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Rotating Hele-Shaw cells with ferrofluids
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~Received 16 November 1999; revised manuscript received 14 February 2000!

We investigate the flow of two immiscible, viscous fluids in a rotating Hele-Shaw cell, when one of the
fluids is a ferrofluid and an external magnetic field is applied. The interplay between centrifugal and magnetic
forces in determining the instability of the fluid-fluid interface is analyzed. The linear stability analysis of the
problem shows that a nonuniform, azimuthal magnetic field, applied tangential to the cell, tends to stabilize the
interface. We verify that maximum growth rate selection of initial patterns is influenced by the applied field,
which tends to decrease the number of interface ripples. We contrast these results with the situation in which
a uniform magnetic field is applied normally to the plane defined by the rotating Hele-Shaw cell.

PACS number~s!: 68.10.2m, 75.50.Mm, 75.70.Ak, 47.20.Ma
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When a fluid is pushed by a less viscous one in a nar
space between two parallel plates~the so-called Hele-Shaw
cell!, the well-known Saffman-Taylor instability phenom
enon arises@1#, which takes the form of fingering@2#. Tra-
ditionally, experiments and theory focus on two basic He
Shaw flow geometries:~i! rectangular@1# and radial@3#. In
rectangular geometry cells the less viscous fluid is pum
against the more viscous one along the direction of the fl
Meanwhile, in the radial geometry case, the less viscous fl
is injected to invade the more viscous one, through an i
located on the top glass plate. In both geometries,
viscosity-driven instability leads to the formation of beautif
fingering patterns.

In recent years, the quest for new morphologies and ric
dynamic behavior resulted in a number of modifications
the classic Saffman-Taylor setup@4#. An interesting variation
of the traditional viscosity-driven fingering instability is th
investigation of radial Hele-Shaw flows in the presence
centrifugal driving. The inclusion of centrifugal forces ca
be considered by rotating the cell, with constant angular
locity, around an axis perpendicular to the plane of the flo
In this case, the interface instability can be driven by
density difference between the fluids. In the late 198
Schwartz@5# performed the linear stability analysis of th
rotating cell problem, in the limits of high density and vi
cosity contrast. More recently, Carrilloet al. @6# studied,
both theoretically and experimentally, flow in a rotatin
Hele-Shaw cell in arbitrary density and viscosity contra
They extended the linear analysis performed in Ref.@5# by
considering that the inner fluid is injected in the cell throu
a hole at the center of rotation, with constant injection ra
The linear growth rate calculated in Ref.@6# shows that the
interface instability can be driven by both the density diffe
ence and the viscosity contrast between the fluids. Their
perimental results supported their theoretical analysis. C
rillo and co-workers also examined the radial displacem
of a rotating fluid annulus, bound by a second fluid, in sta
@7# and unstable@8# regimes. In another interesting wor
Magdalenoet al. @9# applied a conformal mapping techniqu
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to argue that the effects of rotation can be used to prev
cusp singularities in zero surface tension Hele-Shaw flow

Another stimulating modification of the traditiona
Saffman-Taylor problem in non-rotating Hele-Shaw ce
considers the interface morphology when one of the fluid
a ferrofluid @10#, and an external magnetic field is applie
perpendicular to the cell plates. Ferrofluids, which are col
dal suspensions of microscopic permanent magnets, res
paramagnetically to applied fields. As a result of the ferr
luid interaction with the external field, the usual viscous fi
gering instability is supplemented by a magnetic fluid ins
bility @10#, resulting in a variety of new interfacial behavio
@11–16#.

The richness of new behaviors introduced by both rotat
and magnetic field into the traditional Saffman-Taylor pro
lem, motivated us to analyze the situation in which these t
effects are simultaneously present. In this work we perfo
the linear stability analysis for flow in a rotating Hele-Sha
cell, assuming that one of the fluids is a ferrofluid and tha
magnetic field is applied. First, we consider the situation
which anonuniform, azimuthal, in-plane field is applied. Th
competition between rotation and magnetic field is analyz
We show the azimuthal magnetic field provides a mechan
for stabilizing the interface. This field induced, stabilizin
mechanism is proposed, and proved to be effective for fl
in rotating Hele-Shaw cells. Through the analysis of t
maximum growth rate, we verify that the azimuthal magne
field acts to decrease the number of interface ripples. Fina
we contrast these results with the destabilizing situation
which a uniform magnetic field is applied normally to th
plane defined by the rotating Hele-Shaw cell.

Consider a Hele-Shaw cell of thicknessb containing two
immiscible, incompressible, viscous fluids~see Fig. 1!. De-
note the densities and viscosities of the inner and outer
ids, respectively, asr1 , h1 andr2 , h2. The flows in fluids 1
and 2 are assumed to be irrotational. Between the two flu
there exists a surface tensions. We assume that the inne
fluid is the ferrofluid ~magnetizationMW ), while the outer
fluid is nonmagnetic. During the flow, the fluid-fluid inte
face has a perturbed shape described asR5R1z(u,t),
whereu represents the polar angle, andR is the radius of the
initially unperturbed interface.
2985 ©2000 The American Physical Society
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In order to include centrifugal forces, we allow the cell
rotate, with constant angular velocityV, about an axis per-
pendicular to the plane of the flow~Fig. 1!. To include mag-
netic forces, we consider the action of an external magn
field HW , produced by a long, straight wire carrying a curre
I, directed along the axis of rotation. By Ampere’s law, it c
be shown that the steady currentI produces an azimutha
magnetic field external to the wireHW 5(I /2pr ) û, wherer is
the distance from the wire, andû is the unit vector pointing
in the direction of increase ofu.

Following the standard approximations used by Rose
weig @10# and others@11–13# we assume that the ferroflui
magnetizationMW is collinear with the external fieldHW and
that the influence of the demagnetizing field is neglected
is also assumed that the ferrofluid is electrically noncondu
ing and that the displacement current is negligible. For
quasi-two-dimensional geometry of a Hele-Shaw cell,
three-dimensional flow may be replaced with an equival
two-dimensional flowvW (x,y) by averaging over thez direc-
tion perpendicular to the plane of the Hele-Shaw cell. Imp
ing no-slip boundary conditions and a parabolic velocity p
file one derives Darcy’s law for ferrofluids in a Hele-Sha
cell @13,17#, which must be augmented by including centrif
gal forces

hvW 52
b2

12H ¹W p2
1

bE2b/2

1b/2

m0~MW •¹W !HW dz2rV2r r̂ J ,

~1!

wherep is the hydrodynamic pressure,m0 is the free-space
permeability, andr̂ denotes a unit vector pointing radiall
outward. Equation~1! describes nonmagnetic fluids by sim
ply dropping the terms involving magnetization.

Since the velocity fieldvW is irrotational, it is convenient to
rewrite Eq.~1! in terms of velocity potentials. We writevW

52¹W f, wheref defines the velocity potential. Similarly
we rewrite the magnetic body force in Eq.~1! as m0(MW

•¹W )HW 5m0M¹W H5¹W C, where we have introduced the sc
lar potential

C5m0E M ~H !dH5
m0xH2

2
, ~2!

with M5M (H)5xH, x being a constant magnetic susce
tibility.

FIG. 1. Schematic configuration of the rotational Hele-Sh
flow with ferrofluid.
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With the definitions off andC we notice that both sides
of Eq. ~1! are recognized as gradients of scalar fields. Af
integrating both sides of Eq.~1!, we evaluate it for each o
the fluids on the interface. Then, we subtract the result
equations from each other, and divide by the sum of the
fluids’ viscosities to get the equation of motion

AS f21f1

2 D1S f22f1

2 D
52

b2

12~h11h2! H sk2C1
1

2
~r22r1!V2r 2J .

~3!

To obtain Eq.~3! we have used the pressure boundary c
dition p12p25sk at the interface, wherek5$@r 2

12(]r /]u)22r (]2r /]u2)#/@r 21(]r /]u)2#3/2% denotes the
interfacial curvature in the plane of the Hele-Shaw cell. T
dimensionless parameterA5(h22h1)/(h21h1) is the vis-
cosity contrast.

For the purpose of the following linear analysis, we pe
turb the interface with a single Fourier mode

z~u,t !5zn~ t !exp~ inu!, n50,1,2, . . . . ~4!

The velocity potential for fluidj ( j 51,2 indexes the inner
and outer fluids, respectively!, f j , obeys Laplace’s equation
¹2f j50 and can be written as

f j5f j
01f jnS Rn

r n D (21) j

exp~ inu!, ~5!

wheref j
0 are independent ofr andu.

We need additional relations expressing the velocity
tentialsf j in terms of the perturbation amplitudesz, in order
to conclude our derivation and close Eq.~3!. To find these,
we considered the kinematic boundary condition@10#, which
refers to the continuity of the normal velocity across t
interface. Inserting expression~4! for z(u,t) and Eq.~5! for
f j into the kinematic boundary condition, we solved forf jn
consistently to first order inz to find

f jn5~21! j
R

n
żn , ~6!

where the overdot denotes total time derivative.
Substitute expression~6! for f jn into equation of motion

~3!, and again keep only linear terms in the perturbation a
plitude. This procedure eliminates the velocity potenti
from Eq. ~3!, and we obtain the differential equation for th
perturbation amplitudesżn5l(n)zn , implying that the re-
laxation or growth of the moden is proportional to the factor
exp@l(n)t#, where

l~n!5
b2sn

12~h11h2!R3
@NV2NB2~n221!# ~7!

is the linear growth rate. We define the dimensionless par
eters NV5@R3(r12r2)V2#/s, and NB5m0xI 2/(4p2sR)
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as the rotational and magnetic bond numbers, respectiv
NV (NB) measures the relative strength of centrifugal~mag-
netic! and capillary effects.

Inspecting Eq.~7! for the linear growth ratel(n) we ob-
serve the interplay of rotation, magnetic field and surfa
tension in determining the interface instability. Ifl(n).0
the disturbance grows, indicating instability. As usual, t
contribution coming from the surface tension term has a
bilizing nature (s stabilizes modes of largen). The factor
(n221) in Eq.~7! arises directly from the first order terms
z present in the curvature, while the overall factor ofn can
be traced to the fact that in the generalized Darcy’s law~1!
the velocity is proportional to gradients of an effective pre
sure. With these considerations in mind, let us focus on
relation between rotation and magnetic field. As a resul
centrifugal forcingNV may be either positive or negative
depending on the relative values of the fluid’s densities
the inner fluid is more dense (r1.r2), NV.0 and rotation
plays a destabilizing role. The opposite effect arises w
r1,r2. On the other hand, the azimuthal magnetic field c
tribution NB always tends to stabilize the interface. This i
dicates that the rotation-driven instability could be delay
or even prevented if a sufficiently strong nonuniform, a
muthal magnetic field is applied in the plane of the flow.

A physical explanation for the stabilizing role of the ma
netic field can be given based on its symmetry properties
nonuniform character. Notice that such a field possess
radial gradient. The magnetic field influence is manifested
the existence of a body force due to field nonuniformity. T
field produces a force directed radially inward, that tends
move the ferrofluid toward the current-carrying wire~regions
of higher magnetic field!. This force opposes the centrifug
force and favors interface stabilization. This effect is simi
to the gradient-field stabilization mechanism discussed
Rosensweig@10# for inviscid three dimensional fluid flow
problems, and by Zahn and Rosensweig@18# for viscous,
unconfined ferrofluids.

In order to illustrate the role of the magnetic effects in t
linear stages of the interface evolution, we plot in Fig. 2
dimensionless growth ratel̄(n)5@12(h11h2)R3/b2s#
l(n) as a function of the mode numbern, taking NV5200

FIG. 2. Variation of the dimensionless growth ratel̄(n)
5@12(h11h2)R3/b2s# l(n) as a function ofn for NV5200 and
~a! NB50, ~b! NB5100, and~c! NB5200. The peak location and
width of the band of unstable modes decrease with increasingNB .
ly.
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and NB50, 100, 200. As expected, for zero applied fie
(NB50) the interface is unstable. If we increase the mag
tude of the applied field (NB5100), even though we get
narrower band of unstable modes, the interface remains
stable. If we keep increasing the magnetic field intens
l̄(n) becomes negative for alln.1, and the interface tend
to stabilize. In Fig. 2 we see that forNB5200 the interface is
stable, due to the action of the azimuthal magnetic field.

A relevant physical quantity can be extracted from t
linear growth rate: the fastest growing moden* , given by the
closest integer to the maximum of Eq.~7! with respect ton
@defined by settingdl(n)/dn50],

nmax5A1

3
@11~NV2NB!#. ~8!

As discussed by Carrilloet al. @6# for the nonmagnetic, ro-
tating case,n* is strongly correlated to the number of ripple
present in the early stages of pattern formation. With the h
of their experiments, the authors in Ref.@6# compared the
number of ripples withn* and found a remarkable agree
ment. Taking this fact into account, and inspecting Eq.~8!
we verify that, for positiveNV , an increasingly largerNB
does not only tend to decrease the finger growth rate,
also tends to decrease the number of interface ripples.
azimuthal magnetic field~or correspondingly,NB) can be
seen as a control parameter to discipline the number of
terface undulations.

We conclude by contrasting the results obtained ab
~nonuniform, tangential field! with those which arise when a
uniformexternal magnetic field is appliedperpendicularto a
rotating Hele-Shaw cell containing ferrofluid. By performin
the linear stability analysis of the system, and using
closed form expressions for the magnetic term, recently
rived in Ref. @14#, we obtain the following linear growth
rate:

l'~n!5
b2sn

12~h11h2!R3
@NV1Dn~p!NB

'2~n221!#,

~9!

where

Dn~p!5
p2

2 H FcS n1
1

2D2cS 3

2D G
1FQn21/2S p212

p2 D 2Q1/2S p212

p2 D G J , ~10!

NB
'5m0M2b/2ps is the magnetic bond number for the pe

pendicular field configuration, andp52R/b is the aspect
ratio. The aspect ratiop should not be confused with th
pressure.Qn represents the Legendre function of the seco
kind, while the Euler’s psi functionc is the logarithmic de-
rivative of the Gamma function@19#. Notice that the function
Dn(p)>0 for n.0. In contrast to the nonuniform, azimuth
applied field discussed earlier, a uniform, perpendicular m
netic field tends to destabilize the interface. If the interface
already unstable with respect to rotations (NV.0), the in-
troduction of the magnetic field increases the interface in
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2988 PRE 62BRIEF REPORTS
bility even further. On the other hand, if the outer fluid
more dense (NV,0), the interface can still be deformed b
the action of a perpendicular magnetic field.

By comparing the perpendicular field growth rate expr
sion ~9! with its azimuthal field counterpart~7!, we notice
that the presence of the functionDn(p) in Eq. ~9! increases
the complexity of the problem. Simple expressions for

FIG. 3. Plot ofnmax as a function ofNB
' for increasing values of

NV , andp520. These curves are obtained by numerically solv
Eq. ~11!.
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azimuthal case may become not so simple in the perpend
lar field situation. Consider, for example, the calculation
the fastest growing moden* . In contrast to the simple ex
pression fornmax obtained in the azimuthal case@see Eq.
~8!#, the equivalent expression for the perpendicular confi
ration cannot be written in a simple form. It is now given b
the solution of the transcendental equation

n25
1

3 F11NV1
]

]n
@n Dn~p!# NB

'G . ~11!

Numerical evaluation of Eq.~11! shows thatnmax ~and, con-
sequently,n* ) increases with the magnitude of the perpe
dicular applied field. In this case, larger values ofNB

' tend to
increase the number of interface ripples~see Fig. 3!.

In summary, we have shown that the inclusion of ma
netic effects into the rotating cell problem provides mech
nisms for stabilizing/destabilizing the interface. Based on
relative simplicity of the experimental Hele-Shaw setup,
would be of considerable interest to perform experiments
Hele-Shaw cells simultaneously including centrifugal, ma
netic, and injection driving. The combination of these effe
is likely to lead to new and exciting interfacial patterns in t
highly nonlinear regime.

This work was supported by CNPq and FINEP.
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