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Random bond Ising systems on a general hierarchical lattice: Exact inequalities

Avishay Efrat and Moshe Schwartz
School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

~Received 12 November 1999!

Random bond Ising systems on a general hierarchical lattice are considered. Interesting inequalities between
eigenvalues of the Jacobian renormalization matrix at the pure fixed point are obtained. These lead to upper
bounds on the crossover exponents$f i%.

PACS number~s!: 05.50.1q, 75.10.Nr
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Exact inequalities have played an important role in
study of critical behavior in pure@1,2# and random@3,4#
systems. The purpose of the present Brief Report is to ob
an upper bound on the crossover exponents$f i%, near the
pure fixed point in a random bond Ising system on a gen
hierarchical lattice, where the renormalization group~RG!
transformation is exact@5#. Furthermore, since some ap
proximate RG schemes on real lattices share with
schemes on hierarchical lattices@Migdal @6# and Kadanoff
@7# ~MK ! and others@8,9## that particular property needed t
prove this inequality, it must be obeyed for real lattice,
least approximately~within those schemes!. In fact, since it
is believed that the critical behavior of an Ising system o
real lattice can be mimicked by that behavior on a prope
chosen hierarchical lattice@10–13#, it may suggest that the
result obtained in the following is general.

Consider a general hierarchical lattice described schem
cally in Fig. 1. The shaded area shown in~a! consists of a se
of lattice points where some of the pairs are joined. In~b!, a
typical shaded area is represented. The solid lines are b
to be iterated in constructing the lattice while the dash
ones are not to be iterated. The bold lines represent the
sibility for some of the bonds to be strengthened, multipl
by some constant. All three types of bonds carry a coup
Jab

12 ~for the bond joining sitesa and b!, governed by a
distributionP(Jab

i j ) that is identical for all bonds.~Note that
oneof the members of the pairab may be either 1 or 2.!

The renormalized coupling is given by

J̃125 f $Jab
12 %, ~1!

wheref depends only on couplings associated with the p
of sites~1,2! ~the shaded area, Fig. 1!. This implies thatJ̃i j

and J̃lm are not correlated if the pairs~i,j! and ~l,m! are not
identical. The renormalized distributionP̃( J̃i j ) is given by

P̃~ J̃i j !5E )
ab

dJab
i j P~Jab

i j !d@ J̃i j 2 f $Jgd
i j %# ~2!

and may serve to derive an infinite set of equations for
renormalized moments.

We denote

m5^Jab& ~3!

and
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G i5^~dJab! i&, i>2 ~4!

~there is no need to assume that the distribution is symme
with respect todJab→2dJab , but, of course, if we start
with a symmetric distribution, it will remain symmetric un
der renormalization!.

The recursion equations for the moments read

m̃5F@m,G2 ,G3 ,...# ~5!

and

G̃ i5Gi@m,G2 ,G3 ,...#. ~6!

We assume the existence of a pure ferromagnetic fixed p
at J* .0. This implies that

J* 5F@J* ,0,0,...# ~7!

and

G i* 50. ~8!

The linearized RG transformations near the pure fix
point have the form

dm̃5
]F

]m
~J* ,0,0,...!dm1(

j 52

`
]F

]G j
~J* ,0,0,...!G j ~9!

and

FIG. 1. A general hierarchical lattice is described schematica
In ~a!, the shaded area consists of a set of lattice pointsa, b,...,
where some of the pairs are joined. In~b!, a typical shaded area i
represented. The solid lines are bonds to be iterated in constru
the lattice, while the dashed ones are not to be iterated. The
lines represent the possibility for some of the bonds to be stren
ened, multiplied by some constantq.
2952 ©2000 The American Physical Society
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G̃ i5
]Gi

]m
~J* ,0,0,...!dm1(

j 52

`
]Gi

]G j
~J* ,0,0,...!G j . ~10!

It is clear thatG̃ i50 for all i if all the G i ’s vanish. Therefore,

]Gi

]m
~J* ,0,0,...!50. ~11!

Furthermore, when all theG i ’s are small,uG i u is of the order
of G2

1/2 or less~the odd moments may be identically zero, f
example!. Therefore, it is clear that

]Gi

]G j
~J* ,0,0,...!50 for j , i . ~12!

The Jacobian transformation matrix at the pure fixed poin
thus triangular, and its eigenvalues are just the diagonal
ments of the matrix.

We prove next the following properties of the eigenvalu
$l i%.
~a! All the eigenvalues are positive.

~b! l i 11,l i , ~13!

~c! The eigenvalues obey a convexity condition

l il j>l i 1 j . ~14!

Proof: Some straightforward algebra is needed to ob
the diagonal elements of the matrix in terms of the RG tra
formation of Eq.~1!. We find

l i5 (
~a,b!

F ] f

]Jab
~J* ,J* ,...!G i

, ~15!

where the sum is over all bonds~a, b! associated with the
pair ~1, 2! and the partial derivative is taken at the po
where all those couplings equalJ* .

Properties~a! and ~c! are proved by showing that

] f

]Jab
~J* ,J* ,...!>0. ~16!

Consider the system of spins in Fig. 1~without the implied
iteration that produces the hierarchical lattice!. The interac-
tion among the spins can be described in terms of a Ha
tonianH$sa ;s1 ,s2% that depends on the spins$sa% internal
to the shaded region and the external spinss1 and s2 . An
effective interaction betweens1 ands2 , Heff , is given by

Heff52 ln tr
$sa%

e2H$sa ;s1 ,s2%. ~17!

The most general form of an even Ising Hamiltonian depe
ing on two spins is

Heff~s1 ,s2!5C2Ks1s2 . ~18!

The couplingK is nothing but the renormalized couplingJ̃12
defined in Eq.~1!. Now, in the vicinity of the point where
Jgd

125J* for all ~g, d!, the HamiltonianH$sa ;s1 ,s2% is fer-
romagnetic and therefore the Griffiths-Kelly-Sherman~GKS!
inequalities apply@14,15#. Thus
is
le-

s

in
-

il-

-

]^s1s2&H

]Jab
>0, ~19!

where ^¯&H denotes thermal average with respect
H$sa ;s1 ,s2%. @The derivative is taken at the point whe
all the J̃gd’s equalJ* , but this is not crucial. For Eq.~19! to
hold, it is enough that all the couplings are ferromagn
ic.# The correlation^s1s2&H is given by @Eqs. ~18! and
~1!#

^s1s2&H5tanh~ J̃12!. ~20!

Now,

]^s1s2&H

]Jab

5
1

cosh2~ J̃12!

] J̃12

]Jab

, ~21!

so that, from Eq.~19!, it follows that ] J̃12/]Jab>0.
Property ~b! is now shown to hold by proving tha

] J̃12/]Jab,1 at any finite temperature. From Eq.~18! it is
clear that the renormalized couplingJ̃12 is given by

J̃125
1

4
tr

s1 ,s2

s1s2 ln tr
$sa%

e2H$sa ;s1 ,s2%, ~22!

so that

] J̃12

]Jab
5

1

4
tr

s1 ,s2

s1s2^sasb&12, ~23!

where ^sasb&12 is the average ofsasb with respect to
H$sa ;s1 ,s2% with s1 ands2 fixed. Now,

] J̃12

]Jab
<

1

4
tr

s1 ,s2

us1s2uu^sasb&12u5
1

4
tr

s1 ,s2

u^sasb&12u<1.

~24!

The equality sign can hold only at zero temperature~infinite
J’s!.

Denoting the maximal value of] J̃12/]Jab by m,1, we
arrive at the conclusion

l i<l1mi 21, ~25!

so that we have proved that the number of relevant inte
tions at the fixed point is finite.@The equality sign holds only
for the diamond hierarchical lattice~DHL! @5,16#, an only
case for which all bonds are equivalent.# It is obvious that
l1.1, but there is no such limitation onl2 . Therefore, the
condition for criticality of the pure fixed point isl2,1,
while for l2.1 we expect a random critical point with
different set of critical exponents. The above obvious con
tion for the criticality of the pure fixed point should be re
lated somehow to a Harris criterion@17# properly defined on
a hierarchical lattice. Indeed, in the special case of the DH
it follows directly from our analysis, as was shown a lon
time ago@18,19#, that the requirementl2,1 is equivalent to
a,0 ~with the dimension being the fractal dimension of t
lattice!. The connection of the condition onl2 with the Har-
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ris criterion on a general hierarchical lattice is not clear y
This is mainly due to the fact that for the DHL there is on
one independent eigenvaluel1 , while in any other hierarchi-
cal lattice the number of independent eigenvalues if larg
~It is equal, in fact, to the number of different sets of equiv
lent bonds in the shaded area connecting 1 and 2.! We hope
to come back to the relation with the Harris criterion in t
near future.

The behavior near the fixed point in the case t
l2 ,...,ln.1 is characterized byn21 crossover exponent
f2 ,...,fn with f i5yi /y1 andyi5 ln li /ln b, whereb is the
rescaling factor. From Eq.~25! follows an inequality for the
crossover exponents:

f i<11
~ i 21!ln m

ln l1
,1. ~26!
, in
t.

r.
-

t

We wish to conclude by emphasizing that the above
equalities hold not only for exact RG transformations
hierarchical lattices, but also for all other renormalizati
schemes~such as the MK scheme@6,7#!, in which the renor-

malized couplingsJ̃i j are not correlated and we may expe
the inequalities to hold also in cases where it is clear that
correlations are not important@9#.

It is tempting to speculate that the above results are g
eral and hold for reald-dimensional lattices, but due to th
appearance of correlations and many spin interactions u
renormalization, a proof, or a disproof, seems extremely
ficult.
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