,
and we assume thatg is of a lower triangular form. The sum
in Eq. ~12! therefore includes only the firsti terms.

For the van der Pol oscillator, the original and the reco
structed stochastic trajectories are shown in Fig. 9. As
pected, the trajectories are not the same because the
time series used to generate them are different. Howe
both stochastic trajectories are qualitatively similar and th
possess the same deterministic and random properties.

For the Lorenz system, the original and the reconstruc
stochastic trajectories are compared in Fig. 10. Again, b
trajectories match qualitatively.
FIG. 9. Comparison of the original and reconstructed stochastic trajectories of the van der Pol oscillator.
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FIG. 10. Comparison of the original and reconstructed stochastic trajectories of the Lorenz system.
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The possibility of generating a stochastic trajectory wh
resembles the deterministic as well as the random prope
of the original trajectory can be applied effectively for va
ous purposes. One of them is discussed below.

Estimation of the mean first passage time. The mean first
passage time denotes the mean period between succe
visits of the process trajectory to a selected location in ph
space. Suppose that we had measured a trajectory in w
only a few passages of interest were observed. To estim
reliably the mean first passage time, we would need m
such passages. One solution to this problem which does
involve additional measurements is to extract drift and dif
sion coefficients from the measured trajectory, and to rec
struct a stochastic trajectory which is sufficiently long
contain enough passages.

As an example, we again use a stochastic process w
exhibits a pitchfork bifurcation@Eq. ~A1!#. The time series
generated by the process~Fig. 1! can be considered as a tra
of a randomly disturbed particle in a one-dimensional tw
well potential. Our goal is to estimate the mean time nee
by the particle to pass from the well atx52Ae to the well at
x5Ae. Based on a time series containing only 3 passage
stochastic trajectory was reconstructed containing 200
sages. In Fig. 11~a!, the distribution of the estimated passa
es

sive
se
ich
te
y
ot
-
n-

ch

-
d

, a
s-

times is compared to the distribution obtained from the ori
nal trajectory containing 200 passages. The overall shape
both distributions agree quite well, although the curves dif
in details. Still, the mean first passage times, marked by
vertical lines, are similar.

The passage times depend on the noise amplitudeg. In the
case of a particle in a two-well potential, the higher the no
amplitude, the shorter the mean passage time. The de
dences of the mean first passage times on the noise am
tude obtained from the original and reconstructed trajecto
are compared in Fig. 11~b!. The agreement between the tw
dependences is very good.

IV. ANALYSIS OF EXPERIMENTAL DATA

In this section we apply the method to analyze experim
tal time series measured in different regimes of metal cutt
@9#. The dynamics of metal cutting involve several nonline
dynamic phenomena, such as material flow and fracture,
tion between the tool and the workpiece, coupled vibratio
of a machine–tool–workpiece assembly, etc. By varying
cutting parameters, dynamically different cutting regim
can be achieved. For example, if the cutting depth is
creased over a certain critical value, self-excited lar
n the

FIG. 11. ~a! Comparison of distributions of first passage times fromx52Ae to x5Ae at noise amplitude ofg50.05 for the original and

reconstructed trajectories. The vertical lines denote the mean values.~b! A comparison of dependences of the mean first passage times o
noise amplitudeg for the original and the reconstructed trajectories.
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FIG. 12. Two-dimensional projections of drift coefficients for chatter-free~left!, weak~right!, and strong chatter regimes~bottom!. The
superimposed trajectories were integrated using the corresponding drift coefficients.
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amplitude vibrations of the machine–tool–workpiece asse
bly may develop. Cutting accompanied by such vibration
known as chatter. With its detrimental effect on the wo
piece, tool, and machine, chatter has been studied intens
in recent decades. Analysis of simple nonlinear models
the cutting process has revealed that the onset of chatte
be described as a subcritical Hopf bifurcation@10,11,9#. Such
a description of chatter onset has been confirmed by bifu
tion diagrams obtained experimentally@12–14#. However,
evidence for such a description based on analysis of m
sured time series has been lacking, presumably due to
stochastic nature of the process.

We chose turning on a lathe as an example of the cut
process, where a rotating workpiece is cut by a fixed to
We analyzed the time series recorded during three cut
regimes denoted as~a! chatter-free cutting,~b! cutting ac-
companied by weak chatter, and~c! cutting accompanied by
strong chatter. Drift coefficients~Fig. 12! were estimated in a
three-dimensional phase space reconstructed from the s
time series using the delay coordinates@15#. The trajectories,
which are shown superimposed on the fields, were integr
according to Eq.~11!. In the case of the chatter-free regim
~the top left panel!, the field arrows point towards the cent
of the phase space. This indicates the existence of a s
fixed point at~0,0,0!. Both trajectories which start at the edg
of the phase portrait end up close to the assumed stable
point. In chatter regimes, a stable nonsymmetric limit cy
is present. In the weak chatter regime~the top right panel!,
the field arrows inside the limit cycle point out towards t
cycle, which indicates that an unstable fixed point might
located in the center of the phase space. This is also sh
by the path of the trajectory starting in the center of the ph
-
is
-
ely
f
an

a-

a-
he

g
l.
g

lar

ed

ble

ed
e

e
wn
e

space. The unstable fixed point cannot be observed in
case of strong chatter~bottom panel!, because the proces
trajectory does not visit the center region of the phase sp

Closer examination of drift coefficients in the chatter r
gimes reveals interesting changes to the local dissipatio
the phase space. The average inclination of the arrows
wards the limit cycle is much greater in the lower right po
tion of the limit cycle than in the upper left portion. The tw
portions of the limit cycle correspond to the tool motio
towards and away from the workpiece, respectively. Diff
ent average inclinations presumably result from the dep
dence of damping on the relative direction of the tool moti
with respect to the workpiece.

To check the stability of the observed fixed point quan
tatively, the drift coefficients were approximated using th
order polynomials. Eigenvaluesl i of the Jacobian matrix
evaluated at the fixed point~0,0,0! are listed in Table I. The
real part of the pair of the largestl i is negative in chatter-
free cutting and positive in both chatter regimes. This co
firms that the fixed point is stable during chatter-free cutt
and unstable during chatter. Such dependence of the rea
of l1,2 is typical of the Hopf bifurcation from a stable fixe
point to a stable limit cycle@16#.

TABLE I. Stability coefficients of the fixed point~0,0,0,!, cal-
culated from the equations which approximateD(1).

Cutting regime l1 l2 l3

Chatter-free 22.191 i3.58 22.192 i3.58 22.95
Weak chatter 0.111 i1.57 0.112 i1.57 27.62
Strong chatter 0.481 i1.86 0.482 i1.86 0
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V. DISCUSSION AND CONCLUSIONS

Dynamics noise often represents a serious obstacl
analysis of process dynamics. However, for stochastic p
cesses that obey the Fokker–Planck equation, the law
deterministic dynamics, and the form and strength of
fluctuations can be determined by estimating the drift a
diffusion coefficients of the Fokker–Planck equation direc
from a time series@3,4#. The estimates of the coefficients a
independent of the time step applied for the estimation of
conditional probability distribution, provided that the tim
step is sufficiently short. Numerical study has revealed t
drift coefficient estimates converge to a limit value at tim
steps one order of magnitude longer than estimates of d
sion coefficient. The time step, which is necessary for
estimates to converge, depends on the properties of the
cess. We found the necessary time step to be shorter tha
time step required for the integration of the correspond
differential equations. When analyzing experimental da
the convergence of the estimates with decreasing time
should be established. Such a convergence test may
serve as a criterion for selection of an appropriate samp
time. A lack of convergence of the estimated coefficie
with decreasing time step indicates non-Markovian prop
ties of the process@7#.

Since drift and diffusion coefficients correspond to t
deterministic and random parts of the process dynamics
spectively, their separate estimation from data is equiva
to decomposition of the process dynamics into a determi
tic and a random component. This decomposition served
basis for the applications of stochastic data analysis
sented in this paper.~a! The drift coefficient plotted as a
vector field represents the deterministic dynamics of the p
cess. Closer examination of the field can reveal additio
information on the local stability properties of the process
the phase space.~b! Drift and diffusion coefficients can be
employed to reconstruct the process dynamics governe
the Langevin equation. When only the drift coefficient
used to solve the truncated Langevin equation, a determ
tic solution is obtained. This solution represents the traj
tory of the process which would be observed in the abse
of random fluctuations. Although remotely similar, such
deterministic solution should not be mistaken for filtering
dynamic noise, since the process would evolve differen
under the same deterministic laws if the random fluctuati
were present.~c! If both drift and diffusion coefficients are
used for the integration of the Langevin equation, a repres
tative stochastic trajectory of the process can be obtain
Stochastic trajectories can be applied as surrogate pro
trajectories, since they possess the same deterministic
random properties as the original process.~d! We have used
the representative trajectories to estimate the mean first
sage time in the case where the original trajectory contai
only a few passages of interest.

Finally, experimental data sets acquired in three typi
regimes of metal cutting were analyzed. Based on estim
drift coefficients, it was shown that cutting dynamics in t
chatter-free regime could be described as random fluc
tions around a stable fixed point, while in the two chat
regimes the fluctuations occur around a stable limit cyc
The drift coefficients were approximated by third order po
to
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nomials, and the stability of the fixed point was asses
quantitatively. It was found that the transition from a chatt
free to a chatter regime corresponds to the Hopf bifurcat
from a stable fixed point to a stable limit cycle. Such a d
scription of the transition is in accordance with the analyti
and qualitative experimental results.

Time series from metal cutting have often been analy
using the methods of nonlinear time series analysis@17–21#.
The dynamics of cutting with chatter were mostly describ
as low dimensional, while descriptions of chatter-free cutt
dynamics ranged from linearly correlated random to lo
dimensional chaotic. Such differences in descriptions can
attributed either to different experimental setups or to inc
tious use of the analysis methods. However, most researc
have reported a substantial level of noise in their data. Ba
on our experience@20#, we suspect that different description
of the cutting dynamics might also have resulted due to
namic noise in the measured time series. We have show
this paper that dynamic noise can significantly broade
limit cycle attractor or dramatically distort a chaotic attract
~see left panels of Figs. 6 and 7!. Disregarding the effect of
dynamic noise in these two cases, one might be led to se
for a complicated structure in the noisy limit cycle attracto
and to overlook the underlying structure of the noisy chao
attractor.

Only dynamic noise was considered in our study, wh
the influence of measurement noise has been neglec
However, by evaluating drift and diffusion coefficients th
influence of measurement noise can be estimated for
tems, where the dynamic noise level exceeds the meas
ment noise level@22#.

In summary, we have proposed applications for analy
of time series from stochastic processes governed b
Langevin equation. Since the measured time series are
likely to be stochastic, the applications could complem
other nonlinear time series analysis techniques, especial
the cases where dynamic noise in the process cannot be
glected.
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APPENDIX: SYNTHETIC DATA SETS

In the following, the uncorrelated noiseG(t) is Gaussian
distributed with zero mean and variance equal to one.

1. Pitchfork bifurcation

The dynamics of a stochastic process exhibiting the pit
fork bifurcation is governed by the following Langevin equ
tion:

Ẋ~ t !5eX~ t !2X~ t !31gG~ t !. ~A1!

We chosee50.1 andg50.05.
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2. van der Pol oscillator

The dynamics of the stochastic van der Pol oscillator
governed by

Ẋ15X2 , ~A2a!

Ẋ25~e2X1
2!X22X11gG~ t !. ~A2b!

We chosee52 andg53.

3. Lorenz system

The stochastic Lorenz system is governed by the follo
ing system of equations:

Ẋ15s~X22X1!1(
j

g1 jG j~ t !, ~A3a!
is

P.
-

n-

i-
9

h
d

cr
e

-

Ẋ25X1~r 2X3!2X21(
j

q2 jG j~ t !, ~A3b!

Ẋ35X1X22bX31(
j

g3 jG j~ t !, ~A3c!

where the parameterss510, r 528, andb58/3 were chosen
so as to assure chaotic regime of the deterministic proc
The matrixg was

g5F 4 5 3

5 5 6

3 6 10
G . ~A4!
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ra,
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