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~Received 4 June 1999; revised manuscript received 16 February 2000!

The criticism made by Hannay@preceding Comment, Phys. Rev. E62, 3008~2000!# is unfounded since the
steps, familiar from the subluminal regime, that are taken in his argument are not mathematically permissible
when the distribution pattern of the source is moving and has volume elements that approach the observer with
the speed of light and zero acceleration along the radiation direction. In the superluminal regime, the retarded
time is a multivalued function of the observation time and so the retarded potential for the radiation from a
localized source cannot be represented, as Hannay assumes, by an integral over all space whose integrand
entails a differentiable retarded distribution of the source density. Contrary to what is claimed by Hewish
@Comment in this issue, Phys. Rev. E62, 3007 ~2000!#, moreover, there is no discrepancy between conven-
tional antenna theory and the analysis that appears in Phys. Rev. E58, 6659~1998!. The characteristics of the
new type of emission predicted by this analysis, and received from pulsars, differ from those of the radiation
that is produced by known leaky waveguides because there are at present no antennas in which the emitting
electric current is both volume-distributed and has the time dependence of a traveling wave with an accelerated
superluminal motion.

PACS number~s!: 41.20.Jb, 84.40.Ba, 97.60.Gb
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I. INTRODUCTION

The preceding two Comments@1,2# are concerned with
two entirely different issues: the regularization of the div
gent integrals that result from differentiating the retarded
tential under the integral sign@1#, and the connection of the
analysis in@3# with antenna theory and radiation by leak
waveguides@2#. That the divergent integrals in question ca
not be regularized by the canonical method~as claimed in
@1#! and need to be handled by means of Hadamard’s te
nique ~as in @3#! will be discussed in Sec. II~see also@4#!.
That there is no discrepancy between the results reporte
@3# and the existing data on pulsars and on fast traveli
wave antennas will be discussed in Secs. III and IV~see also
@5#!.

II. DIFFERENTIATION OF THE RETARDED POTENTIAL
IN THE SUPERLUMINAL REGIME

Hannay’s argument in Comment I@1# is not based on the
analysis of any concrete example but on the assumption
all extended source distributions, including those with sup
luminally moving distribution patterns, would in gener
have the following three properties:~a! their volume would
be finite,~b! the retarded values of both their density and
gradient of their density would be bounded and smooth
functions of the spatial coordinates, for an observation po
that lies outside the source, and~c! their density could al-
ways be represented in such a way that the integration
ume in the classical expression for the retarded potential@Eq.
~2! of @1## would consist of the entire space.

Property ~c!, which enables Hannay to differentiate th
retarded potential under the integral sign without referenc
the contribution from the limits of integration, is not compa
ible with the differentiability requirement~b! when the mo-
tion of the source is superluminal. Here we shall demonst
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this by adopting a specific source distribution that is bo
bounded and smooth, in its own rest frame, and explic
showing that~i! Eqs. ~4! and ~5! of Comment I@1# do not
follow from its Eq. ~3! if there are any source elements th
approach the observer with the speed of light and zero ac
eration, and~ii ! the density of the source in question has
retarded distribution in its globally valid representation th
is not a differentiable function of the spatial coordinates@6#.
~See also Appendix B of@3# and the references in@4#.!

Let us consider a spherical source with the radiusa whose
center moves on a circle of radiusr 0 with the constant an-
gular frequencyv and whose density smoothly reduces fro
a maximumr0 at its center to zero at its boundary, e.g.,
has the form

r~r ,ŵ,z!5H r0 cos2@pR0 /~2a!# if R0<a

0 otherwise,
~1!

where

R0[~z21r 21r 0
222rr 0 cosŵ !1/2

is the distance of a point (r ,ŵ,z)[(r ,w2vt,z) that is sta-
tionary in the rotating frame from the center~r 5r 0 , ŵ50,
z50! of the sphere. The circle in broken lines in Fig.
shows the intersection, with the planez50, of the boundary
of the above source in the (r ,ŵ,z) space forr 05 3

2 c/v and
a5 1

2 c/v, wherec is the speed of lightin vacuo. ~The axes
in this figure are marked in units ofc/v and the larger dotted
circles designate the light cylinderr 5c/v and the orbitr
5 3

2 c/v of the center of the source, respectively.!
Once the quantitiesux2xPu andd3x in Eq. ~22! of @3# @or

Eq. ~2! of @1## are expressed in terms of cylindrical coord
nates and the above expression for the source density i
serted in the resulting form of the retarded potential, o
arrives at an integral over the (r ,w,z) space,
3010 ©2000 The American Physical Society
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A0~r P ,ŵP ,zP!5E r dr dw dzr~r ,z,ŵu t5tP2R/c!/R

5r0E
R0ut5tP2R/c<a

r dr dw dz

3cos2S p

2a
R0u t5tP2R/cD Y R, ~2!

with

R[@~z2zP!21r 21r P
2 22rr P cos~w2wP!#1/2,

for which the domain of integration is automatically
bounded.

Note that not only do we need to replaceŵ in the above
expression forr by its retarded value

ŵu t5tP2R/c[ŵ ret5w2vtP1R~r ,w,z;r P ,wP ,zP!v/c
~3!

when substituting Eq.~1! in the first member of Eq.~2!, but
in addition we need to delineate the domain of integration
Eq. ~2! by mapping the source boundaryR05a from the
(r ,ŵ,z) space onto the (r ,w,z) space. The image of the
source boundary under the mappingŵ→w expressed in Eq.
~3! is a surface whose shape is different for different obse
ers, or at different observation times, and bears no dir
relationship with the sphereR05a that appears in Eq.~1!.

To specify the boundary of the domain of integration i
Eq. ~2!, we need to solve the transcendental equation~3! for
w at every point (r ,ŵ,z) of the sphereR05a. In the case of
the source depicted in Fig. 1, and of an observer that

located at (r P ,wP ,zP)5( 5
2 c/v,0,0) at the observation time

tP5(2p2arccos2
51A21/2)v21, the intersection of this do-

main of integration with the planez50 has the shape shown
by the solid curve in Fig. 1.

FIG. 1. The retarded shape of the source boundary in t
(r ,w,z) space~the solid curve! compared to its original shape in the
(r ,ŵ,z) space~the smallest circle in broken lines!.
n

-
ct

is

The boundary of the irregular volume occupied by t
source in the (r ,w,z) space intersects a circler 5const,z
5const~with 1,rv/c,2 and2 1

2 ,zv/c, 1
2 ! at either two,

four, or six values ofw. If we let (w l
(n) ,wu

(n)), with n
51,2,..., denote the various intervals inw that are occupied
by the source at any given (r ,z;r P ,wP ,zP ,tP), then the vol-
ume integrals in Eq.~2! may be written as a triple
integral over the variablesw, z, and r, respectively, in
which the functions w l

(n)(r ,z;r P ,wP ,zP ,tP) and
wu

(n)(r ,z;r P ,wP ,zP ,tP) constitute the various limits of inte
gration with respect tow.

Differentiation of the integral in question entails the d
ferentiation of these limits of integration, limits that a
given by the solutionsw of Eq. ~3! for a point (r ,ŵ,z) on the
boundary of the source distribution. Differentiating Eq.~3!
with respect toxP while holding (r ,ŵ,z) and the observation
time ŵP constant, we find that the gradient of any of thew l

(n)

or wu
(n) is given by an expression whose denominator b

vanishes and has a vanishing derivative at the bound
points that approach the observer with the speed of light
zero acceleration@see Eq.~B3! of @3##.

In Eqs.~3! and~4! of @1#, Hannay uses Leibniz’s formula
for the differentiation of a definite integral assuming th
there are no contributions from the limits of integratio
Leibniz’s formula, on the other hand, is not applicable
there are any points at which the limits of integration are
differentiable@7#. In the case considered here, where the
rivatives of the limits of integration are singular, the gradie
of the integral in question does not consist solely of t
integral of the gradient of its kernel, as claimed by Hann
There is an additional contribution to the gradient of t
potential: that which arises from the singularities of the g
dients of the limits of integration in Eq.~2!, and which com-
prises the boundary contribution to the Hadamard finite p
of the gradient of the integral in Eq.~24b! of @3#.

The singularities of the gradients of the limits of integr
tion in Eq. ~2! are the images, under the mappingŵ→w, of
the singularities of the integrand of the gradient of Eq.~24b!
in @3#. By overlooking the contribution from the limits o
integration in his Eqs.~3! and~4!, Hannay has discarded th
boundary term in Hadamard’s finite part of the diverge
integral that results from the differentiation of the alternati
form of the retarded potential given in Eq.~24b! of @3#. ~For
detailed discussions of this point, see the references in@4#.!

Let us now consider an alternative representation of
same source density which complies with Hannay’s requ
ment~c!, i.e., which allows us to extend the domain of int
gration in Eq.~2! to the entire (r ,w,z) space. By introducing
a step function that incorporates the vanishing of the den
of the source outside its boundary (R05a) into the expres-
sion for r, we can rewrite Eq.~1! in a form that is globally
valid:

r~r ,ŵ,z!5r0 cos2@pR0 /~2a!#u~a2R0!, ~4!

whereu(x) is 1 whenx.0 and zero whenx,0. The expres-
sion that is obtained by inserting Eq.~4! into Eq.~2! may be
differentiated under the integral sign without giving cons
eration to boundary contributions.

However, differentiation of the step function in Eq.~4!
results in an additional contribution to the derivative of t

e
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integrand of Eq.~2! that entails the Diracd function: The
gradient of the potential with respect to the coordinatesxP of
the observation point is given by

¹PA052r0E r dr dw dzH R21 cos2S p

2a
R0retD¹PR0ret

3d~a2R0ret!2¹PFR21 cos2S p

2a
R0retD G

3u~a2R0ret!J , ~5!

in which R0ret[R0u ŵ5ŵret
. Note that, contrary to the state

ment made by Hannay@1#, the vector¹PR0ret that appears in
Eq. ~5! has nothing to do with the normal,¹R0ret, to the
boundaryR0ret5a of the retarded distribution of the sourc
R0ret depends on (r P ,wP ,zP) and on (r ,w,z) in radically
different ways.

That the term entailing thed function in the integrand of
Eq. ~5! is ill-defined even as a generalized function may
seen by performing the integration with respect tow:

¹PA052r0E r dr dz (
w l

~n! ,wu
~n!

R21 cos2S p

2a
R0retD¹PR0ret

3u~]R0 /]ŵ!~]ŵ ret/]w!u211¯ , ~6!

where the dots stand for the second term in Eq.~5!. The
zerosw5w l

(n) andw5wu
(n) of R0ret2a50, at which the ex-

pression under the summation sign must be evaluated
the same values ofw as those which earlier appeared
limits of integration. The factoru]ŵ ret/]wu21, thus implicit
in the definition of the aboved function, diverges algebra
ically at those points of the boundary that approach the
server with the speed of light and zero acceleration@see Eqs.
~5! and ~7! of @3##.

The product of this divergent factor with the vanishin
value of the cosine-squared term on the source boun
constitutes a contribution toward the derivative of the
tarded potential that is neither infinite nor zero. This prod
is an indeterminatequantity, contravening the differentiabi
ity requirement~b!, that would have to be evaluated b
means of a physically meaningful procedure@4#. The contri-
bution arising from the inserted step function cannot be
different from that which arises from the limits of integratio
in Eq. ~2!. If the product in question were zero, as claimed
@1#, then it would follow that Leibniz’s rule could be applie
to an integral with undifferentiable limits whose integra
vanishes at the boundaries of its integration domain, a c
clusion that would manifestly contradict the statement
Leibniz’s theorem@7#.

Far from side-stepping the singularity encountered ear
that needs to be handled by Hadamard’s technique@4#, there-
fore, the adoption of an infinite domain of integration wou
merely replace the indifferentiability of the limits of the in
tegral in question by a closely related indifferentiability of
integrand. Note that the localized source adopted here d
not have a sharp edge; the gradient of its density vanishe
its boundary. Because the retarded time is a multival
function of the observation time in the superluminal regim
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the retarded distribution of the density of a moving sou
~such as that whose contourr50 is depicted in Fig. 1! can
lack differentiability even when its original distribution i
smooth. The anomalous field decay encountered in
present case@3# is fundamentally different from that which
can occur when the density, or the gradient of the density
the source distribution itself is not smooth. Both the abo
argument and the analysis in@3# are independent of the orde
with which the gradient of the source density vanishes at
source boundary.

The contribution from the limits of integration to th
right-hand side of Eq.~3! in @1# is zero, as assumed by Han
nay, only in the familiar subluminal regime where the d
rivatives of these limits are singularity-free. In the case o
superluminally moving accelerated source, this contribut
is nonvanishing and has a value that may be calculated
means of Hadamard’s method@3,4#. The upper bound de
rived by Hannay applies only to the contribution to the d
rivative of the retarded potential that arises from the deri
tive of its integrand, i.e., to the contribution that is retain
by Hannay, not to the contribution from the limits of inte
gration that is overlooked by him.

III. CONNECTION WITH ANTENNA THEORY
AND RADIATION BY LEAKY WAVEGUIDES

Charge and current distributions moving faster than lig
do occur inside waveguides and traveling-wave antenna
pointed out by Hewish@2#. However, the charge-current dis
tributions occurring in these systems are invariably limited
either one or two dimensions. Unless the superlumina
moving charges and currents are distributed over a volu
the locus of source points that approach the observer with
speed of light and zero acceleration at the retarded t
would not be extended and so the resulting radiation wo
not have the properties that are predicted by the analysi
@3#. It is possible to design modified versions of the existi
leaky waveguides that could generate the predicted radia
@8#, but there are at present no known antennas in which
source is both volume-distributed and has an accelerated
perluminal motion.

The existing versions of fast wave antennas normally
tail a source whose distribution moves with a constant ph
speed,u.c, and whose radiation is beamed at an an
arccos(c/u) to the electric current. As a manifestation of th
Čerenkov effect in vacuum, the radiative process in su
antennas is fully consistent with, and its observed charac
istics confirm, the principles on which the analysis in@3# is
based. The radiative process that would come into play w
the motion of a superluminalvolumesource isaccelerated,
however, is a different one that has not yet been explo
experimentally.

Contrary to what is claimed by Hewish@2#, there is no
distinction between conventional antenna theory and the t
of analysis that appears in@3#. Both are based on the ver
same solution of Maxwell’s equations: the retarded fo
potential. The analysis presented in@3# is somewhat more
involved than those normally encountered in antenna the
because~i! it does not invoke the far-field approximation
which ignores the curvature of wave fronts and so oblitera
the formation of caustics, until the end of the calculation,~ii !
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it is performed in the time domain, without the use of Four
decomposition which obscures sharp gradients, and~iii ! it is
fully three-dimensional. Before he can ‘‘conclude’’ that th
analysis ‘‘is flawed’’ @2#, it is clearly essential that Hewis
should pinpoint, or at least identify the source of, a poss
error in it.

The only objection of this kind raised by Hewish@2# is the
one regarding a reference to the Doppler effect in Appen
C of @3#, a reference that is made merely to facilitate t
physical interpretation of the derived relationship betwe
the emission and reception time intervals of the pulses. T
relationship is fundamentally different from that which hol
in the case of the Doppler effect: It is a consequence of
fact that, for superluminally moving source elements,
retarded time is a multivalued function of the observat
time. There is an analogy with the Doppler effect, therefo
only in the way in which the emitted wave fronts pile up
certain directions, and not in the mechanism by which sup
luminal sources give rise to the elongation of the emiss
time interval@5#.

Hewish’s objection to the estimate of the intensity of t
radiation in pulsars is not independent of his contention t
the analysis in@3# is flawed @2#. Given the superlumina
model of pulsars@5#, the large enhancement factor to whic
he objects is a direct consequence of the violation of
inverse-square law by the intensity of the propagating ca
tics constituting the pulses that emerges from that analy

Finally, the statement ‘‘Ardavan now claims that m
analysis can, at best, be suggestive’’@2# stems from a mis-
understanding: It is not Hewish’s analysis that is regarded
suggestive in the last paragraph of Appendix C@3#. What is
referred to as suggestive in that paragraph are the imp
tions of the analysis presented in Appendix C itself~which is
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based on geometrical optics! in connection with a result~the
discontinuity across the bifurcation surface! that is already
derived~in Sec. V! from a more exact theory~physical op-
tics!.

IV. CONCLUDING REMARK

An experimental device is currently being built at Oxfo
University that will be capable of producing a superlum
nally moving polarization current and thereby testing the t
oretical results whose validity is questioned in the preced
Comments@1,2#.

The apparatus in this experiment consists of an arc o
circular dielectric rod, an array of electrode pairs position
opposite to each other along the rod, and the means for
plying a voltage to the electrodes sequentially at a rate
ficient to induce a polarization current whose distributi
pattern moves along the rod with a speed exceeding
speed of lightin vacuo. A superluminal speed is achieved fo
a circular rod of diameter;10 m ~and arc length;1 m! by
arranging the frequency of the applied voltage and the ph
difference between neighboring electrode pairs such that
distribution pattern of the polarization rotates with the fr
quency;10 MHz. If the amplitude of the resulting polariza
tion current is in addition made to fluctuate at;500 MHz,
then the device would generate a nonspherically decay
~coherent! radiation at;500 MHz, and a spherically decay
ing ~incoherent! radiation with a spectrum that extends as
as;1 THz @8#.
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