PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000

Log-periodic oscillations for a uniform spin model on a fractal
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The model of Blume-Capel on the Sierpinski gasket is investigated within the method of transfer matrices,
where the thermodynamic functions are obtained after the numerical iteration of a set of discrete maps. The
analysis of theT=0 transition shows that, for antiferromagnetic coupling and a finite interval of self-energy
coefficient, the correlation length diverges as &xp(T), with superimposed log-periodic oscillations in terms
of the reduced temperatute= exp(—|Jq+/T). Both the period of oscillations and the effective interactie
depend on the strength of the actual coupling constants. In the antiferromagnetic regime, residual entropy is
found for three different values of the self-energy parameter. The variation of this parameter leads, in the case
of ferromagnetic coupling, to a more complex behavior for the correlation length than the already known
exgexpUers/T)] dependence observed for the Ising and Potts models.

PACS numbgs): 05.50+q, 64.60.Ak, 61.44.Br, 75.10.Hk

[. INTRODUCTION alter the corresponding criticality of the uniform model, they
lead to a new universality class characterized by a weakened

Several analyses of uniform magnetic spin models ortransition with different exponents and possibly log-periodic
fractals with finite order of ramification have shown that, uposcillations[20]. Of course, the new universality class is in-
to a few exceptions, their behavior has only slight departuresensitive to the actual values assumed by the coupling con-
from the corresponding model on linear latti¢ds?]. Long-  stants of the aperiodic model.
range order occurs only &t=0 and the critical exponents In this work we investigate the properties of the uniform
are essentially the same as those of the linear chain, providegro-field Blume-Cape(BC) model on the SG. It is well
the Euclidean dimensiod is substituted by the fractal di- known that, depending on the values of its two parameters
mensiond; . Frustration is found for antiferromagnetic cou- (the nearest neighbor interactidnand the self-energy),
plings on lattices where the basic geometric unit is a triangléhis model can escape from the universality class of the Ising
or any polygon with an odd number of sides. In some casegiodel. We discuss how the properties of e 0 transition
the residual entropy can be larger than the correspondingf the SG are affected when the system moves into a new
value on the triangular lattice8—5]. Most of the quoted universality class. We show that, for antiferromagnetic
results have been obtained for the Ising model, but they carc0 coupling, the expder{/kgT) divergence of¢é may be-
be extended to other models that belong to the same univeeome modulated by T/ oscillations, which can be consid-
sality clasg6,7]. One major exception to this overall picture ered as log-periodic oscillations in terms of the usual reduced
refers to models on the Sierpinski gask86) (Fig. 1 shows temperaturet=exp(—|Je;/ksT). As we are considering a
the first three stages of construction of the gasket some uniform model, this result does not fall into the reported
of their properties are distinct from those for linear chain.class of oscillations that are accounted for by Luck’s relevant
For instance, for the Ising model with ferromagnelic0  fluctuation criterion. We discuss these unusual oscillations in
interactions, the correlation lengthé diverges as detail, indicating that their features are indeed quite distinct
exgexp(4)/T)] for T—O0, instead of the usual behavior
expd/T) [8—-11].

The possible emergence of log-periodic oscillations, with
respect to the reduced temperature, for the thermodynamice
behavior of spin models is a consequence of a discrete scal
invariance embedded into the model and/or the lafticd.
They follow from general properties of the renormalization
group recurrence equations, and can also be found in chaoti , .
discrete map§gl3,14. In more recent times, similar behavior i k1 q L k
has been reported in geophysical and other complex systen (@) (b) ©
[15]. The actual observation of such oscillations has been
reported in models subject to relevant fluctuatiph6—18 FIG. 1. First three generations of the construction of the Sier-
(according to the Luck criteriofl9]) in the coupling con-  pinski gasket. The site labels {g) and(b) correspond, respectively,
stants, which change from site to site, mostly according to @ the notation used in the text for the derivation of Egs2),(2.3)
deterministic aperiodic sequence. As the relevant fluctuationsnd Eqgs.(2.4),(2.5).
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from t.hose observed for aperiodic models. In addltlon,.vx_/_e (A k= Ri,kRiZ,kv (2.2
investigate other aspects of the model, such as the possibility

of three distinct values for the residual entropy, which can bevhere the matrixR describes the interaction between two
related to the degenerate ground states of the triangle unitseighbor spins. The matricés,, n=2, can be defined with
that form the lattice. Fad>0, we have found thaf behaves the help ofqx g2 auxiliary matricesJ,,, n=1. Forn=1,

in a more complex way than the now typical behavior of the

Ising and Potts models on the same latfice 11]: the usual (Up)i jk=RijRi«Rj . 2.3
exgexpdet;/T)] behavior splits into two regimes, with the

same functiona| dependence and two distinct Va'ue&gf_ Whel’e Column |abe|S fOI’ the matriCéS] fO”OW the IeXiCO'

Our analysis is based on use of the transfer matrice§raphic order. As shown in Fig. 1, higher order generations
method (TMM), which leads to a set of coupled nonlinear f the SG may be constructed by joining together three gas-
maps for the pertinent intensive thermodynamic functiond<ets of the former generation. In the case of the second gen-
[11]. No approximations are carried out in the process. The&ration[Fig. 1(b)], the matrixA; (linking the sitei to k) may
maps are numerically iterated until convergence is achieved?e expressed with the help bf;, describing the interactions
which leads to exact numeric values for the proper functionsamong sites, p andq, andU’ (where the superscriptindi-

The rest of the work is organized as follows. In Sec. Il wecates the transpopdoing the same for sites g, andk. The
define the model and present the main steps within the trangateraction between sitgsandr is taken into account by the
fer matrix method for the derivation of the proper maps.matrix A; [Eq. (2.2)]. So, as the site is shared by both
Section Il discusses the ferromagnetic case, while Sec. IWnatricesU; andU}, we introduce theg®x q? matrix A,* |
presents the results for the antiferromagnetic situation, witfiwherel denotes thegx q identity matrix and * the direct
special emphasis on the log-periodic oscillations. Finally,(Kroneckej produci to describe the interaction between the
Sec. V closes the work with concluding remarks. pair of sites 0,q) with (r,q). We come to the conclusion

that[11]
Il. MODEL AND RECURRENCE MAPS An+1:Un(An*|)U;a n=1. (2.4

The zero-field BC model consists of three state spin vari- . ) o
ableso;=+1,0,~1, which are subject to nearest neighborDue to the scale invariance of the fractal, it is easy to show
interactions and a quadratic self-energy term. The formalhat the same relation holds for any=2. A recurrence re-
system Hamiltonian reads lation for U, ; follows from the observation of the geomet-

ric operations required to construct the second- and third-
order generations of the fractal. We have found {4
H:—J(Z) oioj+DY, o?, (2.1
i, i
] (Un+l)i,jk:p§q‘4r (Un)i,pq(un)j,pr(un)k,rq- (2.5
where (,]j) indicates that the sum is restricted to the pairs of
first neighbor spins an® =|J|A. Equations(2.2—(2.5) completely define any spin model

The BC model ord=2 Euclidean lattices has been inten- with nearest neighbor interactions on the SG. For the BC
sively investigated within many different approximate ap-model, the matribR includes the nearest neighbor interaction
proacheg21-31], since the exact solution is available only and 1/4 of the self-energy of each spin. Its elements are
for d=1. More recently, generalizations of this model to expressed by
larger spins §=3/2,2 ...) have been analyze82-34. y
The most characteristic features of tlie=1 model include, R —exp——I| o __Affi + 0]
at low values ofA, a second-order transition line between the i ~ €XP keT | 7171 4
ferro- and paramagnetic phases in theersusA diagram. (2.6
On increasing), the line first changes from a second- to a
first-order transition at a tricritical point, and finally disap- The symmetries of the model are reflected in the elements of
pears when the system exhibits only the paramagnetic phaséa andU,, which have the following structures:

For the linear chain¢ diverges as exp(T) when A<1,

which is a signature of =0 second-order transition. When a Cp by
A=1, theT=0 transition recalls the tricritical point of the A=|c, dy cg
mean-field solution, since the eigenvalues of the transfer ma-
trix become threefold degenerate at the-0 limit. For A

>1, & remains bounded in this limit, indicating the absence u W m W W
of ferromagnetic ordering. n Un n Un n Yn n Yn n

Within the TMM, the interaction between the two out- U,=| vy, My, Yy, My zZ, my, Yy, M, v,
most spins of_ the Sierpinski gaskgta(ndk in Fig. 1), in any W, Yo W, Yo M, v, W, v, U
generationn, is expressed by a single matri,, of order (2.9
gXx(q, whereq indicates the number of different states that
each spin variable may assume. In the first generation, where The maps for the matrix elements Af, andU,, that fol-
the gasket is reduced to a single triangle, the mairixhas  low from Egs.(2.4) and (2.5 form a set of ten difference
its elements defined by equations. However, only six of them are independent, as the

y O'i,O'j:+l,O,_1.

; (2.7

by ¢y an
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elements ofA,, can be expressed in terms of thoselhf.
The six variables used herein are

an=Up—=Wn, Br=vn=Yn, ¥n=UntVYn,

(2.9
6p=U,+3w,,

besidesm, and z,. The elements ofA,, are expressed in
terms of these variables as

2a,=6p+ yo+ an+ Bn;
2bn=6p+ Yn—an— Bn;
(2.10

Ch="YntMp;

d,=2m,+z,.

Since this is valid for any value of, the problem is
completely formulated in terms of the six following maps:

Anyp1= %(a§+ a§5n+4ﬁ§¢n+ Zanﬁﬁ+4an:8n7n);
_1 2 2 3 2 .
Bni1=2(apBnt agynt 2B+ 26120+ 4anBrMy);

Yn+1— %(aﬁﬁn_F 5ﬁ7n+27ﬁ+27ﬁzn+87nmﬁ
+A4m3z,+ 48, yaMy); (2.12
S+ 1= 3(ap+ O+ BMA+ 68y 12y5my);

_ 3 3 3 2 2, .
Zn+1_ﬁn+ 'yn+zn+6mn'yn+6mnzni

2 2 2 3 2
Mpy1=3(anBa+28,M-+ 8, ya+4m>+8y m,

2
+4y,m,z,+2z;m,).

These variables represent Boltzmann weights that are mult
plied when each new generation of the fractal is taken int
account. So they rapidly lead to numerical overflows, which

can be sidestepped if Eq&.11) are rewritten in a more
suitable form. We define, for any generationthe corre-
sponding partition function,

Z,=Tr(A,) =2a,+d,= 6+ yn+ ay+ Bnt2z,+2m,.
(2.12

The free energy per spin is expressed by

fo=—

keT
NB IN(8,+ Yo+ an+ Butzo+2my), (2.13
n

whereN,=(3"+3)/2 is the number of sites in theh gen-
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ties of the model at generatian The entropy and specific
heat for the model are obtained by the numerical derivatives
of

f=limf,.

n—o

(2.149

The other five maps are written in terms of the ratios of the
variablesy,, a,, Bn, z,, andm, to 6,,, which is the largest
of them. So we define

Q,=M,/In(6,/ap),
Xn=M,/In(5,1B),

En=M,/In(8,/vyn), (2.19

r=M,/In(5,/m,),

=My /In(6,/2,),

where M,=2" is the shortest distance between the spins
placed in the outermost corners in théh generation. The
definition (2.15 is based on that of the correlation function

&n,

My

0= IN(AD/AB))’

(2.19

where \(Y and \(?) are, respectively, the largest and the
second largest eigenvalues Af, expressed by

)\I(’ll): %{5n+ Ynt2Znt2m,+[ (6 + ')’n_zn_zmn)z
+8(my+ Vn)z]llz}; (2.17
)\%3): €n=ant By.

The recurrence maps for the quantities, Q,, xn, Zn,
I',,, and ¢, that follow from definitions(2.11), (2.13), and
t'2.15) are listed in the Appendix. To obtain results in the

Qhermodynamic limits, this set of maps must be iterated until

convergence is achieved, when all variables in Egsl5
and(2.16 become independent af in the same sense as the
free energyf defined in Eq.(2.14).

Ill. FERROMAGNETIC COUPLING
A. Correlation length

For A<2, the energy of the uniform states=*1 is
smaller than that of the uniformr=0 state. Thus the system
becomes equivalent to the=1/2 Ising model in theT—0
limit, where ¢ is characterized by the typical €gxpJqs/T)]
behavior. We find thad.; depends very weakly oA <O0.
As A— —oo it converges to a constant valdg;;=4.1, very
close toJq¢=4.0, the value found for both the=1/2 and

eration of the gasket. Thus one of the maps can be rewrittea=1 (A=0) Ising models. The same kind of dependence
in terms off,, which expresses the thermodynamic proper-persists whem\ increases, but the value df;; decreases.
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1.0 R

In[In(&)]

FIG. 4. lllustration of situations where the specific heat presents
1/T a double peak. The cases shown are+1, A=1.998 (solid); J
=—1, A=0.05(dash, 0.95(short dash and 1.05(dot-dash. The

last three situations correspond to the neighborhood of a point with
residual entropy. In the first case there is no noticeable increase in
the ground state entropy.

FIG. 2. Curves of Ifin(¢)] versus 1T for several values ofA
<2 whenJ=+1. ForA=—1 (dash, A=0 (short dash andA
=+1 (dot), there is a single regime, with.;;=4.05, 4.0, and 3.5,
respectively. Wherd =1.75 we note a twofold dependence: for
=1.8(solid), Jers1=2.4 andJq¢ ;= 2.82; the crossover is observed
for 1/T=1.7; for A=1.99 (dot-dash, Jetr1=1.2, Jet1,=3.4; the
crossover temperature is afTH 2.2.

~exp(1.13T). For A= 2 the ground state is threefold degen-
erate, as all three homogeneous states0,=1 Vi are
equally probable. Finally, wheA>2, the ground state is

When A~1.75 we observe the development of a twofold characterized byr;=0, and ¢ remains finite for all values
exgexpdet;/T)] regime, with a crossover from a relatively of T.
small value ofJg¢¢q to a second valu€esr,>Jderrg as T

—0. The value oflq;, increases again to a limiting value B. Specific heat
~4 as A—2. This is illustrated by several curves for  For aimost all values oA the specific heat is character-
In[In(§)] vs 17T in Fig. 2. ized by one single smooth Schottky peak. The exception re-

The A=2 case corresponds to a tricritical point, as Wefers only to the small interval 1.985A <2, when a double
find that the three eigenvalues of the mathix (n—=) be-  peak structure can be observéske Fig. 4 This behavior
come degenerate in tiie—0 limit. Similar behavior is ob-  often occurs for antiferromagnetic interactions when, in the
served forA=1 on the linear chain. However, Fig. 3 shows parameter space, we come close to a situation with residual
that the behavior of¢ changes discontinuously t&  entropy. This is not the case ag=0 for all values ofA.

6

IV. ANTIFERROMAGNETIC COUPLING
A. Correlation length

WhenA <0, the system is frustrated and its behavior be-
comes similar to that of-=1/2 Ising model. In this rang€,
is limited for all values ofT. The same is observed when
A=1 but, in this region, this behavior is due to the fact that
the system becomes paramagnetic even infthed limit.

For 0O<A<1 we have observed the richest behavior for
the correlation lengthé: on increasingA we note thaté
diverges asT—0. Figure 3 shows that the divergence fol-
lows an expe/T) law, but on it are superimposed periodic
modulations in IT~|Int|. At first sight, these oscillations
1/T look rather similar to those observed recently in the thermo-
dynamic properties of some aperiodic spin modéls,17),
but we soon realize that they differ in many aspects. As, to
our knowledge, a similar phenomenon has not been observed

consists of cycloidlike wiggles. When =0.15 (dot-dash the pe- within the scope of a uniform model on a fractal, we are

riod is large and the pattern is composed of two subsequent Wigglefgrced_ to dISCUSS. thQ modulations in terms of the observed
with different sizes. Note the presence of a transient region, wit?€havior for aperiodic models.

four distinct wiggles prior to the onset of the periodic pattern. This  First of all, OSC_l'”athI’lS have been observe_d only fo_r

is also observed fak = 0.5 (solid), when the pattern remains almost 1 hey are absent in the free energy or any of its derivatives,
the same, buP decreases significantly. Far=0.85 (short dash ~ Which, in the limitn—c, depend only on the largest eigen-
the smaller wiggles disappear and both period and amplitud&alue )\gl). We are forced to conclude that they are either
increase. nonexistent or so minute that they could not be perceived by

In(&)

FIG. 3. Curve of Inf) versus 1T for A=2 andJ=+1 (dasb;
the slope indicated.;s=1.13. Other curves correspond to the anti-
ferromagnetic casé=—1, 0<A <1, where the oscillation pattern
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residual entropy, the valug;=0.4930061 .., which has

. been reported by many authd4,8,11. It results from the
many possibilities of putting one=+1 and twoo=-1
spin stategor the symmetric configurationin each triangle
that forms the lattice. In the limih —0~, the specific heat
presents a double peak structure, which vanishes when
_ =0.

The o=1 Ising model A=0) presents a higher residual
entropy than the preceding case. This is due to the fact that
. new spin configurations are available in the ground state. In
addition to those typical for the-=1/2 Ising model, local
configurations for individual triangles can be formed where
0.0 02 04 06 08 10 gach spin is found in a distinct state. These local configura-
tions are nonfrustrated and have the same energy) (as
that described before. We have measured the valjie

FIG. 5. Dependence of the measured per®dn A (open =0.6418691 ... . .
circles. We also draw 11, (solid), whereJey; is the mean slope For 0<A<1 the system has no residual entropy. This can
of the curves shown in Fig. 2. We obtaiJ,~0.7. be explained by the analysis of the grounq state of a triangle,

_ _ - ~ when we observe that the second configuratione o=
our evaluation. If the first possibility holds, then the oscilla- + 1, onesc=—1 and oner=0) has a lower energy than the
tions in £ are directly related to a similar b_erggwor of the first one. If we start to populate the SG with spins, we easily
eigenvaluen;™. If this is not true, oscillations in; may be  see that there are only three possible different configurations,
present, but they can only be made explicit when the ratigndependent of the generation of the fractal.
NI is taken. As our evaluation was performed at zero  As shown in Fig. 4, the specific heat displays double
magnetic field, nothing can be inferred about the magnetigeaks whem —0* andA—1~, while in the central part of

properties of the model. _ o the interval we have just one single peak. The double peak
Then we observe that the perigdof the oscillations var-  ghserved asA—1- is linked to a residual entropg,

ies continuously withA. This is clear from Fig. 3 and shown =0.20532 . . ., observed forA =1. This third value fors,

explicitly in Fig. 5, where we show hoWw depends om\. is caused b _

4 . e . y the energy degenerdayA=1) between the

-r;ri]r?inginrr?dfglrrsg ieggafszsn;V'g;?gﬁﬁii%gs?ﬁs tgrc;lijr?hfhesecond triangle configuration and a third one, where all three
L] g agan. spins are in the state=0, and by the fact that triangles with

g{?grggﬁggsesg? ttﬁftgoi;g:aa%thﬁegﬁé ?]rS]iAo—}mlaik,ebtlrJ]te these two configurations coexist within the gasket. When

analysis difficult in the very small neighborhood®f 0 that >.1' there is no residual entropy. The specific Teat has a
is necessary to measure the larger and larger periods. Thingle peak whed =1 and a double peak fak—1".
dependence d? on A is not observed for aperiodic systems,

where a constant period characterizes the universality class V. CONCLUSIONS

controlled by the sequence. From Fig. 3 we note that the
dependence of.¢; on A is inverse to that ofP: Jgy¢ in-

80 -

60+

O 40

20

In this work we have discussed the behavior of the BC
creases witlA >0, goes through a maximum, and decreaseéﬂOOIeI on the SG, f_or d|_fferent choices of the cou_pllng ex-
change and crystalline field parameter. Once again we have

as A—1. In fact, the independent evaluation of the two : . X
guantities strongly suggests that they are closely related, ggund evidence that the SG displays the richest set of un-

shown in Fig. 5. When we draw bothandJ.; as functions usual featur.es_(nontyp{cal for one d|men3|9nal systems
_ . among the finite ramified planar fractal lattices. For ferro-

of A we clearly see thal.;;=C/P, while the data lead to . : .

C~07 magnetic coupling, the correlation lengitstrongly depends

; . . on A and four different regimes have been identified: the
Finally, Fig. 3 also shows that the form of the oscillations _. . .

. . I . . ingle expexpUq++/T)] divergence, the same divergence but

is quite distinct from the almost sinusoidal pattern observe@vith two different values of the more usual exdg/T)

for aperiodic systemg0]. Its basic form is that of a cycloid divergence, and nondiver Zfr:t behavior when thep g stem is

wiggle, with a soft maximum and a sharp minimum, where 9 ,t' We h gl found a tricritical 'ytAat

the derivative changes sign in a discontinuous way. Foparamagnetic. We have a'so found a tricritical pom

small values ofA, we observe several wiggles of small =2, where the behavior of changes discontinuously. For

length prior to the periodic pattern consisting of two subsene antiferromagnetic case, we have found three different

quent wiggles, the larger of which is roughly 3—4 times big_values for a residual entropy, which can be qualitatively ex-
ger than the s’mall one. This pattern continues uhtil 0.6 plained in terms of the possible configurations in a unit tri-

when the relative size of the small wiggle begins to decreasgngle’ although the exact counting problem for the SG re-

faster. WherP starts to increase again, the oscillating patternmalns open. When we get close, in the parameter space, to

. : : : . lues ofA characterized by new values of the residual en-
nsi f ne large wiggle, with very lar mpli valu A ) .
consists of just one large wiggle, with very large amplitude tropies, we observe three situations with double peaks in the

specific heat. One exception refers to the case of ferromag-

netic coupling in theA—2 limit, when no residual entropy
Changes of the spin arrangement of the ground state ammerges but a double peak has been identified. Finally, we

observed forA=0 andA=1. WhenA<O0 we find, for the have observed that, for a large interval of values\of¢ is

B. Residual entropy
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characterized by the presence of log-periodic cycloidlike osdisplay the same kind of oscillatory behavior. Thus we must
cillations superimposed on the edg¢/T) divergence. The conclude that the phenomenon is of a different nature in
period of the oscillations depends continuously on the valueomparison to those that have been reported for models with

of A, but the free energy and its derivatives seem not taperiodic coupling.

APPENDIX
Q 1+p3+8t3+6r2+12r2t -t
Q=0 1+ ——1In zp“ e s I (A1)
Mni1 14 p,+093(2p, *+4p;, %ty) + 40, pn
22, E 1+p3+8t3+6r2+12r2t -t
Xn+1=2Eq| 1+ 5+ 0 n | (A2)
n n 1+[qn(1+4pn 1:n)—i_zcln(Qn—’_Sn)pn ]rn
3 g = 1+p2+8t3+6r2+12r2t, -t
Z,.1=2E, 1+ —1In 5 o] ; (A3)
Mn ™ 14 (p2an+4satd)r, 1+ 2r,(ra+sp) +4t,(1+2t,)
_ = 1+p3+8t3+6r2+12r2t, o
Fhi1=E,| 1+ 5M In 5 > > - ; (A4)
n 1+[2tn(5n+tn+2tn)+pnqn]+4tn(1+rn Sn)
2 = 1+p3+8t3+6r2+12r2, |
§n+1:§:n 1+ 3M In 3 3 2 -3 2. -2 (AS)
n 2+2(qpt+syt+6spty)r, S+ 120,
Q, Xy +[X3+8x3VA !
§n+l_Qn l+ Mr|+1 n zx4 ’ (A6)
3N, KgT  Xs
frii=v—fy— ——In A7
N " N s (A7
where
o) "
=exp — =1,
P Q,
- "
=exp — —|,
On Xr
M,
r=exp — =/, (A10)
=n
M,
sp=exp ——|, (Al11)
n
My
th=ex T (A12)
n
and

X1=1+p3+23+4r3+ 253+ 163+ p2an+ 2pnG2+ 2r2(4+s,+ 10t,) + 482ty + 4t2(1+ 51+ 4sp) + 1 (14 4t,+ 8spty),

(A13)

Xo=1+p3—283+r2(4+2s,+4t,) —t2(4+4r ,+8s,) — 482t h+ Pn(Sndn— 2G2) + T n(1+4t,— 8s,t ), (A14)
X3=2r2(1+r,+4s,ty) +4t3(1+2t,) + pn(Pnln+ 292) + 1 n(1+ 4t + 8S,ty+ 8t2) + 45, (Syty+ t2), (A15)
X4=1+4pn+ P, t0n(200+ 47 o+ 4t,) + 4D, 200200+ 25+ 4t,) +Gn+ T, (A16)



PRE 62 LOG-PERIODIC OSCILLATIONS FOR A UNIFORM . .. 3089

Xs=1/2+p3+ 23+ 2r3+ s34+ 8t3+ p2(1/2+ g+ 1 o/2) + G2(2pn+ Sy + 2t,) + 1 2(4+ S, +121,,)
+2ppQn(ryttn) +2t,r(1+2sy), (A7)

Xe=(1+pPnt+qntra+s,+tn)e. (A18)
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