PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000

Anderson localization as a parametric instability of the linear kicked oscillator
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We rigorously analyze the correspondence between the one-dimensional standard Anderson model and a
related classical system, the “kicked oscillator” with noisy frequency. We show that the Anderson localization
corresponds to a parametric instability of the oscillator, the localization length being related to the rate of
exponential growth of the energy of the oscillator. Analytical expression for a weak disorder is obtained, which
is valid both inside the energy band and at the band edge.

PACS numbegps): 71.23.An, 72.15.Rn

[. INTRODUCTION a linear oscillator with noisy frequency. The quantum model
is defined by the stationary Scliinger equationi6]

Recently it was shown that quantum one-dimensional
tight-binding models with any diagonal site potential can be _
formally represented in terms of a two-dimensioriaD) Vit Yn-1t €nthn=Edn, @
Hamiltonian mag 1]. On the other hand, this classical map is
associated with a linear oscillator subjected to a linear forcavhere ¢, represents the electron wave-function at tita
given in the form of time-dependewtkicks. In this picture, lattice site, and the site energieg are independent random
both the frequency of the unperturbed oscillator and the pevariables with a common distributiop(e). In the standard
riod of the kicks are determined by the energy of an eigenAnderson model the probability(e) has the form of a box
state, and the amplitudes of the kicks are defined by the siteistribution,
potential in the original quantum model. It was shown that

by exploring the dynamics of this classical system, one can 1 (W
obtain global characteristics of the eigenstates, such as the p(e)= _0(__|€|>, 2
localization length defined by the Lyapunov exponent of Wi 2

classical trajectories.

In particular, analytical estimates have been obtained ifyhose widthw sets the strength of the disorder. In the fol-
[1] for a specific diagonal site-potential potential with Short'lowing, however, we will not restrict our considerations to

range correlationéthe so-called dimer model, sgg)). Other the specific form(2) of the probability distribution, but sim-

applications to the case of general correlated diagpshl : _
and off-diagonal 4] disorder have revealed very important ply assume tha_t the vzarlable§ have zero mear¥ €n) =0)
and a finite varianceer).

peculiarities. One of the most interesting results has bee . ) ) i )

obtained i3] where it was shown how to construct random 1 he kicked oscillator is a harmonic oscillator that under-

potentials with specific two-point correlators which result in 90€s periodic and instantaneous variations of the momentum

the emergence of the mobility edge in one-dimensional ge(the kicks. Such a system is defined by the Hamiltonian

ometry. Based on these predictions, very recently experimen-

tal realization of this effect has been done in one-mode mi-

crowave guide$5]. H=w
In this paper, we perform an analytical study of the stan-

dard Anderson model with diagonal uncorrelated disorder,

paying main attention to the problem of the mathematicalwhere

correspondence between the quantum model and its classical

representation in the form of a linear kicked oscillator. More +oo

specifically, we are interested in the connection between the &)= > A8(t—nT). (4)

Anderson localization and the parametric instability of the n=-—

corresponding classical system. Although the results ob-

tained for the localization length in the weak disorder limit e random coefficientd,, that appear in the definition of

are well known from other studies, the method we use here ifhe noise(4) represent the intensity of the kicks, i.e., they are

a new one and it may explain the mechanism of the Anderyqnqrtional to the sudden momentum changes experienced

son transition in new terms. Moreover, this approach may b%y the oscillator at times=nT. In other words, the system
very useful for 2D and 3D cases, for which analytical results(3) represents a harmonic oscillator with a mean frequency
for global properties of eigenstates are very restricted. perturbed by the noise ter@(t). Using the definition(4),
one can easily reconduct the statistical properties of the noise
&(t) to the corresponding properties of the variab¥es in

In this paper we study the relation existing between theparticular, the mean and the variance &t) can be ex-
standard 1D Anderson model and a related physical systempyessed as

p2 X2 X2
Sty +7§(t), (3

Il. DEFINITION OF THE MODEL
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12 Wiener procesdV(t). That is the case if the strength of the
(é(t))=Ilim 7f, /zf(t)dt single kicks is weak, i.e., if the condition
1 e (A (AD=<1 9
= lim NT » Ele An= -I-n is fulfilled. That can be understood by considering that the
N—o =-

present situation is analogous to the one that occurs in the
Brownian motion of a heavy particle suspended in a fluid of
light molecules. The instantaneous impacts of the fluid mol-
1 (2 ecules on the massive particle can be successfully described
(E(t)é(t+s))y=1lim —f E()E(t+s)dt by a continuous Wiener process, provided that each single
T =2 collision does not produce a significant displacement of the
1 N/2 (AZ) heavy partic;le. When the mass of the_sus_pe.nded particle is
= 8(s) lim = 2 A2= N 5(s). not much bigger than the one of the impinging molecules,
T NnsZne " T the nature of the motion changes and the effect of the mo-
lecular collisions can no longer be depicted by a Wiener
The equivalence of the mode($) and (3) has been dis- process.
cussed iM1]. There it was shown how the two-dimensional A similar analogy can be drawn between the present case

and

N— oo

map and the random-walk problem. To be exact, let us consider a
_ one-dimensional random walk made by someone that takes
Xn+1=Xn COS @T) +(Pn—AnXp)sin(T), steps of length at timesnT (with n integra). At each step
_ (5)  the walker is supposed to go to the right or to the left with
Pn+1= ~Xn SIN(@T)+ (Py—ApXy)CO 0 T), equal probability. In this model the walkers position

changes with each step much in the way the momentum of
the kicked oscillator does under the action of a kick: in both
cases the relevant physical quantity is varied in a sudden and
random way at regular time intervals. This analogy makes
interesting to notice that, by going to the limit

can be derived by integrating over a periddthe Hamil-
tonian equations of motion of the kicked oscillat8y. Note
that in the map(5) x,, and p,, stand for the coordinate and
momentum of the oscillator immediately before tité kick.
Eliminating the momentum from Eqg5), one eventually

obtains the relation | -0, T—0,
Xn+1T Xn-1TAp SiN(@T)X,=2X, cog wT), while holding fixed the ratio
which coincides with the Anderson equati@l) if one iden- |2
tifies the site amplitudey, with the coordinatex,, of the D= T
oscillator and if the parameters of the mod@sand(3) are
related to each other by the equalities the discrete time random walk evolves in a Brownian motion

with diffusion constanD (see, e.g., Ref7]). In other words,

a Wiener process can be regarded as a limit case of random
walk in the limit of very small and fast-spaced steps. In a
similar way, the “jump process’é(t) can be described by a
“diffusion process”W(t) when the conditiorf9) is satisfied,

with the ratio

en=A,si(wT); E=2cogwT). (6)

In Ref. [1] the classical mag5) was used as a tool to
investigate the properties of the modéd); here we focus
instead on the direct analysis of the Hamiltonian md@gl

Ill. THE OSCILLATOR WITH NOISY FREQUENCY <Aﬁ>

k
The dynamics of the kicked oscillat@8) is determined oT

by the Hamiltonian equations of motion:

(10

playing a role analogous to that of the diffusion constant
p=—(w+ &)X, X=wp. 7) This conclusion, although substantially correct, must be
made more precise. The analogy between the kicked oscilla-
In order to study the behavior of the kicked oscillator, it is tor (3) and the free Brownian particle or the random walker,
convenient to substitute the couple of differential equationsilthough of much use, cannot be complete because the

(7) with the system of stochastic” lequations, kicked oscillator, unlike the two latter systems, is endowed
with an autonomous dynamics dictated by the elastic force
dp=—wx dt— x\/(AZ}/T dW(t), and independent from the noise. As a consequence, in assess-
(8) ing the equivalence of the shot noig@t) with the continu-
dx=wp dt, ous procesdV(t), one must also take into account the pos-

sibility that the interplay of the discrete noigé) with the
where W(t) is a Wiener process wit{dW(t))=0 and unperturbed motion of the oscillator might produce different
(dW(t)?)=dt. effects than those induced by the addition of the continuous
The systemg7) and(8) can be considered equivalent in- processW(t) to the deterministic dynamics of the noiseless
asmuch as the shot noigét) is adequately represented by a oscillator. More specifically, one can guess that possible
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“resonance” effects due to the conmensurability of the fre-which can be easily derived using E®) and the standard
quency 1T of the kicks with the frequency/27 of the  rules of the lfocalculus.

unperturbed oscillator might occur. This is actually the case Notice that, while the position and momentum of the os-
at the band center, when the two frequencies stand in theillator (8) do not evolve independently from each other, the
ratio wT/27=1/4, as we will discuss in Sec. V. Apart from dynamics of their rati@= wp/x is totally autonomous from
this exceptional case, however, the dynamical features of thihat of any other variable. As a consequence, one deals with
oscillators (3) and (8) do not differ, as will appear in the the single differential equatiof13) instead of having to cope
following analysis. with a set of coupled equations like E®). Thus, the intro-

In conclusion, the kicked oscillatd7) and the stochastic duction of the variable, which is suggested by the definition
oscillator (8) are equivalent when the individual kicks of the (12) of the Lyapunov exponent, turns out to be beneficial
first model are weak. On the other hand, since the kickealso for the study of the stochastic oscillat8y.
oscillator (7) is equivalent to the Anderson modél), one As is known, the ltostochastic differential equatiofi3)
can conclude that the stochastic oscilldi@®rprovides a cor- is equivalent to the Fokker-Planck equatiah8]
rect description of the Anderson model for the weak disorder
case. This allows one to analyze the solutions of @gin ap i, (A% #%p
terms of phase-space “trajectories” of the stochastic oscilla- 5 (2= —-[(@"+Z)p(z,) ]+ —= E(Z,t),
tor (8). In this picture, localized states for the Anderson (14)
model correspond to unbounded trajectories of the oscillator

in the phase space, while extended states ftranslate infpnich gives the time evolution of the probability density
bounded trajectories. p(z,t) of the stochastic variable In other words, the evo-

In the following we will rest_rict our consi_d_erations to the |ution of z(t) dictated by Eq(13) is a diffusion process with
case defined by the weak disorder conditi® and thus a deterministic drift coefficient ¢2+2z2) and a noise-
ensure the equivalence between the Anderson mdgleind induced diffusion coefficiean(AZ)/T

.

the stochastic oscillatdiB).

The stationary solution of Eq14) is

IV. LYAPUNOV EXPONENT z
p(z)= Cl+CZJ dxexp{®(x/w)} |exp{—P(Z/w)},

Once we have established the correspondence of the -

Anderson model with the stochastic oscillat®), we can ) _ )

proceed to redefine essential features of the first model in th¢hereC, andC, are integration constants and the function

dynamical language of the second. In particular, we are in®(x) is given by the relation

terested in deriving a formula for the Lyapunov exponent, 3

which gives the inverse localization length for the eigen- <I>(x)=z X+X_

states of Eq(1). Since these eigenstates correspond to tra- k 3)

jectories of the stochastic oscillat@), the Lyapunov expo-

nent is naturally redefined as the exponential divergence ratghich contains the parametérdefined by Eq.(10). Since

(15

of neighboring trajectories, i.e., through the limit p(2) is a probability distribution, it must be integrable and
therefore the constai@; must vanish. The residual constant
) 1 (T 1 X(t+9) C, is determined by the normalization condition

A=lim lim fo Ll (1) % n(z)dz=1. The resulting distribution is

. . 1 z
which corresponds to the standard expression 0(2)= - 2J dxexg(®(x/ ) — B (2 o)} (16)
N WS

1 Un+1
A= lim = In .
N— o N nZ]_ ¢n Wlth
for the Anderson mode(l). By taking the limits—0 first, N | 7K “d 1 2 N X_3 1
the expressiorill) can be put in the simpler form B 2 Jo x\/;ex k X 12 (17)
A=(z)=lim E det 2(t), (12) Once the steady-_state probability distributigh6) is
1o 1 Jo known, one can use it to compute the average thfat de-

fines the Lyapunov exponefii2)

where the Ricatti variable=x/x has been introduced and

the symbokz) stands for thétime) average ofz N=(z)= fw dzzz). (18)
To compute the Lyapunov exponent, as defined by Eq. —

(12), it is necessary to analyze the dynamics of the variable

z=wp/x. The time evolution of this quantity is determined By this way one obtains

by the Ifostochastic equation

w (= 2
dz=—(w?+2)dt— 0 (AD/T dWM1), (13 ":mfo dx VX exp —

3

X
X+ 1—2 . (19)
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Formula(19) is the central result of this paper. It gives an equation foré a Fokker-Planck equation whose stationary
expression for the inverse localization length in the Ander-solution gives the invariant measysé€6) which is the coun-
son model that turns out to be valid both inside the energyerpart of the distributiori16) for the Ricatti variablez. Ac-
band and at the band ed¢gthough it fails to reproduce the tually, the two distributions are closely related as a conse-
anomaly of the Lyapunov exponent at the band cénfdre  quence of the simple relatiar= w cot § which links the two
extended validity range of the expressid®) is a remark-  variablesz and 6. One could, therefore, have evaluated the
able feature, because the behavior of the localization lengthyapunov exponenfl9) in a alternative way by determining
at the band edge is known to be anomalp2d0] and has the invariant measurg(6) first and then by using it to com-
been previously derived with methods well distin@nd pute the averaga = w(cot6)=[dép(#)coté. The result that
more complicatedthan the ones used to study the localiza-is obtained in this way obviously coincides with the one
tion length inside the band. In the next two sections we willexpressed by formulél9).

show how expressiofl9) reproduces the known formulas

for the localization length inside the energy band as well as V. WEAK DISORDER EXPANSION

in a neighborhood of the band edge.

Before proceeding along this line, however, it is oppor- The weak disorder case is defined by the conditi@n
tune to complete this section with a couple of further re-This condition implies that, except that at the band e(lge,
marks. In the first place, it is interesting to notice that ex-for ®T—0), the paramete(10) must satisfy the requirement
pressions very similar to those of Eq4.6) and (19) have |[k|<1. In this section we analyze, therefore, the expansion
been obtained for a different but related model: that of &of the Lyapunov exponerl9) in the limit k—0. This cor-
particle in a one-dimensional random potentiake, e.g., responds to studying the behavior of the localization length
[11] and references therginThe problem is defined by the inside the energy band for the Anderson modbl with a

continuous Schidinger equation weak disorder.
Making use of expression&l9) and (17), it is easy to
" (X)+F[E=U(X)](x)=0, (200 verify that fork—0 the Lyapunov exponent can be written
in the form

whereU(x) represents white noise, i.e.,éacorrelated ran-
dom potential with zero mean: I'(3n+3/2) ( kZ)n

A2> E (_

(U())=0; (U(X)U(x))=2D8(x—X"). nt 148 21
. _ . _ AT T(3n+1/2) (K n’
This correspondence is not surprising on two grounds: first, Z (=1 —|( )
Eg. (1) is the discrete counterpart of the continuous Schro ' 48
dinger equation(20), and second, the stationary equation . . .
(20) is the formal analog of the dynamical equation for theTO the lowest order irk this expression reduces to
kicked oscillator (A2
N=—F— (22

(1) + (02+ wE))X(1) =0, 8T
which represents the basic approximation for the inverse lo-
Eahzatlon length in the weak disorder case.

Taking into account the relation®) between the param-
eters of the Anderson modél) and those of the stochastic
oscillators(3) and(8), the vanance{Aﬁ) that appears in for-
mula (22) can be expressed as

which represents an equivalent form of the syst&jn

As a second observation, we note that in the present se
tion we have described the dynamics of the random oscillator
in terms of its Cartesian phase-space coordingtes)( In a
equivalent way, we could have used the polar coordinates

e < )
6=arctarix/p), (A= 1-E2/4’

which represent the action-angle variables of the oscillato'When the distribution for the random site energégss the
The dynamics of the oscillator is then dictated by the couplebox distribution(2), one can further writée?)=W?/12; as a

of It equations consequence, expressi@P) takes the form
d (Ao n*odt \/<Aﬁ> in 6 cosadW(t) A ! W (23)

r=——rsin"ddt— \/ ——r siné cos , ==

2T T T 96(1—E?/4)
A2 A? which, for T=1, coincides with the well-known standard

n . ! A . )
do=| w+ _ cos@sin’6 |dt+ formula for the inverse localization length in the Anderson
model[12].

which can be easily derived from Eq8) using the standard ~ The extra factor I stems from definition(12) of the
rules of the Ilfocalculus. A glance at the stochastic equationLyapunov exponent, which implies that=(x/x) has the
for the angular variable reveals that the latter evolves indedimension of a inverse time. In order to have the correct
pendently of the radius; one can then associate to thé Ito physical dimension, therefora, must be inversely propor-
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tional to a time parameter which, on the other hand, must benderstand this point, one should consider that in the weak

a specific feature of the noidd), since that is the physical disorder case, as defined by the relat{®)y the only way to

origin of the orbit instability. This requirement singles out fulfil the condition k=(A2)/(wT)— is to havewT—0.

the periodT between two kicks as the only parameter whichCorrespondingly, the energig=2 cos@T) must approach

can endowh with the proper physical dimension; the pro- the limit E—27, i.e., the edge of the band. Using relations

portionality A< 1/T is thus fully justified. (6), one can also express the conditlon 1 in the significant
The expressioni23) corresponds to the result derived by form

Thouless using standard perturbation metHd@. As such,

formula (23) fails to reproduce the correct behavior of the 2—E<(e2)?R,

Lyapunov exponent at the band center, where the second-

order perturbation theory of Thouless breaks down and awhich shows that the investigation of the cdse1 corre-

anomaly appears which was first explained in R&8]. This  sponds to studying the behavior of the inverse localization

deviation of the inverse localization length from the behaviorlength for energy values which are close to the band edge on

predicted by formul&23) is a resonance phenomenon, whicha distance scale set by the fluctuations of the random site

can be conveniently understood by considering the dynamigsotential.

of the kicked oscillator(3) [10]. In fact, the band center With the physical meaning of the limk— clear in

corresponds to the caseT=w/2 and this equality can be mind, we can proceed to verify that EG.9) reproduces the

interpreted as the condition that the frequency df the  correct behavior of the Lyapunov exponent in a neighbor-

kicks be exactly four times the frequenay2w of the un-  hood of the band edge. For this, it suffices to notice that the

perturbed oscillator. This generates a resonance effect thatibstitution

manifests itself in a small but clear increase of the localiza-

tion length with respect to the value predicted by formula (€2 , (€2

(23) for E=0. Once the origin of the anomaly at the band = : —K = 3

center is explained in these terms, it is not surprising that the oTsir(wT) («T)

model (8) fails to reproduce this feature, because it is obvi-

ous that the Wiener noisé/(t) cannot conveniently mimic

the regularly time-spaced character of the shot n@iseOne

(24)

transforms formuld19) in the expression originally obtained
by Derrida and Gardner for the Lyapunov exponent at the

) ) . band edgd9]. This implies that Derrida and Gardner’s ex-
might then worry that the modg8) provides an inadequate ressionggoi]ncides wi?h our own favT—0, since in this

description of the Anderson model whenever the period o imit the difference between parametéesand k' vanishes.

the unperturbed oscillator and that of the kicks stand in any, . ..+ '+~ 5" o1 the other hand. identifies the band-edae
rational ratio. This is not the case, however, because th? ’ ’ 9

; ase: this proves that formu(d9) is correct not only inside
resonance effect at the band center is the only one that aj: =
. he energy bandexcept that foE=0), but also forE— 2.
fects the localization length at the second order of the pers o . .
turbation theory( [10]) and is thus of interest for the present The extended validity range of expressid) is a relevant
e y P feature; indeed, to the best of our knowledge, no other for-
work. For all the other “rational” values of the enerdy

=2 coswa With « rational, the effect of the resonance on themUIa encompassing thehole energy band has been previ-

Lyapunov exponent can be seen only by going beyond thously found for the Lyapunov exponent in the Anderson

AT ; ._Imodel.
second-order approximation in the weak disorder expansion To conclude our discussion of the o limit. we observe
(see details in Ref.10)). '

that in this case it may be appropriate to expand the integrals
that appear in expressiol($9) and(17) in the series of the

VI. THE NEIGHBORHOOD OF THE BAND EDGE inverse powers ok. One thus obtains
Besides thé&— 0 limit considered in the previous section, “ (=236 [2n+3

one can also study the behavior of the Lyapunov exponent 13, o —T (k=1)2ms
(19) in the complementary case— . Physically speaking, (3 (Ap iz N 6

the limit k— can be interpreted in different ways, depend- 4k2 T = (_23{/6)n 2n+1 '
. . . . —1\2n/3
ing on the reference model. If one bears in mind the kicked 20 ey B Bt ()

Fy !

oscillator (3), then taking the limitk— is tantamount to

studying the case of a very strong noise. More precisely, the . . . i
conditionk>1 implies that the kicks play a predominant role Wh'Ch Is the counterpart of the expansi) of the preced

. _1 . . _
in the oscillator dynamics with respect to the elastic force.?l?csse(igon' To the lowest order ki this expression re
Notice that this is not in contrast with the requirement that

each single kick be weak, as established by the condi€ipn 136 m T |28
In fact, regardless of how weak the individual kicks are, their - _W(w_) <6§>1/3,
collective effect can be arbitrarily enhanced by making the T 2 I'(1/6) \ sin(wT)

interval T between two successive kicks sufficiently shorter

than the fraction{A%)/w of the period of the unperturbed SO that forE=2 (i.e., for «T=0), the Lyapunov exponent
oscillator. turns out to be
From the point of view of the Anderson modél), the 3
analysis of the cask>1 is equivalent to the study of the A= l 6 <€2>1/3
n 1

localization length in a neighborhood of the band edge. To T 2 I'(1/6)
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in perfect agreement with the result originally found[8 plied only if the correlation time of the noise is short enough.

(see alsd10]). It would therefore be extremely interesting to extend the ap-
plication of these two complementary techniques from the
VII. CONCLUDING REMARKS system they were originally conceived for to the different but

. . corresponding model. As a further and more ambitious goal

In this work we have analyzed in a thorough way thegne can think to extend the current approach to the 2D and
correspondence that exists between' the 1D Anderson modgh anderson model. Relating this quantum model to a clas-
(1) on one hand and the random oscillat@sand(8) onthe  gjcal system of kicked oscillators could open the way to a
other. We have shown how the exponential divergence Ofetter understanding of the mechanism of the Anderson lo-
nearby trajectories of the oscillatey is equivalent to the cgjization in 2D and 3D disordered lattices.
localization of electronic eigenstates in the Anderson model. Finally, we would like to point out that the classical
This equivalence manifests itself in the fact that themggel(3) of a kicked linear oscillator may find interesting
Lyapunov exponent for the random oscillai@ coincides  gppjications in different physical problems. One example is
with the inverse localization length for the Anderson modelihe motion of a charged particle in modern accelerators. In
(1). This equality holds across thmolgenergy band of the g application, the unperturbed part of E§) describes
latter system, with the single exception of the band centeryansverse one-dimensional oscillatiofitetatron oscilla-
where the Lyapunov exponent for the stochastic oscillatogionsn) of a particle moving in accelerator ringsee, for
(8) does not ex_hibit the anomaly which characterizes t_he i”EXampIe,[15]). These oscillations are stable: however, the
verse localization length of the Anderson mod#). This  yresence of a large number of thin magnetic lenses located
discrepancy can be simply explained with the impossibilityaiong the ring originates an external perturbation that may
for a continuous Wiener process to reproduce the “resojead to instability of the transverse oscillatory motion. It is
nant” effects which are specifically due to the discrete naturg|ear that such a perturbation has the form of a succession of
of the Kkicks; this is actually the only limitation that prevents s kicks since the particle moves at high speed around the
the analogy between mode(8) and (1) from being com- ring and the lenses are thin, so that the passage of the particle
plete. ) through each lens can be considered to be instantaneous. The

Once the extent of the equivalence between the 1Dymplitudes of the kicks are different for different lenses;
Anderson model and the random oscillator has been Cla”f'e%oreover, there are small time-dependent variations of the
it becomes possible to en\(ision an extension of this Corrémagnetic field due to experimental imperfections. As a re-
spondence to more complicated systems. One can, for it this perturbation, albeit weak, can affect the long-time
stance, consider the 1D Anderson model with weak and corgynamics of the particles moving in the accelerator and pro-
related disorder and interpret it in terms of a linear oscillatory ,ce 3 significant increase of their transverse energy, thus
with a frequency perturbed by a colored noise. The explorapm\,oking a loss of beam particlésansverse dimensions of
tion of the correspondence between these two_ sys_tems coulgdcelerators are typically smalllt is quite amazing that
lead to a better understanding of both, since it might allowhese very different effects, quantum localization in disor-
one to transfer results and techniques from one model to thgered solids and the loss of particles in accelerators due to

other. Very recently it was shown if8] how to determine  the influence of thin magnetic lenses, have much in common.
the localization length for the Anderson model wéthy cor-

related potential; the result, however, is valid only to the

second orde_r of p_erturbatlon theory. On the other hand, for ACKNOWLEDGMENT
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