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Numerical study of the spherically symmetric Gross-Pitaevskii equation in two space dimensions
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We present a numerical study of the time-dependent and time-independent Gross-Pit&&®yglduation in

two space dimensions, which describes the Bose-Einstein condensate of trapped bosons at ultralow temperature
with both attractive and repulsive interatomic interactions. Both time-dependent and time-independent GP
equations are used to study the stationary problems. In addition the time-dependent approach is used to study
some evolution problems of the condensate. Specifically, we study the evolution problem where the trap
energy is suddenly changed in a stable preformed condensate. In this case the system oscillates with increasing
amplitude and does not remain limited between two stable configurations. Good convergence is obtained in all
cases studied.

PACS numbgs): 02.70—-c, 02.60.Lj, 03.75.Fi

[. INTRODUCTION dimensions. The main features of BEC in two dimensions
under the action of a harmonic trap has been discussed by
Recent experiment$l] of Bose-Einstein condensation Mullin recently [9]. Also, there has been consideration of
(BEC) in dilute bosonic atomsalkali—-metal and hydrogen BEC in low-dimensional systems for particles confined by
atoms employing magnetic traps at ultralow temperaturesgravitational field or by a rotational containgt5]. Possible
have intensified theoretical investigations on various aspec&xperimental configurations for BEC in spin-polarized hy-
of the condensatf2—11]. The properties of the condensate drogen in two dimensions are currently being discussed
are usually described by the nonlinear mean-field Gross8,9].
Pitaevskii (GP) equation[12], which properly incorporates Recent numerical studies of the GP equation in three
the trap potential as well as the interaction among the atomspace dimensiong2-7] in time-independent and time-
The GP equation in both time-dependent and -independemtependent forms have emphasized that extensive care in nu-
forms is formally similar to the Schdinger equation with a merical integration is needed to obtain good convergence.
nonlinear term. The effect of the interaction leads to the nonWith the viability of experimental detection of BEC in two
linear term, which complicates the solution procedure. Therspace dimensions], here we perform a numerical study of
have been several numerical studies of the GP equation ithe time-dependent and time-independent GP equation in
three space dimensiofi3—7]. two space dimensions for an interacting Bose gas under the
A Bose gas in lower dimensions—one and twoaction of a harmonic oscillator trap potential. The inter-
dimensions—exhibits unusual features. For an ideal Bosatomic interaction is taken to be both attractive and repulsive
gas BEC cannot occur in one and two space dimensions atia nature.
finite temperature because of thermal fluctuati®$3]. The The nonlinear time-dependent and time-independent GP
absence of BEC in one and two space dimensions has alsmuations can be compared with the corresponding two types
been established for interacting uniform systdd®. How-  of the linear Schidinger equation. The stationary states in
ever, condensation can take place under the action of a trdpth cases have a trivial time dependence of the form
potential[9,14] both for an ideal as well as interacting Bose W (r,t) =exp(—iEt/A)¥(r) whereE is the parametric energy
gas. andt the time. As is well known the time-independent form
Although, there has been no experimental realization obf these equations determines the stationary funciign),
BEC in two space dimensions, this is a problem of greatas in the hydrogen—atom problem. The time-dependent
theoretical and experimental interest. In a usual experimerchralinger equation can also be directly solved to obtain
of BEC in three space dimensions under the action of a maghe full time-dependent solution in the case of the stationary
netic trap the typical thermal energg T, is assumed to be problems, from which the trivial time dependence exp
much larger than the energy of an oscillator quantu@m,  (—iEt/A) can be separated. In fact, the time-dependent meth-
wherekg is the Boltzmann constant, the critical tempera- ods have been successfully used for the bound-state calcula-
ture, andw the oscillator frequency. This will allow thermal tion in many areas of computational quantum chemists}.
oscillation in all three directions. Usually, in a typical experi- This way of extracting the stationary solution from the linear
mental situation the oscillator frequencies in three differentime-dependent Schdinger equation continues as a power-
directions X, y, andz, are different. It is possible to obtain a ful technique in the case of nonlinear time-dependent GP
guasitwo-dimensional BEC in a real three-dimensional trapequations.
by choosing the frequency in the third directien to satisfy In this paper we solve the stationary BEC problem in two
hiw,>KgT>hoy oy . In that case the energy for thermal dimensions using both the time-dependent and time-
fluctuation is much smaller than the oscillator energy inzhe independent GP equations in the cases of attractive and re-
direction. Consequently, any motion in thdirection will be  pulsive interatomic interactions and compare the two types
frozen and this will lead to a realization of BEC in two spaceof solutions. The time-independent GP equation is solved by
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integrating it with the Runge-Kutta rule complimented by the The time-dependent equatid@®.1) is equally useful for ob-
known boundary conditions at origin and infinif¢7]. The taining a stationary solution with trivial time dependence as
time-dependent GP equation is solved by discretization andell as for studying evolution processes with explicit time
the Gauss elimination method with the Crank-Nicholson-dependence.

type rule complimented again by the known boundary con- Here we shall be interested in the spherically symmetric
ditions[17]. We find that both the time-dependent and time-solution W (r,7)=¢(r,7) = @(r)exp(—iurh) to Egs. (2.1)
independent approaches lead to good convergence for thend(2.3), which can be written, respectively, as

stationary bound-state problem of the condensate. We also

i i -Fermi i 219 o 1 d
compare these solutions with the Thomas-Fermi approxima; 7~ 1 2.2 —mw2r2+gN|cp(l',T)|2—iﬁz_}(p(l’ﬂ')

tion in the case of repulsive interatomic interaction. 2mr ar dr 2

In addition to obtaining the solution of the stationary
problem the time-dependent GP equation can be used to =0, (2.4
study the intrinsic time-evolution problems with nontrivial )
time dependence and in this paper the time-dependent ap-| _ ﬁ_}iriJr Em 224 gN|o(r)|2— (r)=0
proach is also used to study some evolution problems. Spe-| 2mr dr dr 2 @ gile gt =u:

cifically, we study the effect of suddenly altering the trap- (2.5
ping energy on a preformed condensate. We find that in thig o . . .
case instead of executing sinusoidal oscillations between thEN€ above limitation to the spherically symmetric solution
stable initial and final configurations as in standard time-IN Z&ro angular momentum stateduces the GP equations
evolution problems governed by the linear Safinger equa- " two physpal space dimensions to one—d.|men3|onal differ-
tion, the condensate executes oscillations around the stabfditial equations. We shall study numerically these one-

initial and final configurations with ever-growing amplitude. dimensional equations in this paper. _ _
In Sec. Il we describe the time-dependent and time- As in Ref.[6], it is convenient to use dimensionless vari-

independent forms of the GP equation. In Sec. Ill we de8Ples defined byx=r/an,, and t=7w/2, where ay,

scribe the numerical method in some detail. In Sec. IV we= VA/(Mw), a=ul(hiw), $(X)=an2mgNe(r)/#, and
report the numerical results and finally, in Sec. V we give a/(X,t) =anoV2me(r,7). In terms of these variables Egs.

summary of our investigation. (2.4 and (2.5 becomes, respectively,
19 a0 , .0
Il. NONLINEAR GROSS —PITAEVSKII EQUATION - ;&X&-i-x +en|g(x,t)|7—i r P(x,1)=0,
At zero temperature, the time-dependent Bose—Einstein (2.6)
condensate wave functiof (r,7) at positionr and timer
may be dgscribed by the self-consistent mean—figld nonlingar _ l ix—+x2+c|¢/(x)|2—2a H(x)=0, (2.7
GP equation12]. In the presence of a magnetic trap this X dx™ dx

equation is written as N )
where n=mgN/(7%°) is the reduced number of particles

2 1 P andc==*1 carries the sign o c=1 corresponds to a
— =—V?+ -mo?r?+gN|¥(r,7)|?—ih —|¥(r,7)=0. repulsive interaction and=—1 corresponds to an attractive
2m 2 ar interaction. The normalization condition, E¢.2), of the
(2.3) wave functions become

Herem is the mass of a single bosonic atosthe number % ) 1 (= )
of atoms in the condensat®w?r /2 the attractive harmonic- 1= j lg(x,1)|*x dx= ﬁJ lp(0[*xdx. (2.9
oscillator trap potentiaky the oscillator frequency, arglthe 0 0

strength of interatomic interaction. A positigecorresponds \ye shal he using these two slightly different normalizations

to a repulswe Interaction a_nd a negatigdo an attractive ¢ o time-dependent and time-independent wave functions
mter_actlon. The normalization condition of the wave func—fOr future numerical convenience.

tion'is An interesting property of the condensate wave function
is its mean-square radius defined by

f dr|W(r,t)[>=1. (2.2 . 1
<X2>:j X2 (%, 1)]?x dx= —f X2 (x)|?x dx.
0 NJjo

For a stationary solution the time dependence of the wave (2.9
function is given byW(r,7) =exp(—iu#h)¥(r) whereu is
the chemical potential of the condensate. If we use this form

. . . . 1. NUMERICAL METHOD
of the wave function in Eq(2.1), we obtain the following v c ©

stationary nonlinear time-independent GP equafiti: A. Boundary condition
) Both in time-dependent and time-independent approaches
fi 1 we need the boundary conditions of the wave functiox as

0 w2, T 2.2 2 _
2mV +2mw re4+gN|w(r)| M}\P(r) 0.

—0 and . For a confined condensate, for a sufficiently
(2.3 largex, #(x) must vanish asymptotically. Hence the non-
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linear term proportional td(x)|3 can eventually be ne- this equation can be discretized by using the wave-function

glected in the GP equation for largeand Eq.(2.7) becomes components at timg, or t, . =t +A. If one uses the wave-
1d d function components at timig,, Eq. (3.5 is discretized as

— X — =0. .

T X dxdx X*=2a|Y(x)=0 @9 i =) 1 ko .k

o _ _ . _ —A :_ﬁ[d’ju_zd’j"'(f’j—l]

This is the equation for the oscillator in two space dimen-

sions in the spherically symmetric state with solutions for 1

a=1,3,5... etc. A general classification of all the states of m[d)}(*l_ ¢}< 1

such an oscillator is well under contrfd8]. In the present

BEC problem, Eq(3.1) determines only the asymptotic be- 1 | 2
havior. If we consider Eq(3.1) as a mathematical equation +x2= = 4¢ ¢l ¢ (3.6)
valid for all a and largex, the asymptotic form of the physi- X x2 [

cally acceptable solution is given by
This is an explicit differencing scheme since, givératt,,
3.2 it is straightforward to solve fot att,,; [17]. One should
start with an approximately known solution tatand propa-
gate it in time until a converged solution is reached. We
whereN¢ is a normalization constant. Equati@?2) leads to  confirm in our study that this simple scheme leads to slow

X2
lim zp(x)chexp{— E+(a—1)lnx ,

X—

the following asymptotic log derivative convergence and large unphysical oscillations in the solu-
tion.
lim l/f'(x) —x+a_1 3.3 One can express the derivatives on the right-hand side of
e W(x) X | ' Eq. (3.6) in terms of the variables at timtg, ; [17]. Then the

unknownqﬁ]“1 appears on both sides of the equation and one

which is independent of the constdwi¢ and where the prime has an implicit scheme. We find that the implicit scheme

denotes the derivative with respectxo improves substantially the numerical accuracy and conver-

Next we consider Eq(2.7) asx—0. The nonlinear term gence rate. However, we find after some experimentation
approaches a constant in this limit because of the regularitthat if the right-hand side of E@3.6) is averaged over times

of the wave function ak=0. Then one has the following t, andt,,,; one has the best convergence. This is a semi-

usual conditions: implicit scheme based on the Crank-Nicholson scheme for
) discretization[19]. We use the following rule to discretize
(0)=constant, #'(0)=0, (34 the partial differential equatiof8.5) [17,19
as in the case of the harmonic oscillator problem in two kil
space dimensior{4.8]. Both the small- and large-behaviors (¢ "~ &) __ i[(¢k+1 2¢k+l+¢k+1
of the wave function will be necessary for a numerical solu- A oh2 It J
tion of the GP equation in time-dependent and time- " -
independent forms. H(Pj1m 207+ ¢ 1)]
. 1
B. T|me-depenQent approach: + m[((ﬁﬁll ¢k+1)+(¢1+1 ¢J )]
Evolution and stationary problems ]

First we describe the numerical method for solving the 1, 1 |¢J| 1y gk
time-dependent equatig@.6). For a numerical solution it is o X ; (¢ "+ ).
convenient to make the substitutighix,t) = ¢(x,t)/x in this i J
equation, when this equation becomes (3.7

# 14 1 5 |p(x,0)|2 . a A similar discretization rule has been used for the solution of

Tl XX e X 2 & ¢(x,)=0.  the GP equation in three space dimensifgis The first and

(3.5 second space _derivatives of the wave _function as well as the
wave function itself have been approximated by the average
A convenient way to solve Eq3.5 numerically is to dis- over their values at the initial timg and the final timet . ;.
cretize it in both space and time and reduce it to a set of his procedure leads to accurate and stable numerical results.
algebraic equations which could then be solved by using th&onsidering that the wave function is known at titpe Eq.

known asymptotic boundary conditions. We discretize thls(3 7) is an equation in three unknownsd;ﬁ’ll ¢k+l and
equation by using a space stepnd time ste@ with a finite ¢J . In a lattice ofN points Eq.(3.7) represents a tridiago-
difference scheme using the unknomﬁ, which will be an  nal set forj=2,3,...,0N—1). This set has a unique solution

approximation of the exact solutiof(x; ,t,), wherex;=jh if the wave functions at the two end poinrtéj” and ¢',§,“
andt,=kA. As Eg.(3.5) involves both time and space vari- are known. In the present problem these values at the end
ables it can be discretized in more than one way. The tim@oints are provided by the known asymptotic conditions. The
derivative in Eq.(3.5) involves the wave function at timeg  tridiagonal set of equations is solved by the Gauss elimina-
andt,+A. As A is small, the time-independent operations intion method and back substitutioh7] using a typical space
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steph=0.0001 and time step =0.03. Although the itera- y' =G(X,(y)), (3.10

tive method should work for any value d&f, we found the

convergence to be faster with this value dofand we used Wwith y=xy', where the prime denotes tRelerivative. With

this value throughout the present investigation. this realization, a numerical integration of E®.7) can be
The time-dependent method could be used to study stamplemented using the following four-point Runge—Kutta

tionary as well as time-evolution problems. First we considerule [17,20 in steps ofh from x; to X 1:

the stationary problem. For the ground and the first excited

states of the condensate we start with the following analyti- Yjv2=¢je1t h¢1’+1' 31D
cally known wave functions of the harmonic oscillator prob- , -
lem (3.1) [18]: Xj+1¥j 1= X T 5(Sot 28+ 28, +53),  (3.12
H(X) =Xh(X) = \2x exp( — x2/2), (3.9 where
SOZhG(XJ,I/IJ), (313
H(X)=XP(X)=\2x(1—x?)exp( —x%/2), (3.9

B h h(X; ¥ +o/2)
respectively, at an initial timé=0. We then repeatedly s1=hG XJ+§v'/’j+W : (3.19
propagate these solutions in time using the Crank—
Nicholson—type algorithm, Eq(3_.7). The boundary con_di— h h(x; ! +5,/2)
tion, Eg. (3.4), that ¢(0)=0, is implemented at each time $;=hG|x;+ 5,4+ J—h/ , (3.1
step[17]. Also, the solution at each time step will satisfy the 2 2(x;+hi2)
asymptotic condition, Eq3.2). Starting withcn=0, at each h(x.! +$,)
time step we increase or decrease the nonlinear constant S3=hG|x: +h, iy + L (3.16
by an amountA; typically around 0.01. This procedure is U (xj+h)

continued until the desired final value of is reached. Then i . . . .

the final solution is iterated several tim@eetween 10 and 40 Equation(2.7) is integrated numerically for a givem using
times to obtain a stable converged result. The resulting sothiS algorithm starting at the originxE0) with the initial
lution is the ground state of the condensate corresponding toundary condition, Eq3.4), with a trial ¢(0) and a typical

the specific nonlinear constach. We found the conver- SPace stefh=0.0001. The integration is propagated xo
gence to be fast for smaltn|. However, the final conver- =Xmax Where the asymptotic condition, E.3), is valid.
gence of the scheme breaks down|df| is too large. In 'Ijhe.agreement between 'the numerically cal_culated log de-
practice these difficulties start farn>20 for the ground rivative of the wave functlon a'n.d the _theoretlcal resullt, Eq.
state for a positivec (repulsive interactionin a computa- (3.3), was enforced to five significant figures. The maximum

tional analysis in double precision. For an attractive interacY2lué Of x, up to which we needed to integrate EG.7)
tion there is no such problem as the GP equation does néimerically for obtaining this precision, iga—=5. If for a
sustain a large nonlinearitgn| as we comment on in detail &l ¥(0), the agreement of the log derivative cannot be
in Sec. Il C. obtained, a new value af(0) is to be chosen. The proper
As the time dependence of these stationary states is trivi&hoice of(0) was implemented by the secant method. Even
— (x,t) = y(x)exp(=i2at)—the chemical potentiak can with this method, sometimes it is difficult to obtain the
be obtained from the propagation of the converged groundPropPer value of)(0) for a givena. Unless the initial guess
state solution at two successive times, es(x,t) and IS “right” and one is sufficiently near the desired solution,
Y(X,ts,). From the numerically obtained ratio the method could fail, specially, for larden| and lead nu-

(Xt (X, tes 1) = exp(2ad), @ can be obtained as the meripally to_either the trivial solu_tiorzyx(x)=0 or an expo-
time stepA is known. nentially _ d|ve_rgent nonnormalizable solution in the

The time-dependent method could also be used to stud§Symptotic region.
evolution problems. One such evolution problem describes
the fate of the condensate if the trap potential is removed or IV. NUMERICAL RESULT
altered suddenly after the formation of the condensate. As a
stable condensate is formed under the action of the trap po-
tential, after a sudden change in the trap potential, the con- First we consider the ground-state solution of £47) for
densate will gradually modify with time. To study the time different« in cases of both attractive and repulsive interac-
evolution of a condensate wave function as the trap is retions using the time-independent method. In the presence of
moved or altered suddenly, we have to start the time evoluthe nonlinearity, for attractivérepulsive interatomic inter-
tion of the known preca|cu|a‘[ed wave function of the Con-action, the solutions of the GP equation for the ground state
densate with the initial trap potential and allow it to evolve in appear for values of chemical potentiai<1 (@>1). The
time using the time-dependent GP equation with the full nonfelevant parameters for the solutions—the wave function at
linearity but with the altered trap potential, which could bethe origin ¢(0), reduced numben, and mean-square radii
zero. (x2>—are listed in Table I. The numerical integration was
performed up 1o Xnhn=5 with h=0.0001 where the
asymptotic boundary condition, E¢3.3), is implemented.

The time-independent GP equatigh?) has the following Using the known tabulated values ofin each case we
structure: also solved the time-dependent GP equation and the wave

A. Stationary problem

C. Time-independent approach
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TABLE 1. Parameters for the numerical solution of the GP
equation(2.7) for c==*1 for the ground-state wave function. The
first four columns refer to the attractive interactios —1 and the
last four columns refer to the repulsive interaction 1.

a $O0) n (x® a  ¥0) n (x?)

1.0 0 0 0 1.0 0 0 0

0.8 0.9185 0.3663 0.9030 1.2 0.8719 0.4353 1.1027
0.4 1.6795 0.9147 0.7297 1.6 1.4415 1.5276 1.3219
—0.4 2.8255 1.4798 0.4757 2.2 1.9276 3.7509 1.6741
—2.0 4.6249 1.7695 0.2400 3.0 2.3626 7.8377 2.1679
—4.0 6.3252 1.8319 0.1385 4.0 2.7786 14.7609 2.8041

functions and energies so calculated agree well with the re-
spective quantities calculated with the time-independent ap-
proach. The solutions were obtained using space htep
=0.0001, time ste@\=0.03, and the parameter;~0.01.
The largest value ok used in discretization Eq3.7) is
Xmax= 10. The wave functions for different values @f(and

n) for the attractive and repulsive interparticle interactions
for the cases shown in Table | are exhibited in Figs) &and
1(b), respectively, where we plaf(x) vs x using the time-
dependent and time-independent approaches. The curves in
Figs. 1@ and Xb) appear in the same order as the rows in
Table | and it is easy to identify the corresponding values of
a from the values ofy/(0) of each curve. From Figs.(d)

and Xb) we find that the nature of the wave functions for
these two cases is quite different. However, the wave func- FIG. 1. Ground-state condensate wave functigr) vs x for (a)
tions calculated with time-dependent and time-independendttractive andb) repulsive interparticle interactions using the time-
approaches agree reasonably with each other. dependent(dashed ling and time-independentfull line) ap-

In the absence of previous solutions of this problem weproaches. The parameters for these cases are given in Table I. In the
compare the stationary solutions in the repulsive case (time-dependent method we used time st&p=0.03;A;=0.01,
=1) with those obtained via a well-known approximation, space step=0.0001, an&n,,=8; in the time-independent method
e.g., the Thomas-Fermi approximation. In this approximatiorwe used space stép=0.0001 andky,q,=5. In the case of the re-
the kinetic energy term in Eq2.7) is neglected and one has Pulsive interparticle interaction we also show the solution, Eg.

the following simple approximate solution: (4.1, corresponding to the Thomas-Fermi approximatidashed-
dotted ling. The curves appear in the same order as in Table | with
W(x)= ~/2a—x2, (4.2 the lowermost curve corresponding to the first row.

for x><2a and zero otherwise. In Fig.() we also plot the the number of time iterations, especially for a large value of
Thomas—Fermi approximation, E@¢4.1). We find that as |cn|, for a fixed integration time stefs, or the stepA; by
expected, for a large condensate, this approximation is a re&hich the nonlinear constant in the GP equation is increased
sonable approximation. However, it turns out to be a badat each time step until the final value of is reached. We
approximation for a small condensate. show this variation in Figs. (3) and Zb) where we plot

It is appropriate to comment on the numerical accuracy of#/(x,T)| as a function of reduced tim&=t/0.03 for x=0
the present time-dependent and -independent methods, whielmd 2 for different choices af andA; in the repulsive case
seems to be limited typically by the difference between thefor n=3.7509 andr= 2.2 corresponding to the fourth row of
time-dependent and -independent solutions in Fig. 1. Wheitable I. The zero of reduced tinleis made to coincide with
the solution can be obtained numerically, as in the casethe time stept, at which the full nonlinear constamn is
shown in Table |, the time-independent method can yieldobtained for the first time during iteration. This choice of
very accurate results. This accuracy can be increased by cotime will allow us to compare the fluctuations of the solution
trolling the space step andx,,,. This is not so in the case during the time propagation of the full GP equation. In Fig.
of the time-dependent method, where the numerical resul(a) we present our results fod=0.03 and for A;
exhibits small periodic oscillation after iteration, specially =0.018 754 and 0.004 6886. In Fig(k2 we present our
for large values ofcn| which we detail below. results forA,;=0.004 688 6 and foA =0.03, and 0.05. From

The numerical solution of the time-dependent method is=igs. 2a) and Zb) we find that there is a numerical oscilla-
independent of the space steprovided that a typical value tion of the solution with time in this approach which is in-
aroundh=0.0001 is employed as in the present study. Nodependent of small variations &f near 0.03 and\; around
visible difference in the solution is foundlifis increased by 0.01. These oscillations determine the numerical error of the
a factor of 2 or 3. However, the solution is more sensitive totime-dependent approach and become larger when we em-
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25— T — T T TABLE Il. Amplitude of oscillationA(x,T) (in units of 0.02 of
L ] |(x,T)| at different timesT for x=0 and 2 calculated with\
x=0 =0.03 andA;=0.004 688 6 in the repulsive case fon=3.7509.
20 » WYY AW The average value of convergéd(0,T)|=1.9310 and|(2,T)|
S " =0.6667.
— 15 / 4
= 1.5_ y a | T= 0 167 294 406 533 645 791
&; ' |A(0,T)| 154 127 332 293 413 449 735
Z 10pH =
° 4’ X=2 ] T= 0 162 291 400 536 637 789
' 7 < J |A2,T)] 0.77 095 113 133 143 201 277
05 4 —
Vd
o 7/ -
_ S R R S are oscillating with time, at a givei this error could be
200 0 200 400 600 800 smaller or even zero. Considering that we are dealing with
T nonlinear equations these errors are well within the accept-
3.0 ——1— — able limits. The errors shown in Table Il would also be the
i v typical errors in time-evolution problems which we study in
25 'ﬂ'llpr Sec. IVB. o . . -
| i ,‘”'I',l'l\i",r _ For repulsw_e interaction, it was mcreasmgly dlfflcul_t to
2ok XTON\ AI‘| ,ﬁ’,‘ln\“","'n:l i find the solution of the GP equation using both time-
— : WW&WW dependent and tlme—lndep(_endgnt methods for Iarger nonlin-
& ' ! b earity than those reported in Figgaland Xb). The inputs
X 151 (b) P of the time-independent method ane and an appropriate
= i T I” #(0). In this method it became difficulfor impossiblg to
1.0 x=2 Hl find the appropriate/(0) and find a solution for largen
e Sl ', l'lll‘bl (>20). For large nonlinearity the secant method led to a
0.5F L i radially excited state for the appropriag€0). In thetime-
r | | | | 1 dependent method the only input is the valuecof For a
0.0— ' ' ' ' largecn in the repulsive case, the numerically obtained so-
200 0 200 T 400 600 800 lution for the wave function shows many oscillations and is

. clearly unacceptable physically. A Crank-Nicholson—-type

FIG. 2. Ground-state condensate wave funcfi(x, T)| vs re-  approach was also used to solve the GP equation in three
ducgd timeT=t/0.03 forx=0 and 2 in the repulswe case for the space dimensionEg]_ The numerical |nstab|l|ty also set a
nonlinear constantcn=3.7509 for: (8 A=0.03, and A;  |imitin that investigation in finding a stationary ground-state
=0.004 688 6(full line), and 0.018.754dashed ling and (b) .Al solution for large values of nonlinearity.
—0.004688 6 and fon =0.03 (full line), and 0.05(dashed ling For attractive interparticle interaction, the wave function
The zero ofT is taken to be the time at which the full nonlinearity is more sharply peaked &t=0 than in the case of the repul-
is achieved for the first time. sive interparticle interaction and one has a smaller reduced

. , numbern and mean square radigg?). In this case we find

ploy aA very different from 0.03, o, very different from  om Taple | that with a reduction of the chemical potential
0.01. The oscnlatlons_ can really be large if an IMproper, the reduced numben increases slowly and the mean
value of stepd or A, is choosen as can be seen from Fig.square radiugx?) decreases rapidly, so that the density of
2(b) for A=0.05. The results remain stable if we reducene condensatp=n/(x?) tends to diverge as tends to a
these steps up th~0.01 andA,~0.003. For very smaldy  maximum valuen,,,,. The increase in density lowers the
andA accumulative errors also increase. This accumulativgnteraction energy. The kinetic energy of the system is re-
numerical error increases as the number of iterations is Vel¥ponsible for the stabilization. As the central density in-
large (several thousangiand a large number of iterations is creases further for stronger attractive interparticle interac-
needed to cover a given time interval with a small time SteRion, kinetic energy can no longer maintain equilibrium of
A. o .. the system and the system collapses. Consequentlyn for

We show a quantitative account of the above OSCI||atI0n>nmaX, there is no stable solution of the GP equation. Nu-

in Table Il where we plot the maximum error [@(X,T)|  merically, from a plot ofn vs 1jp we find this maximum
(amplitude of oscillation of/(x,T)|) for x=0 and 2 at dif- |, mber consistent with~2=0 to be

ferent times calculated with stepa=0.03 and A;
=0.004 688 6. We find that the error increases slowly, but
not necessarily monotonically, with time. The average value
of the converged(0,T)| is 1.9310 and that foj(2,T)| is
0.6667. The maximum deviations from these values, ahere is no such limit om in the repulsive case. In that case
shown in Table II, do not occur at the same value3.ofVe  with the increase of the chemical potentiakhe condensate

find from Table Il that for smalT(~0) the maximum aver- increases in size as the number of particles in the condensate
age error in|y(x,T)| is about 1%. FoiT~800 this maxi- increases. These behaviors of the Bose—Einstein condensate
mum average error could be as high as 4%. As these erroig two dimensions were also noted in three dimensions

Nma= 7N max= 1.88. (4.2
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FIG. 3. Condensate wave functi@r(x) in the repulsive case at

different timesT =1/0.03 for an expanding condensate after the trap /G- 4. The central probability density{{(O)|2 in the repulsive
is removed suddenly &t=0. The initial condensate has=8, and ~ Case at different time$=1/0.03 for an oscillating condensate with

the time evolution is performed using time stdp=0.03, A, n= 38 after the trap energy is suddenly reduced to haK-a0. The
=0.01, space step=0.0001, antkz,=15. |4(0)|? for condensates corresponding to the initial and final traps
are denoted by the two straight lines. The time evolution is per-

. . . . formed using time stepA=0.03, A,;=0.01, space steph
[10,11. However, in three dimensions the corresponding_ g ggo1 andk,, .= 15.

maximum value Was® .= 4Nmnada|/an,~2.30[10].

Both the time-dependent and time-independent apthat the oscillation increases with time. In our numerical
proaches are equally applicable for spherically symmetric rastudy we find that after a very large number of iterations
dially excited states. For the first excited state, with one nodgseveral thousanglshe amplitude may become very large.
in the wave function, we verified that the convergence was aglowever, we do not know if this result makes sense physi-
good as in the ground-state case reported here. However, it élly as the cumulative numerical error of the type shown in
a routine study and we do not report the results here. Fig. 2 will also grow after a very large number of iterations,
which will possibly invalidate our conclusion. However, the
solution presented in Fig. 4 is stable numerically and is the
acceptable physical solution of the problem after a small

Next we consider two time-evolution problems using thenumber of iterations. This interesting behavior can possibly
time-dependent method. We consider the ground state in tHee observed experimentally and deserves further theoretical
repulsive case witltn=_8. In the first problem, at=0, the  and numerical studies. In Fig. 5 we plot the wave functions
trap is suddenly removed. In the secondtat0, the trap of the system at different times which have very acceptable
energy is suddenly reduced to half of the starting value. Irand smooth behavior. As the number of particles of the sys-
both cases we study how the system evolves with time byem continues fixed, the wave functions of smaller ampli-
solving the time-dependent GP equation using time dtep tudes have larger spacial extensibmean square radius
=0.03, A;~0.01, and space step=0.0001. Both these (2.9)] so that the normalization condition, E.8), is pre-
problems are intrinsic time-dependent problems and can bgerved.
studied numerically and experimentally.

The condensate cannot exist in the absence of the trap. In 3 ' I ' I '
the first case after the trap is removed &t0, the radius of
the condensate increases and the wave function extends over
a larger region of space. We solve the time-dependent GP
equation at different times. In Fig. 3 we plot the wave func-
tion at different reduced time$=t/0.03. The condensate
increases in size monotonically with time and eventually dis-
appears.

In the second problem &t 0, we reduce the trap energy
suddenly to half of the initial value corresponding to a stable
final configuration for the condensate in the repulsive case.
The system is now found to oscillate between the initial and
final stationary states. In the absence of the nonlinearity, the
system executes sinusoidal oscillations between the two
stable configurations. However, in this nonlinear problem the
system executes oscillations with evergrowing amplitude. To
illustrate this oscillation in Fig. 4 we plot the central prob-  FiG. 5. Condensate wave functiof(x) at different timesT
ability density|¢(0)|? versus reduced tim&=t/0.03. The  =t/0.03 for an oscillating condensate after the trap energy is sud-
|4(0)|? for condensates corresponding to the initial and finaldenly reduced to half af=0. All parameters are the same as in
trap energies are denoted by the two straight lines. We sefg. 3.

B. Evolution problem

v (x)
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V. SUMMARY peaked near the origin for attractive interatomic interaction.

. . For a repulsive interatomic interaction the wave function ex-
In this paper we present a numerical study of the Gross;

Pitaevskii equation for BEC in two space dimensions undetends over a larger region of space. In the case of an attrac-

the action of a harmonic oscillator trap potential for bosonic'EiVe potential, the mean square radius decreases with an in-
PP crease of the number of particles in the condensate.

atoms with attractive and repulsive interparticle interactionsCOnseCIuently a stable solution of the GP equation can be

using time-dependent and time-independent appro_achegbtained for a maximum number of particles in the conden-
Both approaches are used for the study of the statlonargate as given in Eq4.2)

problem. In addition some evolution problems are studied by In addition to the stationary problem we studied two evo-

the time-dependent approach. We derive the boundary con- .. : o
ditions Eqgs.(3.3) and(3.4), of the solution of the dimension- lution problems using the time-dependent approach. A stable

) o bound state is considered and the trap potential is suddenly
less GP equat|or(§.6)_and(2.7). The_se boundary cond_ltlons removed or reduced to half a&0. If the trap is removed
are used for the solution of the stationary problem using both

the time-dependent and time-independent approaches, suddenly, the system gradually and monotonically increases

The time-dependent GP equation is solved by discretizin in size with time and eventually it disappears occupying the

L . “NY hole space with zero density. If the trap energy is suddenly
!t using a Crank Nlchol_son_ type scheme, whgrea_s the tIrnereduced to half, the system oscillates around the two station-
independent GP equation is solved by numerical integration - ; o .

. . .ary positions. The amplitude of the oscillation continue to
using the four-point Runge-Kutta rule. In both cases numeri-

e ; X increase with time. This behavior is interesting and can be
cal difficulty appears for large nonlinearitycig>20). For tudi . ;

. . . SNl udied experimentally in the future.
medium nonlinearity, the accuracy of the tlme-lndependen§
method can be increased by reducing the spacehstdpw- ACKNOWLEDGMENTS
ever, the solution of the time-dependent approach exhibits
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