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Numerical study of the spherically symmetric Gross-Pitaevskii equation in two space dimensions

Sadhan K. Adhikari
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, 01.405-900 Sa˜o Paulo, Sa˜o Paulo, Brazil

~Received 8 February 2000!

We present a numerical study of the time-dependent and time-independent Gross-Pitaevskii~GP! equation in
two space dimensions, which describes the Bose-Einstein condensate of trapped bosons at ultralow temperature
with both attractive and repulsive interatomic interactions. Both time-dependent and time-independent GP
equations are used to study the stationary problems. In addition the time-dependent approach is used to study
some evolution problems of the condensate. Specifically, we study the evolution problem where the trap
energy is suddenly changed in a stable preformed condensate. In this case the system oscillates with increasing
amplitude and does not remain limited between two stable configurations. Good convergence is obtained in all
cases studied.

PACS number~s!: 02.70.2c, 02.60.Lj, 03.75.Fi
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I. INTRODUCTION

Recent experiments@1# of Bose-Einstein condensatio
~BEC! in dilute bosonic atoms~alkali–metal and hydrogen
atoms! employing magnetic traps at ultralow temperatu
have intensified theoretical investigations on various asp
of the condensate@2–11#. The properties of the condensa
are usually described by the nonlinear mean-field Gro
Pitaevskii ~GP! equation@12#, which properly incorporates
the trap potential as well as the interaction among the ato
The GP equation in both time-dependent and -indepen
forms is formally similar to the Schro¨dinger equation with a
nonlinear term. The effect of the interaction leads to the n
linear term, which complicates the solution procedure. Th
have been several numerical studies of the GP equatio
three space dimensions@3–7#.

A Bose gas in lower dimensions—one and tw
dimensions—exhibits unusual features. For an ideal B
gas BEC cannot occur in one and two space dimensions
finite temperature because of thermal fluctuations@9,13#. The
absence of BEC in one and two space dimensions has
been established for interacting uniform systems@13#. How-
ever, condensation can take place under the action of a
potential@9,14# both for an ideal as well as interacting Bo
gas.

Although, there has been no experimental realization
BEC in two space dimensions, this is a problem of gr
theoretical and experimental interest. In a usual experim
of BEC in three space dimensions under the action of a m
netic trap the typical thermal energykBTc is assumed to be
much larger than the energy of an oscillator quantum\v,
wherekB is the Boltzmann constant,Tc the critical tempera-
ture, andv the oscillator frequency. This will allow therma
oscillation in all three directions. Usually, in a typical expe
mental situation the oscillator frequencies in three differ
directions,x, y, andz, are different. It is possible to obtain
quasitwo-dimensional BEC in a real three-dimensional t
by choosing the frequency in the third directionvz to satisfy
\vz.kBTc.\vx ,\vy . In that case the energy for therm
fluctuation is much smaller than the oscillator energy in thz
direction. Consequently, any motion in thez direction will be
frozen and this will lead to a realization of BEC in two spa
PRE 621063-651X/2000/62~2!/2937~8!/$15.00
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dimensions. The main features of BEC in two dimensio
under the action of a harmonic trap has been discusse
Mullin recently @9#. Also, there has been consideration
BEC in low-dimensional systems for particles confined
gravitational field or by a rotational container@15#. Possible
experimental configurations for BEC in spin-polarized h
drogen in two dimensions are currently being discus
@8,9#.

Recent numerical studies of the GP equation in th
space dimensions@2–7# in time-independent and time
dependent forms have emphasized that extensive care in
merical integration is needed to obtain good convergen
With the viability of experimental detection of BEC in tw
space dimensions@8#, here we perform a numerical study o
the time-dependent and time-independent GP equation
two space dimensions for an interacting Bose gas under
action of a harmonic oscillator trap potential. The inte
atomic interaction is taken to be both attractive and repuls
in nature.

The nonlinear time-dependent and time-independent
equations can be compared with the corresponding two ty
of the linear Schro¨dinger equation. The stationary states
both cases have a trivial time dependence of the fo
C(r ,t)5exp(2iEt/\)C(r ) whereE is the parametric energy
and t the time. As is well known the time-independent for
of these equations determines the stationary functionC(r ),
as in the hydrogen–atom problem. The time-depend
Schrödinger equation can also be directly solved to obt
the full time-dependent solution in the case of the station
problems, from which the trivial time dependence e
(2iEt/\) can be separated. In fact, the time-dependent m
ods have been successfully used for the bound-state cal
tion in many areas of computational quantum chemistry@16#.
This way of extracting the stationary solution from the line
time-dependent Schro¨dinger equation continues as a powe
ful technique in the case of nonlinear time-dependent
equations.

In this paper we solve the stationary BEC problem in tw
dimensions using both the time-dependent and tim
independent GP equations in the cases of attractive and
pulsive interatomic interactions and compare the two ty
of solutions. The time-independent GP equation is solved
2937 ©2000 The American Physical Society
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2938 PRE 62SADHAN K. ADHIKARI
integrating it with the Runge-Kutta rule complimented by t
known boundary conditions at origin and infinity@17#. The
time-dependent GP equation is solved by discretization
the Gauss elimination method with the Crank-Nicholso
type rule complimented again by the known boundary c
ditions @17#. We find that both the time-dependent and tim
independent approaches lead to good convergence for
stationary bound-state problem of the condensate. We
compare these solutions with the Thomas-Fermi approxi
tion in the case of repulsive interatomic interaction.

In addition to obtaining the solution of the stationa
problem the time-dependent GP equation can be use
study the intrinsic time-evolution problems with nontrivi
time dependence and in this paper the time-dependent
proach is also used to study some evolution problems. S
cifically, we study the effect of suddenly altering the tra
ping energy on a preformed condensate. We find that in
case instead of executing sinusoidal oscillations between
stable initial and final configurations as in standard tim
evolution problems governed by the linear Schro¨dinger equa-
tion, the condensate executes oscillations around the s
initial and final configurations with ever-growing amplitud

In Sec. II we describe the time-dependent and tim
independent forms of the GP equation. In Sec. III we
scribe the numerical method in some detail. In Sec. IV
report the numerical results and finally, in Sec. V we give
summary of our investigation.

II. NONLINEAR GROSS –PITAEVSKII EQUATION

At zero temperature, the time-dependent Bose–Eins
condensate wave functionC(r ,t) at positionr and timet
may be described by the self-consistent mean-field nonlin
GP equation@12#. In the presence of a magnetic trap th
equation is written as

F2
\2

2m
¹21

1

2
mv2r 21gNuC~r ,t!u22 i\

]

]tGC~r ,t!50.

~2.1!

Herem is the mass of a single bosonic atom,N the number
of atoms in the condensate,mv2r 2/2 the attractive harmonic
oscillator trap potential,v the oscillator frequency, andg the
strength of interatomic interaction. A positiveg corresponds
to a repulsive interaction and a negativeg to an attractive
interaction. The normalization condition of the wave fun
tion is

E dr uC~r ,t !u251. ~2.2!

For a stationary solution the time dependence of the w
function is given byC(r ,t)5exp(2imt/\)C(r ) wherem is
the chemical potential of the condensate. If we use this fo
of the wave function in Eq.~2.1!, we obtain the following
stationary nonlinear time-independent GP equation@12#:

F2
\2

2m
¹21

1

2
mv2r 21gNuC~r !u22mGC~r !50.

~2.3!
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The time-dependent equation~2.1! is equally useful for ob-
taining a stationary solution with trivial time dependence
well as for studying evolution processes with explicit tim
dependence.

Here we shall be interested in the spherically symme
solution C(r ,t)[w(r ,t)5w(r )exp(2imt/\) to Eqs. ~2.1!
and ~2.3!, which can be written, respectively, as

F2
\2

2m

1

r

]

]r
r

]

]r
1

1

2
mv2r 21gNuw~r ,t!u22 i\

]

]tGw~r ,t!

50, ~2.4!

F2
\2

2m

1

r

d

dr
r

d

dr
1

1

2
mv2r 21gNuw~r !u22mGw~r !50.

~2.5!

The above limitation to the spherically symmetric soluti
~in zero angular momentum state! reduces the GP equation
in two physical space dimensions to one-dimensional diff
ential equations. We shall study numerically these o
dimensional equations in this paper.

As in Ref. @6#, it is convenient to use dimensionless va
ables defined byx5r /aho, and t5tv/2, where aho

[A\/(mv), a5m/(\v), c(x)5ahoA2mgNw(r )/\, and
c(x,t)5ahoA2pw(r ,t). In terms of these variables Eq
~2.4! and ~2.5! becomes, respectively,

F2
1

x

]

]x
x

]

]x
1x21cnuc~x,t !u22 i

]

]t Gc~x,t !50,

~2.6!

F2
1

x

d

dx
x

d

dx
1x21cuc~x!u222aGc~x!50, ~2.7!

where n[mgN/(p\2) is the reduced number of particle
and c561 carries the sign ofg: c51 corresponds to a
repulsive interaction andc521 corresponds to an attractiv
interaction. The normalization condition, Eq.~2.2!, of the
wave functions become

15E
0

`

uc~x,t !u2x dx5
1

nE0

`

uc~x!u2x dx. ~2.8!

We shall be using these two slightly different normalizatio
of the time-dependent and time-independent wave functi
for future numerical convenience.

An interesting property of the condensate wave funct
is its mean-square radius defined by

^x2&5E
0

`

x2uc~x,t !u2x dx5
1

nE0

`

x2uc~x!u2x dx.

~2.9!

III. NUMERICAL METHOD

A. Boundary condition

Both in time-dependent and time-independent approac
we need the boundary conditions of the wave function ax
→0 and `. For a confined condensate, for a sufficien
largex, c(x) must vanish asymptotically. Hence the no
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linear term proportional touc(x)u3 can eventually be ne
glected in the GP equation for largex and Eq.~2.7! becomes

F2
1

x

d

dx
x

d

dx
1x222aGc~x!50. ~3.1!

This is the equation for the oscillator in two space dime
sions in the spherically symmetric state with solutions
a51,3,5, . . . etc. A general classification of all the states
such an oscillator is well under control@18#. In the present
BEC problem, Eq.~3.1! determines only the asymptotic be
havior. If we consider Eq.~3.1! as a mathematical equatio
valid for all a and largex, the asymptotic form of the physi
cally acceptable solution is given by

lim
x→`

c~x!5NC expF2
x2

2
1~a21!ln xG , ~3.2!

whereNC is a normalization constant. Equation~3.2! leads to
the following asymptotic log derivative

lim
x→`

c8~x!

c~x!
5F2x1

a21

x G , ~3.3!

which is independent of the constantNC and where the prime
denotes the derivative with respect tox.

Next we consider Eq.~2.7! asx→0. The nonlinear term
approaches a constant in this limit because of the regula
of the wave function atx50. Then one has the following
usual conditions:

c~0!5constant, c8~0!50, ~3.4!

as in the case of the harmonic oscillator problem in t
space dimensions@18#. Both the small- and large-x behaviors
of the wave function will be necessary for a numerical so
tion of the GP equation in time-dependent and tim
independent forms.

B. Time-dependent approach:
Evolution and stationary problems

First we describe the numerical method for solving t
time-dependent equation~2.6!. For a numerical solution it is
convenient to make the substitutionc(x,t)[f(x,t)/x in this
equation, when this equation becomes

F2
]2

]x2
1

1

x

]

]x
2

1

x2
1x21cn

uf~x,t !u2

x2
2 i

]

]tGf~x,t !50.

~3.5!

A convenient way to solve Eq.~3.5! numerically is to dis-
cretize it in both space and time and reduce it to a se
algebraic equations which could then be solved by using
known asymptotic boundary conditions. We discretize t
equation by using a space steph and time stepD with a finite
difference scheme using the unknownf j

k, which will be an
approximation of the exact solutionf(xj ,tk), wherexj5 jh
and tk5kD. As Eq.~3.5! involves both time and space var
ables it can be discretized in more than one way. The t
derivative in Eq.~3.5! involves the wave function at timestk
andtk1D. As D is small, the time-independent operations
-
r
f

ty

-
-

f
e

s

e

this equation can be discretized by using the wave-func
components at timetk or tk11[tk1D. If one uses the wave
function components at timetk , Eq. ~3.5! is discretized as

i ~f j
k112f j

k!

D
52

1

h2
@f j 11

k 22f j
k1f j 21

k #

1
1

2xjh
@f j 11

k 2f j 21
k #

1F xj
22

1

xj
2

1cn
uf j

ku2

xj
2 Gf j

k . ~3.6!

This is an explicit differencing scheme since, givenf at tk ,
it is straightforward to solve forf at tk11 @17#. One should
start with an approximately known solution attk and propa-
gate it in time until a converged solution is reached. W
confirm in our study that this simple scheme leads to sl
convergence and large unphysical oscillations in the so
tion.

One can express the derivatives on the right-hand sid
Eq. ~3.6! in terms of the variables at timetk11 @17#. Then the
unknownf j

k11 appears on both sides of the equation and o
has an implicit scheme. We find that the implicit schem
improves substantially the numerical accuracy and conv
gence rate. However, we find after some experimenta
that if the right-hand side of Eq.~3.6! is averaged over times
tk and tk11 one has the best convergence. This is a se
implicit scheme based on the Crank-Nicholson scheme
discretization@19#. We use the following rule to discretiz
the partial differential equation~3.5! @17,19#

i ~f j
k112f j

k!

D
52

1

2h2
@~f j 11

k1122f j
k111f j 21

k11!

1~f j 11
k 22f j

k1f j 21
k !#

1
1

4xjh
@~f j 11

k112f j 21
k11!1~f j 11

k 2f j 21
k !#

1
1

2 F xj
22

1

xj
2

1cn
uf j

ku2

xj
2 G ~f j

k111f j
k!.

~3.7!

A similar discretization rule has been used for the solution
the GP equation in three space dimensions@3#. The first and
second space derivatives of the wave function as well as
wave function itself have been approximated by the aver
over their values at the initial timetk and the final timetk11.
This procedure leads to accurate and stable numerical res
Considering that the wave function is known at timetk , Eq.
~3.7! is an equation in three unknowns2f j 11

k11 ,f j
k11 and

f j 21
k11 . In a lattice ofN points Eq.~3.7! represents a tridiago

nal set forj 52,3, . . . ,(N21). This set has a unique solutio
if the wave functions at the two end pointsf1

k11 andfN
k11

are known. In the present problem these values at the
points are provided by the known asymptotic conditions. T
tridiagonal set of equations is solved by the Gauss elimi
tion method and back substitution@17# using a typical space
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2940 PRE 62SADHAN K. ADHIKARI
steph50.0001 and time stepD50.03. Although the itera-
tive method should work for any value ofD, we found the
convergence to be faster with this value ofD and we used
this value throughout the present investigation.

The time-dependent method could be used to study
tionary as well as time-evolution problems. First we consi
the stationary problem. For the ground and the first exc
states of the condensate we start with the following anal
cally known wave functions of the harmonic oscillator pro
lem ~3.1! @18#:

f~x!5xc~x!5A2x exp~2x2/2!, ~3.8!

f~x!5xc~x!5A2x~12x2!exp~2x2/2!, ~3.9!

respectively, at an initial timet50. We then repeatedly
propagate these solutions in time using the Cran
Nicholson-type algorithm, Eq.~3.7!. The boundary condi-
tion, Eq. ~3.4!, that f(0)50, is implemented at each tim
step@17#. Also, the solution at each time step will satisfy th
asymptotic condition, Eq.~3.2!. Starting withcn50, at each
time step we increase or decrease the nonlinear constancn
by an amountD1 typically around 0.01. This procedure
continued until the desired final value ofcn is reached. Then
the final solution is iterated several times~between 10 and 40
times! to obtain a stable converged result. The resulting
lution is the ground state of the condensate correspondin
the specific nonlinear constantcn. We found the conver-
gence to be fast for smallucnu. However, the final conver
gence of the scheme breaks down ifucnu is too large. In
practice these difficulties start forcn.20 for the ground
state for a positivec ~repulsive interaction! in a computa-
tional analysis in double precision. For an attractive inter
tion there is no such problem as the GP equation does
sustain a large nonlinearityucnu as we comment on in deta
in Sec. III C.

As the time dependence of these stationary states is tr
2c(x,t)5c(x)exp(2i2at)—the chemical potentiala can
be obtained from the propagation of the converged grou
state solution at two successive times, e.g.,c(x,tk) and
c(x,tk11). From the numerically obtained rati
c(x,tk)/c(x,tk11)5exp(i2aD), a can be obtained as th
time stepD is known.

The time-dependent method could also be used to s
evolution problems. One such evolution problem descri
the fate of the condensate if the trap potential is removed
altered suddenly after the formation of the condensate. A
stable condensate is formed under the action of the trap
tential, after a sudden change in the trap potential, the c
densate will gradually modify with time. To study the tim
evolution of a condensate wave function as the trap is
moved or altered suddenly, we have to start the time ev
tion of the known precalculated wave function of the co
densate with the initial trap potential and allow it to evolve
time using the time-dependent GP equation with the full n
linearity but with the altered trap potential, which could
zero.

C. Time-independent approach

The time-independent GP equation~2.7! has the following
structure:
a-
r
d
i-

–

-
to

-
ot

ial

d-

dy
s

or
a
o-
n-

-
u-
-

-

y85G~x,c~y!!, ~3.10!

with y5xc8, where the prime denotes thex derivative. With
this realization, a numerical integration of Eq.~2.7! can be
implemented using the following four-point Runge–Kut
rule @17,20# in steps ofh from xj to xj 11:

c j 125c j 111hc j 118 , ~3.11!

xj 11c j 118 5xjc j81 1
6 ~s012s112s21s3!, ~3.12!

where

s05hG~xj ,c j !, ~3.13!

s15hGFxj1
h

2
,c j1

h~xjc j81s0/2!

2~xj1h/2!
G , ~3.14!

s25hGFxj1
h

2
,c j1

h~xjc j81s1/2!

2~xj1h/2!
G , ~3.15!

s35hGFxj1h,c j1
h~xjc j81s2!

~xj1h!
G . ~3.16!

Equation~2.7! is integrated numerically for a givena using
this algorithm starting at the origin (x50) with the initial
boundary condition, Eq.~3.4!, with a trialc(0) and a typical
space steph50.0001. The integration is propagated tox
5xmax, where the asymptotic condition, Eq.~3.3!, is valid.
The agreement between the numerically calculated log
rivative of the wave function and the theoretical result, E
~3.3!, was enforced to five significant figures. The maximu
value of x, up to which we needed to integrate Eq.~2.7!
numerically for obtaining this precision, isxmax55. If for a
trial c(0), the agreement of the log derivative cannot b
obtained, a new value ofc(0) is to be chosen. The prope
choice ofc(0) was implemented by the secant method. Ev
with this method, sometimes it is difficult to obtain th
proper value ofc(0) for a givena. Unless the initial guess
is ‘‘right’’ and one is sufficiently near the desired solutio
the method could fail, specially, for largeucnu and lead nu-
merically to either the trivial solutionc(x)50 or an expo-
nentially divergent nonnormalizable solution in th
asymptotic region.

IV. NUMERICAL RESULT

A. Stationary problem

First we consider the ground-state solution of Eq.~2.7! for
different a in cases of both attractive and repulsive intera
tions using the time-independent method. In the presenc
the nonlinearity, for attractive~repulsive! interatomic inter-
action, the solutions of the GP equation for the ground s
appear for values of chemical potentiala,1 (a.1). The
relevant parameters for the solutions—the wave function
the origin c(0), reduced numbern, and mean-square rad
^x2&—are listed in Table I. The numerical integration w
performed up to xmax55 with h50.0001 where the
asymptotic boundary condition, Eq.~3.3!, is implemented.

Using the known tabulated values ofn in each case we
also solved the time-dependent GP equation and the w
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functions and energies so calculated agree well with the
spective quantities calculated with the time-independent
proach. The solutions were obtained using space steh
50.0001, time stepD50.03, and the parameterD1'0.01.
The largest value ofx used in discretization Eq.~3.7! is
xmax510. The wave functions for different values ofa ~and
n) for the attractive and repulsive interparticle interactio
for the cases shown in Table I are exhibited in Figs. 1~a! and
1~b!, respectively, where we plotc(x) vs x using the time-
dependent and time-independent approaches. The curv
Figs. 1~a! and 1~b! appear in the same order as the rows
Table I and it is easy to identify the corresponding values
a from the values ofc(0) of each curve. From Figs. 1~a!
and 1~b! we find that the nature of the wave functions f
these two cases is quite different. However, the wave fu
tions calculated with time-dependent and time-independ
approaches agree reasonably with each other.

In the absence of previous solutions of this problem
compare the stationary solutions in the repulsive casec
51) with those obtained via a well-known approximatio
e.g., the Thomas-Fermi approximation. In this approximat
the kinetic energy term in Eq.~2.7! is neglected and one ha
the following simple approximate solution:

c~x!5A2a2x2, ~4.1!

for x2<2a and zero otherwise. In Fig. 1~b! we also plot the
Thomas–Fermi approximation, Eq.~4.1!. We find that as
expected, for a large condensate, this approximation is a
sonable approximation. However, it turns out to be a b
approximation for a small condensate.

It is appropriate to comment on the numerical accuracy
the present time-dependent and -independent methods, w
seems to be limited typically by the difference between
time-dependent and -independent solutions in Fig. 1. W
the solution can be obtained numerically, as in the ca
shown in Table I, the time-independent method can yi
very accurate results. This accuracy can be increased by
trolling the space steph andxmax. This is not so in the case
of the time-dependent method, where the numerical re
exhibits small periodic oscillation after iteration, specia
for large values ofucnu which we detail below.

The numerical solution of the time-dependent method
independent of the space steph provided that a typical value
aroundh50.0001 is employed as in the present study.
visible difference in the solution is found ifh is increased by
a factor of 2 or 3. However, the solution is more sensitive

TABLE I. Parameters for the numerical solution of the G
equation~2.7! for c561 for the ground-state wave function. Th
first four columns refer to the attractive interactionc521 and the
last four columns refer to the repulsive interactionc51.

a c(0) n ^x2& a c(0) n ^x2&

1.0 0 0 0 1.0 0 0 0
0.8 0.9185 0.3663 0.9030 1.2 0.8719 0.4353 1.10
0.4 1.6795 0.9147 0.7297 1.6 1.4415 1.5276 1.32
20.4 2.8255 1.4798 0.4757 2.2 1.9276 3.7509 1.67
22.0 4.6249 1.7695 0.2400 3.0 2.3626 7.8377 2.16
24.0 6.3252 1.8319 0.1385 4.0 2.7786 14.7609 2.80
e-
p-

s

in

f

c-
nt

e
(
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f
ich
e
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o

the number of time iterations, especially for a large value
ucnu, for a fixed integration time stepD, or the stepD1 by
which the nonlinear constant in the GP equation is increa
at each time step until the final value ofcn is reached. We
show this variation in Figs. 2~a! and 2~b! where we plot
uc(x,T)u as a function of reduced timeT[t/0.03 for x50
and 2 for different choices ofD andD1 in the repulsive case
for n53.7509 anda52.2 corresponding to the fourth row o
Table I. The zero of reduced timeT is made to coincide with
the time steptk at which the full nonlinear constantcn is
obtained for the first time during iteration. This choice
time will allow us to compare the fluctuations of the solutio
during the time propagation of the full GP equation. In F
2~a! we present our results forD50.03 and for D1
50.018 754 and 0.004 688 6. In Fig. 2~b! we present our
results forD150.004 688 6 and forD50.03, and 0.05. From
Figs. 2~a! and 2~b! we find that there is a numerical oscilla
tion of the solution with time in this approach which is in
dependent of small variations ofD near 0.03 andD1 around
0.01. These oscillations determine the numerical error of
time-dependent approach and become larger when we

1

FIG. 1. Ground-state condensate wave functionc(x) vs x for ~a!
attractive and~b! repulsive interparticle interactions using the tim
dependent~dashed line! and time-independent~full line! ap-
proaches. The parameters for these cases are given in Table I. I
time-dependent method we used time stepD50.03;D150.01,
space steph50.0001, andxmax58; in the time-independent metho
we used space steph50.0001 andxmax55. In the case of the re-
pulsive interparticle interaction we also show the solution, E
~4.1!, corresponding to the Thomas-Fermi approximation~dashed-
dotted line!. The curves appear in the same order as in Table I w
the lowermost curve corresponding to the first row.
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ploy aD very different from 0.03, orD1 very different from
0.01. The oscillations can really be large if an improp
value of stepD or D1 is choosen as can be seen from F
2~b! for D50.05. The results remain stable if we redu
these steps up toD;0.01 andD1;0.003. For very smallD1
andD accumulative errors also increase. This accumula
numerical error increases as the number of iterations is v
large ~several thousands! and a large number of iterations
needed to cover a given time interval with a small time s
D.

We show a quantitative account of the above oscillat
in Table II where we plot the maximum error inuc(x,T)u
~amplitude of oscillation ofuc(x,T)u) for x50 and 2 at dif-
ferent times calculated with stepsD50.03 and D1
50.004 688 6. We find that the error increases slowly,
not necessarily monotonically, with time. The average va
of the convergeduc(0,T)u is 1.9310 and that foruc(2,T)u is
0.6667. The maximum deviations from these values,
shown in Table II, do not occur at the same values ofT. We
find from Table II that for smallT(;0) the maximum aver-
age error inuc(x,T)u is about 1%. ForT;800 this maxi-
mum average error could be as high as 4%. As these e

FIG. 2. Ground-state condensate wave functionuc(x,T)u vs re-
duced timeT[t/0.03 for x50 and 2 in the repulsive case for th
nonlinear constant cn53.7509 for: ~a! D50.03, and D1

50.004 688 6~full line!, and 0.018 754~dashed line! and ~b! D1

50.004 688 6 and forD50.03 ~full line!, and 0.05~dashed line!.
The zero ofT is taken to be the time at which the full nonlineari
is achieved for the first time.
r
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are oscillating with time, at a givenT this error could be
smaller or even zero. Considering that we are dealing w
nonlinear equations these errors are well within the acc
able limits. The errors shown in Table II would also be t
typical errors in time-evolution problems which we study
Sec. IV B.

For repulsive interaction, it was increasingly difficult t
find the solution of the GP equation using both tim
dependent and time-independent methods for larger non
earity than those reported in Figs. 1~a! and 1~b!. The inputs
of the time-independent method area and an appropriate
c(0). In this method it became difficult~or impossible! to
find the appropriatec(0) and find a solution for largecn
(.20). For large nonlinearity the secant method led to
radially excited state for the appropriatec(0). In the time-
dependent method the only input is the value ofcn. For a
largecn in the repulsive case, the numerically obtained s
lution for the wave function shows many oscillations and
clearly unacceptable physically. A Crank-Nicholson–ty
approach was also used to solve the GP equation in t
space dimensions@3#. The numerical instability also set
limit in that investigation in finding a stationary ground-sta
solution for large values of nonlinearity.

For attractive interparticle interaction, the wave functi
is more sharply peaked atx50 than in the case of the repu
sive interparticle interaction and one has a smaller redu
numbern and mean square radius^x2&. In this case we find
from Table I that with a reduction of the chemical potent
a, the reduced numbern increases slowly and the mea
square radiuŝx2& decreases rapidly, so that the density
the condensater[n/^x2& tends to diverge asn tends to a
maximum valuenmax. The increase in density lowers th
interaction energy. The kinetic energy of the system is
sponsible for the stabilization. As the central density
creases further for stronger attractive interparticle inter
tion, kinetic energy can no longer maintain equilibrium
the system and the system collapses. Consequently, fn
.nmax, there is no stable solution of the GP equation. N
merically, from a plot ofn vs 1/r we find this maximum
number consistent withr2150 to be

nmax[hNmax'1.88. ~4.2!

There is no such limit onn in the repulsive case. In that cas
with the increase of the chemical potentiala the condensate
increases in size as the number of particles in the conden
increases. These behaviors of the Bose–Einstein conden
in two dimensions were also noted in three dimensio

TABLE II. Amplitude of oscillationA(x,T) ~in units of 0.01! of
uc(x,T)u at different timesT for x50 and 2 calculated withD
50.03 andD150.004 688 6 in the repulsive case forcn53.7509.
The average value of convergeduc(0,T)u51.9310 anduc(2,T)u
50.6667.

T5 0 167 294 406 533 645 791
uA(0,T)u 1.54 1.27 3.32 2.93 4.13 4.49 7.35

T5 0 162 291 400 536 637 789
uA(2,T)u 0.77 0.95 1.13 1.33 1.43 2.01 2.77
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@10,11#. However, in three dimensions the correspond
maximum value wasnmax[4Nmaxuau/aho'2.30 @10#.

Both the time-dependent and time-independent
proaches are equally applicable for spherically symmetric
dially excited states. For the first excited state, with one n
in the wave function, we verified that the convergence wa
good as in the ground-state case reported here. However
a routine study and we do not report the results here.

B. Evolution problem

Next we consider two time-evolution problems using t
time-dependent method. We consider the ground state in
repulsive case withcn58. In the first problem, att50, the
trap is suddenly removed. In the second, att50, the trap
energy is suddenly reduced to half of the starting value
both cases we study how the system evolves with time
solving the time-dependent GP equation using time steD
50.03, D1;0.01, and space steph50.0001. Both these
problems are intrinsic time-dependent problems and can
studied numerically and experimentally.

The condensate cannot exist in the absence of the tra
the first case after the trap is removed att50, the radius of
the condensate increases and the wave function extends
a larger region of space. We solve the time-dependent
equation at different times. In Fig. 3 we plot the wave fun
tion at different reduced timesT5t/0.03. The condensat
increases in size monotonically with time and eventually d
appears.

In the second problem att50, we reduce the trap energ
suddenly to half of the initial value corresponding to a sta
final configuration for the condensate in the repulsive ca
The system is now found to oscillate between the initial a
final stationary states. In the absence of the nonlinearity,
system executes sinusoidal oscillations between the
stable configurations. However, in this nonlinear problem
system executes oscillations with evergrowing amplitude.
illustrate this oscillation in Fig. 4 we plot the central pro
ability density uc(0)u2 versus reduced timeT5t/0.03. The
uc(0)u2 for condensates corresponding to the initial and fi
trap energies are denoted by the two straight lines. We

FIG. 3. Condensate wave functionc(x) in the repulsive case a
different timesT5t/0.03 for an expanding condensate after the t
is removed suddenly atT50. The initial condensate hasn58, and
the time evolution is performed using time stepD50.03, D1

50.01, space steph50.0001, andxmax515.
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that the oscillation increases with time. In our numeric
study we find that after a very large number of iteratio
~several thousands! the amplitude may become very larg
However, we do not know if this result makes sense phy
cally as the cumulative numerical error of the type shown
Fig. 2 will also grow after a very large number of iteration
which will possibly invalidate our conclusion. However, th
solution presented in Fig. 4 is stable numerically and is
acceptable physical solution of the problem after a sm
number of iterations. This interesting behavior can possi
be observed experimentally and deserves further theore
and numerical studies. In Fig. 5 we plot the wave functio
of the system at different times which have very accepta
and smooth behavior. As the number of particles of the s
tem continues fixed, the wave functions of smaller amp
tudes have larger spacial extension@mean square radiu
~2.9!# so that the normalization condition, Eq.~2.8!, is pre-
served.

p FIG. 4. The central probability densityuc(0)u2 in the repulsive
case at different timesT5t/0.03 for an oscillating condensate wit
n58 after the trap energy is suddenly reduced to half atT50. The
uc(0)u2 for condensates corresponding to the initial and final tra
are denoted by the two straight lines. The time evolution is p
formed using time stepD50.03, D150.01, space steph
50.0001, andxmax515.

FIG. 5. Condensate wave functionc(x) at different timesT
5t/0.03 for an oscillating condensate after the trap energy is s
denly reduced to half atT50. All parameters are the same as
Fig. 3.
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V. SUMMARY

In this paper we present a numerical study of the Gro
Pitaevskii equation for BEC in two space dimensions un
the action of a harmonic oscillator trap potential for boso
atoms with attractive and repulsive interparticle interactio
using time-dependent and time-independent approac
Both approaches are used for the study of the station
problem. In addition some evolution problems are studied
the time-dependent approach. We derive the boundary
ditions Eqs.~3.3! and~3.4!, of the solution of the dimension
less GP equations~2.6! and~2.7!. These boundary condition
are used for the solution of the stationary problem using b
the time-dependent and time-independent approaches.

The time-dependent GP equation is solved by discretiz
it using a Crank-Nicholson–type scheme, whereas the ti
independent GP equation is solved by numerical integra
using the four-point Runge-Kutta rule. In both cases num
cal difficulty appears for large nonlinearity (cn.20). For
medium nonlinearity, the accuracy of the time-independ
method can be increased by reducing the space steph. How-
ever, the solution of the time-dependent approach exhi
intrinsic oscillation with time iteration which is independe
of space and time steps used in discretization.

The ground-state wave function is found to be shar
an
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peaked near the origin for attractive interatomic interacti
For a repulsive interatomic interaction the wave function e
tends over a larger region of space. In the case of an att
tive potential, the mean square radius decreases with an
crease of the number of particles in the condens
Consequently, a stable solution of the GP equation can
obtained for a maximum number of particles in the cond
sate as given in Eq.~4.2!.

In addition to the stationary problem we studied two ev
lution problems using the time-dependent approach. A sta
bound state is considered and the trap potential is sudd
removed or reduced to half att50. If the trap is removed
suddenly, the system gradually and monotonically increa
in size with time and eventually it disappears occupying
whole space with zero density. If the trap energy is sudde
reduced to half, the system oscillates around the two stat
ary positions. The amplitude of the oscillation continue
increase with time. This behavior is interesting and can
studied experimentally in the future.

ACKNOWLEDGMENTS

The work is supported in part by the Conselho Nacio
de Desenvolvimento Cientı´fico e Tecnola´nd Fundac¸ão de
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