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Fractional guantum mechanics

Nick Laskir*
Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
(Received 6 April 200D

A path integral approach to quantum physics has been developed. Fractional path integrals over the paths of
the Levy flights are defined. It is shown that if the fractality of the Brownian trajectories leads to standard
quantum and statistical mechanics, then the fractality of the Ipaths leads to fractional quantum mechanics
and fractional statistical mechanics. The fractional quantum and statistical mechanics have been developed via
our fractional path integral approach. A fractional generalization of the 8oiger equation has been found.

A relationship between the energy and the momentum of the nonrelativistic quantum-mechanical particle has
been established. The equation for the fractional plane wave function has been obtained. We have derived a
free particle guantum-mechanical kernel using Fdk'&inction. A fractional generalization of the Heisenberg
uncertainty relation has been established. Fractional statistical mechanics has been developed via the path
integral approach. A fractional generalization of the motion equation for the density matrix has been found.
The density matrix of a free particle has been expressed in terms of the Fduigction. We also discuss the
relationships between fractional and the well-known Feynman path integral approaches to quantum and sta-
tistical mechanics.

PACS numbgs): 05.40.Fb, 05.36-d, 03.65.Db, 03.65.Sq

I. INTRODUCTION As is well known, in the Gaussian case the path integral
approach to quantum mechanics allows one to reproduce the
The term “fractal” was introduced into scientists’ lexicon Schralinger equation for the wave function. In the general
by Mandelbrot[1]. Historically, the first example of a frac- case we derive the fractional generalization of the Schro
tional physical object was Brownian motion, whose trajecto-dinger equatiodsee Eq.(28)]. The fractional generalization
ries (pathg are nondifferentiable, self-similar curves that of the Schrdinger equation includes the derivative of order
have a fractal dimension that is different from its topological « instead of the seconda(=2) derivative in the standard
dimension[1,2]. In quantum physics the first successful at- Schralinger equation. This is one of the reasons for the term
tempt to apply the fractality concept was the Feynman patltfractional quantum mechanics(FQM).
integral approach to quantum mechanics. Feynman and The paper is organized as follows. In Sec. Il we describe
Hibbs [3] reformulated the nonrelativistic quantum mechan-two fractals:(i) a trajectory of the Brownian motion, arfi)
ics as a path integral over Brownian paths. Thus thea trajectory of the Ley flight. In Sec. Ill we define the frac-
Feynman-Hibbs fractional background leads to standartional path integrals in the coordinate and phase space rep-
(nonfractional quantum mechanics. resentations. We develop the FQM via a path integral. It is
We develop an extension of a fractality concept in quanshown in what way the FQM includes the standard one. We
tum physics. That is, we construct a fractional path integratierive the free particle fractional quantum-mechanical propa-
and formulate the fractional quantum mecharifisas a path  gator using Fox’sH function. The fractional dispersion rela-

integral over the paths of the tzg flights. tion between the energy and the momentum of the nonrela-
The Levy stochastic process is a natural generalization otivistic fractional quantum mechanical patrticle is established.
the Brownian motion or the Wiener stochastic prodés§]. In Sec. IV the fractional generalization of the Satirger

The foundation for this generalization is the theory of stableequation in terms of the quantum Riesz fractional derivative
probability distributions developed by i [7]. The most s obtained. The fractional Hamilton operator is defined, and
fundamental property of the g distributions is the stabil- its hermiticy is proven.
ity in respect to addition, in accordance with the generalized As a physical application of the developed fractional
central limit theorem. Thus, from the probability theory point quantum mechanics, a free particle quantum dynamics is
of view, the stable probability law is a generalization of thestudied in Sec. V. We introduce the \ne wave packet,
well-known Gaussian law. The kg processes are charac- which is a fractional generalization of the well-known
terized by the Ley index o, 0<a<2. At «=2 we have the Gaussian wave packet. Quantum-mechanical probability
Gaussian process or the process of the Brownian motion. Letensities in space and momentum representations are de-
us note that the vy process is widely used to model a rived. The fractional uncertainty relation is established. This
variety of processes, such as turbulefi@k chaotic dynam- uncertainty relation can be considered as a fractional gener-
ics [9], plasma physic$10], financial dynamicg11], biol-  alization of the Heisenberg uncertainty relation.
ogy, and physiology12]. In Sec. VI we develop the fractional statistical mechanics
(FSM) by means of the fractional path integral approach.
The main point is go from imaginary tim@ the framework
*Email addresses: nlaskin@rocketmail.com; of the quantum-mechanical fractional path integral consider-
nlaskin@sce.carleton.ca ation) to “inverse temperature’it—# 3, where 8= 1/kgT,
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kg is Boltzmann’s constant; is Planck’s constant, aniis ~ when space resolution goes to zeix— 0. The fractional
the temperature. We have found an equation for the partitiofimensiondgacs may be introduced byl,2]

function of the fractional statistical system. The fractional 1-d

density matrix for a free particle is expressed in analytical Loc(Ax)™ Fhacta,
form in terms of the Fox’$H function. We have derived the
new fractional differential equatiofsee Eq.(63)] for the
fractional density matrix. In the conclusion, we discuss th
relationships between the fractional approach and the well- gf(Brownian _ 5 @)
known Feynman path integral approach to quantum and sta- fractal '

tistical mechanics. Thus the fractal dimension of the Brownian path is 2.
(i) Another example of a fractal is the random process of
Il. FRACTALS the Levy “flight” (or the Levy motion). As discussed in Sec.
I, the Levy motion is a so-callech-stable random process,

The r.elat.|on be_tween fractal_s and quant(on statistica) and may be considered as a generalization of the Brownian
mechanics is easily observed in the framework of the Feyn-

. ) motion. Thea-stable distribution is formed under the influ-
man path integral formulatiof3]. The background of the ence of the sum of a large number of independent random
Feynman approach to quantum mechanics is a path integr,ictors The probability density, (xt|xoty) Of the Levy
over the Brownian paths. The Brownian motion was histori- "2 e foh oo S8 formL 0%0
cally the first example of the fractal in physics. Brownian
paths are nondifferentiable, self-similar curves whose fractal 1 (= .
dimension is different from its topological dimension. Let us p, (xt|xotg) = 2—f dk &%) exp{ — o |k *(t—to)},
explain the fractal dimension with two examples of fractals: )

(i) the Brownian path, andii) the trajectory of the ey (5)
flight.

(i) A mathematical model of the Brownian motion is the
Wiener stochastic procesgt) [5]. The probability density
pw(Xt|Xoto), that a stochastic procesét) will be found atx
at time t under the condition that it starts atty, from
X(tg) =Xq, satisfies the diffusion equation

where Ax—0. Letting Ax—0 in Eg. (3), and comparing
ewith the definition of the fractal dimensicu ., Yields

wherea is the Lery index 0<a<2, ando, is the general-
ized diffusion coefficient with the “physical” dimension
[o,]=cm*sec . The a-stable distribution with &ca<2
possesses finite moments of orderu<«, but infinite mo-
ments for higher order. Note that the Gaussian probability
distribution is also a stable onex&2), and it possesses
moments of all orders.
w = EVZpw(thxoto). We will further study a fractional quantum and statistical
at 2 mechanics, and it seems reasonable to suggest that there ex-
ists moments of first order or physical averages example,
V= i an average momentum or space coordinate of quantum par-
x’ ticle; see Secs. V and YIThe requirement for the first mo-
ment’s existence gives the restrictionsiv<2.
the solution of which has the form The a-stable Ley distribution defined by Eq5) satisfies
the fractional diffusion equation

Pw(Xt|Xoto) = 8(X—Xg),

Pw(Xt|Xoto) =Ppw(X—Xg;t—1to)

IpL(Xt|Xoto) 9“

(X_XO)2 _O-aVapL(Xt|X0tO)! VQEW!

1
- exp-o———f, (1 ot
V2o (t—tgp) p[ ZU(t_to)] @ (6)
. L - PL(Xt|Xgtg) = 8(X—Xo),
whereo is the diffusion coefficient, ant>t.
Equation(1) implies that whereV*“ is the fractional Riesz derivative defined through

its Fourier transfornj13,14:
(X—Xg) % o(t—tg). i)

1 (= ‘
This scaling relation between a length increment of the V”D(X,t)=—ﬁf dk e<k|“p(k,t). (7)
Wiener procesax=x—Xy and a time incremenmkt=t—t, o
allows one to find the fractal dimension of the Brownian
path. Let us consider the length of the diffusion path betweel?_.0
two given space-time points. We divide the given time inter-
val T into N slices, such a3 =NAt. Then the space length 1 (= _
of the diffusion path is p(x,t)= EJ dk €prk,t),

Here p(x,t) andp(k,t) are related to each other by the
urier transforms

T

L=NAx=-—Ax=0T(Ax) 1, ©) - _
At H(k,t)zf dx e ®*p(x,t).

where the scaling relatiofEqg. (2)] was taken into account.

The fractal dimension tells us about the length of the pattEquation(5) implies that
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(X_xo)u(ga(t_to))lla, 1<a<2. (8 This is the typical relation between the space displace-
ment and the time scale for the Brownian path. This scaling
This scaling relation between a length increment of therelation between a length increment; € x;_;) and a time

Lévy processAx=Xx—Xg, and a time incremenkt=t—t,, incrementAt implies that the fractal d|men3|on of the Fey-
allows one to find the fractal dimension of a trajectory of anman's path igl{2"™®=2_ As is well known, the definition

Lévy path. Let us consider the length of thewepath be-  given by Eq.(11) leads to standard quantum mechanics. We

tween two given space-time points. Dividing the given timeconclude that the Feynman-Hibbs fractional background

interval T into N slices, such a§ =NAt, and taking into  |eads to standarthonfractiona) guantum mechanids].

account the scaling relatidfeq. (8)], we have We propose the fractional quantum mechanics based on
the fractional path integral

-
L=NAx= A—tAx= DT(Ax)1 @

X(tp)=Xp
KL(xbtb|xata)=f Dx(r)ex ——f drV(x(7));,
Letting Ax— 0, and comparing with the definition of the X(ta) =X
fractal dimensiort. [1,2], yields (12
(Lévy) whereV[x(7)] is the potential energy as a functional of the
Oiactar= @, 1<a<2. (9 Lévy particle path, and the fractional path integral measure is
. . o . fi
Thus the fractal dimension of the consideredy. @ath isa. defined as
X(tp) =Xp . “ -N
Ill. FRACTIONAL PATH INTEGRAL f Dx(7)---= lim f dx;...dXy-17t
X(tg)=Xq N—ow J—

If a particle at an initial time, starts from a poink, and _ Nla
goes to a final poirty, at timet,,, we will say simply that the % ( IDas) H L
particle goes froma to b, and its trajectorypath x(t) will f “«
have the property that(t,) = x, andx(t,) =X, . In quantum
mechanics, then, we will have a quantum-mechanical ampli-
tude, often called a kernel, which we may write |X1_Xi‘1|]'" :
Ke(Xptp|Xata), Which we use to get from the poiatto the (13
point b. This will be the sum over all the trajectories that go
between the end points, and of a contribution from each. Ifyherep s the generalized “fractional quantum diffusion
we have a quantum particle moving in the potentidk)  ciefficient,” the physical dimension of which D]
then t_he quantum-mechanical amplitude(Xytp|Xata) may =erg~“cm*sec’®, # denotes Planck’s constar)t():xz,
be written aq3] Xn=Xp, &= (tp—t5)/N, and the Lgy distribution function
L, is expressed in terms of FoxH function[15-17:

Dt —la 1 A la
-1 Za Lo~ ||
% “h\Dgt
xXexp —— | drV(x ; 10
p[ fta TV(X(7) ] (10 1 1A Vo o 11m),(1.2)
)

= H .
. . . a|X| (1,D,(13)
whereV(x(7)) is the potential energy as a functional of a
particle pathx(7), and the Feynman path integral measure isyere 4 is the Levy index and, as mentioned in Sec. II, we

1

% la
<3 )

iD e

X(tb) = Xb
KF(thb|Xata) = DFeynmaﬁ(( 7)

(14)

defined as consider the case when<la<2.
- The tuncti_onal measure defined by Hq.’:_’) is generated
f DeeynmaX(7)" by the Levy flights stochastic process. We find from E&3)
X(ta) =%q that the scaling relation between a length increment (

—X;-1) and a time incremenit has a fractional form

—0o0

" J“” ) ) (ZWiﬁs)N/Z
= lim X1...0XN—
. N-1 m |Xj_Xj,1|°C(ﬁa_lDa)1/a(At)1/a_

N— o0

><H ex

im 5 This scaling relation implies that the fractal dimension of
= ( X] l) ’ (11)

2he the Levy path isd{:=2¥)= . So, in the general case, ak
<2 Levy fractional background leads to fractional quantum
herem is the mass of the quantum-mechanical partitlés mechanics. Equation&l2)—(14) define the new fractional
the Planck’s constanky=X,, X=X, ande=(t,—t5)/N. guantum mechanics via the fractional path integral.
The Feynman path integral measure is generated by the pro- As a physical application of the developed fractional path
cess of the Brownian motion. Indeed, Efl) implies integral approach let us calculate the free particle kernel
" K(O(xptp|Xata), and compare it with the Feynman free par-
(X=X )oc(_> (A2 ticle kernelKO)(x,tp|Xata). For the free particle/(x)=0,
A=Y m and Eqgs(12) and(13) yields
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(O) X(tb):Xb
KL (thb|xata): Dx(r)X1
X(ta) =Xa
_ -1 Dalto=te)) 71
h
1 i 1/
X N = - .
b ﬁ(lDa(tb—ta)) Iy Xa']

(19

It is known that ata=2 the Levy distribution is trans-
formed to a Gaussian, and théweflight process is trans-

formed to the process of Brownian motion. Equati@B), in

accordance with the definition given by E(4) and the

properties of the Fox's functioH 3 at a=2 (see Refs[16],

[17]) is transformed to a Feynman free particle kerfsale

Eq. (3-3) of Ref.[3]]

27Tiﬁ(tb—ta)>1/2 im(Xp—Xa)?
—m ] P2t |
(16)

K (Xptp|Xata) = (

Thus the general fractionfEq. (15)] includes, as a particu-

lar, a Gaussian case at=2, the Feynman propagator.

In terms of a Fourier integrdmomentum representatipn

the fractional kerneK,(_O)(xbtblxata) is written as

NICK LASKIN
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[ ox(s) [ poir--

X(ta) =Xa

o 1
= lim f dx;...dXn—175 N
Nevoe J = 1 N 1(27Tﬁ)N

o Xq1— X D, @
xf dpl...deexp:ipl(;L 2, Sflipﬂ]

Xp— XN— D, «
X---Xeny{ipN( b~ XN l)—i e|py| ]

h h
(20)

heree =(t,—t,)/N. Then the kerneK (xpty|Xats), defined
by Eg.(12), can be written as

1

KL (Xptp|Xata) = lim f_ocdx1 . .de,lm

N—ox
w i N
Xf,wdpl"'dp'\‘ eXP{ngl pj(xj_le)]

. N . N
i [
Xexp| — %D“‘g; Ipjl“— %8121 V(%)

In the continuum limitN—c ande— 0, we have

X(tp) =Xp
KL(thblxata):J DX(T)J Dp(7)
X(tg) =Xa
1 * . p(xb_xa) ;
(0) - 0 e I [t
KU OptolXata) = 57 fxdpexﬂ" f Xex%gfbdr[p(r)i((r)
ta
. Da(tb_ta)|p|a)
-, 1
7 (7) —Ha(pu),x(r))]}, @y
while the Eq.(16) in the momentum representation has theWhter? the phase space path integral
form fzgtb;;ibDX(T)po(T)... isgiven by Eq.(20), X denotes the
time derivative H , is the fractional Hamiltonian
1 ® Xp— X «
K Xutolata) = o fxdpex;{ip(bTa) Ha(pX)=D,Jp|*+V(x) 22
5 with the replacementsp—p(7r) and x—x(7), and
i p=(tp—ta) (19) {p(7),x(7)} is the particle trajectory in phase space. We will
2mh ' discuss the hermiticity property of the fractional Hamiltonian

We see from Eq(17) that the energyE, of the fractional
guantum mechanical particle with momentynis given by

Ep=D.lp|" (19

This is a dispersion relation for the nonrelativistic frac-

H, in Sec. IV.

The exponential in Eq.(21) can be written as
exp(i/7)S,(p.X)} if we introduce the fractional canonical ac-
tion for the trajectory{p(t),x(t)} in phase space:

t
Su(PX)= ft dr(p(IX(P)~ Ho(p(7) X(7). (23

Since the coordinateg, and xy in definition (20) are

tional guantum-mechanical particle. The comparison of thdixed at their initial and final pointgy=x, andxy=Xxp, all

Egs.(17) and (18) allows one to conclude that at=2 we

should putD,=1/2m. Then Eq.(19) is transformed to the

standard nonrelativistic equatidf),= p2/2m.

possible trajectories in Eq23) satisfy the boundary condi-
tions x(t,) =X, and x(t,)=xX,. We see that the definition
given by Eq.(20) includes one morg; integral thanx; in-

Using Eq.(17), we can define the fractional functional tegral. Indeed, whilex, and xy are held fixed and the;

measure in the phase space representation by

integrals are done foj=1,..N—1, each incremeni,;
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—X;_1 is accompanied by ong; integral forj=1,...N. The

above observed asymmetry is a consequence of the particular #(X,t) +& ot

FRACTIONAL QUANTUM MECHANICS

boundary condition. That is, the end points are fixed in po-

sition (coordinate space. There exists the possibility of pro-
ceeding in a conjugate way, keeping the initigl and final

pp, momenta fixed. The associated kernel can be derived go-
ing through the same steps as before, but working in the

momentum representatideee, for example, Ref18]).
Taking into account Eq(l17), it is easy to check directly
on the consistency condition

KL (Xpto|Xata) = f dx' KL (Xpto| Xt VK (X[ Xata).

This is a special case of the general fractional quantum-
mechanical rule: amplitudes for events occurring in succes-

sion in time multiply

KL(thb|Xata):Jl ‘dX,KL(thb|X,t,)KL(X,t’|Xata)-
(24

IV. FRACTIONAL SCHRO DINGER EQUATION
The kernelK | (Xptp|Xata), Which is defined by Eq(13),

describes the evolution of the fractional quantum-mechanical

system

Ui (Xp,tp) = flanKL(thanta) Yi(Xa,ta), (25

where;(X,,t,) is the fractional wave function of the initial
(att=t,) state, and);(xp,tp) is the fractional wave function
of the final (att=t,) state.

In order to obtain the differential equation for the frac-
tional wave function/(x,t), we apply Eq(25) in the special
case that the timg, differs only by an infinitesimal interval
e fromt,:

(X t+e)= fwwdy K (X,t+ely,t)g(y,tb).

Using Feynman's approximation i drV(x(7))
=¢gV[(x+Yy)/2] and the definition given by Eq13), we
have

o0 1 . _

l/f(x,t+s):f dymf dpexp<i P(yﬁ X)
Da “« i X+

—i ‘;Llp| _gs (Ty)]l//(y,t).

3139
AP(X,1) °° 1 (= .
= JE— [py—x)/#]
f—xdyzﬂ'ﬁ f—ocdp e
D o
o1 ajp|>

X+

X 1_%gv(7y”¢(y,t). (26)

Then, taking into account the definitions of the Fourier trans-
forms,

1 (= .
PO =5 f dp €PMe(p,0),

e(p,t)= fx dp e PP y(x,t),

and introducing the quantum Riesz fractional derivative
(V)«

1 o .
(RV)“ih(x,t) = = mﬁwdp éPMp|“e(p,t),

(27
we obtain, from Eq(26),
AP(X,1) D,e
P(x,t)+e 0 = (X, t)+i 7 (AV)“h(x,t)

- %SV(X)(//(X,I).

This will be true to ordek if (x,t) satisfies the differential
equation

oY
ih == =D (AV) Y+ V().

(28)
This is the fractional Schobinger equation for a fractional
quantum particle moving in one dimension.

Equation(28) may be rewritten in operator form, namely

if v _ H 29
| E_ awv ( )
whereH , is the fractional Hamiltonian operator:

H,=—D (AV)*+V(X). (30)

Using definition(27) one may rewrite the fractional Hamil-
tonianH , in the form given by Eq(23).

The HamiltonianH , is the Hermitian operator in space,
with a scalar product

[’

(0= | axa* (xxon.

To prove the hermiticity oH,, let us note that in accor-
dance with the definition of the quantum Riesz fractional

We may expand the left- and right-hand sides in power sederivative given by Eq(27) there exists the integration-by

ries:

parts formula
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(9, (AV)*X)=((hV)“, x). (31) (1) = A, F dpexl — |p—pol"”
hxh=575].9p 2h"
The average energy of fractional quantum system, with
HamiltonianH ,, is _px . D,lp|t
Xe |7—| 5 , (35
Eo= fﬁwdx‘/’*(x't)Haw(X't)' (32 with the “weight” function
Taking into account Eq(31) we have [P=po|"1”
9 ' e(P)=A,eXp — ——5— (. Po=0 v=a,
E,= foo dx ¢* (X,H)H (X, 1) whereA, is a constant| is a space scale, andis the Lery
- index 1I<a<2.

" In the following we will be interested in the probability
:f dx(sz(x,t))* (X, ) =E¥, density p(x,t) that a particle occupies a position and the
— probability densityw(p,t) that a particle has particular val-
uesp of the momentum. The wave functiah (x,t), defined
and, as a physical consequence, the energy of a systemig Eq.(35), gives the probability densitg(x,t):
real. Thus the fractional Hamiltonidt, defined by Eq(30)

is the Hermitian or self-adjoint operator p(X,t) =]y (x,1)|?
(Hib)=(8,Houx) A (e
a P X HaX) meixdplde

Since the kerneK (Xptp|Xata), thought of as a function Ip1—pol1”
of variablesx, andt,, is a special wave functiolffor a XeXp[ — w)
particle which starts at, andt,), we see thaK_ must also 2h
satisfy a fractional Schdinger equation. Thus, for the quan- Ipo—pol"1”
tum system described by the fractional Hamiltonidsy. Xexp[—%)
(30)], we have 2%

5 xexp[i (pl_pZ)X_i Da(|p1|a_|p2|a)t]
i7 —— KL (Xptp|Xata) = = D o(A V) “K (Xptp| Xata) h h

aty
(36)
+V(Xp) KL(Xptp[Xata), th>ta, _
Now, we can fix the factorA, such that [dxp(x,t)
where the low index B means that the quantum fractional = Jdx|#(x,t)|?=1, with the result

derivative acts on the variablg, .
vl 1/2
" B 37
V. FREE PARTICLE. FRACTIONAL UNCERTAINTY F( )

RELATION v

As a first physical application of the developed FQM andyherel'(1/1) is the y function* The relationship between the
the fractl_onal Schrﬁnger equa}thr(28), let us consider a probability densitiep(x,t) andw(p,t) may be derived from
free particle. The fractional Schimger equation for a free the relationship between fractional wave functions in the
particle has the fractional plane wave solution spacey, (x,t) and momentump(p,t) representations,

P(x,1)=C exp{i F;L—X—i Da';' t},

l )
(33 wL(x,t)zﬁdepexp{i Z—X] d(p,t), (39

whereC is a normalization constant. In the special Gaussiawhere we have
case(a=2 andD,=1/2m), Eq. (33) gives a plane wave of

the standard quantum mechanics. Localized states are ob- B [P—Po|"1” Dalpl"t
tained by a superposition of plane waves: d(py)=exp ———5—(exp —i——. (39
1 (e _px  D,|p|*t Note that¢(p,t) satisfies the fractional free particle Schro
(X =5— %dp‘P(p)eX T T dinger equation in the momentum representation
(34)
Here,@(p) is the “weight” function. We will study Eq(34) The y function I'(z) has the familiar integral representation

for a one-dimensional fractional kg wave packet, I'(z)=[gdtt* et Rez>0.
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we will have
1 2PY o plegp.n, ;
Ip—pol1” <X>:<2wﬁ>2f_mdxf_mdpdp’
¢(p,0)=exp{ - T]

X| 5 ooexp i TX] ) d(p,t)dp*(p’,1).

One then obtains J
" A2 " " Integrating by parts gives
2_ v /
|” w5 [ ax| apap o J e
<X> _(2 ﬁ) i p W%lp_pd

xexp[ “’—p)]¢<pt>¢*<pt>

Dat 9 2ol o — PPl
n ap'P |

A% (e
:(27:}1) f_wdp|¢(p,t)|2:1, (40)

ishes, and we find that the position expectation value is

because of
(x)=aD tpy* L. (44)
(p p')x ) _ _ _ .
o ﬁ) dxex == =o(p—p’). Using the dispersion relation given by E(L9), we may
rewrite (x) as
Equation(40) suggests, for the probability density in mo- JE
mentum space, the following definition: (x)zﬂ—pp t=wvt. (45
A2 P=Pg
w(p,t)= 277Vh [b(p.b)[2. (4D Here,vo=(9E,/dp)|p-p, is the group velocity of the wave

packet. We see that the maximum of thevjavave packet
Thus, for the momentum probability density(p,t), we [EQ. (35] moves with the group velocity, like a classical
have particle.
The meanu deviations < v) of space positio| Ax|*)

w(p,t)=w(p)= vl . exp{ B “)_ﬁﬂ] 42) is defined by
2T .
( ) (lax|#)=(x=(x)*)= f_de|X—<x>I”p(x,t)

This is time independent, since we are considering a free
particle.

In coordinate space the probability of finding a particle at
the positionx in the “box” dxis given byp(x,t)dx. Corre- ,
spondingly, the probability of finding a particle with momen- % f“ dp dp’ exp[i (p—p )X]
tum p in dp is represented bw(p,t)dp. — h

We are also interested in the average values and the .
meanu deviations of position and momentum for the X$(p,1)$* (p",1).
present probability densities defined by E(#6) and (42).

The expectation value of the space position can be calculate
as

— sz | a1

Jns equation can be rewitten as

I
. <|AX|“>:§J\f(a,M.V;T,770). (46)
=] axmen

where we introduce the following notations:

(27-rh)zf dxxf dp dp M, p,v;7,m0)= f ds’lilf dy
=

><exp{i W] d(p,t)p*(p',t). (43

Xf dn'expli(n—7")({+arng ™)}
Making the substitution o

X s a__ ray_
h g expl—i(|n|“=[7"|*) =7
i ap’ =70l "= 7" = m0l"} (47

It is easy to check that the first term in the brackets van-



3142

and

Pol

Dat/ zllvh @
770:21/Vﬁ1

Ao\

T=

So, for the u-root of the means deviation of position
(space position uncertainty for the \newave packet we
find

I
(|lAx|#)Hh= S N vi 7, 770) (48)

Further, with Eq.(42), the expectation value of the momen-
tum is calculated as

<p>=f_xdp pvx(p)=f_;dp(p—po)w(p)

|
The first integral vanishes, sinegp) is an even function of
(p—pg), and the momentum expectation value is

dp pow(p)- (49

(P)=Po- (50)
The meang deviation of the momentum is
(lap)= f dplp- <p>|“W(p)—<|—) —
T —
14
(51)

Then the momentum uncertaintshe u-root of the meanx
deviation of momentumis

+1)\ Vm
r| & )

14

)
(lapyte= T (52)

Together with Eq(48), this leads to
(|Aax]#) (| Ap| ) He

ptl Hn
) 1 .
=5 | — N, w,vi7,m0),
iH
v
u<rs=sa, (53)

where N (a,u,v,7,70) is given by Eq.(47).
This relation implies that a spatially extendedvie(or
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h
<|AX|“>1/"<|AP|“>1’“>W, p<a, l<a<2,
(54)

with v=a.

Note that for the special cage=2 we can seu=a=2.
Thus, for the standard quantum mechaniess2) with the
definition of the uncertainty as the square-root of the mean-
square deviation, Eq(54) was established by Heisenberg
[19] (see, for instance, Ref20]). The uncertainty relation
given by Eq.(54) can be considered as fractional generaliza-
tion of the well known Heisenberg uncertainty relations.
Thus Eqs(12)—(15), (21)—(24), (28), (30), and(54) are the
basic equations for the new FQM.

VI. FRACTIONAL STATISTICAL MECHANICS

In order to develop the fractional statistical mechanics
(FSM), let us go in the previous quantum-mechanical con-
sideration from imaginary time to “inverse temperaturg”
=1/kgT, wherekg is Boltzmann's constant and is the
temperaturejt—# 8. In the framework of the traditional
functional approach to the statistical mechanics, we have the
functional over the Wiener measui®,18,21,

X(B)=x 1 (%8
p(x,leo)=f DWienerX(U)eXp[—gfo duV(X(U))]

X(0)=xq
(55)

wherep(x,8|Xo) is the density matrix of the statistical sys-
tem in the external field/(x), and the Wiener measufé]
generated by the process of the Brownian motion is given by

fdxl...de_l(

m
2hs

B)=x

Jeor
x(0)=xq

= |im

N o0

><H exp[

2mhg| N2
DWiener X( U)' :

m

X(Xj_xj—l)z]"' , (56)
heres=%B/N andxy=X.

The FSM deals with Ley or fractional density matrix
pL(X,B|x0), which is defined by

(B)=x 1 (w8
. 0D,_é\,yx(u)ex _%fo du V(x(u))
(57

where we introduce the new fractional functional measure
(we will call this measure by the My functional measupe
by

pL(X,BlX0) = f(

= lim

N— o0

X(B)=x
f DygyyX(u)- - f dXq...dXy_1
x(0)=xq

fractiona) wave packet corresponds to a narrow momentum

spectrum, whereas a sharpwewave packet corresponds to
a broad momentum spectrum.

SinceMa, i, v;7,1m0)>1 andl’(w+ 1/v)/T (1/v)~1/v,
Eq. (53) becomes

X(ﬁa*lDag)fN/a

xHL[

|XJ Xj- 1| (58)
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heres=7%B/N, xy=X, and the Ley functionL , is given by 0 1 (= p(X—Xg)
Eq. (14). Equations57) and(58) define the fractional quan-  pL”(X,8]X0) = mJ dpexp[| —7 —BDa|p|a]
tum statistics via new Ly path integral. o

The partition functionZ or free energyF, Z=e A% is 1 2[ IXx—xo| |(1,1/) (1%)]

expressed as a trace of the density matiikx, 8| Xo): = p H%; D) ,3)1/“| (LD (LE)
a 1t 12

60
Z=e*ﬁF=f dxpy (X, B1X) (©0

=f dxf Dy gyyX(U)
X(0)=x(B)=x _pF_
Z=e prL(X1B|X)
Q

X —1fﬁﬁd Vi
exp{ 7o u (x(u))}. 0

= ok _wdpexp{—ﬁDa|p|“}

whereH33 is Fox’s H function (see Refs[15-17). For a
linear system of space scdlkthe trace of Eq(60) leads to

With the definition (20) the equation for the partition

function becomes _ QO 1 1
27h (BD )Y | a)

Z=e‘BF=f dxf Dx(r)f Dp(7) When =2 and D,=1/2m, Eg. (60) gives the well-
X(0)=x(B)=x known density matrix for a one-dimensional free particle
1 (#B . . (see Eq(10-46 of Ref.[3] or Eq.(2—-61) of Ref. [21]):
Xexp[—%fo du{—ip(u)x(u) o om " o 2
P (X118|X0)_ 2’7Th2ﬁ exp — ZhZ,B(X_XO) .
+ Ha(p(U).X(U))}] , (59) (61)

The Fourier representatiop{o)(p,mp’) of the fractional

where the fractional HamiltoniaHl ,(p,x) has form of Eq. density matrixp (X, 3[xo), defined by

(22), andp(u) andx(u) may be considered as paths running ©) ) % )

along on “imaginary time axis,'u=it. The exponential ex- pL (p.Blp")= f_mdx dxy pi (X, B[X%o)
pression of Eq(59) is very similar to the fractional canonical

action[Eg. (23)]. Since it governs the fractional quantum- i

statistical path integrals, it may be called the fractional xexp[—g(px—p’xo)]
guantum-statistical action or fractional Euclidean action, in-

dicated(following Ref.[18]) by the superscriptd), can be rewritten as

pO(p,Blp")=2mh8(p—p')e FPulPI”.

In order to obtain a formula for the fractional partition
function in the limit of fractional classical mechanics, let us
study the case whef)3 is small. Repeating consider, similar
to Feynman’s(see Chap. 10 of Ref3]) for the fractional
density matrixp, (x,8|X,) we can write the equation

(e) _ np s .
S, (p.Xx) . du{—ip(u)X(u)+H,(p(u),x(u))}.

The parameteun is not the true time in any sense. It is just
a parameter in an expression for the density mdsee, for
instance, Ref[3]). Let us callu the “time,” leaving the

guotation marks to remind us that it is not real titatthough 1

u does have the dimension of tipné._ikewise x(u) will be PL(X,ﬁ|Xo)=efﬁV(X°)m

called the “coordinate” and(u) the “momentum.” Then

Eq. (57) may be intgrpreted in the fqllowing way. o _p(X—Xg) N
Consider all possible paths by which the system can travel X ﬂcdpex I T_BDa|p| .

between the initiak(0) and finalx(B) configurations in the
“time” 4. The fractional density matrip,_is a path inte-  Then the partition function in the limit of classical mechanics
gral over all possible paths, the contribution from a particulalyecomes

path being the “time” integral of the canonical actipcon-

sidered as the functional of the patpéu) andx(u) in the F(l)
phase spadedivided by#. The partition function is derived % @ * _ BV
by integrating over only those paths for which initi(0) Z= f_dePL(XﬂX): Wﬁmdx CRA
and finalx(B) configurations are the same, and after that we ¢ (62)
integrate over all possible initidbr final) configurations.
The fractional density matri)o(LO)(x,ﬂ|x0) of a free par- This simple form for the partition function is only an ap-

ticle (V=0) can be written as proximation, valid if the particles of the system cannot wan-
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der very far from their initial positions in the timg8. The leads to fractional quantum mechanics and statistics. Thus
limit on the distance which the particles can wander beforeve develop a fractional background which leads to fractional
the approximation breaks down can be estimated iN&2).  (nonstandardquantum and statistical mechanics.

We see that if the final point differs from the initial point by ~ The Feynman quantum-mechanical and Wiener statistical

as much as mechanical path integrals are generalized, and as a result we
have fractional quantum-mechanical and fractional statistical
Ve | Pa e mechanical path integrals, respectively. A fractional gener-
Ax=h(BDy)""=h kT alization of the Schidinger equation has been derived using

the definition of the quantum Riesz fractional derivatives.
the exponential function of Eq60) becomes greatly re- We have defined the fractional Hamilton operator and
duced. From this, we can infer only intermediate points orproved its hermiticity. The relation between the energy and
paths which do not contribute greatly to the path integral othe momentum of a nonrelativistic fractional quantum-
Eq. (60). If the potentialV(x) does not alter very much as  mechanical particle has been found. The equation for the
moves over this distance, then the fractional classical statigractional plane wave function was obtained. We have de-

tical mechanics is valid. rived a free particle quantum-mechanical kernel using Fox's
The density matrixp, (x,8|X,) obeys the fractional dif- H function. In the particular Gaussian cage<2), the frac-
ferential equations tional kernel takes the form of Feynman’s well-known ker-

nel. For the Ley wave packet the position and momentum
uncertainties were calculated analytically. The fractional
generalization of the Heisenberg uncertainty relation has
been established.
+V(X)pL(X,B]Xo) (63) Equations(12)—(15), (21)—(24), (29), (30), and (54) are
the basic equations for our FQM. Following the general rule
and replacing byt —7% 3, we obtain the path integral formu-
apL(X, B|%o) lation of the FSM. An equation for the fractional partition
— =H_pL(X,B]X0), pL(X,0Xg)=(X—Xg), function has been derived, and the fractional quantum-
statistical action introduced into the quantum statistical me-
where the fractional HamiltoniaH , is defined by Eq(30). ~ chanics. The density matrix of a free particle has been ex-

Thus Eqgs(57)—(60) and(63) are the basic equations for our Pressed analytically in terms of Foxtsfunction. Itis shown
FSM. that Eq.(60) for the fractional density matrix in a special

Gaussian casen=2) gives the well-known equation for the
density matrix of a free particle in one dimensi(Gee Eq.
(2—-61) of Ref.[21]). We have found the formula for the

We have developed a path integral approach to FQM anéractional partition function in the limit of fractional classical
FSM. The approach is based on functional measures genamechanics, and discuss the validity of this formula. A frac-
ated by the stochastic process of thery dight whose path tional differential equation of motion of density matrix has
fractional dimension is different from the fractional dimen- been established. Equatioft7)—(60) and (63) are the basic
sion of the Brownian path. As shown by Feynman andequations for our FSM. We finally mention that the devel-
Hibbs, the fractality(the difference between topological and oped fractional path integral approach to quantum and statis-
fractional dimensionsof the Brownian paths leads to stan- tical mechanics can easily be generalized thdimensional
dard (nonfractional quantum mechanics and statistics. Theconsideration, using @-dimensional generalization of the
fractality of the Lary paths as shown in the present paperfractional and the ey path integral measures.

_ apL(X,B|Xo) _

9B —D (V) *pL(X,B|Xo)

or
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