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The current status of the theory of stress fluctuations is marked by two circumstances: no currently available
formulas are valid for a metallic system, and a series of contradictory formulas remains unresolved. Here we
derive formulas for shear- and isotropic-stress energy fluctuations, in the primary statistical mechanics en-
sembles. These formulas are valid for a classical monatomic system representing a metal or nonmetal, in cubic
crystal, amorphous solid, or liquid phases. Current contradictions in fluctuation formulas are resolved through
the following observations. First, the expansion of a dynamical varidlleterms of the fluctuations explicit
in a given ensemble distribution, for exam@iel=asN+bdsH in the grand canonical ensemble, is correct if
and only if 54 is a function only ofSN and §H. The common use of this expansion has produced incorrect
fluctuation formulas. Second, the thermodynamic fluctuations of Landau and Lifshitz do not correspond to
statistical mechanics fluctuations, and the two types of fluctuations have essentially different values.

PACS numbsgs): 05.40-a, 05.20.Gg, 05.76-a, 05.60-k

I. INTRODUCTION in both mean values and fluctuations. In Sec. Il, formulas are
derived in classical statistical mechanics for fluctuations of
We have recently developed an accurate and compreheshear and isotropic components of the stress energy tensor,
sive theory of the motion of atoms in a monatomic liquid for a monatomic system in solid or liquid phase, and in vari-
[1-6]. Equilibrium thermodynamic properties have been cal-Ous ensembles of interest. These formulas are compared in
culated from the partition functioft,2], and nonequilibrium  Sec. Il with previous statistical mechanics results.
properties have been modeled with increasing accuracy, in- A different formulation of fluctuations, presented by Lan-

cluding the glass transitiof8], and the velocity autocorrela- dau and Lifshitz[_9,10];,has come to be known as “thermo-
tion function[4—6]. We have now turned our attention to the dynamic fluctuations.” To understand the meaning of ther-

stress autocorrelation functions, whose integrals yield th&hodynamic fluctuations, and to see how they differ

liquid viscosity coefficient$7,8]. The first step in analyzing essentiallyfrom stgnsncal_ mechanics ﬂuctgatlons, itis hglp-

such functions is to evaluate them at zero time, where they, | to make a Ioglcally_ S'mple rgco_nstructlo_n of the deriva-

become simply stress fluctuations. Regarding stress fluctu jon of Landau _and L'.fSh'tZ'. Th_|s is done in Sec._lll, and

tions, the literature reveals two important circumstancas: € reasons for Inconsistencies in pressure fluctuat|on. formg-

because of the volume dependences in the potential ener become obvious. Our conclusions are summarized in

governing the motion of ions in a metal, no currently avail- ec. IV.

able formulas are valid for a metal, arfd) for pressure

fluctuations, a number of conflicting formulas have been pre- Il. STRESS FLUCTUATION FORMULAS

sented, and the contradictions are currently unresolved. The

purpose of this paper is to derive stress fluctuation formulas

for a classical monatomic solid or liquid metal, and to re- The system is composed df similar atoms in a volume

solve the current contradictions regarding the theory of presV, metal or nonmetal, in solid or liquid phase. The position

sure fluctuations. and velocity of ionK arery and vy, respectively, forK
Statistical mechanics is based on averaging, according te 1, -+ ,N, and the Hamiltonian is

a statistical probability distribution, the dynamical properties . 5

of a mechanical system. Here, fluctuations measure the H=3mX v+ P({re}). @

widths of the distribution in various phase-space directions. ) ) )

These fluctuations are important when they appear in a thelhe potential energy is expressed in the form based on elec-

oretical derivation of a given material property, as whentronic structure theory

stress fluctuations appear in the liquid viscosity thgarg|.

Since each statistical ensemble has its unique statistical dis- P=Q(V)+ 33 e(re—rLl;V), 2

tribution, the fluctuations are strongly ensemble dependent.

To compare different theoretical results, it will be necessarywhere Q2 (V) is the major binding potentiakp(r;V) is the

to account for the ensemble differences of order 1 in stressffective ion—ion potential, and irreducibleion potentials

fluctuations. On the other hand, in the present work we caffor n=3 are neglected. The volume dependenced iare

ignore the ensemble differences of ordér® which appear crucial for a metal. The motion of the ions is treated as

A. The system
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classical and, since we are interested in thermodynamic oij= —Q* &+ M3 vivk;— 3 2k (DKL
guantities, the system center of mass is fixed.
We have derived formulas in the canonical ensemble for +PLifkLjdk) )

the stresses and elastic constants of the above sydtelm

These formulas have been used to calculate elastic constar@8d satisfies, by virtue of the system symmetry and(2q.
as function of temperature for bcc sodiya?], and for hcp
magnesiun13]. Here we will solve these formulas for stress <‘Tii )= PVij . ©)

fluctuations in terms of elastic constants. Volume and diss:, . .
tance derivatives op are abbreviated as follows: With the abbreviations Eqs3) and (4), the shear compo-

nents are written
e*=V(deldV),

Oxy=M20, 0y =2 @y, . (10
e** =Vl V?), In view of Eq. (9), (o4,)=0. To calculate the fluctuation
<(0'Xy)2>, we use the canonical ensemble averages, for sys-
¢’ =r(delar), (3)  tems with cubic or isotropic symmetry,
" =r%(Pelar?), «Emvxvy)z):N(kT)za
(13)
@' * =rV (Pl dVar). ((Zmo,wy) (S éyy))=0,
The volume derivative§)* and Q** are similar. Cartesian andTwe solve f0'<(_2<ny)2> from the elastic constar€;,
components of are written in the forn?;=r;/|r|, and the =~ =Cas. The result is

following tensors are defined:
Bl(0)?) =NKT-VBy+55(3(¢"+4¢")), (12
¢ij= @ 5+ @' Tify, T , ,
whereB,,=C,,— P [14]. The average on the right side can
i = (@** +¢*) 8, 8q— @* (8461 + 8 83) + ¢'* (5,F,F,  be transformed to an integral over the pair distributign),
from the general relation
+ 0fif )+ (" — @ )TiF T . (4)

1 o]
We use the shorthand notatidy for the sum33;, ek EEF,(Lf(rKL):ZWPNJ’O f(r)g(r)r?dr, (13
which appears in Eq2), and(---) represents a canonical

ensemble average. Then the stressgsand the isothermal \\here ,=N/V. The final result for the shear stress fluctua-
elastic constant&;;,, , are given by[11] tion is

Vlez(Q*—NkT)5|]+<2(P|J>, ) T 271- % ,
B(0)2) =NKT-VBL+ ToNp [ T7(0)
VC;I}k|:(Q** +Q*)5|J5k|+(NkT_Q*)(5lk5]| + 5”5“()

+B(Z D2 o) — (2 @ij2 )] H(Z @ijui), (5)

whereT is temperature ang=1/kT.
Two limitations will be imposed to simplify the presenta-
tion without losing any essential features of the theory. First

+4¢'(r)]g(r)r2dr. (14

For an amorphous solid3,,=%(Bj;—B1,), while B},=0
for a liquid.
The dynamical variable representing the isotropic stress

the applied stress is isotropic pressewhich means the energy isQ,
shear stresses; for i # | vanish, and 0=1%0,. (15)
7ij=—Pdj. ®  From Eq.(8) for gj; we have
From Eq.(5) it follows Q=—Q*+2K-W, (16)
PV=—Q*+NKT—(Z(¢*+35¢')). (7)  whereK is the kinetic energy in the center of mass system
Second, the system will have cubic or isotropic symmetry, so K=3m3v?, a7

the Cartesian directionsy,zare equivalent. In other words
the system will be a cubic crystal, an amorphous solid, or @nd W is the generalized virial

liquid. .
W=3220j . (18)
B. Derivation of stress fluctuations Note thatQ* in Eq. (16) does not contribute to fluctuations
The microscopic stress energy tensgy, a dynamical in Q. Defining the fluctuation variable as4=A—(A), we
variable, is defined by find
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5Q=Q—-PV=256K- W, The extensive variable fluctuations in these formulas are cal-
culated directly form the ensemble statistical distributions,
SK=IK—3NKT, (199  and the textbook results are

<5H2>C: I(-I—ZCV ’

2

SW=W—(Z(e*+3¢")).

From this point we_neeql to dis_tinguish averages of a given (6H?)gc=KT?Cy+ VB (26)
fluctuation which differ in relative order 1 in different en- T
sembles. Averages in the canonical ensemble are denoted NKTD
(+*)c, and we have (SNEH) o= e
(6K?)c=3N(kT)?,
A2 _ N%kT
(SKSW) =0, (20 { Joc= VB; '’
so that the fluctuation i becomes whereD=U+PV—-aTVB;, andC,, is the specific heat at
constant volumeB- is the isothermal bulk modulus, ands
(80%)c=3N(KT)2+(W?)c. (21)  the volumetric thermal expansion coefficient. Notice that the

right sides of Eq(26) are all of orderN.
Finally we can write Eq(5) for the combination of elastic Let us first apply Egs(24) and (25) to the shear stress
constants energyoyy. Since(oyy)=0, the ensemble corrections van-

ish, and the expression given in E44) for the fluctuation

VBr=3V(B];+2B],)=3V(C];+2C[,+P), (220  ((ox,)?) is correct in all ensembles.
When Eqs(24) and(25) are applied to the isotropic stress

and we can solve this f((r(SWZ>C to obtain energyQ, since(Q)=PV andV is constant, the thermody-

namic derivatives are given by

2 o
B(6Q%) c=Q** —VBT+§NkT+?NpJ [9¢** (1) VaP) aVBy
° au N v_ Cv "
+6¢"* (1) +¢"(1)=2¢'(N]g(r)r?dr. (23 27
P VB;—yD
This is our closed-form expression for isotropic stress energy Va_N =N
fluctuations in the canonical ensemble. uv

_ where vy is defined by the first equation, and is the thermo-
C. Transformation between ensembles dynamic Grueisen parameter. Evaluation of E4) gives

We work with three ensembleg) grand canonicalGC),  the microcanonical—canonical relation
in which the ener fluctuates about its mean value and
og ue (5Q)c=(8Q%)c—KT?2Cy . (28

the particle numbenV fluctuates about its mean valig (b)

canonical ensembléC), in which 7 fluctuates about the \yq paye previously related fluctuations in the molecular dy-

same meaJ, and \'is fixed atN; and (c) microcanonical  3mic and canonical ensemblgs], and calculations there

(MC), in which H is fixed atU and\is fixed atN. Since we gree with Eq.(28). Evaluation of Eq.(25) gives the

are considering all ensembles to represent a system Witﬁicrocanonical—grand canonical relation

fixed center of mass, the microcanonical ensemble here is

equivalent to the molecular dynamics ensenjiile—18. (80D c=(80%) g~ KTVB—kT22Cy, (29)
The theory relating mean fluctuations between ensembles

was presented by Lebowitz, Percus, and Vefld], and and the difference between Eq28) and(29) yields

their Eq.(2.12) gives the following relations:

(6Q%c=(69%)c—KTVBr. (30)
HA)\ T2
(8A%)yc=(S8A%)c—(H?)c (W) . (29
Vv IIl. COMPARISON WITH PREVIOUS RESULTS
A A) 2 A. Statistical mechanics results
(6A%)mc=(8A%)cc—(ON?)ao (W) An extensive account of linear response in a quantum
uv fluid, specifically of the relation between response to an ex-
A A) a(A) ternal perturbation and time dependent correlations in the
—2<5N5H)GC<W) W) equilibrium system, was presented by Puff and Glli9].
uv N,V This paper contains formulas for fluctuations among all the
9(A) 2 hydrodynamic variables in the GC ensemble. We will take
—(6H%)gdl ey ) i (25)  the classical limit of their quantum-mechanical expressions,
N,V and change their notation to that used here.
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From Eqgs.(2.47) and(2.48 of Puff and Gillis, after some extensive-variable fluctuations which define a given en-

algebra we find semble]23]. For the grand canonical ensemble, for example,
) one writes
7T o]
:8<0'xy0'xy>:NkT+l_5pr [¢"(r)+4¢'(r)]g(r)radr. HA) HA)
0 A=<A>+5A<— + (— . (39
(31 JN UV U NV

This agrees with Eq(14) for the fluid state, wher8,, van-  This equation is correct if and only if the fluctuation is a
ishes, and noting that the shear stress fluctuation is the sam@énction of SA and 4 alone. While this condition fails for

in every ensemble, as shown in Sec. Il. From Egst7) and 50, we will nevertheless complete the calculation, since it
(3.1 of Puff and Gillis, again with some algebra, we find  will be helpful in clarifying inconsistencies in fluctuation
formulas. For6Q=Q—(Q), Eq.(35) gives

5 2 o
B 5Q5Q>Gc=§ NkT+ o pro [o"(r)

9 2
(69%6c=(N%)cd %) }

—2¢'(r)]g(r)r2dr. (32 uv

To obtain this from our Eq23) for (§Q?)c, we delete from + 2(5/\/57.06(:( @) (M)

Eqg. (23) the explicit volume derivative)** , ¢** , and IN Jyv\ U Ty

¢'*, since such volume dependence was not considered by #(Q) 2

Puff and Gillis, and we add the ensemble correcty; to +<5HZ>GC{ _) ] (36)

the right side of Eq(23), according to the ensemble relation 4 NV

Eq. (30), and thus recover the Puff and Gillis result E8R). . ) o

Hence our results for the liquid phase, and with volume-The corresponding canonical ensemble equation is

independent potentials, are the same as the classical limit of

the equations of Puff and GilligL9]. (802 c=(5H?)c @
In treating pressure fluctuations, Hil20] made the aJ |,

following calculation in the canonical ensemble. The

partition function is Z=Tr e A%, and the pressure is From the fluctuations and thermodynamic relations listed in

2

(37)

P=(dkTInZ/V);, so that Egs.(26) and(27), the evaluation of Eq(36) gives
1 IH (69%)6c=VKTBs, (39
P:zTI' —WeiﬁH . (33)

whereBg is the adiabatic bulk modulus. Evaluation &7)

Associating the microscopic pressure operaf®r with gives

—dH/ oV, and differentiating Eq(33) again with respect to (60%)c=VKT(Bs—By) (39)
volume gives ¢ s o

P JP

v T\

where §P="P— P. The first derivative on the right is simply , ) . .
—B;/V. But the only way to evaluate the second term is toAlthough derived from an ob_wously m<_:orrept theoretical
carry out the phase space average of the microscopic opergrocedure, Eqs(38)—(40) provide a bewildering array of
tor 9P/V. Hence Eq.(34) does not help to determine the correct or part_la_llly correct results, as we shall now o_lescnbe.
pressure fluctuations. Hill observed that the second term de- PUff and Gillis[19] carried out the above calculation for

pends “in detail on the law of force between the moleculesth€ grand canonical ensemble, observed that the answer Eq.

and the walls of the container.” The same point of view was(9) disagrees with their answer, and supposed the reason to
expressed by Nhster[21], and it is certainly correct. But be the difference between quantum and classical fluctuations.

notice that we have in Eq23) a closed form expression for But this is not the reason, for E¢39) disagrees with our
pressure fluctuations, through the identificatié@=\V 5P, class_,lc(:i‘l result Eq(23). Puff and Gillis observed that Eq.”
and this expression is independent of boundary conditions(38) is “well knpwn and the SUbJe.Ct of some pontroversy,
This situation constitutes an example of the general theoreﬁt1at the c_onfu5|on can be appreciated _by noting that Landau
that stresses for a homogeneous system can be expressed?dd L|fsh|t22 also arrived at Ec(238), and in the process they
an integral of forces crossing the surface, or can be trandiS€d & 8H°) not equal to(5H%)gc. (The Landau and Lif-

formed to a function evaluated in the inter[@2]. Equations ~ Shitz calculation is discussed below. , ,
(14) and (23) are interior evaluations. Munster [21] also observes that the literature contains

“many contradictory conceptions regarding fluctuations of
intensive parameters.” Whster reports that Eq39) has
been proposed as an evaluation of the canonical ensemble
A procedure often used to calculate fluctuations is to exexpression E¢(34), and states that no ensemble in his expe-
pand a dynamical variableor an operatorin terms of the rience will give the result Eq(38). Still, in a 1976 paper

whereB+ is the isothermal bulk modulus. The ensemble dif-
(34) ference, from Eqs(38) and(39), is

(69%)c=(8Q%) ec— VKTB;. (40)

(6P*)=KT

B. An unreliable procedure
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devoted to time correlation functions, and addressing stress \"Noce—ﬁ(l:l—u) (43)
fluctuations in particular, Eq38) for pressure fluctuations is '
given by Ernst, Hauge, and van Leeuw@3]. The use of Eq(43) gives the same result as E@2), but

We will now clarify two issues that presumably have . . ; SN Ny & -
helped sustain the mystery surrounding E2p) and its ap- VAVIth simpler algebra. V\{|tl*U—U(V,S),_ the expansion of
plication. First, the results Eq$38)—(40) are shown correct U- U to second order in the fluctuationsV=V—-V and
for an ideal gas by direct calculation. This is understandableA S=S—S is
for an ideal ga<Q is a function only ofH, sinceQ= 5K [see 9 9
Eq.(16)] andH= K, hence Eqs(36) and(37) are correct for O-u= 1&) AV2+ J°U ) AVAS+ U) AS2
an ideal gas. But for a system possessing potential energy, 20V?) ISV 2957 '
Egs.(36) and(37) are incorrect. Second, while E¢88) and (44)
(39 are generally incorrect, their difference written in Eq.

(40) is the same as Ed30), hence is indeed correct. How Of
can this be? To answer let us write

2

AS?
(45)

N Bg aB
Uu—u)= ——AVAS
(50%) 6c—(69%)c=[( 50 sc—(3Q%)c] AU=U= vkt ke, AVA5 ke,

—[(8Q%c—(6Q%)mc].  (41)

Hence Eq.(43) gives us a Gaussian probability distribution
Now the error in Eqs(36) and(37) amounts in each case to for the coupled fluctuation&V andAS. Inverting the matrix
setting(5Q%)uc=0, as is seen by a comparison with Egs. of coefficients in Eq(45) yields[27]
(25) and(24), respectively. So the corresponding error on the

right of Eq. (41) amounts to incorrectly settingdQ?)uc ) kTV
=0, but this error cancels to give a correct result for the left (av >_
side.
(AS?)=kCp, (46)

C. Thermodynamic fluctuations AVA K
VAS)=akTCy,
For a closed system, Boltzmann observed that the “index { )= akTCy

of permutability” InW, whereW is the number of available where C,, is the specific heat at constant pressure. At this
microstates, has meaning for @tonequilibrium states of  point Landau and Lifshitz assume that all fluctuations corre-
the system, and is maximum at equilibrium, where it is re-spond, in the mean, to motion of the system on the thermo-
lated to the equilibrium entrop$throughS=kInW[24]. To  dynamic equilibrium surface. In other words, the mean fluc-
study fluctuations of a closed system among its nonequilibtyation of every thermodynamic variable follows from its
rium states, Einsteii25] used this picture to write an ex- equilibrium relation toV andS, and from theV and'S fluc-
plicit nonequilibrium entropyS=k In W+-const, then inter- tuations in Eq(46). This completes the formulation of ther-

preted W as the probability of finding a state with Modynamic fluctuations.
nonequilibrium entropys and wrote Let us illustrate by calculating fluctuations involvidg.

We write
Woe (59, (42) opP oP
AP= AV+—| AS,
where agairSis the equilibrium entropy. Einstein character- ‘9V IS/,
ized the nonequilibrium state by a set of observables B oTB
A1 "Ny, and wroteS=S(\,-+-\,,). This marks the appear- =—SAV TAS. (47)

ance of thermodynamic variables in the probability. Cv

Landau and Lifshit29] [10] used Eq(42) to calculate the
probability of fluctuations in an open system. For illustration,
they imagined a system composed of a fixed set of molecules kTBs
in the interior of a fluid. As a function of time, nearly every (AP?)=
property of this system fluctuates: the volume, the total en-
ergy, the kinetic energy, and so on. These quantities fluctuate
about their mean values, which correspond to an equilibrium
state of the fluid. To clarify the meaning of the fluctuations
derived by Landau and Lifshitz, we will present a derivation

equivalent to theirs, but simpler. . The value of AP?) is the famous Landau and Lifshitz result
For virtual variations of a thermodynamic system away[g] [10], which turns out to be the same as E88), which

from gqpll!bnqm, at constarty, Ca!len[26] has shoyvn th"’.‘t was derived from Eq36). This equality is accidental. There

the minimization property of the internal energy is equiva-ig o general correspondence between E8@. or (37) and

lent to the maximization property of the entropy. Accord- thermodynamic fluctuations

ingly, we write for the probabilityV of fluctuating to a state The above procedure can be followed to expradsin

with nonequilibrium energyJ, terms of AV andAS, and fluctuations involvinA T can be

Combining Eq.(47) with Eq. (46) gives

(APAS)=0,

(APAV)=—KT. (49)
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evaluated. All the results of Landau and Lifshitz are recov-sion for, the intractable canonical ensemble average
ered in this fashion. We find that, with occasional accidental 9P/ 9V) = —(3*H/3V?), encountered by Hil[20] in his
exception, every thermodynamic fluctuation differs from theanalysis of pressure fluctuations.

same fluctuation in every commonly used statistical distribu- Regarding a number of inconsistencies in pressure fluc-
tion. Moreover, in all the customary statistical distributions, tuation formulas, which have persisted for many years in the
either V or P is constant, so that all fluctuations involving literature, our analysis in Sec. Ill has led us to the following
AV or AP will vanish, in contrast to the thermodynamic conclusions. First, the expansion of a dynamical variable

fluctuations listed in Eqg46) and (48). in terms of the fluctuations, which are used to define a given
ensemble, is correct if and only #A4 is a function only of
IV. SUMMARY those fluctuations. In the grand canonical ensemble, the ex-

pansion takes the formA=adN+bd&H, as shown in Eq.

We have derived the formulas E@L4) for shear stress (36) for §Q. This expansion should not be used, except for a
energy fluctuations, and E3) for isotropic stress energy system such as the ideal gas where its validity is proven.
fluctuations, in the canonical ensemble. These formulas ar8econd, the thermodynamic fluctuations of Landau and Lif-
valid for a classical monatomic system representing a metahitz[9,10] correspond to motion of a system on the thermo-
or nonmetal, in cubic crystal, amorphous solid, or liquiddynamic equilibrium surface, in the vicinity of a point on
phases. The shear stress fluctuations are the same in all ghat surface. The distribution of variables represented by this
sembles, and the isotropic stress fluctuations may be evalthermodynamic equilibrium motion does not correspond to
ated in microcanonical or grand canonical ensembles by ththe statistical distribution of any known ensemble. When a
relations(28) or (30), respectively. Our results, when limited theory is derived within the framework of statistical mechan-
to the fluid phase, and to volume-independent central poteries, as for example the linear response theory leading to
tials, agree with the classical limit of the quantum- Green-Kubo formulas, it is not legitimate to replace the sta-
mechanical expressions of Puff and GilliE9]. Our results tistical mechanics fluctuations with thermodynamic fluctua-
also provide an interpretation of, and a closed form exprestions.
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