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The criticism made by Hanndypreceding Comment, Phys. Rev6g, 3008(2000] is unfounded since the
steps, familiar from the subluminal regime, that are taken in his argument are not mathematically permissible
when the distribution pattern of the source is moving and has volume elements that approach the observer with
the speed of light and zero acceleration along the radiation direction. In the superluminal regime, the retarded
time is a multivalued function of the observation time and so the retarded potential for the radiation from a
localized source cannot be represented, as Hannay assumes, by an integral over all space whose integrand
entails a differentiable retarded distribution of the source density. Contrary to what is claimed by Hewish
[Comment in this issue, Phys. Rev.62, 3007 (2000], moreover, there is no discrepancy between conven-
tional antenna theory and the analysis that appears in Phys. R&8/.68659(1998. The characteristics of the
new type of emission predicted by this analysis, and received from pulsars, differ from those of the radiation
that is produced by known leaky waveguides because there are at present no antennas in which the emitting
electric current is both volume-distributed and has the time dependence of a traveling wave with an accelerated
superluminal motion.

PACS numbe(s): 41.20.Jb, 84.40.Ba, 97.60.Gb

[. INTRODUCTION this by adopting a specific source distribution that is both
bounded and smooth, in its own rest frame, and explicitly
The preceding two Commeni4,2] are concerned with showing that(i) Egs. (4) and (5) of Comment I[1] do not
two entirely different issues: the regularization of the diver-follow from its Eq. (3) if there are any source elements that
gent integrals that result from differentiating the retarded po-approach the observer with the speed of light and zero accel-
tential under the integral sigri], and the connection of the eration, and(ii) the density of the source in question has a
analysis in[3] with antenna theory and radiation by leaky retarded distribution in its globally valid representation that
waveguide$2]. That the divergent integrals in question can-is not a differentiable function of the spatial coordindiép
not be regularized by the canonical meth@s claimed in  (See also Appendix B df3] and the references i].)
[1]) and need to be handled by means of Hadamard’s tech- Let us consider a spherical source with the radiughose
nique (as in[3]) will be discussed in Sec. lisee alsd4]). center moves on a circle of radiug with the constant an-
That there is no discrepancy between the results reported gular frequencyw and whose density smoothly reduces from
[3] and the existing data on pulsars and on fast travelinga maximumpg at its center to zero at its boundary, e.g., it
wave antennas will be discussed in Secs. Il andd®e also  has the form
[5)). _
pocog[mRy/(2a)] if Ryp<a

p(r,o,z)= .
Il. DIFFERENTIATION OF THE RETARDED POTENTIAL 0 otherwise,

IN THE SUPERLUMINAL REGIME

(€

where

Hannay’'s argument in Commen{1] is not based on the
analysis of any concrete example but on the assumption that Ro=(Z2+r2+r5—2rrycosp)*?
all extended source distributions, including those with super-
luminally moving distribution patterns, would in general is the distance of a pointr(¢,z)=(r,¢— wt,z) that is sta-
have the following three propertiesia) their volume would tionary in the rotating frame from the center=rq, ¢=0,
be finite, (b) the retarded values of both their density and thez=0) of the sphere. The circle in broken lines in Fig. 1
gradient of their density would be bounded and smooth ashows the intersection, with the plame:0, of the boundary
functions of the spatial coordinates, for an observation poinef the above source in the @,z) space fomy=3c/w and
that lies outside the source, ai@) their density could al- a=j3c/w, wherec is the speed of lighin vacuo (The axes
ways be represented in such a way that the integration voln this figure are marked in units of » and the larger dotted
ume in the classical expression for the retarded potdifE@l  circles designate the light cylinder=c/w and the orbitr
(2) of [1]] would consist of the entire space. =3c/w of the center of the source, respectively.

Property (c), which enables Hannay to differentiate the  Once the quantitiesx— xp| andd>x in Eq. (22) of [3] [or
retarded potential under the integral sign without reference té&q. (2) of [1]] are expressed in terms of cylindrical coordi-
the contribution from the limits of integration, is not compat- nates and the above expression for the source density is in-
ible with the differentiability requirementb) when the mo- serted in the resulting form of the retarded potential, one
tion of the source is superluminal. Here we shall demonstratarrives at an integral over the,,z) space,
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The boundary of the irregular volume occupied by the
source in the (,¢,2) space intersects a circle=const, z
= const(with 1<rw/c<2 and— :<zw/c<3) at either two,

Y S four, or six values ofe. If we let (¢, ¢(M), with n
=1,2,..., denote the various intervals ¢nthat are occupied
by the source at any givem,¢;rp,¢p,Zp,tp), then the vol-
ume integrals in EQ.(2) may be written as a triple
integral over the variables, z, and r, respectively, in
which  the functions (" (r,z;rp,¢p,zp,tp)  and
o"(r,z;rp,0p,2p tp) constitute the various limits of inte-
gration with respect ta.

Differentiation of the integral in question entails the dif-
ferentiation of these limits of integration, limits that are
given by the solutiong of Eq. (3) for a point (r,¢,z) on the
boundary of the source distribution. Differentiating Eg)
with respect top while holding (,¢,z) and the observation
time &p constant, we find that the gradient of any of th&’
or gofj‘) is given by an expression whose denominator both
vanishes and has a vanishing derivative at the boundary

FIG. 1. The retarded shape of the source boundary in thdoints that approach the observer with the speed of light and

(r,¢,2) spacethe solid curvicompared to its original shape in the Z€r0 acceleratiofsee Eq(B3) of [3]]. L
(r.&,2) space(the smallest circle in broken lings In Egs.(3) and(4) of [1], Hannay uses Leibniz’s formula
for the differentiation of a definite integral assuming that

there are no contributions from the limits of integration.
Ao(rp,éap,zp):f rdrd<pd2p(r,z,<‘p|t=tP,R,C)/R Leibniz’s formula, on the other hand, is not applicable if
there are any points at which the limits of integration are not
differentiable[7]. In the case considered here, where the de-
=P0j rdrdedz rivatives of the limits of integration are singular, the gradient
Rolt=tp-ric=a of the integral in question does not consist solely of the
- integral of the gradient of its kernel, as claimed by Hannay.
—Roli=t R,c) / R, (20 There is an additional contribution to the gradient of the
2a : potential: that which arises from the singularities of the gra-
dients of the limits of integration in Eq2), and which com-
prises the boundary contribution to the Hadamard finite part
(75 \24 ¢24 ¢2_ _ 1/2 of the gradient of the integral in E§24b) of [3].
RE[(z=2zp) 4174 rp2rrp cot o= ep) 15 The singularities of the gradients of the limits of integra-
for which the domain of integration is automatically tion in Eq.(2) are the images, under the mappipg- ¢, of

X cO<

with

bounded. the singularities of the integrand of the gradient of Exib)
Note that not only do we need to replagen the above in [3]. By overlooking the contribution from the limits of
expression fop by its retarded value integration in his Eqs(3) and(4), Hannay has discarded the
boundary term in Hadamard’s finite part of the divergent
Pli=t, ric=bre= ¢~ 0tp+R(r, 0,2, p, 0p , Zp) w/C integral that results from the differentiation of the alternative

3) form of the retarded potential given in E@4b) of [3]. (For
detailed discussions of this point, see the referencé4]in
when substituting Eq1) in the first member of E¢2), but Let us now consider an alternative representation of the
in addition we need to delineate the domain of integration inrsame source density which complies with Hannay’s require-
Eg. (2) by mapping the source boundaRy=a from the  ment(c), i.e., which allows us to extend the domain of inte-
(r,®,2z) space onto ther(¢,z) space. The image of the gration in Eq.(2) to the entire €, ¢,z) space. By introducing
source boundary under the mappipg- ¢ expressed in Eq. a step function that incorporates the vanishing of the density
(3) is a surface whose shape is different for different observof the source outside its boundarRf=a) into the expres-
ers, or at different observation times, and bears no direcsion for p, we can rewrite Eq(1) in a form that is globally
relationship with the spher@,=a that appears in Eq1). valid:
To specify the boundary of the domain of integration in R

Eq. (2), we need to solve the transcendental equat®rior p(r,,2)=po cos[mRy/(2a)]6(a—Ry), (4)
¢ at every point ,®,z) of the spherdry=a. In the case of

the source depicted in 5Flg. 1, and of an obseryer t.hat Ision that is obtained by inserting E@) into Eq. (2) may be
located at (p,¢p,2p) =(3¢/w,0,0) at the observation time  yiterentiated under the integral sign without giving consid-
tp= (27 —arccog+21/2)w ", the intersection of this do- eration to boundary contributions.

main of integration with the plane=0 has the shape shown However, differentiation of the step function in E@)

by the solid curve in Fig. 1. results in an additional contribution to the derivative of the

gvherea(x) is 1 whenx>0 and zero whem<0. The expres-
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integrand of Eq.(2) that entails the DiradS function: The the retarded distribution of the density of a moving source
gradient of the potential with respect to the coordinaiesf  (such as that whose contopr=0 is depicted in Fig. JLcan

the observation point is given by lack differentiability even when its original distribution is
smooth. The anomalous field decay encountered in the

_ 1 1 present casg3] is fundamentally different from that which
VeAo= Pof rdrde dz[ R COSZ( 2a Roret] VeRoret can occur when the density, or the gradient of the density, of
the source distribution itself is not smooth. Both the above

1 ™ argument and the analysis[i@] are independent of the order
x oa- Roret)_VP[ R COSZ(E Rom” with which the gradient of the source density vanishes at the
source boundary.
X 6(a— ROret)] (5) The contribution from the limits of integration to the
' right-hand side of Eq(3) in [1] is zero, as assumed by Han-
nay, only in the familiar subluminal regime where the de-
in which Rye=Ro|;-; . Note that, contrary to the state- rivatives of these limits are singularity-free. In the case of a
ment made by Hanngyl], the vectoV Ry that appears in  superluminally moving accelerated source, this contribution
Eg. (5) has nothing to do with the norma¥/R,,, to the IS nonvanishing and has a value that may be calculated by
boundaryR,,.=a of the retarded distribution of the source: means of Hadamard’s methd8,4]. The upper bound de-
Roret depends onr(,¢p,zp) and on ¢,¢,z) in radically  rived by Hannay applies only to the contribution to the de-
different ways. rivative of the retarded potential that arises from the deriva-
That the term entailing thé function in the integrand of tive of its integrand, i.e., to the contribution that is retained
Eq. (5) is ill-defined even as a generalized function may beby Hannay, not to the contribution from the limits of inte-

seen by performing the integration with respectsto gration that is overlooked by him.
ar
VeAg= —pof rdrdz >, R !co& ERO’M) VeRoret IIl. CONNECTION WITH ANTENNA THEORY
o oM AND RADIATION BY LEAKY WAVEGUIDES
X | (IR 10®) (et d@)| " 14+, (6) Charge and current distributions moving faster than light

do occur inside waveguides and traveling-wave antennas as
where the dots stand for the second term in EX). The  pointed out by Hewish2]. However, the charge-current dis-
zerose= o™ and o= ¢{" of Ry,e—a=0, at which the ex- tributions occurring in these systems are invariably limited to
pression under the summation sign must be evaluated, asither one or two dimensions. Unless the superluminally
the same values op as those which earlier appeared asmoving charges and currents are distributed over a volume,
limits of integration. The factofd@,/de| 1, thus implicit  the locus of source points that approach the observer with the
in the definition of the abové function, diverges algebra- speed of light and zero acceleration at the retarded time
ically at those points of the boundary that approach the obwould not be extended and so the resulting radiation would
server with the speed of light and zero accelerafg®e Egs. not have the properties that are predicted by the analysis in
(5) and(7) of [3]]. [3]. It is possible to design modified versions of the existing

The product of this divergent factor with the vanishing leaky waveguides that could generate the predicted radiation
value of the cosine-squared term on the source boundafy], but there are at present no known antennas in which the
constitutes a contribution toward the derivative of the re-source is both volume-distributed and has an accelerated su-
tarded potential that is neither infinite nor zero. This productperluminal motion.
is anindeterminatequantity, contravening the differentiabil- The existing versions of fast wave antennas normally en-
ity requirement(b), that would have to be evaluated by tail a source whose distribution moves with a constant phase
means of a physically meaningful proced{4é. The contri- speed,u>c, and whose radiation is beamed at an angle
bution arising from the inserted step function cannot be anyrccos€/u) to the electric current. As a manifestation of the
different from that which arises from the limits of integration Cerenkov effect in vacuum, the radiative process in such
in Eq. (2). If the product in question were zero, as claimed inantennas is fully consistent with, and its observed character-
[1], then it would follow that Leibniz’s rule could be applied istics confirm, the principles on which the analysiq & is
to an integral with undifferentiable limits whose integrand based. The radiative process that would come into play when
vanishes at the boundaries of its integration domain, a corthe motion of a superluminalolumesource isaccelerated
clusion that would manifestly contradict the statement ofhowever, is a different one that has not yet been explored
Leibniz's theorem{7]. experimentally.

Far from side-stepping the singularity encountered earlier Contrary to what is claimed by Hewidl2], there is no
that needs to be handled by Hadamard's technjdlighere-  distinction between conventional antenna theory and the type
fore, the adoption of an infinite domain of integration would of analysis that appears [8]. Both are based on the very
merely replace the indifferentiability of the limits of the in- same solution of Maxwell's equations: the retarded four-
tegral in question by a closely related indifferentiability of its potential. The analysis presented [i8] is somewhat more
integrand. Note that the localized source adopted here dod@svolved than those normally encountered in antenna theory
not have a sharp edge; the gradient of its density vanishes because(i) it does not invoke the far-field approximation,
its boundary. Because the retarded time is a multivaluedvhich ignores the curvature of wave fronts and so obliterates
function of the observation time in the superluminal regime the formation of caustics, until the end of the calculati@i),
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it is performed in the time domain, without the use of Fourierbased on geometrical optjcs connection with a resulthe
decomposition which obscures sharp gradients,(@ndt is  discontinuity across the bifurcation surfadbat is already
fully three-dimensional. Before he can “conclude” that this derived(in Sec. \j from a more exact theor{physical op-
analysis “is flawed”[2], it is clearly essential that Hewish tics).

should pinpoint, or at least identify the source of, a possible

error in it. IV. CONCLUDING REMARK

The only objection of this kind raised by Hewig2] is the An experimental device is currently being built at Oxford

one regarding a reference to the Doppler effect in Appendi)i,lniversity that will be capable of producing a superlumi-

C of [3], a reference that is made merely fo facilitate thenall moving polarization current and thereby testing the the-
physical interpretation of the derived relationship between Y gp C . y 9 .
retical results whose validity is questioned in the preceding

the emission and reception time intervals of the pulses. Thi%omments{l 7]

relationship is fundamentally different from that which holds . . . .
The apparatus in this experiment consists of an arc of a

in the case of the Doppler effect: It is a consequence of th((a:ircular dielectric rod, an array of electrode pairs positioned
fact that, for superluminally moving source elements, the ' Y P P

retarded time is a multivalued function of the observationOp‘.JOSIte to each other along the rod, and 'the means for ap-
time. There is an analogy with the Doppler effect, therefore plying a voltage to the electrodes sequentially at a rate suf-

only in the way in which the emitted wave fronts pile up in ficient to induce a polarization current whose distribution

certain directions, and not in the mechanism by which superPattem moves along the rod W'.th a speeq excgedmg the
speed of lighin vacua A superluminal speed is achieved for

L;Jr:]nelr}ﬂ![esr?,g{fg]s give rise to the elongation of the EMISSION, ircular rod of diameter-10 m (and arc length~1 m) by
Hewish’s objection to the estimate of the intensity of the21anging the frequency of the applied voltage and the phase

radiation in pulsars is not independent of his contention thag!fference between neighboring electrode pairs such that the

L . : . distribution pattern of the polarization rotates with the fre-
the analysis in[3] is flawed [2]. Given the superluminal - : . i
model of pulsar$5], the large enhancement factor to which c?gr?nccgrreln(: li\gl?rf';;gﬁt?oimrﬁggjg?ooa;quﬁzugggop&lﬁgza_
he objects is a direct consequence of the violation of th hen the device would generate a nonsphericall dec:':l in
inverse-square law by the intensity of the propagating caus- 9 P y ying

tics constituting the pulses that emerges from that analysis.(COheren): radiation at~500 MHz, and a spherically decay-

Finally, the statement “Ardavan now claims that my ing (incoherenk radiation with a spectrum that extends as far
analysis can, at best, be suggestij&] stems from a mis- as~1THz[8].
understgndi_ng: It is not Hewish’s analysis th_at is regarded as ACKNOWLEDGMENT
suggestive in the last paragraph of Appendix3]. What is
referred to as suggestive in that paragraph are the implica- The author acknowledges support from EPSRC Research
tions of the analysis presented in Appendix C itgelfichis ~ Grant No. GR/M522205.
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