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Finite-size effects of two-particle diffusion-limited reactions
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We have studied the finite-size effects of two-particle diffusion-limited reacienB—0, on a one-
dimensional lattice using the Monte Carlo method. The density at a finite lattice follows a poweC (8w,
~1t~* below the crossover time, and shows an exponential decay above the crossover time. The crossover time
depends on the lattice size and the bias field. We found second-order correction terms of the density decay as
C(t)~t Y1+ 0(t~¥8] for the isotropic diffusion of particles an@(t)~t~ {1+ O(t~ 4] for the maxi-
mum drift. We proposed the scaling function of the density give@@g~ L =2 (t/L?) + L 34 ,(t/L?) for
the isotropic diffusion an@(t)~ L~ 2f ,(t/L%?) + L~ %%, (t/L%?) for the maximum drift wherd, andf, are
scaling functions.

PACS numbd(s): 05.40—a, 05.60-k, 82.20—w

Diffusion-limited reactiong DLR’s) are interesting for a two-particle annihilations for the isotropic diffusi¢83]. Di-
nonclassical behavior of the density de¢dy-7]. DLR have  mensional crossovers of the reaction system have been stud-
been applied to studies of annihilation and coagulation pheted in tubular geometries where the size of the system in one
nomena such as electron-hole recommbination in semicorpr two directions is much smaller than in the third direction
ductors, exiton-exiton dynamics in tetra-mehtylammonium[34—39. They observed that the crossover time for the reac-
maganese trichloride, competing species in biology, aeros@jon A+B—0 ist,~W? for largeW whereW is the width of
dynamics and polymerizatiof8,8—10. In one-dimensional ine tube along a narrow directi¢85,37]
systems, the density of single species annihilatiar; A In the present paper we have studied the finite-size effects
—0, and coagulatiom\+A—A, decays much more slowly  gnq the second-order correction of the density decay on the
than a mean-field prediction regardless of a drift field yitsion-limited reaction of two particles annihilations for

[3-11. In diffusion-limited reaction of two specie&+B o isotropic diffusion of particles and for the maximum
—0, the density decays according to a power I&ft) .o

~t % with x=d/4,d=<d.=4 for the isotropic diffusion of
particles[12—17. Sanchoet al. have studied the chemical
reactionA+B—0 for different initial distribution of reac-
tants. They observed the long-wavelength components of th ) .
initial fluctuations determine the long-time decay of the re- omly selected particle attempts to hop to the left or right

actant decay17]. Lindenberget al. have studied DRL's for nearest-neighbor site with equal probabilities. In the drift
the different initial distribution of reactants. They observedcase, the particle attempts to hop the right with probability
the crossover behavior of density decays and predicted tHe+P)/2 or to the left with probability (1p)/2. In the
crossover timg18]. When one applies a maximum drift, the Present paper we took the maximum bgs1, i.e., the cho-
density decay exponent increases from1/4 tox=1/3ona  Sen particle only attempts to hop to the right direction. We
one-dimensional latticE19—24. used lattices up to fOsites with periodic boundary condi-
Exact solutions have been reported on single-particle artions. One Monte Carlo step corresponds to the number of
nihilations[25—-28 and two-particle annihilation9,3Q for hopping attempts equal to the number of remaining particles.
the isotropic diffusion of the particles. Finite-size effects of Initial densities were 20% of the full occupancy. Data of the
annihilation models have been studied on the single-particldensity were averaged over 1000 configurations.ferl0®,
reactions[30,37. Simon observed finite-size effects of the 200 configurations forL=10%, 20 configurations forL
single-particle annihilations and crossover from the power=10, andL=1CF.
law to exponential decay of the densit§0]. Cadilhe has In Fig. 1 we show the log-log plot of the density versus
studied the finite-size effects of reaction systems for the isotime with C,(0)=Cg(0)=0.1 for the isotropic diffusion as
tropic diffusion of particles. He estimated the prefactor of theshown in Fig. 1a), and for the maximum drift case as shown
density decay from the simulatid81]. Kreb et al. reported  in Fig. 1(b). Density decays according to a power |&4t)
the finite-size scaling of reaction-diffusion systef3g]. In ~t7* with x=0.256+0.005 for the isotropic diffusion and
the single species coagulation reaction they proposed a scad=0.31+0.02 for the maximum drift at long times and large
ing relation asC(z)=L3F,(z)+L°F,(z) with z=4Dt/L? lattice L=1CP. At a small lattice, we observed the finite-size
for the isotropic diffusion of the particles. They obtained theeffects as shown in Fig.(4) and Fig. 1b). At long times the
exponents aa=—1 andb=—2. Nohet al. have studied the density decays exponentially at the small lattice. As shown
second-order correctiod(t ') of the density decay on the in Fig. 1(c) the finite-size effects are also observed at the size
of lattice L= 10°. The crossover time of density decays from
the power law to the exponential decay is giventpy L?
*Email address: jaewlee@inha.ac.kr for the isotropic diffusion and,~L%? for the maximum

Monte Carlo simulations were performed for the cases of
isotropic diffusion and maximum drift of hopping particles
n a one-dimensional lattice. In the isotropic case, a ran-
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FIG. 1. The log-log plot of density versus tinta) for the iso-
tropic diffusion of particles,(b) for the maximum drift forL
=10°, 10%, 10°, and 16 from bottom to top, andc) for the isotro-
pic diffusion (upper curves and for the maximum drift(lower
curves for L=10° and L=1CF. Inset is the log-log plot ofa)

tY¥4C(0)~Y2C(t) versust~¥® and (b) tY3C(0)"Y2C(t) versus
t*1/24.
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FIG. 2. The log-log plot of C(t)t*—C(2t)(2t)*| versus time
for the isotropic casélower curve$ with x=1/4 and for the maxi-
mum drift (upper curveswith x=1/3. The straight lines are with
the slope— 1/8 (lower line) and — 1/24 (upper ling.

drift. In the inset of Fig. 1a) we plott*C(t)/{/C(0) versus
t~Y8 At long times we observed, the straight line regime
from which we concluded the second-order correction of the
density decay<C(t)~t X[1+O(t™Y)] with x=1/4 andy
=1/8.

Let us consider some physical quantities that characterize
the structure of the domain of the particles. These include the
densityC(t)~t~%, the average distance between the nearest
particles of the same speciks,(t) ~t#, the average distance
between nearest particles of different spetjggt) ~t?, the
average number of pairs of same-species particles per a site
Naa(t)~t~#, and the average number of pairs of different-
species particles per sité,g(t)~t~". The density of par-
ticles is a sum of the number of pairs of the parti38]

C(t)~Naa(t) + Npgg(t) + Nag(t) =2Naa(t) + Nag(t). @

The sum of the all interparticle distances adds up to the size
of the system

[Naa(t) +Ngg(t) [l aa(t) + Nag(t)l ap(t) ~ 1. (2)

For the isotropic diffusion, the asymptotic behavior of the
domain is given agaa(t) ~t¥4 1 45(t) ~t¥8 Naa(t) ~t ¥4,
andNpg(t)~t~%2[19,20,22. From Eq.(1) and Eq.(2) we
obtain  C(t)~2Npa+(1—2Naal an)/IaAg=ANas+BlAa,
whereA and B are constants. Therefore, the density decays
according to C(t)=At" Y4+ Bt 3=t~ A+Bt 8. In
Fig. 2 we show the log-log plot ofC(t)t*—C(2t)(2t)*|
versus time withx=1/4. We find the slope-1/8 that sup-
ports the second-order correctid@(t~*’®) in the isotropic
diffusion. In Fig. Xb) we present the density decay for the
maximum drift. The inset shows a log-log plot of
tY3C(t)/\/C(0) versust~¥?* We observed the second-order
correctionO(t~ 24 from the linear dependence in the inset.
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FIG. 3. The log-log plot of-*°C(t) versust/L? for the isotropic
diffusion for L=10%(0),10%(0),10°(A), andL=10F(+).

The crossover time of the density tis~L>? for the maxi-
mum drift. In Fig. 2 we show the log-log plot diC(t)t
—C(2t)(2t)¥| versus time withx=1/3 for the maximum
drift. The estimated slope is-1/24. In the maximum drift
case, the asymptotic behavior of the domain is given as
Naa~t Y3 Nag~t~ 7214 a~1t13 andl ,g~t38 [19,22-24.
From Eq.(1) and Eq.(2), we obtainC(t)=Ct 3+ Dt~ %8
=t~ C+ Dt 24 for the maximum drift whereC and D

are constant. Our results of simulation support this prediction
for the second-order correction.

We showed the finite-size scaling of density decay for the
isotropic diffusion of the particle as shown in Fig. 3 and for
the maximum drift as shown in Fig. 4 for various lattice 2
sizes. We consider the scaling function as

log[L™“C(t))

C(2)=LFo(2)+L°Fy(2),

whereF, andF; are scaling functions ang=t/L? for the
isotropic diffusion andz=t/L%? for the maximum drift. At
long-time limitsL — andt— o, kept constant, the density
is independent on the lattice size. Thus, we obtain the expo -
nents asa= —2x, b=—2(x+y) for the isotropic case and
a=—3x/2, b=—-3(x+y)/2 for the maximum drift case
where y is the exponent of the second-order correction of the 1 . 1 . L ; 1 .
density. From the scaling function we obtained the leading- * - - 2 0

order scaling function such as*?C(z)=F,(z=t/L?) for loglyL."

the isotropic diffusion. Data with different lattice sizes are all

collapsed on a single line as shown in Fig. 3. Similar col- FIG. 4. The log-log plot of.*>C(t) versust/L3?for the maxi-
lapses of data observed for the maximum drift case bynum drift with (&) x=0.32, (b) x=1/3, and(c) x=0.33 for L
L32C(z) =F4(z=t/L%? are shown in Fig. 4. In the maxi- =10°(0),10%(0),10%(A), andL=10°(+).

mum drift the typical length of particles is given by the super

diffusive behaviorL~t?3 So the scaling variable ig ~ x=0.31(2) for the maximum drift. However, the data col-
=t/L%2 for the maximum drift. We presented the data col-lapses of the scaling function were better %o 1/3 than for
lapses with three different valuesxas shown in Fig. 4. For x=0.31. But it is inconclusive to fix the exponexthrough

the maximum drift the exponent was predicted to 1/3 by our data because we only consider the leading term in data
the scaling argumeritl9,20. However, the exponent al-  collapses of the scaling function. The exponent of second-
ways observed lower valwe=0.31 in Monte Carlo simula- order scaling function are predicted by — 3/4 for the iso-

tion [19,22—-24. In our simulation we observed the exponenttropic diffusion ando= —9/16 for the maximum drift.

loglL>**c1
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In summary we have observed the finite-size effects okcaling exponent as= —1/2, b= —1/4 for the isotropic dif-
two species diffusion-limited annihilations. The second cor-fusion and asa=—1/2, b= —1/12 the maximum drift.
rection of the density is give b (t~ Y8 for the isotropic This work was supported by Brain Korea 21, BSRI 1998-
diffusion andO(t~ ¥4 for the maximum drift. We proposed 015-D00125, and Korea Research Foundation for the 21st
a scaling function of the density decay. We obtained theCentury.
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