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Analysis of time series from stochastic processes
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Analysis of time series from stochastic processes governed by a Langevin equation is discussed. Several
applications for the analysis are proposed based on estimates of drift and diffusion coefficients of the Fokker-
Planck equation. The coefficients are estimated directly from a time series. The applications are illustrated by
examples employing various synthetic time series and experimental time series from metal cutting.
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[. INTRODUCTION extracted dynamics’ components can be used to reconstruct
the process evolution. Deterministic evolution can be recon-
All experimental data are to a certain extent contaminatedtructed based only on the deterministic componéok.
by noise. Generally, one can distinguish between measur&/hen both the deterministic and the random component are
ment noise and dynamic noise. Measurement noise is causethployed for the reconstruction, one can generate typical
by measurement procedures; it is superimposed on the mestochastic trajectories of the process. These trajectories pos-
sured signal, and it can not influence the dynamics of thesess the same deterministic and random properties as the
process. Dynamic noise is part of the process dynamics amatiginal time series(d) Typical trajectories can be applied to
can play an important role when the process is close to aastimate the mean first passage time, i.e., the mean time
instability point[1]. Time series from various processes in elapsed between successive visits of the process trajectory to
nature are stochastic, and it is often reasonable to assunselected locations in the phase space.
that they contain both types of noise. However, most nonlin- We first illustrate these applications by examples employ-
ear techniques for time series analysis, especially those inng synthetic time series generated(ly a stochastic system
spired by chaos theoif2], require the time series to be gen- exhibiting the pitchfork bifurcation(2) the stochastic van
erated by a deterministic process, and only allow forder Pol oscillator, an@3) the stochastic Lorenz system in a
negligible measurement noise. Consequently, the applicabithaotic regime. Next, we use the applications to analyze ex-
ity of these methods to the analysis of stochastic time seriegerimental time series obtained under different regimes of
is limited. metal cutting.
A method for analysis of stochastic data sets was recently

proposed 3,4] which assumes that the data contain the addi-
tive type of dynamic noise. The evolution law of a process Il. METHOD FOR ANALYSIS OF STOCHASTIC

which generates such signals can be written X&) PROCESSES
=F[X(t)]+ n(t), whereX(t) denotes the process state at
timet, () is a nonlinear function, ang(t) denotes noise.

The dynamics of this type of processes can also be describ

The method proposed in Ref8,4] is a general method
far the estimation of the drift and diffusion coefficients of the

. o . .. Fokker—Planck equation for stationary continuous Markov-
gﬁéhgifiﬁgilgir_czlsgigi(ei?satLlJosri]ﬁg\:ert]LCeh ﬁgtitgémp;?ggozig“iﬁan 'stochastic processes. Le't the e\{olution of a continuous
Refs.[3,4], one can estiméte these coefficients directly fromm-dlmensmnal stochasth varlab)(_a(t) in phase spacs, be
nois. d,t7 f tain cl f Th | geoverned by the Langevin equation:

y data for a certain class of processes. Thus, a comple

description of a stochastic process can be found, and the

deterministic laws of the process dynamics, as well as the dX. (1)

form and the strength of the noise, can be determined. R

By extracting drift and diffusion coefficients separately dt

from a time series, the dynamics of a stochastic process are

decomposed into a deterministic and a random component.

Such decomposition of the dynamics offers several new poswhere the fluctuating Langevin forcd§(t) represent ran-

sibilities for analysis of stochastic processes. The aim of thislom noise, which is assumed to be uncorrelated,

paper is to demonstrate the followin@ When the deter- (I'j(t)['j(t"))=Q4d;;8(t—t"), with vanishing mean(I’;(t))

ministic dynamics’ component is represented as a vecto= 0, for eachi,j. Due to the random term, E@l) can only

field, it provides qualitative information about the local sta-rarely be solved. Alternatively, the dynamic behavior of the

bility properties of the process in the phase sp@be.The underlying stochastic process can be described by the
Fokker—Planck equation, which describes the evolution of
the conditional probability density distribution of the sto-

*Electronic address: janez.gradisek@fs.uni-lj.si chastic variableX in the phase spacg:

hi<xu>>+; g, (X()T(1), 1)
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FIG. 1. Time series of a variablé from Eq. (Al). The dotted lines at- 0.1 denote the two stable fixed points.
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l 2 . . . . .
D and DY are called drift and diffusion coefficients, re- genote the conditional moments which can be determined by
spectively. If 1tds definitions of stochastic integrals are ap- nymerical integration. For a stationary process(y,t
plied [5], the coefficientD!?) andD' can be related to the 4 7|y t) and, consequentyi() andD() are independent of
deterministic and random terms of the Langevin equation agme.

(6] We illustrate the method using a one-dimensional time
(1) _ series generated by the Langevin equation valid for systems
DI (xH=hi(x,1), (38 \hich exhibit noisy pitchfork bifurcation. A typical segment
of a time series is shown in Fig. 1. The corresponding equa-
(2) _ _ _ tion and its parameters are described in the Appendix. The
Di" () QEK 9k DG(X.). (30 estimated drift and diffusion coefficients are shown in Fig. 2
together with their theoretical dependencexomhe depen-
If coefficients D) and D) are estimated from the time dencesD(x) estimated from the time series closely follow
series generated by the stochastic process, the dynamics thke theoretical ones. The largest discrepancies between the
the process are in fact completely determined. Using Eqsheoretical and the estimated dependences are observed in
(3), one can further determine the deterministic term, as welthe vicinity of x=0, and at the edges of the phase space. The
as the form and strength of the fluctuating term in the Langereason for this lies in the infrequent visits of the process
vin equation. trajectory to these intervals af(Fig. 1), which results in less
For the class of stationary continuous Markovian pro-reliable estimates of conditional probability density in these
cesses with uncorrelated dynamical noise, it is always posntervals.
sible to determine drift and diffusion coefficients directly  Obviously, the better the estimate of conditional probabil-
from given datd3,4] by using their statistical definitiof6]: ity density, the better the estimates of the coefficieb{d
1 obtained by the method. For the results presented in this
(1) —im —/X. oy paper we estimated the probability density using histograms
DT (8= lim Z{Xi(t 1) =Xi)xo =x; “@a ith equidistant bins.

7—0
An important issue related to the estimation of coeffi-
1 cientsD™ is their dependence on the time stepThis de-
D7 ()= lim = ((X;(t+7) =x;) (Xj(t+7) =X}))x(t)—x- pendence is discussed in detail elsewHéie and only the
o7 main results are given below.

(4b) The effect of time step For the sake of simplicity, let us
Here X(t+ 1) is a solution of Eq(1) which starts aiX(t) consider a one-dimensional process for which the Fokker—

=x at timet. In practice,D(") can be determined from the Planck operatot,
following relations for a small time step 2

L=—iD(1)(x)+1&—D(2)(x) @)
DY) =TV (x,7), (5a) X 2 ox° ’

DY () =T (x,7) = 7TV (%, 1) T{M(x,7). (5b)  possesses real eigenvalues<0 and eigenvector®;(x).
The conditional probability density can be expressed in the
The terms form of an infinite series as
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FIG. 2. The estimated drift and diffusion coefficiefitiamond$ compared to their theoretical dependencexddashed ling

with the theoretical values is already lostrat 1. Indeed, the

ply.t'[x,t)=2> eN VD (x)®;(y), (8)  dependence of root-mean-squared efrof the estimates on
! the time stepr confirms that the error oD estimates
wheret’ —t= 7, The conditional moments are given by ~ 9rows with increasingr faster than the error b esi-
mates(Fig. 4). Our experience suggests that the maximum
() =X ) gty =xct) acceptable time step,, for accurate estimate of the diffu-

sion coefficient is approximately one order of magnitude
_ At =gt 2o oKy, smaller thanr,,, Which is acceptable for the estimate of drift
_; e P, (x) f_w(y X)'@i(y)dy  (9) coefficient. In terms of Eqg10) this means that, if the series
are to approximate both coefficients equally well, the number
and the following expansions for drift and diffusion coeffi- of termsN in the series which approximaté® must be
cients are obtaineff7]: larger.
. In general, the maximum acceptable time step, or,
DD (x)=D, )‘J(DJT(X)J (y—x)®(y)dy, (108 equivalently, the number of term¢ required in a series de-
] —o pend on the properties of the process. Based on our experi-
ence,mnax for the drift coefficient is usually not much shorter
2o & 2, than the time step; required for the integration of the cor-
D! (X)_; APy (x) f_m(y X)"®;(y)dy. (10 responding differential equations. For example, in the case of
the van der Pol oscillatofEgs. (A2)] we found 7,,,~0.1,
When coefficientD ) are estimated from data, the infinite which results in approximately 80 points per oscillation
series(8)—(10) are approximated by finite ones which con- cycle, whereas the longest reasonable integration step for
tain N eigenfunctions. In order to obtain accurate informationwhich the limit cycle is not yet too distorted is approximately
about the conditional probability distribution and coefficientst;~0.3.
D®, one has to choose a time steguch thate*N0, for However, in practice one is often faced with experimental
sufficiently largeN [7]. data recorded with a time step for which coefficients with
As an example, let us use a time series generated by Edecreasingr do not converge to a limit value. In this case,
(Al). CoefficientsD(") estimated from the data using differ- the estimated coefficients should be considered a crude ap-
ent values ofr are shown in Fig. 3. Ar=0.01, 0.1, and 1, proximation and treated with caution. The lack of conver-
the estimated drift coefficients match the theoretical valuegence ofD( with decreasingr can be regarded as an indi-
well, whereas for the diffusion coefficient the agreementcation of the non-Markovian properties of the procggs
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FIG. 3. CoefficientD " estimated using four different time steps
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FIG. 4. Root-mean-squared errérof the coefficientsD ") versus the time step

Ill. APPLICATIONS OF THE METHOD shown in the left-hand panel of Fig. 6. Except for the regions

where there is no data, the estimates agree well with the

» . C theoretical values. However, for an experimentally studied
the decomposition of stochastic process dynamics into a d‘?)'rocess, for which the dynamics equations are not known,

terministic and a random component. For stationary continUggefficients presented in this way are not easy to interpret.
ous Markovian stochastic processes, such decomposition is A more informative presentation of the drift coefficient
performed by estimating the. drift and diffusion coefficients p(1) is achieved by plotting it as a vector fielthe right-
of the Fokker—Planck equation as described in Sec. Il. Actznd panel of Fig. )6 An arrow in the field graph represents
cording to the relations in Eq¢3), the drift coefficientD™) 5 yajue of the drift coefficierDM(x) estimated at locatior
corresponds to the deterministic componiéd. (3a)], while i, phase space. The orientation of the arrow indicates the
the diffusion coefficienD(* is related to the random com- average direction of deterministic motionsatin the case of
ponent of process dynami¢gg. (3b)]. a van der Pol oscillatofthe right-hand panel of Fig.)gar-
Applications are illustrated by examples employing datarows in the vector field point on average in the clockwise
sets from(a) a stochastic system exhibiting the pitchfork girection, suggesting motion on a stable nonsymmetric limit
bifurcation, (b) a stochastic van der Pol oscillator, af@ a  cycle in that direction. Arrows outside the limit cycle run
stochastic Lorenz system. The corresponding Langevin equ@pproximately parallel to the cycle around most of the cycle,

tions and their parameters are given in the Appendix. except at the upper left and at the bottom right corners,
where they point towards the cycle. This indicates that the
A. Deterministic vector field dissipation is close to zero around most of the cycle, and

_ ) ) __strongly negative at the two corners. The arrows inside the

interesting to explore how the process would evolve if it wasynstaple fixed point is located in the center of phase space.
subject to no random influences. This evolution is governed Tpe example shows that examination of the drift coeffi-
by the deterministic component of the stochastic process dytjent presented as a field yields information about the local
namics, which in our case is determined by the drift coeffi-stapility properties of the process. However, the information
cient of the Fokker—Planck equation. obtained from the drift coefficient is limited to the region

Having extracted the drift coefficie®®) from a stochas- vyisjted by the trajectory during experiments. In order to get
tic time series, one can plot its componeBts” separately  information about process properties in other regions of
versus the phase space coordinates. Such a plot is shownphase space, one should randomly disturb the process during
Fig. 5 for a stochastic van der Pol oscillaf&gs.(A2)]. DY) experiments to make it explore a greater portion of its phase
was estimated from a vector time series, a portion of which ispace.

FIG. 5. Components of drift coefficierd)(x) for a stochastic van der Pol oscillator. Solid grid, estimated values. Dashed grid,
theoretical values.
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FIG. 6. Left: Phase portraits of a stochastic and a deterministic van der Pol oscillator. Right: The estimated drift coefficient is shown as
a vector field with two trajectories superimposed. The trajectories were integrated using the estimated drift coefficient.

B. Reconstruction of deterministic dynamics ficient was used to generate a deterministic trajectory, which

The relationship between the drift coefficient of the is_plotted supe_rimposed on the vector field. A trajectory ob-
Fokker—Planck equation and the deterministic term of thdained by solving numerically the deterministic equations of
Langevin equation can also be exploited to reconstruct thé1e Lorenz systerfEqs.(A3)] is shown superimposed on the
deterministic dynamics of the process. If we drop the randon$tochastic trajectory. Although both deterministic trajectories
term of the Langevin equatiofl), we can solve the trun- start at the same point in phase space, they do not follow the

cated equation numerically using the estimabéd as same path(the bottom traces in Fig.)8This discrepancy
stems from the imperfect estimation of conditional probabil-
X(t+At)=X(t)+ DI (X(t))At. (11 ity density and from the chaotic nature of the Lorenz system.

However, both deterministic trajectories possess similar

The solution represents a deterministic trajectory of the proeharacteristic patterns, and the phase portraits formed by the
cess. Two such solutions are shown superimposed on thegjectories are qualitatively similgFig. 7). The main dif-
vector field in the right-hand panel of Fig. 6. The initial ference can be seen in the inner regions of the two lobes,
conditions of these trajectoridsnarked by a diamondliie =~ where the probability density was presumably poorly esti-
outside or inside the limit cycle, respectively. Both trajecto-mated.
ries terminate on the stable limit cycle after a transient pe- In order to gain an impression of the influence of dynamic
riod. For the purpose of comparison, a theoretical determinnoise on the Lorenz system dynamics, compare the upper
istic trajectory is shown superimposed on the stochastitwo traces in Fig. 8 which correspond to the original stochas-
phase portrait in the left-hand panel of Fig. 6. This trajectorytic and deterministic trajectories. In the stochastic case, noise
is a numerical solution of the deterministic term of the equa-drives the trajectory from one lobe of the attractor to the
tions governing the dynamics of the oscilla{&qgs. (A2)]. other more frequently, and thus prevents the trajectory spi-
The deterministic trajectories obtained by integrating Eqraling in a particular lobe for a protracted period, as is the
(11) agree closely with the theoretical deterministic trajec-case in the deterministic system. Nevertheless, the spiraling
tory. typical of the Lorenz attractor is clearly observed in the re-

To illustrate that the method is not restricted to trivial constructed deterministic trajectofthe bottom trace More-
attractors, such as fixed points and limit cycles, a vector timever, note the difference between the extent of the determin-
series from the stochastic Lorenz system in a chaotic regimistic attractor and the vector field in the right-hand panel of
was analyzedEgs. (A3)]. A portion of the stochastic time Fig. 7. Dynamic noise increases the extent of the attractor
series and the extracted drift coefficient are shown in thérom 45% in thex, direction up to 83% in the&s direction.
left-hand and the right-hand panels of Fig. 7. The drift coef-Although the noise repeatedly drives the trajectory away

FIG. 7. Left: Phase portraits of a stochastic and a deterministic Lorenz system. Right: The estimated drift coefficient is shown as a vector
field with a trajectory superimposed. The trajectory was integrated using the estimated drift coefficient.



PRE 62 ANALYSIS OF TIME SERIES FROM STOCHASTIC PROCESSES 3151

Ongmal stochastic

"I Mww T Mmm
SN

Original deterministic

Lo M M A MM
B I AT T A T

Reconstructed deterministic

T A A g AAA
AP A ] Vel

Time t [s]

Variable X,

FIG. 8. Comparison of the original stochastic trajectory with the original and reconstructed deterministic trajectories of the Lorenz
system.

from the deterministic attractor, the trajectory generated b}&Q 5('[ t'), with vanishing mearXT";(t)) =0, for eachi,j.
the extracted drift coefficient forms an attractor which re- FoIIowmg Eq. (3b), the noise amplitudeg;; can be calcu-
ij
sembles the shape and the extent of the original deterministigted from
attractor. Hence using our method, we obtain information
about the deterministic properties of the process from sto- f_p@ 13
chastic data, although the dynamics of the process are sig- Qg = (13
nificantly altered by the noise.
using the Cholesky decompositi$8], p. 96, iff. (i) D) is
C. Reconstruction of stochastic dynamics positive definite and symmetric, artid) g is a lower trian-
gular matrix. Diffusion coefficient fulfills the conditiofi),

In order to reconstruct a stochastic trajectory which posand we assume thatis of a lower triangular form. The sum
sesses deterministic and random properties similar to thosg gq. (12) therefore includes only the firstterms.

of the studied process, drift and diffusion coefficients must  For the van der Pol oscillator, the original and the recon-
be estimated from the stochastic data set. A stochastic trajegtructed stochastic trajectories are shown in Fig. 9. As ex-

tory can be obtained from the Langevin equation as pected, the trajectories are not the same because the noise
. time series used to generate them are different. However,
. —y (1) - . both stochastic trajectories are qualitatively similar and they
Xi(tHAD =X+ DT (X(M)AL mjgl 9 (XL, (V), possess the same deterministic and random properties.
(12 For the Lorenz system, the original and the reconstructed
stochastic trajectories are compared in Fig. 10. Again, both
where I';(t) represents uncorrelated noisd,;(t)I'j(t")) trajectories match qualitatively.
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FIG. 9. Comparison of the original and reconstructed stochastic trajectories of the van der Pol oscillator.
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FIG. 10. Comparison of the original and reconstructed stochastic trajectories of the Lorenz system.

The possibility of generating a stochastic trajectory whichtimes is compared to the distribution obtained from the origi-
resembles the deterministic as well as the random propertiegal trajectory containing 200 passages. The overall shapes of
of the original trajectory can be applied effectively for vari- both distributions agree quite well, although the curves differ
ous purposes. One of them is discussed below. in details. Still, the mean first passage times, marked by the

Estimation of the mean first passage tifibe mean first vertical lines, are similar.
passage time denotes the mean period between successiveThe passage times depend on the noise amplgutiethe
visits of the process trajectory to a selected location in phasease of a particle in a two-well potential, the higher the noise
space. Suppose that we had measured a trajectory in whi@mplitude, the shorter the mean passage time. The depen-
only a few passages of interest were observed. To estimatiences of the mean first passage times on the noise ampli-
reliably the mean first passage time, we would need manjude obtained from the original and reconstructed trajectories
such passages. One solution to this problem which does nare compared in Fig. 1fh). The agreement between the two
involve additional measurements is to extract drift and diffu-dependences is very good.
sion coefficients from the measured trajectory, and to recon-
struct a stochastic trajectory which is sufficiently long to
contain enough passages.

As an example, we again use a stochastic process which |n this section we apply the method to analyze experimen-
exhibits a pitchfork bifurcatiodEqg. (A1)]. The time series tal time series measured in different regimes of metal cutting
generated by the procegf&g. 1) can be considered as a trace [9]. The dynamics of metal cutting involve several nonlinear
of a randomly disturbed particle in a one-dimensional two-dynamic phenomena, such as material flow and fracture, fric-
well potential. Our goal is to estimate the mean time neededion between the tool and the workpiece, coupled vibrations
by the particle to pass from the wellat — \/e to the well at  of a machine—tool— —workpiece assembly, etc. By varying the
Xx= €. Based on a time series containing only 3 passages, @tting parameters, dynamically different cutting regimes
stochastic trajectory was reconstructed containing 200 pasan be achieved. For example, if the cutting depth is in-
sages. In Fig. 1), the distribution of the estimated passagecreased over a certain critical value, self-excited large-

IV. ANALYSIS OF EXPERIMENTAL DATA
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FIG. 11. (a) Comparison of distributions of first passage times foom— \/e to x= /e at noise amplitude of=0.05 for the original and
reconstructed trajectories. The vertical lines denote the mean véaidscomparison of dependences of the mean first passage times on the
noise amplitudey for the original and the reconstructed trajectories.
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FIG. 12. Two-dimensional projections of drift coefficients for chatter-fie&), weak(right), and strong chatter regimésottom). The
superimposed trajectories were integrated using the corresponding drift coefficients.

amplitude vibrations of the machine—tool-workpiece assemspace. The unstable fixed point cannot be observed in the
bly may develop. Cutting accompanied by such vibrations icase of strong chattgbottom panel because the process
known as chatter. With its detrimental effect on the work-trajectory does not visit the center region of the phase space.
piece, tool, and machine, chatter has been studied intensively Closer examination of drift coefficients in the chatter re-
in recent decades. Analysis of simple nonlinear models ofjimes reveals interesting changes to the local dissipation in
the cutting process has revealed that the onset of chatter céime phase space. The average inclination of the arrows to-
be described as a subcritical Hopf bifurcat[d®,11,9. Such  wards the limit cycle is much greater in the lower right por-
a description of chatter onset has been confirmed by bifurcaion of the limit cycle than in the upper left portion. The two
tion diagrams obtained experimentall§2—14. However, portions of the limit cycle correspond to the tool motion
evidence for such a description based on analysis of medewards and away from the workpiece, respectively. Differ-
sured time series has been lacking, presumably due to thent average inclinations presumably result from the depen-
stochastic nature of the process. dence of damping on the relative direction of the tool motion
We chose turning on a lathe as an example of the cuttingvith respect to the workpiece.
process, where a rotating workpiece is cut by a fixed tool. To check the stability of the observed fixed point quanti-
We analyzed the time series recorded during three cuttingatively, the drift coefficients were approximated using third
regimes denoted a&) chatter-free cutting(b) cutting ac- order polynomials. Eigenvalues; of the Jacobian matrix
companied by weak chatter, afg) cutting accompanied by evaluated at the fixed poiti0,0,0 are listed in Table I. The
strong chatter. Drift coefficienidig. 12 were estimated in a real part of the pair of the largeat is negative in chatter-
three-dimensional phase space reconstructed from the scafage cutting and positive in both chatter regimes. This con-
time series using the delay coordinaf#5]. The trajectories, firms that the fixed point is stable during chatter-free cutting
which are shown superimposed on the fields, were integrateahd unstable during chatter. Such dependence of the real part
according to Eq(11). In the case of the chatter-free regime of \, , is typical of the Hopf bifurcation from a stable fixed
(the top left pane] the field arrows point towards the center point to a stable limit cycl¢16].
of the phase space. This indicates the existence of a stable . . ) .
fixed pgint at(O,B,Q. Both trajectories which start at the edge | ABLE |- Stability coefficients of the f_meﬁ;j@;))onﬂo,o,O), cal-
of the phase portrait end up close to the assumed stable fixé:Hlated from the equations which approximaxe”.

point. In chatter regimes, a stable nonsymmetric limit cycle~ . .

is present. In the weak chatter regirttbe top right pane) Cutting regime M A2 A3
the field arrows inside the limit cycle point out towards the Chatter-free —2.19+i3.58 —2.19-i3.58 —2.95
cycle, which indicates that an unstable fixed point might bexeak chatter 0.1%i1.57 0.11+i1.57 -7.62
located in the center of the phase space. This is also showgtrong chatter 0.48i1.86 0.48-i1.86 0

by the path of the trajectory starting in the center of the phase
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V. DISCUSSION AND CONCLUSIONS nomials, and the stability of the fixed point was assessed
D . . ft ¢ . bstacl uantitatively. It was found that the transition from a chatter-

ynamics noise oftén represents a serious obstacle Waq 4 5 chatter regime corresponds to the Hopf bifurcation
analysis of process dynamics. However, for stochastic prog,y, 5 staple fixed point to a stable limit cycle. Such a de-

cesses that obey the Fokker—Planck equation, the 1aws Qfyintion of the transition is in accordance with the analytical
determllnlstlc dynamics, anq the form .and. strength .of theyng qualitative experimental results.

fluctuations can be determined by estimating the drift and Tjme series from metal cutting have often been analyzed
diffusion coefficients of the Fokker—Planck equation directlyusing the methods of nonlinear time series analB/B?s_Z]]'

from a time serie$3,4]. The estimates of the coefficients are The dynamics of cutting with chatter were mostly described
independent of the time step applied for the estimation of theis low dimensional, while descriptions of chatter-free cutting
conditional probability distribution, provided that the time dynamics ranged from linearly correlated random to low-
step is sufficiently short. Numerical study has revealed thatlimensional chaotic. Such differences in descriptions can be
drift coefficient estimates converge to a limit value at timeattributed either to different experimental setups or to incau-
steps one order of magnitude longer than estimates of diffutious use of the analysis methods. However, most researchers
sion coefficient. The time step, which is necessary for théhave reported a substantial level of noise in their data. Based
estimates to converge, depends on the properties of the pren our experiencg20], we suspect that different descriptions
cess. We found the necessary time step to be shorter than tR&the cutting dynamics might also have resulted due to dy-
time step required for the integration of the corresponding’@mic noise in the measured time series. We have shown in
differential equations. When analyzing experimental datathiS paper that dynamic noise can significantly broaden a
the convergence of the estimates with decreasing time st it cycle attractor or dramatically distort a chaotic attractor

should be established. Such a convergence test may al$3€€ left panels of Figs. 6 and. Disregarding the effect of
serve as a criterion for selection of an appropriate samplingYNamic noise in these two cases, one might be led to search

time. A lack of convergence of the estimated coefficients O & complicated structure .in the noisy limit cyclg attractor,
with decreasing time step indicates non-Markovian properf’md to overlook the underlying structure of the noisy chaotic

i ttractor.
ties of the procesf7]. a . . . . .
Since drift and diffusion coefficients correspond to the Only dynamic noise was considered in our study, while

deterministic and random parts of the process dynamics, r he influence of measurement noise _has bee_n_neglected.
However, by evaluating drift and diffusion coefficients the

spectively, their separate estimation from data is equivale : :
P y b g Influence of measurement noise can be estimated for sys-

to decomposition of the process dynamics into a determinis-

tic and a random component. This decomposition served astgms, where the dynamic noise level exceeds the measure-

basis for the applications of stochastic data analysis prer_nent noise levef22]. — .
In summary, we have proposed applications for analysis

sented in this papena The drift coefficient plotted as a . i )

vector field represents the deterministic dynamics of the pro(—)f time series .from .StOChaSt'C processes govgrned by a

cess. Closer examination of the field can reveal addition lrangevm equation. S_mce the m(_aasgred time series are very

information on the local stability properties of the process in'keIy to b.e stoc.hastlc, .the appl|cgt|ons QOUId comple_men't
other nonlinear time series analysis techniques, especially in

the phase spacéb) Drift and diffusion coefficients can be here d . ise in th b
employed to reconstruct the process dynamics governed Isc(t::dses where dynamic noise in the process cannot beé ne-

the Langevin equation. When only the drift coefficient is
used to solve the truncated Langevin equation, a determinis-
tic solution is obtained. This solution represents the trajec- ACKNOWLEDGMENTS

tory of the process which would be observed in the absence . ,
of random fluctuations. Although remotely similar, such a  1he authors thank Tomadinc for making them aware of

deterministic solution should not be mistaken for filtering of the Cholesky decompositidi8, p. 96. J.G. and I.G. grate-
dynamic noise, since the process would evolve differentlyully acknowledge the support of the Volkswagen Founda-
under the same deterministic laws if the random fluctuationdion. EU COST Action P4, and the Ministry of Science and
were present(c) If both drift and diffusion coefficients are 1€chnology of Slovenia.

used for the integration of the Langevin equation, a represen-

tative stochastic trajectory of the process can be obtained. APPENDIX: SYNTHETIC DATA SETS

Stochastic trajectories can be applied as surrogate process

trajectories, since they possess the same deterministic and In the following, the uncorrelated noid&(t) is Gaussian
random properties as the original procesi.We have used distributed with zero mean and variance equal to one.

the representative trajectories to estimate the mean first pas-

sage time in the case where the original trajectory contained 1. Pitchfork bifurcation

only a few passages of interest. _ _ o _
Finally, experimental data sets acquired in three typical The dynamics of a stochastic process exhibiting the pitch-

regimes of metal cutting were analyzed. Based on estimatgl@"k bifurcation is governed by the following Langevin equa-
drift coefficients, it was shown that cutting dynamics in thetlON:
chatter-free regime could be described as random fluctua-
tions around a stable fixed point, while in the two chatter
regimes the fluctuations occur around a stable limit cycle.
The drift coefficients were approximated by third order poly-We chosee=0.1 andg=0.05.

X(t)=eX(t)—X(t)3+gL'(t). (A1)



PRE 62 ANALYSIS OF TIME SERIES FROM STOCHASTIC PROCESSES 3155

2. van der Pol oscillator

The dynamics of the stochastic van der Pol oscillator are Xo=Xa(r _X3)_X2+; ATV, (A3b)
governed by
X;1=Xo, (A2a) .
' X3=X1X2—bX3+§j: g3;1(1), (A3c)
Xo=(e—X3)X,— X, +gl(1). (A2b)
We chosee=2 andg=3. where the parameters= 10, r =28, andb=8/3 were chosen
S0 as to assure chaotic regime of the deterministic process.
3. Lorenz system The matrixg was
The stochastic Lorenz system is governed by the follow-
ing system of equations: 4 5 3
. g=|5 5 6. (A4)
Xi=o(X,— X))+ (1), A3a
1= 0(X; 1)291,,() (A3a) 3 6 10
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