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Theory of stress fluctuations

Duane C. Wallace
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 23 March 2000!

The current status of the theory of stress fluctuations is marked by two circumstances: no currently available
formulas are valid for a metallic system, and a series of contradictory formulas remains unresolved. Here we
derive formulas for shear- and isotropic-stress energy fluctuations, in the primary statistical mechanics en-
sembles. These formulas are valid for a classical monatomic system representing a metal or nonmetal, in cubic
crystal, amorphous solid, or liquid phases. Current contradictions in fluctuation formulas are resolved through
the following observations. First, the expansion of a dynamical variableA in terms of the fluctuations explicit
in a given ensemble distribution, for exampledA5adN1bdH in the grand canonical ensemble, is correct if
and only if dA is a function only ofdN anddH. The common use of this expansion has produced incorrect
fluctuation formulas. Second, the thermodynamic fluctuations of Landau and Lifshitz do not correspond to
statistical mechanics fluctuations, and the two types of fluctuations have essentially different values.

PACS number~s!: 05.40.2a, 05.20.Gg, 05.70.2a, 05.60.2k
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I. INTRODUCTION

We have recently developed an accurate and compre
sive theory of the motion of atoms in a monatomic liqu
@1–6#. Equilibrium thermodynamic properties have been c
culated from the partition function@1,2#, and nonequilibrium
properties have been modeled with increasing accuracy
cluding the glass transition@3#, and the velocity autocorrela
tion function@4–6#. We have now turned our attention to th
stress autocorrelation functions, whose integrals yield
liquid viscosity coefficients@7,8#. The first step in analyzing
such functions is to evaluate them at zero time, where t
become simply stress fluctuations. Regarding stress fluc
tions, the literature reveals two important circumstances:~a!
because of the volume dependences in the potential en
governing the motion of ions in a metal, no currently ava
able formulas are valid for a metal, and~b! for pressure
fluctuations, a number of conflicting formulas have been p
sented, and the contradictions are currently unresolved.
purpose of this paper is to derive stress fluctuation formu
for a classical monatomic solid or liquid metal, and to r
solve the current contradictions regarding the theory of p
sure fluctuations.

Statistical mechanics is based on averaging, accordin
a statistical probability distribution, the dynamical propert
of a mechanical system. Here, fluctuations measure
widths of the distribution in various phase-space directio
These fluctuations are important when they appear in a
oretical derivation of a given material property, as wh
stress fluctuations appear in the liquid viscosity theory@7,8#.
Since each statistical ensemble has its unique statistical
tribution, the fluctuations are strongly ensemble depend
To compare different theoretical results, it will be necess
to account for the ensemble differences of order 1 in str
fluctuations. On the other hand, in the present work we
ignore the ensemble differences of orderN21 which appear
PRE 621063-651X/2000/62~3!/3077~6!/$15.00
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in both mean values and fluctuations. In Sec. II, formulas
derived in classical statistical mechanics for fluctuations
shear and isotropic components of the stress energy ten
for a monatomic system in solid or liquid phase, and in va
ous ensembles of interest. These formulas are compare
Sec. III with previous statistical mechanics results.

A different formulation of fluctuations, presented by La
dau and Lifshitz@9,10#, has come to be known as ‘‘thermo
dynamic fluctuations.’’ To understand the meaning of th
modynamic fluctuations, and to see how they diff
essentiallyfrom statistical mechanics fluctuations, it is hel
ful to make a logically simple reconstruction of the deriv
tion of Landau and Lifshitz. This is done in Sec. III, an
the reasons for inconsistencies in pressure fluctuation for
las become obvious. Our conclusions are summarized
Sec. IV.

II. STRESS FLUCTUATION FORMULAS

A. The system

The system is composed ofN similar atoms in a volume
V, metal or nonmetal, in solid or liquid phase. The positi
and velocity of ionK are rK and vK , respectively, forK
51,̄ ,N, and the Hamiltonian is

H5 1
2 mSKvK

2 1F~$rK%!. ~1!

The potential energy is expressed in the form based on e
tronic structure theory

F5V~V!1 1
2 SKL8 w~ urK2rLu;V!, ~2!

where V(V) is the major binding potential,w(r ;V) is the
effective ion–ion potential, and irreduciblen-ion potentials
for n>3 are neglected. The volume dependences inF are
crucial for a metal. The motion of the ions is treated
3077 ©2000 The American Physical Society
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3078 PRE 62DUANE C. WALLACE
classical and, since we are interested in thermodyna
quantities, the system center of mass is fixed.

We have derived formulas in the canonical ensemble
the stresses and elastic constants of the above system@11#.
These formulas have been used to calculate elastic cons
as function of temperature for bcc sodium@12#, and for hcp
magnesium@13#. Here we will solve these formulas for stre
fluctuations in terms of elastic constants. Volume and d
tance derivatives ofw are abbreviated as follows:

w* 5V~]w/]V!,

w** 5V2~]2w/]V2!,

w85r ~]w/]r !, ~3!

w95r 2~]2w/]r 2!,

w8* 5rV~]2w/]V]r !.

The volume derivativesV* and V** are similar. Cartesian
components ofr are written in the formr̂ i5r i /ur u, and the
following tensors are defined:

f i j 5w* d i j 1w8 r̂ i r̂ j ,

w i jkl 5~w** 1w* !d i j dkl2w* ~d ikd j l 1d i l d jk!1f8* ~d i j r̂ kr̂ l

1dklr̂ i r̂ j !1~w92w8! r̂ i r̂ j r̂ kr̂ l . ~4!

We use the shorthand notationSw for the sum 1
2 SKL8 wKL

which appears in Eq.~2!, and ^¯& represents a canonica
ensemble average. Then the stressest i j , and the isotherma
elastic constantsCi jkl

T , are given by@11#

Vt i j 5~V* 2NkT!d i j 1^Sw i j &,

VCi jkl
T 5~V** 1V* !d i j dkl1~NkT2V* !~d ikd j l 1d i l d jk!

1b@^Sf i j &^Swkl&2^Sw i j Swkl&#1^Sw i jkl &, ~5!

whereT is temperature andb51/kT.
Two limitations will be imposed to simplify the present

tion without losing any essential features of the theory. Fi
the applied stress is isotropic pressureP, which means the
shear stressest i j for iÞ j vanish, and

t i j 52Pd i j . ~6!

From Eq.~5! it follows

PV52V* 1NkT2^S~f* 1 1
3 w8!&. ~7!

Second, the system will have cubic or isotropic symmetry
the Cartesian directionsx,y,zare equivalent. In other word
the system will be a cubic crystal, an amorphous solid, o
liquid.

B. Derivation of stress fluctuations

The microscopic stress energy tensors i j , a dynamical
variable, is defined by
ic

r

nts

-

t,

o

a

s i j 52V* d i j 1mSKvKivK j2
1
2 SKL8 ~fKL* d i j

1 r̂ KLi r̂ KL jfKL8 !, ~8!

and satisfies, by virtue of the system symmetry and Eq.~7!,

^s i j &5PVd i j . ~9!

With the abbreviations Eqs.~3! and ~4!, the shear compo-
nents are written

sxy5mSvxvy2Swxy . ~10!

In view of Eq. ~9!, ^sxy&50. To calculate the fluctuation
^(sxy)

2&, we use the canonical ensemble averages, for
tems with cubic or isotropic symmetry,

^~Smvxvy!2&5N~kT!2,
~11!

^~Smvxvy!~Sfxy!&50,

and we solve for̂ (Swxy)
2& from the elastic constantCxyxy

T

5C44
T . The result is

b^~sxy!
2&5NkT2VB44

T 1 1
15 ^S~w914w8!&, ~12!

whereB44
T 5C44

T 2P @14#. The average on the right side ca
be transformed to an integral over the pair distributiong(r ),
from the general relation

1

2
SKL8 f ~r KL!52prNE

0

`

f ~r !g~r !r 2 dr, ~13!

wherer5N/V. The final result for the shear stress fluctu
tion is

b^~sxy!
2&5NkT2VB44

T 1
2p

15
NrE

0

`

@w9~r !

14w8~r !#g~r !r 2 dr. ~14!

For an amorphous solid,B44
T 5 1

2 (B11
T 2B12

T ), while B44
T 50

for a liquid.
The dynamical variable representing the isotropic str

energy isQ,

Q5 1
3 S is i i . ~15!

From Eq.~8! for s i j we have

Q52V* 1 2
3 K2W, ~16!

whereK is the kinetic energy in the center of mass syste

K5 1
2 mSv2, ~17!

andW is the generalized virial

W5 1
3 S iSw i i . ~18!

Note thatV* in Eq. ~16! does not contribute to fluctuation
in Q. Defining the fluctuation variable asdA5A2^A&, we
find
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PRE 62 3079THEORY OF STRESS FLUCTUATIONS
dQ5Q2PV5 2
3 dK2dW,

dK5K2 3
2 NkT, ~19!

dW5W2^S~w* 1 1
3 w8!&.

From this point we need to distinguish averages of a gi
fluctuation which differ in relative order 1 in different en
sembles. Averages in the canonical ensemble are den
^¯&C , and we have

^dK2&C5 3
2 N~kT!2,

^dKdW&C50, ~20!

so that the fluctuation inQ becomes

^dQ2&C5 2
3 N~kT!21^dW2&C . ~21!

Finally we can write Eq.~5! for the combination of elastic
constants

VBT5 1
3 V~B11

T 12B12
T !5 1

3 V~C11
T 12C12

T 1P!, ~22!

and we can solve this for̂dW2&C to obtain

b^dQ2&C5V** 2VBT1 5
3 NkT1

2p

9
NrE

0

`

@9w** ~r !

16w8* ~r !1w9~r !22w8~r !#g~r !r 2 dr. ~23!

This is our closed-form expression for isotropic stress ene
fluctuations in the canonical ensemble.

C. Transformation between ensembles

We work with three ensembles:~a! grand canonical~GC!,
in which the energyH fluctuates about its mean valueU, and
the particle numberN fluctuates about its mean valueN; ~b!
canonical ensemble~C!, in which H fluctuates about the
same meanU, andN is fixed atN; and ~c! microcanonical
~MC!, in whichH is fixed atU andN is fixed atN. Since we
are considering all ensembles to represent a system
fixed center of mass, the microcanonical ensemble her
equivalent to the molecular dynamics ensemble@15–18#.

The theory relating mean fluctuations between ensem
was presented by Lebowitz, Percus, and Verlet@15#, and
their Eq.~2.11! gives the following relations:

^dA2&MC5^dA2&C2^dH2&CF S ]^A&
]U D

V
G2

, ~24!

^dA2&MC5^dA2&GC2^dN2&GCF S ]^A&
]N D

U,V
G2

22^dNdH&GCS ]^A&
]N D

U,V
S ]^A&

]U D
N,V

2^dH2&GCF S ]^A&
]U D

N,V
G2

. ~25!
n

ted

y

ith
is

es

The extensive variable fluctuations in these formulas are
culated directly form the ensemble statistical distributio
and the textbook results are

^dH2&C5kT2CV ,

^dH2&GC5kT2CV1
kTD2

VBT
, ~26!

^dNdH&GC5
NkTD

VBT
,

^dN2&GC5
N2kT

VBT
,

whereD5U1PV2aTVBT , andCV is the specific heat a
constant volume,BT is the isothermal bulk modulus, anda is
the volumetric thermal expansion coefficient. Notice that
right sides of Eq.~26! are all of orderN.

Let us first apply Eqs.~24! and ~25! to the shear stres
energysxy . Since^sxy&50, the ensemble corrections van
ish, and the expression given in Eq.~14! for the fluctuation
^(sxy)

2& is correct in all ensembles.
When Eqs.~24! and~25! are applied to the isotropic stres

energyQ, since^Q&5PV andV is constant, the thermody
namic derivatives are given by

V
]P

]U D
N,V

5
aVBT

CV
5g,

~27!

V
]P

]ND
U,V

5
VBT2gD

N
,

whereg is defined by the first equation, and is the therm
dynamic Gru¨neisen parameter. Evaluation of Eq.~24! gives
the microcanonical–canonical relation

^dQ2&MC5^dQ2&C2kT2g2CV . ~28!

We have previously related fluctuations in the molecular
namic and canonical ensembles@17#, and calculations there
agree with Eq. ~28!. Evaluation of Eq. ~25! gives the
microcanonical–grand canonical relation

^dQ2&MC5^dQ2&GC2kTVBT2kT2g2CV , ~29!

and the difference between Eqs.~28! and ~29! yields

^dQ2&C5^dQ2&GC2kTVBT . ~30!

III. COMPARISON WITH PREVIOUS RESULTS

A. Statistical mechanics results

An extensive account of linear response in a quant
fluid, specifically of the relation between response to an
ternal perturbation and time dependent correlations in
equilibrium system, was presented by Puff and Gillis@19#.
This paper contains formulas for fluctuations among all
hydrodynamic variables in the GC ensemble. We will ta
the classical limit of their quantum-mechanical expressio
and change their notation to that used here.
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From Eqs.~2.47! and~2.48! of Puff and Gillis, after some
algebra we find

b^sxysxy&5NkT1
2p

15
NrE

0

`

@w9~r !14w8~r !#g~r !r 2 dr.

~31!

This agrees with Eq.~14! for the fluid state, whereB44
T van-

ishes, and noting that the shear stress fluctuation is the s
in every ensemble, as shown in Sec. II. From Eqs.~2.47! and
~3.1! of Puff and Gillis, again with some algebra, we find

b^dQdQ&GC5
5

3
NkT1

2p

9
NrE

0

`

@f9~r !

22f8~r !#g~r !r 2 dr. ~32!

To obtain this from our Eq.~23! for ^dQ2&C , we delete from
Eq. ~23! the explicit volume derivativesV** , w** , and
w8* , since such volume dependence was not considere
Puff and Gillis, and we add the ensemble correctionVBT to
the right side of Eq.~23!, according to the ensemble relatio
Eq. ~30!, and thus recover the Puff and Gillis result Eq.~32!.
Hence our results for the liquid phase, and with volum
independent potentials, are the same as the classical lim
the equations of Puff and Gillis@19#.

In treating pressure fluctuations, Hill@20# made the
following calculation in the canonical ensemble. T
partition function is Z5Tr e2bH, and the pressure i
P5(]kT ln Z/]V)T , so that

P5
1

Z
TrF2

]H
]V

e2bHG . ~33!

Associating the microscopic pressure operatorP with
2]H/]V, and differentiating Eq.~33! again with respect to
volume gives

^dP2&5kTF ]P

]VD
T

2 K ]P
]VL G , ~34!

wheredP5P2P. The first derivative on the right is simpl
2BT /V. But the only way to evaluate the second term is
carry out the phase space average of the microscopic op
tor ]P/]V. Hence Eq.~34! does not help to determine th
pressure fluctuations. Hill observed that the second term
pends ‘‘in detail on the law of force between the molecu
and the walls of the container.’’ The same point of view w
expressed by Mu¨nster @21#, and it is certainly correct. Bu
notice that we have in Eq.~23! a closed form expression fo
pressure fluctuations, through the identificationdQ5VdP,
and this expression is independent of boundary conditio
This situation constitutes an example of the general theo
that stresses for a homogeneous system can be express
an integral of forces crossing the surface, or can be tra
formed to a function evaluated in the interior@22#. Equations
~14! and ~23! are interior evaluations.

B. An unreliable procedure

A procedure often used to calculate fluctuations is to
pand a dynamical variable~or an operator! in terms of the
me

by

-
of

ra-

e-
s
s

s.
m
d as
s-

-

extensive-variable fluctuations which define a given e
semble@23#. For the grand canonical ensemble, for examp
one writes

A5^A&1dNS ]^A&
]N D

U,V

1dHS ]^A&
]U D

N,V

. ~35!

This equation is correct if and only if the fluctuationdA is a
function of dN anddH alone. While this condition fails for
dQ, we will nevertheless complete the calculation, since
will be helpful in clarifying inconsistencies in fluctuatio
formulas. FordQ5Q2^Q&, Eq. ~35! gives

^dQ2&GC5^dN2&GCF S ]^Q&
]N D

U,V
G2

12^dNdH&GCS ]^Q&
]N D

U,V
S ]^Q&

]U D
N,V

1^dH2&GCF S ]^Q&
]U D

N,V
G2

. ~36!

The corresponding canonical ensemble equation is

^dQ2&C5^dH2&CF S ]^Q&
]U D

V
G2

. ~37!

From the fluctuations and thermodynamic relations listed
Eqs.~26! and ~27!, the evaluation of Eq.~36! gives

^dQ2&GC5VkTBS , ~38!

whereBS is the adiabatic bulk modulus. Evaluation of~37!
gives

^dQ2&C5VkT~BS2BT!, ~39!

whereBT is the isothermal bulk modulus. The ensemble d
ference, from Eqs.~38! and ~39!, is

^dQ2&C5^dQ2&GC2VkTBT . ~40!

Although derived from an obviously incorrect theoretic
procedure, Eqs.~38!–~40! provide a bewildering array o
correct or partially correct results, as we shall now descr

Puff and Gillis @19# carried out the above calculation fo
the grand canonical ensemble, observed that the answe
~38! disagrees with their answer, and supposed the reaso
be the difference between quantum and classical fluctuati
But this is not the reason, for Eq.~39! disagrees with our
classical result Eq.~23!. Puff and Gillis observed that Eq
~38! is ‘‘well known and the subject of some controversy
that the confusion can be appreciated by noting that Lan
and Lifshitz also arrived at Eq.~38!, and in the process the
used â dH2& not equal tô dH2&GC. ~The Landau and Lif-
shitz calculation is discussed below.!

Münster @21# also observes that the literature contai
‘‘many contradictory conceptions regarding fluctuations
intensive parameters.’’ Mu¨nster reports that Eq.~39! has
been proposed as an evaluation of the canonical ense
expression Eq.~34!, and states that no ensemble in his exp
rience will give the result Eq.~38!. Still, in a 1976 paper
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devoted to time correlation functions, and addressing st
fluctuations in particular, Eq.~38! for pressure fluctuations i
given by Ernst, Hauge, and van Leeuwen@23#.

We will now clarify two issues that presumably hav
helped sustain the mystery surrounding Eq.~35! and its ap-
plication. First, the results Eqs.~38!–~40! are shown correc
for an ideal gas by direct calculation. This is understanda
for an ideal gasQ is a function only ofH, sinceQ5 2

3 K @see
Eq. ~16!# andH5K, hence Eqs.~36! and~37! are correct for
an ideal gas. But for a system possessing potential ene
Eqs.~36! and~37! are incorrect. Second, while Eqs.~38! and
~39! are generally incorrect, their difference written in E
~40! is the same as Eq.~30!, hence is indeed correct. How
can this be? To answer let us write

^dQ2&GC2^dQ2&C5@^dQ2&GC2^dQ2&MC#

2@^dQ2&C2^dQ2&MC#. ~41!

Now the error in Eqs.~36! and~37! amounts in each case t
setting ^dQ2&MC50, as is seen by a comparison with Eq
~25! and~24!, respectively. So the corresponding error on
right of Eq. ~41! amounts to incorrectly settinĝdQ2&MC
50, but this error cancels to give a correct result for the
side.

C. Thermodynamic fluctuations

For a closed system, Boltzmann observed that the ‘‘ind
of permutability’’ lnW, whereW is the number of available
microstates, has meaning for all~nonequilibrium! states of
the system, and is maximum at equilibrium, where it is
lated to the equilibrium entropyS throughS5k ln W @24#. To
study fluctuations of a closed system among its nonequ
rium states, Einstein@25# used this picture to write an ex
plicit nonequilibrium entropyŜ5k ln Ŵ1const, then inter-
preted Ŵ as the probability of finding a state wit
nonequilibrium entropyŜ and wrote

Ŵ}ek~Ŝ2S!, ~42!

where againS is the equilibrium entropy. Einstein characte
ized the nonequilibrium state by a set of observab
l1¯ln , and wroteŜ5Ŝ(l1¯ln). This marks the appear
ance of thermodynamic variables in the probability.

Landau and Lifshitz@9# @10# used Eq.~42! to calculate the
probability of fluctuations in an open system. For illustratio
they imagined a system composed of a fixed set of molec
in the interior of a fluid. As a function of time, nearly eve
property of this system fluctuates: the volume, the total
ergy, the kinetic energy, and so on. These quantities fluct
about their mean values, which correspond to an equilibr
state of the fluid. To clarify the meaning of the fluctuatio
derived by Landau and Lifshitz, we will present a derivati
equivalent to theirs, but simpler.

For virtual variations of a thermodynamic system aw
from equilibrium, at constantN, Callen@26# has shown that
the minimization property of the internal energy is equiv
lent to the maximization property of the entropy. Accor
ingly, we write for the probabilityŴ of fluctuating to a state
with nonequilibrium energyÛ,
ss

e:

y,

.
e

ft

x

-

-

s

,
es

-
te

m

-

Ŵ}e2b~Û2U !. ~43!

The use of Eq.~43! gives the same result as Eq.~42!, but
with simpler algebra. WithÛ5Û(V̂,Ŝ), the expansion of
Û2U to second order in the fluctuationsDV5V̂2V and
DS5Ŝ2S is

Û2U5
1

2

]2U

]V2 D
S

DV21
]2U

]S]VD
VS

DVDS1
1

2

]2U

]S2 D
V

DS2,

~44!

or

b~Û2U !5
BS

2VkT
DV22

aBT

kCV
DVDS1

1

2kCV
DS2.

~45!

Hence Eq.~43! gives us a Gaussian probability distributio
for the coupled fluctuationsDV andDS. Inverting the matrix
of coefficients in Eq.~45! yields @27#

^DV2&5
kTV

BT
,

^DS2&5kCP , ~46!

^DVDS&5akTCV ,

where CP is the specific heat at constant pressure. At t
point Landau and Lifshitz assume that all fluctuations cor
spond, in the mean, to motion of the system on the therm
dynamic equilibrium surface. In other words, the mean flu
tuation of every thermodynamic variable follows from i
equilibrium relation toV andS, and from theV andS fluc-
tuations in Eq.~46!. This completes the formulation of ther
modynamic fluctuations.

Let us illustrate by calculating fluctuations involvingDP.
We write

DP5
]P

]VD
S

DV1
]P

]SD
V

DS,

5
2BS

V
DV1

aTBT

CV
DS. ~47!

Combining Eq.~47! with Eq. ~46! gives

^DP2&5
kTBS

V
,

^DPDS&50,

^DPDV&52kT. ~48!

The value of̂ DP2& is the famous Landau and Lifshitz resu
@9# @10#, which turns out to be the same as Eq.~38!, which
was derived from Eq.~36!. This equality is accidental. Ther
is no general correspondence between Eqs.~36! or ~37! and
thermodynamic fluctuations.

The above procedure can be followed to expressDT in
terms ofDV andDS, and fluctuations involvingDT can be
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3082 PRE 62DUANE C. WALLACE
evaluated. All the results of Landau and Lifshitz are reco
ered in this fashion. We find that, with occasional acciden
exception, every thermodynamic fluctuation differs from t
same fluctuation in every commonly used statistical distri
tion. Moreover, in all the customary statistical distribution
either V or P is constant, so that all fluctuations involvin
DV or DP will vanish, in contrast to the thermodynam
fluctuations listed in Eqs.~46! and ~48!.

IV. SUMMARY

We have derived the formulas Eq.~14! for shear stress
energy fluctuations, and Eq.~23! for isotropic stress energ
fluctuations, in the canonical ensemble. These formulas
valid for a classical monatomic system representing a m
or nonmetal, in cubic crystal, amorphous solid, or liqu
phases. The shear stress fluctuations are the same in a
sembles, and the isotropic stress fluctuations may be ev
ated in microcanonical or grand canonical ensembles by
relations~28! or ~30!, respectively. Our results, when limite
to the fluid phase, and to volume-independent central po
tials, agree with the classical limit of the quantum
mechanical expressions of Puff and Gillis@19#. Our results
also provide an interpretation of, and a closed form expr
. A

s

n-
-
l

-
,

re
al

en-
lu-
e

n-

s-

sion for, the intractable canonical ensemble avera
^]P/]V&52^]2H/]V2&, encountered by Hill@20# in his
analysis of pressure fluctuations.

Regarding a number of inconsistencies in pressure fl
tuation formulas, which have persisted for many years in
literature, our analysis in Sec. III has led us to the followi
conclusions. First, the expansion of a dynamical variableA
in terms of the fluctuations, which are used to define a giv
ensemble, is correct if and only ifdA is a function only of
those fluctuations. In the grand canonical ensemble, the
pansion takes the formdA5adN1bdH, as shown in Eq.
~36! for dQ. This expansion should not be used, except fo
system such as the ideal gas where its validity is prov
Second, the thermodynamic fluctuations of Landau and
shitz @9,10# correspond to motion of a system on the therm
dynamic equilibrium surface, in the vicinity of a point o
that surface. The distribution of variables represented by
thermodynamic equilibrium motion does not correspond
the statistical distribution of any known ensemble. When
theory is derived within the framework of statistical mecha
ics, as for example the linear response theory leading
Green-Kubo formulas, it is not legitimate to replace the s
tistical mechanics fluctuations with thermodynamic fluctu
tions.
-

tat.
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