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Rotating Hele-Shaw cells with ferrofluids
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We investigate the flow of two immiscible, viscous fluids in a rotating Hele-Shaw cell, when one of the
fluids is a ferrofluid and an external magnetic field is applied. The interplay between centrifugal and magnetic
forces in determining the instability of the fluid-fluid interface is analyzed. The linear stability analysis of the
problem shows that a nonuniform, azimuthal magnetic field, applied tangential to the cell, tends to stabilize the
interface. We verify that maximum growth rate selection of initial patterns is influenced by the applied field,
which tends to decrease the number of interface ripples. We contrast these results with the situation in which
a uniform magnetic field is applied normally to the plane defined by the rotating Hele-Shaw cell.

PACS numbgs): 68.10—m, 75.50.Mm, 75.70.Ak, 47.20.Ma

When a fluid is pushed by a less viscous one in a narrovio argue that the effects of rotation can be used to prevent
space between two parallel platébe so-called Hele-Shaw cusp singularities in zero surface tension Hele-Shaw flows.
cell), the well-known Saffman-Taylor instability phenom- ~ Another stimulating modification of the traditional
enon arise$1], which takes the form of fingerinfp]. Tra-  Saffman-Taylor problem in non-rotating Hele-Shaw cells
ditionally, experiments and theory focus on two basic Hele-considers the interface morphology when one of the fluids is
Shaw flow geometriesi) rectangulaf1] and radial[3]. In @ ferrofluid [10], and an external magnetic field is applied
rectangular geometry cells the less viscous fluid is pumpeeerpendlculgr to the C_eII plates. Ferrofluids, which are colloi-
against the more viscous one along the direction of the flowdal suspensions of microscopic permanent magnets, respond
Meanwhile, in the radial geometry case, the less viscous fluiaramagnetically to applied fields. As a result of the ferrof-
is injected to invade the more viscous one, through an inleluid interaction with the external field, the usual viscous fin-
located on the top glass plate. In both geometries, th€€ring instability is supplemented by a magnetic fluid insta-
viscosity-driven instability leads to the formation of beautiful bility [10], resulting in a variety of new interfacial behaviors
fingering patterns. [11-18.

In recent years, the guest for new morpho|ogies and richer The richness of new behaviors introduced by both rotation
dynamic behavior resulted in a number of modifications ofand magnetic field into the traditional Saffman-Taylor prob-
the Classic Saffman_Tay|0r Set{m_)]_ An interesting Variation Iem, motivated us to analyze the situation in which these two
of the traditional viscosity-driven fingering instability is the €ffects are simultaneously present. In this work we perform
investigation of radial Hele-Shaw flows in the presence ofthe linear stability analysis for flow in a rotating Hele-Shaw
centrifugal driving. The inclusion of centrifugal forces can Cell, assuming that one of the fluids is a ferrofluid and that a
be considered by rotating the cell, with constant angular vetagnetic field is applied. First, we consider the situation in
locity, around an axis perpendicular to the plane of the flowWhich anonuniform azimuthal, in-plane field is applied. The
In this case, the interface instability can be driven by thecompetition between rotation and magnetic field is analyzed.
density difference between the fluids. In the late 19808Ve show the azimuthal magnetic field provides a mechanism
Schwartz[5] performed the linear stability analysis of the for stabl_hzmg the interface. This field induced, ;tablhzmg
rotating cell problem, in the limits of high density and vis- mechanism is proposed, and proved to be effective for flow
cosity contrast. More recently, Carrillet al. [6] studied, in rotating Hele-Shaw cells. Through the analysis of the
both theoretically and experimentally, flow in a rotating Maximum growth rate, we verify that the azimuthal magnetic
Hele-Shaw cell in arbitrary density and viscosity contrastfield acts to decrease the number of interface ripples. Finally,
They extended the linear ana'ysis performed in Fgﬁ]:by We. Contraslt these reSUI.tS W|th the d6§tabI|IZIng Situation In
considering that the inner fluid is injected in the cell throughwhich a uniform magnetic field is applied normally to the
a hole at the center of rotation, with constant injection ratePlane defined by the rotating Hele-Shaw cell.

The linear growth rate calculated in R¢6] shows that the Consider a Hele-Shaw cell of thicknelssontaining two
interface instability can be driven by both the density differ-immiscible, incompressible, viscous flui¢see Fig. 1 De-
ence and the viscosity contrast between the fluids. Their exote the densities and viscosities of the inner and outer flu-
perimental results supported their theoretical analysis. Cadds, respectively, as;, »; andp,, 7. The flows in fluids 1
rillo and co-workers also examined the radial displacemen@nd 2 are assumed to be irrotational. Between the two fluids
of a rotating fluid annulus, bound by a second fluid, in stablghere exists a surface tensien We assume that the inner
[7] and unstabld8] regimes. In another interesting work, fluid is the ferrofluid (magnetizationM), while the outer
Magdalencet al.[9] applied a conformal mapping technique fluid is nonmagnetic. During the flow, the fluid-fluid inter-

face has a perturbed shape describedRasR+ {(6,t),

where# represents the polar angle, aRds the radius of the

*Email address: jme@lftc.ufpe.br initially unperturbed interface.
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FIG. 1. Schematic configuration of the rotational Hele-Shaw

flow with ferrofluid.

In order to include centrifugal forces, we allow the cell to
rotate, with constant angular velocify, about an axis per-
pendicular to the plane of the floiig. 1). To include mag-

netic forces, we consider the action of an external magneti

field H, produced by a long, straight wire carrying a current
[, directed along the axis of rotation. By Ampere’s law, it can

be shown that the steady currenproduces an azimuthal
magnetic field external to the Wi|t§=(I/27rr) 6, wherer is

the distance from the wire, antllis the unit vector pointing
in the direction of increase of.
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With the definitions of¢ and¥ we notice that both sides
of Eq. (1) are recognized as gradients of scalar fields. After
integrating both sides of Eq1), we evaluate it for each of
the fluids on the interface. Then, we subtract the resulting
equations from each other, and divide by the sum of the two
fluids’ viscosities to get the equation of motion

A( bo+ ¢1) N ( br— P

2 2

b2

1
= {ok—TU+=(p,—p)Q%?}.
A1t 1) 2(P2 p1)

()

To obtain Eq.(3) we have used the pressure boundary con-
dition p;—p,=ok at the interface, wherex={[r?
& 2(ar1a0)2—r(a?r196)]1/[r?+(ar/36)*1¥% denotes the
interfacial curvature in the plane of the Hele-Shaw cell. The
dimensionless paramet&= (7,— 71)/(7,+ n,) is the vis-
cosity contrast.

For the purpose of the following linear analysis, we per-
turb the interface with a single Fourier mode
n=0,12....

£(6,1)=¢n(t)exp(ing), 4

Following the standard approximations used by Rosens-

weig [10] and otherd11-13 we assume that the ferrofluid
magnetizatiori\7| is collinear with the external fielt and

The velocity potential for fluid (j=1,2 indexes the inner
and outer fluids, respectivelyg; , obeys Laplace’s equation

that the influence of the demagnetizing field is neglected. I¥°#;=0 and can be written as

is also assumed that the ferrofluid is electrically nonconduct-
ing and that the displacement current is negligible. For the
guasi-two-dimensional geometry of a Hele-Shaw cell, the
three-dimensional flow may be replaced with an equivalent

two-dimensional fIOV\E(x,y) by averaging over the direc-

tion perpendicular to the plane of the Hele-Shaw cell. Impos

ing no-slip boundary conditions and a parabolic velocity pro

file one derives Darcy’s law for ferrofluids in a Hele-Shaw

cell[13,17], which must be augmented by including centrifu-
1 (+b/2 N .
—f wo(M-V)Hdz—pQ2?r r},
—b/2

gal forces
b2
1_2’ b
(o

wherep is the hydrodynamic pressurgg is the free-space

permeability, and denotes a unit vector pointing radially
outward. Equatior{l) describes nonmagnetic fluids by sim-
ply dropping the terms involving magnetization.

Since the velocity field is irrotational, it is convenient to
rewrite Eq.(1) in terms of velocity potentials. We write
—V ¢, where ¢ defines the velocity potential. Similarly,
we rewrite the magnetic body force in E¢l) as ,uo(l\7|

-ﬁ)ﬁ=MOM§H=ﬁW, where we have introduced the sca-
lar potential

>

n=—5{Vp-

poxH?
2 1

\If:m,f M(H)dH= 2)

with M=M(H)=xH, x being a constant magnetic suscep-

tibility.

n

(-1
n) exping),

¢,—=¢?+¢jn(r— (5)

where¢? are independent af and 6.

We need additional relations expressing the velocity po-
tentials¢; in terms of the perturbation amplitudésin order
to conclude our derivation and close E). To find these,
we considered the kinematic boundary conditi@f], which
refers to the continuity of the normal velocity across the
interface. Inserting expressia#4) for £(6,t) and Eq.(5) for
¢; into the kinematic boundary condition, we solved &y,
consistently to first order i to find

R.
$in=(—1)) o, ©
where the overdot denotes total time derivative.

Substitute expressiof6) for ¢;, into equation of motion
(3), and again keep only linear terms in the perturbation am-
plitude. This procedure eliminates the velocity potentials
from Eq. (3), and we obtain the differential equation for the
perturbation amplitudeg,=\(n)¢,, implying that the re-
laxation or growth of the mode is proportional to the factor
exgA(n)t], where

b%on

A= ——
(v 12(my+ np)R®

[No=Ng—(n*-1)] (7

is the linear growth rate. We define the dimensionless param-
eters No=[R3(p;— p,)Q?%]/o, and Ng=uox!?/(47%0R)
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1500— and Ng=0, 100, 200. As expected, for zero applied field
}u(”l) ( (Ng=0) the interface is unstable. If we increase the magni-
1000 ’,‘“-\ a) tude of the applied fieldNg=100), even though we get a
» . narrower band of unstable modes, the interface remains un-
500 ‘/‘ . (b) \ s_table. If we keep increasing the magnetic field intensity,
/.jw‘ "\. Y N(n) becomes negative for ati>>1, and the interface tends
0F e oaeq . 5 to stabilize. In Fig. 2 we see that fdlg =200 the interface is
"\. DR n stable, due to the action of the azimuthal magnetic field.
500 (c) = . '\\ . A relevant physical quantity can be extrapted from the
‘e N \ linear growth rate: the fastest growing mauf, given by the
1000 “ vt closest integer to the maximum of Eq,) with respect ton
\h \\ \ [defined by settingl\ (n)/dn=0],
: .
5 10 15 20

1
— Nmax= \/§[1+(NQ_NB)]- 8
FIG. 2. Variation of the dimensionless growth raign)
=[12(n,+ 7,)R¥b%a] A(n) as a function ofh for N, =200 and
(@ Ng=0, (b) Ng=100, and(c) Ng=200. The peak location and
width of the band of unstable modes decrease with incredsing

As discussed by Carrillet al. [6] for the nonmagnetic, ro-
tating casen™ is strongly correlated to the number of ripples
present in the early stages of pattern formation. With the help

) ) . of their experiments, the authors in Ré&] compared the
as the rotational and magnetic bond numbers, respectively,,mper of ripples withn* and found a remarkable agree-

No (Ng) measures the relative strength of centrifu@alg-  ment. Taking this fact into account, and inspecting ).

neti and _cap|llary effects. . we verify that, for positiveNq, an increasingly largeNg
Inspecting Eq(7) for the linear growth rata (n) we ob-  §oes not only tend to decrease the finger growth rate, but

serve the interplay of rotation, magnetic field and surfaceyisg tends to decrease the number of interface ripples. The

tension in determining the interface instability. N{n)>0 azimuthal magnetic fieldor correspondinglyNg) can be

the disturbance grows, indicating instability. As usual, thegean as a control parameter to discipline the number of in-

contribution coming from the surface tension term has a stag face undulations.

bilizing nature @ stabilizes modes of large). The factor We conclude by contrasting the results obtained above

(n?-1)in Eq.(7) arises directly from the first order terms in (nonuniform, tangential fieldwith those which arise when a

¢ present in the curvature, while the overall factornofan  niform external magnetic field is appliggerpendicularto a

be traced to the fact that in the generalized Darcy's (W  (otating Hele-Shaw cell containing ferrofluid. By performing

the velocity is proportional to gradients of an effective pres-ne Jinear stability analysis of the system, and using the

sure. With these considerations in mind, let us focus on th@|osed form expressions for the magnetic term, recently de-

relation between rotation and magnetic field. As a result ofjyed in Ref. [14], we obtain the following linear growth
centrifugal forcingN, may be either positive or negative, (ate:

depending on the relative values of the fluid’s densities. If

the inner fluid is more dense{>p,), No>0 and rotation b2

plays a destabilizing role. The opposite effect arises when \‘(n)= —3[NQ+Dn(p)N§—(n2—l)],
p1<p>. On the other hand, the azimuthal magnetic field con- 121+ 72)R

tribution Ng always tends to stabilize the interface. This in- ©)

dicates that the rotation-driven instability could be de""‘yeq/vhere
or even prevented if a sufficiently strong nonuniform, azi-

muthal magnetic field is applied in the plane of the flow. P2 1 3
A physical explanation for the stabilizing role of the mag- Dy(p) :_[ dln+ |- ,p(_”
netic field can be given based on its symmetry properties and 2 2 2
nonuniform character. Notice that such a field possesses a ) 5
radial gradient. The magnetic field influence is manifested as +lQ p+2 —0 pe+2 (10)
the existence of a body force due to field nonuniformity. The n-1/2 p2 12 p2 ’

field produces a force directed radially inward, that tends to

move the ferrofluid toward the current-carrying wiregions Ng =uoM?b/27a is the magnetic bond number for the per-
of higher magnetic field This force opposes the centrifugal pendicular field configuration, and=2R/b is the aspect
force and favors interface stabilization. This effect is similaryagtio. The aspect ratip should not be confused with the
to the gradient-field stabilization mechanism discussed bbressureQn represents the Legendre function of the second
Rosensweid 10] for inviscid three dimensional fluid flow kind, while the Euler's psi functiony is the logarithmic de-
problems, and by Zahn and Rosenswl@] for viscous, rivative of the Gamma functiofl9]. Notice that the function
unconfined ferrofluids. _ . Dn(p)=0 forn>0. In contrast to the nonuniform, azimuthal

~ Inorder to illustrate the role of the magnetic effects in thegppjied field discussed earlier, a uniform, perpendicular mag-
linear stages of the interface evolution, we plot in Fig. 2 thenetic field tends to destabilize the interface. If the interface is
dimensionless growth rate\(n)=[12(n,+ 7,)R3*/b?c] already unstable with respect to rotationén(>0), the in-
A(n) as a function of the mode numbey taking N, =200  troduction of the magnetic field increases the interface insta-
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25 azimuthal case may become not so simple in the perpendicu-
n lar field situation. Consider, for example, the calculation of
max . 8 :
the fastest growing mode*. In contrast to the simple ex-
20 pression forn,., obtained in the azimuthal cageee Eq.
(8)], the equivalent expression for the perpendicular configu-
Is ration cannot be written in a simple form. It is now given by

the solution of the transcendental equation

{a) NQ =0

10 b) Ng =50 1 9
(¢) Ng =100 n2=§ 1+NQ+%[n Dn(p)] Ng|. (11
(d) Nog =200
5 Numerical evaluation of Eq11) shows than,, (and, con-
NJ- sequently,n*) increases with the magnitude of the perpen-
B dicular applied field. In this case, larger values\gf tend to
1 2 3 4 3 increase the number of interface ripplege Fig. 3.

FIG. 3. Plot ofn,as a function oNg for increasing values of l,n Summary' we have ,Shown that the 'nCIUSf'On of mag-
N,,, andp=20. These curves are obtained by numerically solving"€tic effects into the rotating cell problem provides mecha-
Eq. (12). nisms for stabilizing/destabilizing the interface. Based on the

relative simplicity of the experimental Hele-Shaw setup, it

- . .. would be of considerable interest to perform experiments in
bility even further. On th.e other hand, |}‘ the outer fluid is Hele-Shaw cells simultaneously including centrifugal, mag-
more denseN,<0), the interface can still be deformed by neic and injection driving. The combination of these effects

the action of a perpendicular magnetic field. is likely to lead to new and exciting interfacial patterns in the
By comparing the perpendicular field growth rate eXprésmighly nonlinear regime.

sion (9) with its azimuthal field counterpakf), we notice
that the presence of the functid,(p) in Eq. (9) increases
the complexity of the problem. Simple expressions for the This work was supported by CNPq and FINEP.
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