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Physical nature of higher-order mutual information: Intrinsic correlations and frustration

Hiroyuki Matsuda
Department of Materials Science, Faculty of Integrated Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599-853
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This paper studies some properties and implications of higher-order mutual information functions, which
should serve for the analysis of general complex systems. We note that the higher-order mutual information
can either be positive or negative depending on the correlation among ensembles. Two opposite types of
correlations are discussed in connection with the concept of frustration. Simple examples are presented to
demonstrate that our concepts are especially helpful in understanding the nature of correlations in frustrated
systems. The higher-order mutual information provides an appropriate measure of the frustration effect.

PACS number~s!: 05.90.1m, 02.50.2r, 05.20.2y
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I. INTRODUCTION

A common approach for the analysis of complex syste
is to use concepts from information theory. In particul
information entropy and the related concept of mutual inf
mation @1# are of fundamental importance; mutual inform
tion can serve as a general measure of correlation betw
two systems or ensembles. Mutual information as well
information entropy have found significance in various a
plications in diverse fields, e.g., in analyzing experimen
time series@2–4#, in characterizing symbol sequences su
as DNA sequences@5–7#, and in providing a theoretical ba
sis for the notion of complexity@8–12#.

Of particular interest in our work is the nature of corre
tions in systems with many degrees of freedom, which m
contain features that are typical of complex systems. Co
plicating features may occur due to many-body correlat
effects such as the frustration effect. In fact, there are m
examples of complex systems that contain frustration as
essential ingredient: spin glasses, neural networks,
glasses, colloids, granular media, glass forming liquids,
In these systems, frustration~due to many competing inter
actions or geometrical constraints! causes various fascinatin
phenomena, such as complicated phase transitions, r
trance phenomena@13–16#, partial disorder, nonexponentia
relaxation@17–20#, etc. Appropriate measures of such man
body correlations could, therefore, be expected to contrib
to a deeper understanding of complex systems.

In this context, the present work considers higher-or
mutual information functions~see, e.g.,@21,22#!. They allow
us to disentangle intrinsic many-body correlations from
insignificant ones governed by lower-order statistics. W
will study some aspects or characteristics of higher-or
mutual information in order to obtain insight into its mea
ing. In particular, we focus on the properties of three-bo
mutual information by considering its relation to the usu
mutual information. We will note that higher-order mutu
information can either be positive or negative depending
the correlation among ensembles, while the usual mutua
formation is always non-negative. Then, we will realize tw
opposite types of correlations among ensembles and re
them to the concept of frustration. To demonstrate the
portance of these correlations, we will apply higher-ord
mutual information to simple examples of frustrated sp
PRE 621063-651X/2000/62~3!/3096~7!/$15.00
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systems. Then we will see that the two types of correlatio
are typical of frustrated and unfrustrated systems, a
higher-order mutual information provides an appropria
measure of the frustration effect.

Let us review the mutual informationI (A,B) between
two ensemblesA andB. It is defined in terms of entropies a

I ~A,B!5S~A!1S~B!2S~AB!, ~1.1!

or, equivalently, in terms of the joint probability distributio
p(a,b) as

I ~A,B!5(
a,b

p~a,b!ln
p~a,b!

p~a!p~b!
. ~1.2!

Here, S(A) and S(B) are the entropies ofA and B and
S(AB) is the joint entropy ofAB. The probability distribu-
tions for A and B are given byp(a)5(bp(a,b) and p(b)
5(ap(a,b). @In the case of continuous variables, the su
mation in Eq.~1.2! may be replaced by integration with re
spect toa andb.# The functionI (A,B) measures the amoun
of information aboutA that would be gained from a measur
ment of B, and vice versa, i.e., the amount of informatio
shared betweenA andB. Equation~1.1! satisfies

0<I ~A,B!<min$S~A!,S~B!%. ~1.3!

The equalityI (A,B)50 holds if A and B are independent
i.e., p(a,b)5p(a)p(b), and the equalityI (A,B)5S(A) if A
is completely determined byB. The mutual information
I (A,B) is smaller whenA andB are more independent, an
I (A,B) characterizes the degree of correlation betweenA
and B. For the difference between mutual information a
the correlation function, one should note the following:~i!
while the correlation function only measures linear corre
tion, mutual information characterizes a general depende
@5#; ~ii ! mutual information, defined for a joint probabilit
distributionp(a,b), is invariant for a transformation ofa,b
in contrast to the correlation function;~iii ! mutual informa-
tion can be directly applied to symbolic systems, while t
correlation function relies on an assignment of numeri
values.

Section II discusses the higher-order mutual informat
measure. Then some fundamental properties of the mea
are derived as direct consequences of the definition; we
3096 ©2000 The American Physical Society
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tain recursion relations and use them to derive some b
inequalities. Section III provides a novel concept for the n
ture of correlations in terms of higher-order mutual inform
tion. Simple examples are presented in Sec. IV, show
some important features of the measure. Section V cont
discussion and conclusion.

II. HIGHER-ORDER MUTUAL INFORMATION AND ITS
FUNDAMENTAL PROPERTIES

A. Higher-order mutual information

Let us consider a joint ensembleA1•••An , with Ai ( i
51, . . . ,n) being individual ensembles. To be specific, su
pose that the ensembleA1•••An is described by a discret
probability distributionp(a1 , . . . ,an) @which is normalized
such that($ai %

p(a1 , . . . ,an)51]. Then the entropy ofA1•

••An is

S~A1•••An!52(
$ai %

p~a1 , . . . ,an!ln p~a1 , . . . ,an!.

~2.1!

The reduced ensembleA1•••An21, with its probability dis-
tribution p(a1 , . . . ,an21), is related toA1•••An by

p~a1 , . . . ,an21!5(
an

p~a1 , . . . ,an!, ~2.2!

and its entropy is defined analogously. A similar relati
holds for any reduced ensemble associated withA1•••An .

In a manner analogous to Eq.~1.1!, the mutual informa-
tion among three ensemblesA1 , A2, andA3 can be defined
as

I 3~A1 ,A2 ,A3!5S~A1!1S~A2!1S~A3!2S~A1A2!

2S~A1A3!2S~A2A3!1S~A1A2A3!.

~2.3!

Furthermore, Eqs.~1.1! and ~2.3! can be generalized by

I n~A1 , . . . ,An!5 (
k51

n

~21!k11 (
i 1,•••, i k

S~Ai 1
•••Ai k

!,

~2.4!

where the sum(S(Ai 1
•••Ai k

) runs over all possible combi

nations$ i 1 , . . . ,i k%P$1, . . . ,n%. I 2 is the usual mutual in-
formation. Notice thatI n(A1 , . . . ,An) is symmetric under
any permutation ofA1 , . . . ,An . The generalized mutual in
formation may be recognized as common information or
tropy shared amongn ensembles, in analogy with the usu
mutual information. For example,I 3 may be viewed in Fig. 1
as the overlap ofS(A1), S(A2), andS(A3). Note, however,
that while S(Ai) is a non-negative function, the quantityI n
for n>3 can be not only positive but negative in contrast
the usual mutual information. Before focusing on this imp
tant fact, we consider some fundamental properties of
function ~2.4!.

If the n ensemblesAi are independent, i.e., the joint prob
ability distribution is of the form
ic
-
-
g
ns

-

-

-
e

p~a1 , . . . ,an!5p~a1!p~a2!•••p~an!, ~2.5!

thenS(Ai 1
•••Ai k

) is the sum of the individual entropies an

I n(A1 , . . . ,An)50. If one ensembleAi is completely deter-
mined by any other Aj , then Eq. ~2.4! results in
I n(A1 , . . . ,An)5S(Ai), since S(AiAi 1

•••Ai k
) reduces to

S(Ai 1
•••Ai k

). Notice that forn>3, Eq.~2.5! is not a unique

distribution that yieldsI n50, while I 250 holds only if
p(a1a2)5p(a1)p(a2). A more general condition forI n50
is established in the following.

In analogy with the expression~1.2!, the function~2.3!
can be directly expressed in terms of the joint probabi
distributionp(a1 ,a2 ,a3) as

I 3~A1 ,A2 ,A3!52 (
a1 ,a2 ,a3

p~a1 ,a2 ,a3!ln
p~a1 ,a2 ,a3!

p̂~a1 ,a2 ,a3!
,

~2.6!

with

p̂~a1 ,a2 ,a3!5
p~a1 ,a2!p~a2 ,a3!p~a1 ,a3!

p~a1!p~a2!p~a3!
. ~2.7!

The function~2.7!, which corresponds to the Kirkwood su
perposition approximation@23#, provides an estimate for th
three-body distributionp(a1 ,a2 ,a3), given the two-body
distributions. It follows immediately thatI 3(A1 ,A2 ,A3)50
for p(a1 ,a2 ,a3)5 p̂(a1 ,a2 ,a3); this implies thatI 3 mea-
sures the intrinsic three-body correlation, which is not go
erned by two-body statistics. In general, we have the exp
sion

I n~A1 , . . . ,An!5~21!n (
a1 , . . . ,an

p~a1 , . . . ,an!

3 ln
p~a1 , . . . ,an!

p̂~a1 , . . . ,an!
, ~2.8!

with

FIG. 1. An entropy diagram showing the three-body mutual
formation I 3(A1 ,A2 ,A3).
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p̂~a1 , . . . ,an!5 )
i 1,•••, i n21

p~ai 1
, . . . ,ai n21

!/

3 )
i 1,•••, i n22

p~ai 1
, . . . ,ai n22

!/

•••/)
i

p~ai !. ~2.9!

Equation ~2.9! can be recognized as the generalized Ki
wood superposition approximation@24#. Again, note that
I n(A1 , . . . ,An)50 for p(a1 , . . . ,an)5 p̂(a1 , . . . ,an).

It should be mentioned that the generalized mutual inf
mation functions give the following contributions to the e
tropy:

S~A1•••An!5(
i 51

n

S~Ai !2(
i , j

I 2~Ai ,Aj !

1 (
i , j ,k

I 3~Ai ,Aj ,Ak!2•••. ~2.10!

That is, the relative magnitude of the functions is a meas
of the contribution to the global behavior of the systemA1
•••An . An approximation for the entropy can be made
neglecting higher-order contributions. This approximati
may yield good results for weakly correlated ensembles, w
the first-order approximation corresponding exactly with
entropy for the case~2.5!.

B. Some general properties ofI n

Now we consider general relationships between the fu
tions ~2.4!. First, we can writeI 3(A1 ,A2 ,A3) in terms of the
usual mutual information as

I 3~A1 ,A2 ,A3!5I 2~A1 ,A2!1I 2~A1 ,A3!2I 2~A1 ,A2A3!,
~2.11!

where the quantity

I 2~A1 ,A2A3!5S~A1!1S~A2A3!2S~A1A2A3!
~2.12!

is the mutual information betweenA1 andA2A3. In contrast
to the sumI 2(A1 ,A2)1I 2(A1 ,A3), I 2(A1 ,A2A3) measures
the amount of information aboutA1 that would be gained
from simultaneous measurements ofA2 and A3. If A1 and
A2A3 are independent, each term on the right-hand side
Eq. ~2.11! is zero andI 3(A1 ,A2 ,A3)50. However, it is not
necessary that ifI 2(A1 ,A2) and I 2(A1 ,A3) are zero,A1
should be independent ofA2A3; thus it is possible thatI 3
,0. Notice that the relation~2.11! is symmetric under the
permutationsA1↔A2 andA1↔A3 ~because of the symmetr
in the definition~2.3!#.

It follows that the higher-order mutual information fun
tions I n can be related to the lower-order onesI n21 as
-

-

re

h
e

c-

of

I n~A1 , . . . ,An!5I n21~A1 , . . . ,An22 ,An21!

1I n21~A1 , . . . ,An22 ,An!

2I n21~A1 , . . . ,An22 ,An21An!.

~2.13!

Again, notice that the permutation symmetry gives a set
recursion relations similar to Eq.~2.13!. These relations al-
low us to expressI n(A1 , . . . ,An) in terms of the mutual
information functions of lower order thann. For example, we
can write

I 4~A1 ,A2 ,A3 ,A4!5I 2~A1 ,A2!1I 2~A1 ,A3!1I 2~A1 ,A4!

2I 2~A1 ,A2A3!2I 2~A1 ,A2A4!

2I 2~A1 ,A3A4!1I 2~A1 ,A2A3A4!.

~2.14!

From expressions such as Eqs.~2.11! and ~2.14!, we recog-
nize I n(A1 , . . . ,An) as the common information shared b
I 2(Ai ,Aj ). More generally, from the hierarchy of the func
tion ~2.4! it is natural to recognizeI n as the common infor-
mation shared by lower-order functionsI n8 (n8,n) whenI n
is recognized as the common information shared byS(Ai).

In analogy with the concept of conditional entropy, w
can consider conditional quantities of the mutual informat
functions I n . As a consequence, the functionI 2(A1 ,A2A3)
can be decomposed into the sum

I 2~A1 ,A2A3!5I 2~A1 ,A3!1I 2~A1 ,A2uA3!. ~2.15!

The quantity I 2(A1 ,A2uA3) is the mutual information be-
tweenA1 andA2 that is conditional on a measurement ofA3:

I 2~A1 ,A2uA3!5(
a3

p~a3! (
a1 ,a2

p~a1 ,a2ua3!

3 ln
p~a1 ,a2ua3!

p~a1ua3!p~a2ua3!

5S~A1uA3!1S~A2uA3!2S~A1A2uA3!.

~2.16!

Herep(a1ua3)5p(a1 ,a3)/p(a3) is the conditional probabil-
ity distribution for the variablea1 given a measurementa3,
and S(A1uA3)5S(A1A3)2S(A3) is the conditional entropy
of A1 with respect toA3. Equation~2.16! satisfies

0<I 2~A1 ,A2uA3!<min$S~A1uA3!,S~A2uA3!%.
~2.17!

The equality I 2(A1 ,A2uA3)50 holds if A1 and A2
are statistically independent whenA3 is specified, i.e.,
if p(a1 ,a2ua3)5p(a1ua3)p(a2ua3). The equality
I 2(A1 ,A2uA3)5S(A1uA3) holds if A1 is completely deter-
mined byA2 whenA3 is specified. In general, we can writ

I n21~A1 , . . . ,An21An!5I n21~A1 , . . . ,An22 ,An!

1I n21~A1 , . . . ,An21uAn!,

~2.18!
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where

I n21~A1 , . . . ,An21uAn!5 (
k51

n21

~21!k11

3 (
i 1,•••, i k

S~Ai 1
•••Ai k

uAn!,

~2.19!

$ i 1 , . . . ,i k%P$1, . . . ,n21%, is the conditional mutual infor-
mation amongA1 , . . . ,An21 with respect toAn .

Inserting Eq.~2.15! into Eq. ~2.11!, we have the relation

I 3~A1 ,A2 ,A3!5I 2~A1 ,A2!2I 2~A1 ,A2uA3!. ~2.20!

Combining Eq.~2.20! and the non-negativity of the functio
I 2(A1 ,A2uA3), we see that

I 3~A1 ,A2 ,A3!<min$I 2~A1 ,A2!,I 2~A1 ,A3!,I 2~A2 ,A3!%

<min$S~A1!,S~A2!,S~A3!%. ~2.21!

On the other hand, the non-negativity of the functi
I 2(A1 ,A2) yields

I 3~A1 ,A2 ,A3!>2min$I 2~A1 ,A2uA3!,

I 2~A1 ,A3uA2!,I 2~A2 ,A3uA1!%,

~2.22!

and then using the inequality~2.17! we see that the possibl
lower limit of I 3 is

I 3~A1 ,A2 ,A3!>2min
i , j

S~Ai uAj !>2min
i

S~Ai !,

~2.23!

where$ i , j %P$1,2,3%. While the condition~2.21! is straight-
forward to explain, the condition~2.23! is complicated: the
equality I 3(A1 ,A2 ,A3)52S(A1uA3) is attained ifA1 is sta-
tistically independent ofA2 but is completely determined b
A2 whenA3 is specified.

In general, inserting Eq.~2.18! into Eq. ~2.13!, we have
the relation

I n~A1 , . . . ,An!5I n21~A1 , . . . ,An21!

2I n21~A1 , . . . ,An21uAn!. ~2.24!

Therefore, the functionsI n(A1 , . . . ,An) and I n21(A1 ,
. . . ,An21) are associated as follows:

I n~A1 , . . . ,An!<I n21~A1 , . . . ,An21!

⇔I n21~A1 , . . . ,An21uAn!

>0 ~2.25!

and

I n~A1 , . . . ,An!.I n21~A1 , . . . ,An21!

⇔I n21~A1 , . . . ,An21uAn!,0,

~2.26!
which is possible forn>4. WhetherI n,I n21 or I n.I n21,
together with the sign of the measure, will be considered
an indication of the structure of correlation among e
sembles. In the following section we clarify the differenc
between correlations characterized by positive and nega
values ofI n .

III. CONCEPT OF FRUSTRATED CORRELATION

Correlation betweenA1 and A2 implies that A1A2 has
certain preferred combinations ofa1 anda2: two-body pref-
erence. When considering the ensemblesA1A2 , A1A3, and
A2A3, the two-body preferences may be simultaneously s
isfied or not. In this regard, let us consider the meaning
the three-body mutual informationI 3(A1 ,A2 ,A3), focusing
on the fact thatI 3(A1 ,A2 ,A3) can either be positive or nega
tive depending on the correlation amongA1 ,A2 ,A3. When
given a measurement ofA1, one obtains information abou
A2 and simultaneously information aboutA3 as well. As
mentioned in the preceding section,I 3(A1 ,A2 ,A3) can be
recognized as the common information shared byI 2(A1 ,A2)
and I 2(A1 ,A3). If the two-body preferences are simulta
neously satisfied, then the informationI 2(A1 ,A2) should
contain part of the informationI 2(A1 ,A3), which implies
that I 3(A1 ,A2 ,A3).0. Thus, if the three-body mutual infor
mation is negative, we can recognize that the two-body p
erences are simultaneously unsatisfied; we call such cor
tions frustrated. Similar considerations can apply to
higher-order functionsI n with the recognition ofI n in terms
of the usual mutual information. Consequently, the corre
tions amongn ensembles with negativeI n can be considered
frustrated. In the following section, we will see that the
correlations are especially important in frustrated statist
systems such as spin glasses.

IV. EXAMPLES

Now we apply the generalized mutual information
simple examples of spin systems to illustrate some impor
features of the measure. Let us first consider the sys
X1X2X3 composed of three binary spinsX1 , X2 , X3, de-
scribed in Fig. 2~a!, with the Hamiltonian

H52J~x1x21x2x31x1x3!, ~4.1!

where the spin variablexi takes values61 and the coupling
J is set equal to 1 or21. The interactions2Jxixj give rise
to frustration when choosingJ521. The probability distri-
bution for the system is given byp(x1 ,x2 ,x3)5e2bH/Z,

FIG. 2. Spin systems with couplingsJ, ~a! consisting of three
binary spins and~b! consisting of four binary spins, with no direc
interaction betweenX1 andX4. Frustration arises whenJ,0. Note
that in the caseJ,0, despite the presence of frustration, the syst
~b! has a stabilizing effect as a whole.
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3100 PRE 62HIROYUKI MATSUDA
whereZ52e3bJ16e2bJ andb51/T is the inverse tempara
ture. The mutual information betweenX1 andX2 is

I 2~X1 ,X2!52S~X1!2S~X1X2!, ~4.2!

and the three-body mutual information amongX1 , X2, and
X3 is

I 3~X1 ,X2 ,X3!53S~X1!23S~X1X2!1S~X1X2X3!.
~4.3!

Elementary calculation gives

I 2~X1 ,X2!53 ln 21 ln
e2bJ

Z
12

e3bJ1e2bJ

Z
ln

e3bJ1e2bJ

2e2bJ

~4.4!

and

I 3~X1 ,X2 ,X3!56 ln 222 lnZ

16
e3bJ1e2bJ

Z
ln

e3bJ1e2bJ

2ebJ
. ~4.5!

These are plotted as functions ofbJ in Fig. 3, which draws a
comparison between the two casesJ51 andJ521. In the
limit T→` (bJ50), they vanish since the spinsX1 ,X2 ,X3
become independent. In the caseJ51 (bJ>0), both func-
tions monotonically increase as the temperature is lowe
and in the limit T→0 (bJ→`) they go to ln 2 since the
spins become completely dependent. In contrast, in the
J521 (bJ,0) the difference between the two functions
remarkable; the three-body mutual information is negat
due to the frustration effect. In this case, the functionI 3
monotonically decreases with increasing the frustration
fect, and in the limitT→0 (bJ→2`), one hasI 25 3

5 ln 2
2 ln 350.0566 andI 353 ln 222 ln 3520.1177. It should
be pointed out that the three-point correlation function,
fined by ^x1x2x3&, cannot indicate any correlation i

FIG. 3. Plots of the functionsI 2 and I 3 given by Eqs.~4.4! and
~4.5! as functions of bJ. Dotted line: I 2(X1 ,X2). Full line:
I 2(X1 ,X2 ,X3). While in the limit bJ→` each function goes to
ln 2, in the limit bJ→2`, I 2 goes to 0.0566 andI 3 goes to
20.1177.
d,

se

e

f-

-

X1X2X3 since it trivially results in^x1x2x3&50, while I 3
characterizes correlations that are typical of the conside
frustrated system.

Next we consider the system described in Fig. 2~b! ~a
bond defined along the line that connects two adjacent s
Xi). Each bond is characterized by the same coupling c
stantJ, which can be either11 or 21. The three mutual
information functions I 2(X1 ,X2), I 3(X1 ,X2 ,X3), and
I 4(X1 ,X2 ,X3 ,X4) are shown in Fig. 4. In the case of ferro
magnetic interactionsJ51 (bJ.0), they are all similar in
behavior. However, an interesting feature occurs in the c
of antiferromagnetic interactionsJ521 (bJ<0). Note that
in this case, although frustration arises in two triangles,
spinsXi simultaneously have a stabilizing effect as a who
in fact, in the limitT→0 (bJ→2`) the spins become com
pletely dependent~while the interaction betweenX1 andX3
is unsatisfied! and all the functions go to ln 2, as in the ca
J51. Thus the behavior of the system at finite temperatu
is a consequence of the frustration and the stabilizing effe
as well as thermal fluctuation. These competing effects l
to the minimum in the three-body mutual information. Th
stabilizing effect overbalances the frustration effect bel
the temperature at whichI 350. It should be noted that the
caseJ521 givesI 3,I 4, in contrast to the caseJ51; this is
because frustration is contained in the triangleX1X2X3 and
the conditional mutual informationI 3(X1 ,X2 ,X3uX4) is still
negative@compare the relationship~2.26!#. The four-body

FIG. 5. Spin systems with nearest-neighbor interactionsJi j . The
system ~a! contains frustration when choosingJi j such thatJ
[J12J23J34J14,0. The system~b! has couplings chosen such th
J[J34J45J56J365J12J23J34J14, and in the caseJ,0, despite the
presence of frustration, it has a stabilizing effect as a whole, sim
to the system described in Fig. 2~b!.

FIG. 4. Plots of the functionsI 2 , I 3 , I 4 calculated for the sys-
tem described in Fig. 2~b!. Dotted line: I 2(X1 ,X2). Dashed line:
I 3(X1 ,X2 ,X3). Full line: I 4(X1 ,X2 ,X3 ,X4). In the limit bJ→
6` each function goes to ln 2.
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mutual information implies that the stabilizing effect is r
sponsibe for the behavior of the spins as a whole.

Similar situations occur in the following. First consid
the system described in Fig. 5~a!, with couplingsJi j between
nearest-neighbor spinsXi and Xj . Here we setJi j 51 or
21. DefineJ[J12J23J34J14. The system is frustrated if i
contains one or three negative interactions, i.e., wheJ
521. As shown in Fig. 6, in the caseJ521, the three- and
four-body mutual information functions are negative due
the frustration effect. Next consider the system describe
Fig. 5~b! with couplingsJi j (Ji j 561). Let us chooseJi j
such thatJ[J12J23J34J145J34J45J56J36. Then the system
has similar properties to the system described in Fig. 2~b!;
that is, in the caseJ521 although the system has frustratio
in each square, it has the stabilizing effect as a whole.
same mutual information functions as given in Fig. 6, cal
lated for this system, are shown in Fig. 7. In the caseJ
521 the three- and four-body functions have minima at
nite temperatures as a result of the two competing effec

FIG. 6. Plots of the functionsI 2 , I 3 , I 4 calculated for the sys-
tem described in Fig. 5~a!. Dotted line: I 2(X1 ,X2). Dashed line:
I 3(X1 ,X2 ,X3). Full line: I 4(X1 ,X2 ,X3 ,X4). While in the limit
bJ→` each function goes to ln 2, in the limitbJ→2`, I 2 ,I 3 ,I 4

go to 0.1308,20.0849, and20.1698, respectively.

FIG. 7. Plots of the functionsI 2 , I 3 , I 4 calculated for the sys-
tem described in Fig. 5~b!. Dotted line: I 2(X1 ,X2). Short dashed
line: I 3(X1 ,X2 ,X3). Dashed line: I 3(X1 ,X3 ,X4). Full line:
I 4(X1 ,X2 ,X3 ,X4). In the limit bJ→6`, each function goes to
ln 2.
in

e
-

-
Finally, consider systems in which the spin

X1 ,X2 , . . . ,Xn form a ring with nearest-neighbor interac
tions J12,J23, . . . ,Jn1 (Ji j 561). DefineJ[J12J23•••Jn1.
Again, frustration arises whenJ521. Figure 8 shows the
functions I 2(X1 ,X2),I 3(X1 ,X2 ,X3), . . . ,I n(X1 , . . . ,Xn)
calculated for the systems withn55 andn56 spins. If there
is no frustration, i.e., in the caseJ51, any mutual informa-
tion functions including the conditional functions~2.19! are
positive, and consequently, higher-order functions
smaller than lower-order ones following the relationsh
~2.25!. In the caseJ521, the functionsI n of higher order
than n53 monotonically decrease with increasing the fru
tration effect. The functionI 3 has a maximum at a finite
temperature due to the competition between local orderin
spins and the frustration effect as a whole. The behavior
these functions indicate that the frustration effect is m
responsible for higher-order correlations.

V. DISCUSSION AND CONCLUSION

We have derived some properties and implications
higher-order mutual information~HMI ! functions. The most
important feature is that HMI can either be positive or neg
tive depending on the correlation among ensembles, whe

FIG. 8. Plots of the functionsI 2 ,I 3 , . . . ,I n calculated for the
systemX1X2•••Xn with ~a! n55 and~b! n56 spins forming a ring
with nearest-neighbor interactionsJi j . The system contains frustra
tion when choosingJ[J12J23•••J1n,0. From upper to lower
curves:I 2(X1 ,X2),I 3(X1 ,X2 ,X3), . . . ,I n(X1 , . . . ,Xn).
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the usual mutual information is always non-negative. Th
the HMI measure separates possible many-body correlat
into two opposite types according to its sign. The type
correlation characterized by negative HMI is a remarka
phenomenon, and the sign of HMI serves as its own ind
tor. We called the phenomenon the frustrated correlation

We have demonstrated the importance of HMI, toget
with the phenomenon of negative HMI, by applying the me
sure to simple examples of frustrated spin systems. We
that the frustration effect lowers HMI, while the therm
fluctuation effect decreases its absolute value; thus the
nomenon of negative HMI occurs due to the frustration
fect. On the other hand, the stabilizing effect raises H
naturally. In the presence of the frustration and the stab
ing effects, we have shown a characteristic behavior of H
as a function of temperature; the minimum in HMI occurs
a finite temperature as a result of the competition betw
the two effects. It is important to notice that in the pheno
enon of negative HMI, the frustration effect stands oppos
to any other effect, in contrast to the case where HMI
ns

H

T

-

s
ns
f
e
-

r
-
d

e-
-
I
-
I
t
n
-
e
s

positive. It is also remarkable that for negative HMI the the
mal fluctuation effect is in the same direction as the stabi
ing effect, while they are completely opposite when HMI
positive.

Our concepts should help to obtain deeper insights i
complex systems that contain frustration as an essentia
gredient. The HMI measure could clarify the complicat
nature of correlations in such systems and then allows u
reveal the presence of frustration and the role played by
An important feature is that the measure could characte
the competition between the frustration effect and so
other effects, which may be responsible for complex beh
ior of frustrated systems.
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