PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000

Physical nature of higher-order mutual information: Intrinsic correlations and frustration
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This paper studies some properties and implications of higher-order mutual information functions, which
should serve for the analysis of general complex systems. We note that the higher-order mutual information
can either be positive or negative depending on the correlation among ensembles. Two opposite types of
correlations are discussed in connection with the concept of frustration. Simple examples are presented to
demonstrate that our concepts are especially helpful in understanding the nature of correlations in frustrated
systems. The higher-order mutual information provides an appropriate measure of the frustration effect.
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[. INTRODUCTION systems. Then we will see that the two types of correlations
are typical of frustrated and unfrustrated systems, and
A common approach for the analysis of complex systemdiigher-order mutual information provides an appropriate
is to use concepts from information theory. In particular,measure of the frustration effect.
information entropy and the related concept of mutual infor- Let us review the mutual informatioh(A,B) between
mation[1] are of fundamental importance; mutual informa- tWo ensemble# andB. It is defined in terms of entropies as
tion can serve as a general measure of correlation between
two systems or ensembles. Mutual information as well as 1(A.B)=S(A)+S(B)—~S(AB), 1.
information entropy have found significance in various ap-o; equivalently, in terms of the joint probability distribution
plications in diverse fields, e.g., in analyzing expenmentalp(a b) as
time serieg2-4], in characterizing symbol sequences such =
as DNA sequencdb—7], and in providing a theoretical ba- p(a,b)
sis for the notion of complexity8—17. I(AB)=2> p(a,b)lnm. (1.2
Of particular interest in our work is the nature of correla- ab ptap
tions in systems with many degrees of freedom, which mayjere S(A) and S(B) are the entropies oA and B and
co_ntajn features that are typical of complex systems. CQmS(AB) is the joint entropy ofAB. The probability distribu-
plicating features may occur due to many-body correlationjgns for A and B are given byp(a)=3,p(a,b) and p(b)
effects such as the frustration effect. In fact, there are many 3.p(a,b). [In the case of continuous variables, the sum-
examples of complex systems that contain frustration as agation in Eq.(1.2) may be replaced by integration with re-
essential ingredient: spin glasses, neural networks, re%lpect toa andb.] The functionl (A,B) measures the amount
glasses, colloids, granular media, glass forming liquids, etCyf jnformation abouth that would be gained from a measure-
In these systems, frustratiddue to many competing inter- ment of B, and vice versa, i.e., the amount of information
actions or geometrical constraiptsaauses various fascinating shared betweeA andB. Equation(1.1) satisfies
phenomena, such as complicated phase transitions, reen-
trance phenomend3-16, partial disorder, nonexponential 0=<I(A,B)=min{S(A),S(B)}. (13
relaxation[17—-20, etc. Appropriate measures of such many-
body correlations could, therefore, be expected to contributdhe equalityl (A,B)=0 holds if A and B are independent,
to a deeper understanding of complex systems. i.e.,p(a,b)=p(a)p(b), and the equality(A,B)=S(A) if A
In this context, the present work considers higher-ordeis completely determined bys. The mutual information
mutual information functiongsee, e.9.[21,22). They allow 1(A,B) is smaller wherA andB are more independent, and
us to disentangle intrinsic many-body correlations from the (A,B) characterizes the degree of correlation betwéen
insignificant ones governed by lower-order statistics. Weand B. For the difference between mutual information and
will study some aspects or characteristics of higher-ordethe correlation function, one should note the followiri:
mutual information in order to obtain insight into its mean- while the correlation function only measures linear correla-
ing. In particular, we focus on the properties of three-bodytion, mutual information characterizes a general dependence
mutual information by considering its relation to the usual[5]; (ii) mutual information, defined for a joint probability
mutual information. We will note that higher-order mutual distributionp(a,b), is invariant for a transformation af,b
information can either be positive or negative depending orin contrast to the correlation functiofiji) mutual informa-
the correlation among ensembles, while the usual mutual inion can be directly applied to symbolic systems, while the
formation is always non-negative. Then, we will realize twocorrelation function relies on an assignment of numerical
opposite types of correlations among ensembles and relat@lues.
them to the concept of frustration. To demonstrate the im- Section Il discusses the higher-order mutual information
portance of these correlations, we will apply higher-ordermeasure. Then some fundamental properties of the measure
mutual information to simple examples of frustrated spinare derived as direct consequences of the definition; we ob-
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tain recursion relations and use them to derive some basic S(Ay)
inequalities. Section Il provides a novel concept for the na-

ture of correlations in terms of higher-order mutual informa-

tion. Simple examples are presented in Sec. IV, showing

some important features of the measure. Section V contains

discussion and conclusion.

II. HHIGHER-ORDER MUTUAL INFORMATION AND ITS

FUNDAMENTAL PROPERTIES
S(Az) S(As)

A. Higher-order mutual information

Let us consider a joint ensembkg, - - - A,, with A; (i

=1,...n) being individual ensgmbles. _TO be speci_fic, SUP- - FiG. 1. An entropy diagram showing the three-body mutual in-
pose that the ensembl, - - - A, is described by a discrete formation1,(A;,A,,As).
probability distributionp(ay, . . . ,a,) [which is normalized
such thatz 5 p(ay, . . .,a,)=1]. Then the entropy oA -
A, s e ) ' p(ar, ....an)=p(a)p(az)---p(an), (2.9
n

S(A;---A,)= _2 p(as, ....a)nplag, ....a). thenS(Ail- . 'Aik) is the sum of the ind-ividual entropies and

{ai} (A1, ... ,A,)=0. If one ensembld; is completely deter-
(21D mined by any otherA;, then Eq. (2.4 results in
In(Ag, ... A)=5S(A), since S(AiAil- . 'Aik) reduces to
S(Ai - - -A;)). Notice that fom=3, Eq.(2.5) is not a unique
distribution that yieldsl,=0, while 1,=0 holds only if
p(a;ay)=p(a;)p(ay). A more general condition for,,=0
p(ar, ... ap-1)=> p(a, ... an), (2.2 is established in the following.

an In analogy with the expressiofi.2), the function(2.3)

can be directly expressed in terms of the joint probability
distributionp(a;,a,,a3) as

The reduced ensemblg, - - - A,_,, with its probability dis-
tribution p(aq, ...,a,_1), is related toA;- - - A, by

and its entropy is defined analogously. A similar relation
holds for any reduced ensemble associated With- - A, .
In a manner analogous to E(..1), the mutual informa-

tion among three ensemblds, A,, andA; can be defined p(a;,a,,as)
as 13(A1,Az,A5)=— > p(as.az,az)inz ,
ap,az.ag p(a;,a,,as)
I3(A1,A7,Az) = S(A1) +S(Ag) + S(Az) — S(A1A,) (2.6
—S(A1A3) — S(AA3) + S(A1AA3). with
(2.3

p(a;,az)p(az,az)p(a;,as)
p(a)p(az)p(az)

Furthermore, Eqs.1.1) and(2.3) can be generalized by

2.7)

b(a1!a21a3):
n
(A, . A= (DK D S(A A,
mo = ip< - <ig " 'k The function(2.7), which corresponds to the Kirkwood su-
(2.9 perposition approximatiof23], provides an estimate for the
) _ three-body distributionp(a;,a,,a3), given the two-body
where the sunES(A; - - - A; ) runs over all possible combi-  gistributions. It follows immediately thalty(A;,A,,As)=0

nation;{il, . ._,ik}e{l, N | I P S the usual mutual in- - for p(a,,a,,a;)=p(a;,a,,as); this implies thatl; mea-
formation. Notice thatln(Ay, ... /Ay) is symmetric under  syres the intrinsic three-body correlation, which is not gov-
any permutation o\, ... A,. The generalized mutual in- erned by two-body statistics. In general, we have the expres-

formation may be recognized as common information or ensjgn
tropy shared among ensembles, in analogy with the usual
mutual information. For examplé; may be viewed in Fig. 1
as the overlap 08(A;), S(A,), andS(A3). Note, however,
that while S(A;) is a non-negative function, the quantity
for n=3 can be not only positive but negative in contrast to
the usual mutual information. Before focusing on this impor-
tant fact, we consider some fundamental properties of the
function (2.4).

If the n ensembleg\; are independent, i.e., the joint prob-
ability distribution is of the form with

(A, - AD=(=D" X p(ag, ... a)
ag

p(alv EC !an)
n,\—
p(ai, ....ay)

x| : (2.8
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N I (Al,...,A ):I _1(A1,...,A _2,A _1)
pas,...an= Il pGa,...a " v e
|1<-“<|”71 +|n,1(A1, ""AH*Z'AH)
X H pa, ....a )/ —lh-1(Ar, A2, An-1AD).
i1<--<ip_a 1 n-2 (2.13
.. ./H p(a;). (2.9 Again, notice that the permutation symmetry gives a set of
i recursion relations similar to Eq2.13. These relations al-
low us to expresd (A, ... ,A,) in terms of the mutual
Equation(2.9) can be recognized as the generalized Kirk_informe_ltion functions of lower order thamn For example, we
wood superposition approximatiof4]. Again, note that Can write
[h(A1, ..., Ap=0 fo.rp(al,...,an)=p(a1,....,an). . La(AL A A3 A =1o(ALLA) F 1A Ag) +15(ALLA,)
It should be mentioned that the generalized mutual infor-
mation functions give the following contributions to the en- —12(A1,AA3) —15(A1,AA,)
tropy:
i 1A AR +1o(Ag AAGA,).
h (2.19
S(Ag-- 'An):izl S(Ai)_;j I2(ALLA) From expressions such as E¢2.11) and(2.14), we recog-
nizel,(A¢, ... A, as the common information shared by
I2(A;,Aj). More generally, from the hierarchy of the func-
+i<12<k La(ALALA) = (210 yion (2.4 it is natural to recognizé,, as the common infor-

mation shared by lower-order functiohs (n’<n) whenl,

) ) ) _ ) is recognized as the common information sharedspé;).
That is, the relative magnitude of the functions is a measure |, analogy with the concept of conditional entropy, we
of the contribution to the global behavior of the systdm  can consider conditional quantities of the mutual information

---An. An approximation for the entropy can be made byfunctions|,. As a consequence, the functios(A;,A,A3)
neglecting higher-order contributions. This approximationcan be decomposed into the sum

may yield good results for weakly correlated ensembles, with
the first-order approximation corresponding exactly with the (A1 AAS) =15(A1,Az) +15(ALA|Az).  (2.15
entropy for the cas€.5).

The quantityl,(A;,A,|A3) is the mutual information be-

tweenA,; andA, that is conditional on a measurement’af
B. Some general properties of

Now we consider general relationships between the func- | A~ A 1A.)= a a..a.la
tions (2.4). First, we can writd 3(A;,A,,Az) in terms of the 2 A1 Azl As) az3 P(as) 122 P(ar,2;las)
usual mutual information as

<In p(ay,a,|as)
13(A1,A2,A3) = 12(A1,A2) T 12(A1,Az) — 1 2(Ay ’AZA(%)EI.ZD p(ai|as)p(as)as)
. =S(A1|A3) +S(A;|Ag) — S(A1A;| Ag).
where the quantity (2.16

Herep(a;|as) =p(a;,a3)/p(as) is the conditional probabil-
[5(A1,A2A3)=S(A1) + S(A2A3) — S(A1AA3) ity distribution for the variablea; given a measuremest,
(2.12  and S(A;|Az)=S(A;A3)—S(A3) is the conditional entropy
of A; with respect toA;. Equation(2.16) satisfies

is the mutual information betweeh, andA,A3. In contrast - —mi
to the suml,(A;,A) +1,(A1,Az), 1,(A1,AA;) measures 0=l2(Ar Aol As) <MIn{S(AslAz). S(A|A3)}-
the amount of information abowk,; that would be gained
from simultaneous measurementsA&f and A;. If A; and  The equality 1,(A;,A5|A3)=0 holds if A; and A,
A,A; are independent, each term on the right-hand side ofre statistically independent whefA; is specified, i.e.,
Eq.(2.11) is zero and 3(A;,A;,A3)=0. However, itisnot if  p(a;,a]as)=p(ajlasz)p(azjas). The  equality
necessary that il ;(A;,A;) and I,(Ay,A3) are zero,A;  1,(A;,A5|Az)=S(A;|A3) holds if A, is completely deter-
should be independent &,A;; thus it is possible that, mined byA, whenA; is specified. In general, we can write
< 0. Notice that the relatioi2.11) is symmetric under the
permutationsA; — A, andA;— A, (because of the symmetry In-1(Ag, - Anm1A) = hoa(Ag, A2, A)
in the definition(2.3)]. iy A A A

It follows that the higher-order mutual information func- n-1(As - An-1lAn),
tions|, can be related to the lower-order orgs ; as (2.18
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where X4 Xy—X,
n-1 / \ / \ /
In-1(Ar, o AgafAg =2 (1)<
k=1 Xz X3 Xz X3
(a) (b)
X 2 S(AL A A,
<<k FIG. 2. Spin systems with couplings (a) consisting of three
(2.19 binary spins andb) consisting of four binary spins, with no direct
interaction betweeiX; andX,. Frustration arises wheh<0. Note
{i1, ... te{l,... n—1}, is the conditional mutual infor- that in the casé<0, despite the presence of frustration, the system

mation amondAq, ... ,A,_1 with respect tdA, .
Inserting Eq.(2.195 into Eqg.(2.11), we have the relation

(2.20

Combining Eq.(2.20 and the non-negativity of the function
1,(A1,A5|Az), we see that

13(AL,A2,Az)=15(A1,A:) =1 2(Ar,A|Az).

I3(A1, A2, Az)=minfl2(A1,A2),12(A1,A3),12(Az,Ag)}
<=min{S(A;),S(Az),S(A3)}. (2.21)
On the other hand, the non-negativity of the function
[,(A1,A,) yields
I3(A1,A2,Ag)=—min{l (A1, A Ag),
12(A1,A3A2),12(Az Azl Ap)},
(2.22

and then using the inequalit2.17) we see that the possible
lower limit of I is

15(A1 Az Ag) =~ minS(A|A) =~ minS(A,),
" | (2.23

where{i,j} €{1,2,3. While the condition(2.21) is straight-
forward to explain, the conditiof2.23 is complicated: the
equalityl3(A;,A;,A3) = —S(A|A3) is attained ifA; is sta-
tistically independent o, but is completely determined by
A, whenAgj is specified.

In general, inserting Eq2.18 into Eq. (2.13, we have
the relation

In(Alv e !An)zln—l(AZL! e !An—l)
—ln-a(Ag, . ’An—1|An)- (2.249

Therefore, the functionsl (A, ... A, and I, 1(Aq,
.,A,_1) are associated as follows:

In(Ag, o ADSI 1(A - AL
“lno1(Ar, oA A)
=0 (2.29
and
[n(A, o A>T C1(A A
ela1(Ag, .. AL 1AL <O,
(2.26

(b) has a stabilizing effect as a whole.

which is possible fon=4. Whetherl ,<I,_; or I,>1,,_1,
together with the sign of the measure, will be considered as
an indication of the structure of correlation among en-
sembles. In the following section we clarify the differences
between correlations characterized by positive and negative
values ofl .

IIl. CONCEPT OF FRUSTRATED CORRELATION

Correlation betweerA; and A, implies thatA;A, has
certain preferred combinations af anda,: two-body pref-
erence. When considering the ensemtfigs,, A;A3, and
AsA;, the two-body preferences may be simultaneously sat-
isfied or not. In this regard, let us consider the meaning of
the three-body mutual informatioly(A;,A,,A3), focusing
on the fact that;(A4,A,,A3) can either be positive or nega-
tive depending on the correlation amoAg,A,,A;. When
given a measurement &;, one obtains information about
A, and simultaneously information aboé; as well. As
mentioned in the preceding sectioly(A;,A,,A3) can be
recognized as the common information shared 4§, ,A,)
and 1,(A1,A3). If the two-body preferences are simulta-
neously satisfied, then the informatidg(A;,A,) should
contain part of the information,(A;,A3), which implies
thatl3(A1,A,,A3)>0. Thus, if the three-body mutual infor-
mation is negative, we can recognize that the two-body pref-
erences are simultaneously unsatisfied; we call such correla-
tions frustrated. Similar considerations can apply to the
higher-order functions,, with the recognition of , in terms
of the usual mutual information. Consequently, the correla-
tions amongn ensembles with negativg can be considered
frustrated. In the following section, we will see that these
correlations are especially important in frustrated statistical
systems such as spin glasses.

IV. EXAMPLES

Now we apply the generalized mutual information to
simple examples of spin systems to illustrate some important
features of the measure. Let us first consider the system
X1X,X5 composed of three binary sping;, X,, Xj, de-
scribed in Fig. 2a), with the Hamiltonian

H = _\](X1X2+ X2X3+X1X3), (41)
where the spin variable, takes valuest1 and the coupling
Jis set equal to 1 or-1. The interactions-Jx;X; give rise
to frustration when choosing= —1. The probability distri-
bution for the system is given bp(x;,X,,x3)=e #1/Z,
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BJ

FIG. 3. Plots of the functionk, andl; given by Eqs(4.4) and FIG. 4. Plots of the functions,, 15, |, calculated for the sys-
(4.5 as functions of 8J. Dotted line: 1,(X;,X5). Full line: tem described in Fig. (®). Dotted line:1,(X;,X,). Dashed line:
15(X1,X5,X3). While in the limit 83— each function goes to 13(Xy,X5,X3). Full line: 14(X1,X5,X3,X4). In the limit BJ—

In2, in the limit BJ— —, |, goes to 0.0566 andl; goes to oo each function goes to In 2.
—0.1177.

X1X5X3 since it trivially results in{x;x,x3)=0, while I,
whereZ=2e3#+6e A andB=1/T is the inverse tempara- characterizes correlations that are typical of the considered

ture. The mutual information betweefy and X, is frustrated system.
Next we consider the system described in Figo)2a
1,(X1,X5)=2S(X1) — S(X1X5), (4.2 bond defined along the line that connects two adjacent spins

X;). Each bond is characterized by the same coupling con-
and the three-body mutual information amoXg, X,, and  stantJ, which can be either-1 or —1. The three mutual
X3 is information functions 1,(X;,X5), [13(X1,X5,X3), and
14(X1,X5,X3,X,) are shown in Fig. 4. In the case of ferro-
13(X1,X2,X3) = 3S(X1) = 3S(X1X2) + S(X1X2X3). magnetic interactiond=1 (8J>0), they are all similar in
(4.3 behavior. However, an interesting feature occurs in the case
_ ) of antiferromagnetic interactionk= —1 (8J<0). Note that
Elementary calculation gives in this case, although frustration arises in two triangles, the
spinsX; simultaneously have a stabilizing effect as a whole;
e eFlre ) e¥lpeh in fact, in the limitT—0 (B8J— —<) the spins become com-
12(X1.Xz)=3In 2+ In Z +2 Z In 2B pletely dependentwhile the interaction betweeX; and X,
(4.4) is unsatisfiedand all the functions go to In2, as in the case
J=1. Thus the behavior of the system at finite temperatures

and is a consequence of the frustration and the stabilizing effects
as well as thermal fluctuation. These competing effects lead
13(X1,X5,X3)=6In2—21InZ to the minimum in the three-body mutual information. The
stabilizing effect overbalances the frustration effect below
e3te B 8Bt e A the temperature at whichy=0. It should be noted that the
+6 Z In PYVE (4.5 casel= —1 givesl;<l,, in contrast to the cask=1; this is

because frustration is contained in the triangleX,X5; and
the conditional mutual informatiohy(X;,X5,X5|X,) is still

These are plotted as functions @8 in Fig. 3, which draws a negative[compare the relationshif2.26]. The four-body

comparison between the two casks1 andJ=—1. In the
limit T—oo (BJ=0), they vanish since the spixg ,X,,X; X X X X X
become independent. In the cakel (8J=0), both func- 4 1 4 S
tions monotonically increase as the temperature is lowered, ‘ ’ ‘
and in the IimitT—0 (BJ—x) they go to In2 since the

spins become completely dependent. In contrast, in the case X;— X3 Xs X3 Xs
J=—1 (BJ<O0) the difference between the two functions is @) (b)
remarkable; the three-body mutual information is negative

due to the frustration effect. In this case, the functign FIG. 5. Spin systems with nearest-neighbor interactignsThe
monotonically decreases with increasing the frustration efsystem (a) contains frustration when choosing; such thatJ

fect, and in the limitT—0 (BJ— —=), one has,=£IN2 =3 .3,.3.,3,,<0. The systen(b) has couplings chosen such that
—1In3=0.0566 andl3=31In2—-2In3=—-0.1177. It should J=J,,,0:6)36=J12)23)3414, and in the casedd<O0, despite the
be pointed out that the three-point correlation function, depresence of frustration, it has a stabilizing effect as a whole, similar
fined by (xix,X3), cannot indicate any correlation in to the system described in Fig(d.
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-0.2r

FIG. 6. Plots of the function,, |3, |, calculated for the sys-
tem described in Fig. (8). Dotted line:1,(X;,X,). Dashed line:
13(X1,X5,X3). Full line: 1,4(X;,X5,X3,X,). While in the limit
BJ— each function goes to In 2, in the lIMBJ— —o, 1,,l3,l,4
go to 0.1308,—0.0849, and-0.1698, respectively.

mutual information implies that the stabilizing effect is re-
sponsibe for the behavior of the spins as a whole.

Similar situations occur in the following. First consider
the system described in Fig(&, with couplingsJ;; between
nearest-neighbor spinx; and X;. Here we set);;=1 or
—1. DefineJ=J,5J53J34J14. The system is frustrated if it
contains one or three negative interactions, i.e., when
=—1. As shown in Fig. 6, in the cage= — 1, the three- and
four-body mutual information functions are negative due to
the frustration effect. Next consider the system described in

Fig. 5(b) with couplingsJ;; (Jjj=*1). Let us choosdJ;, FIG. 8. Plots of the functions,, I3, ..., |, calculated for the
such thatJ=J;2J23)34314= J34J45J56J36- Then the system  systemx;X,- - - X, with (@) n="5 and(b) n=6 spins forming a ring
has similar properties to the system described in FiB);2  with nearest-neighbor interactiods . The system contains frustra-
that is, in the casg@= — 1 although the system has frustration tion when choosingd=J;,J55- - -J;,<0. From upper to lower
in each square, it has the stabilizing effect as a whole. Theurves:,(X;,X5),15(X1,X2,X3), ... 1n(Xq, . .. Xp).
same mutual information functions as given in Fig. 6, calcu-
lated for this system, are shown in Fig. 7. In the cdse Finally, consider systems in which the spins
=—1 the three- and four-body functions have minima at fi-X;,X,, ... X, form a ring with nearest-neighbor interac-
nite temperatures as a result of the two competing effects. tions J;5,J23, . . . Jn1 (Jij==1). Defined=J;,J05 - - Ins.
| Again, frustration arises whed= —1. Figure 8 shows the
n functions  1,(X1,X5),13(X1,X5,X3), ... In(Xq, o0 X))

g calculated for the systems with=5 andn==6 spins. If there
is no frustration, i.e., in the case=1, any mutual informa-
tion functions including the conditional functiori2.19 are
positive, and consequently, higher-order functions are
smaller than lower-order ones following the relationship
(2.25. In the casel=—1, the functiond , of higher order
thann=3 monotonically decrease with increasing the frus-
tration effect. The function; has a maximum at a finite
temperature due to the competition between local ordering of
spins and the frustration effect as a whole. The behaviors of
these functions indicate that the frustration effect is more
responsible for higher-order correlations.

V. DISCUSSION AND CONCLUSION
FIG. 7. Plots of the functions,, |3, |, calculated for the sys-

tem described in Fig. (6). Dotted line:1,(X;,X,). Short dashed We have derived some properties and implications of
line: 15(X;,X,,X3). Dashed line: 15(X;,X3,X,). Full line:  higher-order mutual informatiofHMI) functions. The most
14(X1,X52,X3,X4). In the limit BJ— *o, each function goes to important feature is that HMI can either be positive or nega-
In2. tive depending on the correlation among ensembles, whereas
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the usual mutual information is always non-negative. Thugositive. It is also remarkable that for negative HMI the ther-

the HMI measure separates possible many-body correlationsal fluctuation effect is in the same direction as the stabiliz-

into two opposite types according to its sign. The type ofing effect, while they are completely opposite when HMI is

correlation characterized by negative HMI is a remarkablepositive.

phenomenon, and the sign of HMI serves as its own indica- Our concepts should help to obtain deeper insights into

tor. We called the phenomenon the frustrated correlation. complex systems that contain frustration as an essential in-
We have demonstrated the importance of HMI, togethegredient. The HMI measure could clarify the complicated

with the phenomenon of negative HMI, by applying the mea-nature of correlations in such systems and then allows us to

sure to simple examples of frustrated spin systems. We finteveal the presence of frustration and the role played by it.

that the frustration effect lowers HMI, while the thermal An important feature is that the measure could characterize

fluctuation effect decreases its absolute value; thus the phéhe competition between the frustration effect and some

nomenon of negative HMI occurs due to the frustration ef-other effects, which may be responsible for complex behav-

fect. On the other hand, the stabilizing effect raises HMlior of frustrated systems.

naturally. In the presence of the frustration and the stabiliz-

ing effects_, we have shown a chara_ct_enstlc_ behavior of HMI ACKNOWLEDGMENTS
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