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Synchronization of chaos in coupled systems
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The stability of synchronous chaos of coupled oscillators with diffusive and gradient couplings is investi-
gated. The stability boundaries of all transverse modes can be simultaneously drawn by justifying the boundary
of a single mode, according to a scaling relation. Therefore, the distribution of stable and unstable regions can
be explicitly shown in control parameter space. Bifurcations through different unstable modes, leading to
different spatial orders, are analyzed.

PACS numbd(s): 05.45—-a

Recently, chaos synchronization has become a topic of Re\)=—4esir?(7k/N), Im(\)=—2r sin(27k/N),
great interest, due to its theoretical significance and practical (2b)
applicationg 1-15. There have been some theories dealing k=0,1,...N—1,

with the stability of synchronous chaotic states in COUpquNhereDf(s) is the Jacobian of on s(t). Therefore thek
systems, like methods of master stability functighs] and =0 mode governs motion on the synch.ronized manifold and

eigenvajue analysi¢12,13. However, the.y are a_II FePre- 1=1,... N—1 modes determine the stability of the syn-
sented in the space of Rel and ImQ\), with A being the . 5n0ys state. If all thede— 1 transverse modes are stable
eigenvalues of coupling matrix, and not explicitly shown in a(j.e., corresponding to negative Lyapunov expongnie
control parameter space. In this paper, we extend the scalingyn find the stable synchronous state, and we cannot do so,
relation of Ref[6], and investigate chaos synchronization of gtherwise. Therefore, the stable synchronous chaotic region
coupled systems directly in diffusive and gradient couplingshould be found in the overlap set of the stable regions of all
parameter space, which is physically meaningful, and thefhese transverse modes.
the conditions and classifications for various types of bifur- |n Ref. [13] some of the authors of the present paper
cations can be identified for well defined phySical SituationSana|yzed the stable and unstable regions in the
‘We considerN identical coupled nonlinear oscillators Re(\)—Im(\) space, from which the bifurcation boundary in
with nearest COUpllngS and perIOdIC bOUndary Condltlons, phys|ca||y meaningfu| control parameter Spdsach as in
e—r space is not clear, because with this method separate
L . . . comparisons between all the eigenvalues of the coupling ma-
u()=t@)+e+nNru(+1-u@)+e=r trix with the distribution of the stability region is needed for
XTu(j—1)—u(j)), determw_ng the §t_ab|I|_ty. In order to conveniently indicate
(1) the stability condition ine—r space, let us study the struc-
ture of Egs.(2). We define the largest transverse Lyapunov
ji=1,2,...N, exponent(TLE) for the kth mode of N-particle system in
Egs.(2) as\K, which determines the stability boundary of
) N o _ this mode byr§=0. The structure of Eq2b) gives a func-
whereu(j) e R", the functionf is nonlinear and capable of {jon relation between the TLE’s for different mode numker
exhibiting chaotic solutionsg andr are scalar diffusive and 5nq different system sizW. In particular, for a given cou-
gradient coupling parameters, respectively, &hd anXn  pjing matrixI", the TLE’s of all modes can be obtained from

constant matrix linking coupled variables. Such equationghe T|E as a single mode. Let us consider a modé&-ofl
could represent a discrete reaction-diffusion equation with ,5de forN=4. where we have

species.
We are interested in bifurcations from synchronous cha- Re(N)=—2e, Im(\)=—2r. 3
otic states; these states reside on a synchronization manifo|d thi dify E6a) t
defined by M={u(1)=u(2)=...=u(N)=s(t)}, where ' thiscase, we can modify E¢a) to
the chaotic solutiors(t) satisfies the single oscillator equa- 7=DF(s)—(2e+2r)T)y;  (N=4). @)

tion s(t)=f(s). Stability of the synchronous state can be
determined by linearizing Eq1) abouts(t). From the spa- Then the stability analysis for this mode is directly shown in
tial Fourier transformation we can get the equation of spatiathe physical parametex—r space. The main point of this
Fourier mode$6,13] paper is we can numerically compute E4). for determining
the stability region of mod&=1 (alsok=N—1) for N=4,
) then the stability boundaries for all other modes0 can be
=(Df(s)+[Re(N)+iIm(N)]T) 7y, (28 drawn accordingly by applying the identities
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region of\} in bothe andr axes, which is a direct extension
of Eq. (4) in Ref. [6].

Numerical computation can be conducted as follows:
First, from Eq.(4) we can get the critical curve identifying : —
the stable region in the—r plane for thek=1 mode of the . & e
N=4 system, that is, the largest TLE of this mode crosses |
zero at the critical line, which can be done only numerically.
Then we can obtain critical curves for all other modes and = ./
for arbitrary N by applying the scaling transformation, Eg. - ] / Stable \
(5), for both abscissa and ordinate of ther() space. For !
stabilizing the synchronous chaotic state, we should require | ;
all transverse modesk¢0) to be stable, therefore in the
(e,r) space the region of stable synchronous chaos corre-
sponds to the overlap set of the stable regions of all trans- FIG. 1. (a), (b), (c). The three kinds of type I, II, and Il critical
verse modes. curves of system, Eql) with local dynamics, Eq(5), for N=4

To show the above analysis we take the coupled Lorenand k=1 mode, plotted in the gr) space.c=10, 8=1.0, p
oscillators as our example, where the extension to other ger=28.0 (which will be used for all the following figures
eral coupled systems is straightforward. The single Lorenz
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system reads 000 000
. @r=({1 0 0|]; MI={0 1 Of,
X=0(y—X), 0 0 0 0 00
y=px—y=xz, 6 and©
. 0 1 0
zZ=Xy— Bz, r—lo o ol
whereo=10, 8=1.0, andp=28.0, at these parameters the 0 0 O
motion is chaotic. We use E@6) as the local dynamics of
the coupled system, Eql), and consider different linking
matrix I'’s.

In Figs. 1@, 1(b), and 1c) we show three kinds of criti- may ask can we stabilize the synchronous chaos for suffi-
cal curves of types |, Il, and Ill for th&k=1 mode ofN ciently large systenN>1 by varying the diffusive and gra-
=4 in the (e,r) space for the linking matrices dient couplinge andr ? The answer is: for type | distribution

[Figs. 1@ and 2, we can do so by increasing the diffusive
0 0O 0 0 O coupling e, then the stable region always appears for small
r=l1 o o 01 0 gradient couplingr; for type Il distribution[Figs. 1b) and
' ' 3], we can also do so by increasiegwhile the stable re-
0 00 0 00 gions appear for both small and largéor for anyr if e is
and larger than a certain valighowever, for type Il distribution

[Figs. 1c) and 4, there is a critical system siZ¢., above
which the synchronous chaos cannot be stabilized whaeever

01 0 : . :

andr. For instance, in the case of Fig. 4, no stable synchro-
0 0 0}, nization can be found in ang—r region forN>5, because
0 0 O the overlap set of the stable regions of transverse modes is

empty.

respectively. The critical lines are justified by numerically = Second, for type | distribution the stable synchronous
computing the linear equatiorid) for zero largest Lyapunov chaos can be destabilized only by long wave mokie 1)
exponent, and the words “Unstable” and “Stable” indicate for any N (Fig. 2); while for both types Il and Il distribu-
unstable and stable regions of this mode, respectively. tions the homogeneous state can be desynchronized by both

In Figs. 2—4 we predict the stable regions for differknt long wave k=1) and short wavdk=N/2 if N is even
and N by applying the scaling relation of E¢5) and by  number, olk=(N—1)/2 if N is odd ong instabilities(Figs. 3
considering the stable regions of Figdat1(c), respec- and 4.
tively. The overlaps of all those stable regions are just the The most significant point is that Figs. 2 —4 predict not
regions for the stable synchronous chaotic state, indicated bynly the bifurcation parameters, but also the spatiotemporal
dotted regions. features of the motion after the instability of the synchronous

From Figs. 2-4 the instability condition, bifurcation chaos. In Ref[13], Hu, Yang, and Liu found a Hopf bifur-
modes, and the different bifurcation features for the threeation from chaos for the type I distribution, i.e., an oscilla-
kinds of instability distributions become apparent. First, wetion with typical frequency can be associated with the desyn-
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FIG. 2. FIG. 4. The same as Fig. 2 with replaced by
0 0 O 0 1 0
r=(1 0 o0f. r={0 0 O
0 0 O 0 0 O

The stable regions for different system size and different transverse
modes. The overlap of stable regions of all transverse modes is the
region of stable synchronous state, denoted by dotted regions. By
crossing the instability boundary through arrow H, we can observe

Hopf bifurcation from synchronous chaos.

20

chronization element after the instability of the synchronous
chaos. In Figs. 2 and 3 we find this kind of bifurcation exists 104
rather generallysee the arrows indicated by) Hvhere two 1
modes k and N—k for k# N/2) turn to be unstable simul-
taneously. In Ref[6], Heagy, Pecora, and Carroll revealed a
kind of short wave bifurcation, which can be easily found in
Figs. 3 and 4(see the arrows indicated by.S

In this paper, we focus on short wave bifurcation. In Figs. -204
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FIG. 5. The spatial order after short wave bifurcation.
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FIG. 3. The same as Fig. 2 with replaced by

0 0 O
0 0 O r=({o0 1 0},
r={o 1 0o 0 0 O
0 0 O R
e=0.3,r=14.0[see the square open point in Figdg. The system
By crossing the instability boundary through arrows H and S westate has the following characteristic;(t) =X5(t) =xs(t) =a(t),
can observe Hopf bifurcation and short wave bifurcation from syn-X,(t) =x4(t) =Xg(t) =b(t). Thus we haveababab spatial order:

chronous chaos, respectively. (@ AXypvst; (b) AXjj42(j=1,2,3,4) vst.
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3 and 4, when we cross the instability boundaries by follow-otic state in the form oAbabah This smallest spatial scale
ing the arrows S, a single mode=N/2 can become un- reasonably corresponds to the short wave instability
stable, indicating short wave instability. In R¢6] Heagy, (abababstructure indicates three spatial periods, indicating
Pecora, and Carroll addressed this type of instability antk=3 for N=6).

found periodic oscillations with smallest spatial scale after |n summary, we have investigated the chaos synchroniza-
short wave bifurcation. In our cases, we find chaotic motiontjon problem of coupled chaotic oscillators with both diffu-
with smallest spatial scale, i.e., short wave bifurcation besjve and gradient couplings. By applying the scaling relation,
tween two different chaotic states. This phenomenon is regq. (5), we are able to draw instability boundaries for all
garded as new and significant. Now let us consider the statgansverse modes from that of a single mode. Thus the dis-
variation along the arrow S in Fig(@. In the dotted region, tribution of stable and unstable regions of the synchronous
synchronous chaos is stable. After crossing the instabilityhaos can be explicitly shown in the physically meaningful
boundary through arrow S we examine the system state @&bntrol parameter space. From this distribution the instabili-
e=0.3,r=14.0(indicated by a squajeWe find an interest- ties for different modes can be predicted, and the spatial
ing state: all oscillators perform chaotic motions, and the sixorders after different mode bifurcations, in particular, Hopf
oscillators form two groupsx,(t)=xs(t) =xs(t) (statea)  bifurcation and short wave bifurcation from synchronous
andx,(t) =x4(t) =xg(t) (stateb), the motion shows on—off chaos, can be classified.

intermittency between these two groupandb. In Fig. 5a)

we plotAX; ,vst, and observe typical on—off intermittency;

in Fig. 5b) we presentAX; ;,,(j=1,2,3,4) vst, which is This research was supported by the National Natural Sci-
identically equal to zero, indicating synchronization. There-ence Foundation of China, the Nonlinear Science Project of
fore, as the synchronous chaos is desynchronized with ur€hina, and the Foundation of Doctoral Training of Educa-
stable mode&=N/2, we find the partially synchronized cha- tional Bureau of China.
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